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Gravitational wave astronomy is a vibrant field that leverages both classic and modern data
processing techniques for the understanding of the universe. Various approaches have been proposed
for improving the efficiency of the detection scheme, with hierarchical matched filtering being an
important strategy. Meanwhile, deep learning methods have recently demonstrated both consistency
with matched filtering methods and remarkable statistical performance. In this work, we propose
Hierarchical Detection Network (HDN), a novel approach to efficient detection that combines ideas
from hierarchical matching and deep learning. The network is trained using a novel loss function,
which encodes simultaneously the goals of statistical accuracy and efficiency. We discuss the source
of complexity reduction of the proposed model, and describe a general recipe for initialization
with each layer specializing in different regions. We demonstrate the performance of HDN with
experiments using open LIGO data and synthetic injections, and observe with two-layer models a
79% efficiency gain compared with matched filtering at an equal error rate of 0.2%. Furthermore,
we show how training a three-layer HDN initialized using two-layer model can further boost both

accuracy and efficiency, highlighting the power of multiple simple layers in efficient detection.

I. INTRODUCTION

The study of gravitational wave (GW) signals [L}
7] is a vibrant field that constantly expands our un-
derstanding of gravitational phenomena and our uni-
verse. In the detection schemes currently employed by
gravitational-wave detectors [8H10], such as KAGRA [11],
GEO600 [12], Virgo [13], and LIGO [14][15], the core al-
gorithmic methods consists of excess energy-based burst
searches [16H22] and matched filtering searches [23H42].
Matched filtering is a classic signal processing technique,
which computes the correlation of the time-delayed in-
put signal with a bank of templates. While the matched
filtering method has outstanding performance and sta-
tistical rigor, it potentially has room for improvement in
terms of computational complexity [43]. In fact, millions
of templates are being used in the LIGO matched filter-
ing pipeline, with the number still expanding with the
scope of the search [5].

As we deepen our search for gravitational wave signals,
the issue of computational efficiency (namely, the num-
ber of basic operations required by a computer) is be-
coming increasingly prominent. Detection methods that
excel in both statistical performance and computational
efficiency can significantly boost our capacities for explor-
ing wider and higher-dimensional parameter spaces, and
even other families of eccentric waveforms [44]. This in
turn will help with uncovering more astrophysical events,
potentially unveiling novel astrophysical phenomena, as
well as reducing the carbon footprint associated with
searching for these events.

In the literature, a promising approach to reducing the

complexity of matched filtering searches has been to ap-
ply a two-step hierarchical search, which seeks to rapidly
reject most negative samples [45]. Later, [46] expands
the hierarchy to involve temporal multi-scale approach.
Some other meritorious extensions include using geomet-
ric template placing |47] and hierarchy based on chirp
times [48]. The work of [49] applies two-step detection
within the PyCBC framework, and compares the perfor-
mance on simulated data. A recent work of [50] further
combines the two-step method with dimensionality re-
duction in the template space using principle component
analysis (PCA). All the above examples demonstrate im-
provements relative to basic matched filtering in various
settings for GW detection.

Similar ideas have also been widely explored and ap-
plied in machine learning contexts. For example, |51} (52|
consider hierarchical matching of image features in both
spatial domain and feature domain for image classifica-
tion. [53] considers image classification using hierarchical
matching in the spatial domain. In natural language pro-
cessing, hierarchical model have also been used in senti-
ment classification [54]. More specific applications of this
idea include medical imaging [55], human detection and
segmentation [56], and crime classification |57].

In the meantime, with the growing literature of apply-
ing deep learning and neural networks on GW detection,
it is tempting to leverage deep learning’s power to reduce
complexity. Indeed, various neural network architectures
have been shown to perform tasks such as GW detection,
parameter estimation, noise transients identification and
data denoising [68H93], at performance levels compara-
ble to that of matched filtering. Furthermore, it has been



shown that matched filtering is generally suboptimal for
parametric signal detection [43][94], and the performance
can bee improved by optimizing the templates using deep
learning techniques [43]. This can be achieved by set-
ting up a neural network that is formally equivalent to
matched filtering, and then training on data. Inspired
by the flexibility of deep learning models, it is conceptu-
ally appealing to explicitly incorporate computational ef-
ficiency into the neural network objectives, aim to achieve
“the best of both worlds.”

In this work, we propose a novel neural network archi-
tecture, named Hierarchical Detection Network (HDN),
which takes the form of a multi-layer matched filtering
with trainable parameters. In order to achieve the dual
goal of accuracy and efficiency, we constructed a nowel
loss function that explicitly incorporates computational
complexity. We demonstrate the efficiency gains on data
with open LIGO noise data and synthetic GW signal in-
jections. As a quick glance at the performance gains,
when tested on synthetically injected data at SNR = 9,
compared with matched filtering, two-layer HDN can
achieve false positive and false negative rates 0.2% with
79% lower complexity, and reduces error rates by 88%
when at equal complexity equivalent to 100 templates,
for instance. Experimental details are described in Sec-
tion [V]

Yet, the two-layer networks do not reveal the full power
of the proposed model. We further show that by train-
ing a three-layer model with careful initialization, it is
capable of achieving even better accuracy at lower com-
plexity. We also provide some intuitive insights into the
mechanism behind multi-layer hierarchical models and
their construction.

The rest of the paper is organized as follows. Sec-
tionreviews the problem of parametric detection and
some relevant models. Section [IIIl introduces Hierarchi-
cal Detection Networks, including the setup, complexity
and training process. Section further discusses the
complexity reduction from HDN. Section presents ex-
perimental results of applying HDN on real LIGO data
and synthetic injections. We discuss some further impli-
cations and future steps of this work in Section

II. PRELIMINARIES

In this section, we describe the problem setup for a sin-
gle gravitational-wave detector, and review some related
detection algorithms, including matched filtering and a
closely related model MNet [43].

A. Parametric Detection and Matched Filtering

Consider the problem of detecting gravitational waves
in a single gravitational-wave detector data stream. For-
mally, assume we observe detector data € R™, and need

to decide whether or not & contains any gravitational-
wave signal in addition to noise. Throughout this paper,
we model the inputs as having fixed dimension, where
time-domain convolution can be applied for generic time-
series inputs. The signals of interest are modeled as be-
longing to a parametric set

Sp={sy|vel} (1)

where the parameters < can represent properties of the
objects that generate the gravitational wave, such as
masses, orbits and spins. We model noise as a random
vector z € R™ with distribution pg and independent of
the signal. The detection problem can thus be written as
the following hypothesis test:

Hy:x =z, (2)
or Hy:x=sy+z forsome veT, (3)

For this testing problem, we need to design decision rules
§ :R™ — {0, 1} that ideally achieve both good statistical
performance and high computational efficiency.

One natural approach to this problem is matched fil-
tering [95H97], a classical method for signal detection. A
matched filter is the optimal linear filter for maximizing
the signal-to-noise ratio (SNR) in stationary Gaussian
white noise |95]. When detecting a single target signal
s, matched filtering takes the following form of an inner
product test

o) =1iff (s,z) >, (4)

where 7 is a cutoff threshold. Its natural extension to
detecting a parametric family of signals is to take the
maximum over template samples s, ,. .., 8, in the sig-
nal space, namely

§(x) =1iff max (s, ,x)>T. (5)

i=1,...k

As noted in the literature [43], matched filtering is sub-
optimal for the generic parametric detection problem in
terms of statistical performance. To address such sub-
optimality, one alternative approach that has been de-
scribed is the MNet architectures.

B. MNet Architectures

The MNet architectures, including MNet-Deep and
MNet-Shallow, are two machine learning model for para-
metric detection based on neural networks [43]|. Formally,
an MNet is a neural network initialized to exactly repli-
cate matched filtering, and then trained on data for im-
proved performance. Such improvement is mainly due
to its structural capability of handling non-convex de-
cision boundaries and non-Gaussian noise distributions.
The shallow and deep versions differ in how the replica-
tion of matched filtering is constructed. MNet-Shallow is
structured identically to matched filtering, allowing for



a more direct comparison, whereas MNet-Deep uses a
multi-layer pairwise-max structure for higher flexibility
and statistical performance.

In this work, with computational complexity in mind,
we will focus on the MNet-Shallow model, which can be
expressed as:

FMNet-Shallow (L) = max (si,x) . (6)

Here the weights s; are initialized as templates and then
trained over data, making it advantageous over classic
matched filtering. If we compare its computational ef-
ficiency against matched filtering (measured in terms of
the number of operations required to achieve a target er-
ror rate), the strict performance improvement with iden-
tical architecture suggests that one can expect a strict
efficiency improvement as well.

However, the structural similarity between MNet-
Shallow and matched filtering implies that such efficiency
gains may typically be very limited. In order to achieve
efficiency gains on higher orders of magnitude, we may
need to reconsider the parametric detection problem, and
innovate on the basic matched filtering rule. As we
present in the next section, one solution is to arrange
the templates in a multi-layer hierarchy, so that signifi-
cant proportions of negative-labeled data are subject to
early rejections.

III. HIERARCHICAL DETECTION
NETWORKS

In this section, we present the Hierarchical Detection
Network (HDN), which improves over matched filtering
and MNet-Shallow to simultaneously maximize statisti-
cal performance and computational efficiency.

The main idea behind HDN is intuitive. If an input
segment clearly contains no gravitational wave signals,
we may not need to subject it to millions of templates
to tell that. A small number of “gatekeeper” templates
may be sufficient for confidently rejecting these “obvi-
ously wrong” instances. Once these inputs have been
ruled out, we can apply a more refined test using pos-
sibly more templates, and reject a larger portion of the
input space. This procedure can be repeated, until in the
very last step, we employ our full template bank for a full
diagnosis on the remaining instances which all previous
tests failed to reject. Since the overwhelming majority
part of the gravitational wave strain data contains noise
only, most instances will likely be addressed by the initial
simple layers of the model, saving the need for the full
template bank. In addition, different layers of the HDN
may be designed to specialize in different parts of the in-
put space, such that the available parameter space of the
potentially allowed waveforms are successively restricted
as the hierarchical process progresses from later to layer,
allowing for further efficiency gains.

A. Architecture of HDN

We first formally define a hierarchical detection net-
work (HDN). Generally speaking, a HDN is a hierarchi-
cal template matching model trained as a neural network,
as illustrated in Fig Let L be the number of layers in
the hierarchical structure, and let {s;}?_; be the entire
set of n templates used by the model. For each layer
£=1,...,L, only the first n, of these templates are used
in that layer, where 0 < n; < --- < np = n. Let the
threshold associated with template ¢ at layer ¢ be t; 4,
i=1,...,ny. Here we let layer [ reuse all templates from
the previous layer(s), but assign independent threshold
values to the reused templates at different layers, in order
to reduce computation complexity.

input x
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FIG. 1. Illustration of a hierarchical detection network.

Following conventions of the machine learning litera-
ture on binary classification, we call an input « positive if
it contains a GW signal, and negative if it only contains
noise. For a given input x, the model processes it using
the following procedure:

Algorithm 1 The HDN algorithm

Parameters: L,n,{n¢}, {si}, {tie}
Input: =

{1
while ¢ < L do
Yo < Max;<n, (€, 8i) —tie
if y, < 0 then
return 0
end if
L+—{(+1
end while
return 1




More formally, for a given input x, let

ye = max (x, 8;) — tig (7)
iSYLe
be the matching output at layer ¢, £ =1,... L. Let
I, = ]]'[yf > O]a 1f Ij_1=1 (8)
0, if Ig_l =0

be the indicator of whether the input passes layer ¢ of
the model on to the later layer(s), £ =1,...,L — 1, and
define Iy, = 0. With these notations, the overall output
of the model can be written as

L -1
z) =Yyl 1) [] In- (9)
(=1 k=1

Note that both matched filtering and MNet-Shallow
can be unified under the framework of HDN, viewed as
a model with a single layer. In the meantime, some of
the existing two-step MF methods [45] [47] [49] can also
be interpreted under this framework. Furthermore, the
HDN architecture is not restricted to the typical two-
layer hierarchy of coarse and fine searches, but can utilize
multiple layers which specialize in different parts of the

signal space. The use of multiple layers and their setup
is further discussed in Section

B. Measure of Computational Complexity

With matched filtering and HDN unified under the
same framework, we can provide a formal definition of
computational complexity to facilitate our discussion.
We are often most concerned about the execution effi-
ciency of the model in deployment rather than in train-
ing, since it determines the real-time processing abilities.
In the meantime, any computational cost of setting up
the parameters of the model, including template selection
for matched filtering and training for neural networks, is
a one-time cost and can be conducted offline. Therefore
it is natural to define complexity based on test time.

Also, since for the vast majority of time the input
strain does not contain gravitational wave events, we can
capture the computational complexity solely by its per-
formance on negative data. This leads to the following
definition of complexity:

Definition 1 (Complexity). The (computational) com-
plexity of a HDN model is defined as the expected num-
ber of template matching (inner product) operations con-
ducted to evaluate a negative input.

Formally, we can write the complexity as

7Z =EBgnr_[z(x)], (10)

where

Z()Z

(1—1Ip) H I (11)

is the number of matching operations required for evalu-
ating an input x.

To illustrate this measure of complexity, note that for
matched filtering and MNet-Shallow models, the com-
plexity simply equals the number of templates used in the
model. For a two-layer HDN, assuming only a proportion
p of negative data enters the second layer, the complexity
for the model will be ny + p - ny. Intuitively, if the initial
layer contains fewer templates while being able to reject
a significant portion of negative inputs, these inputs will
not need to undergo the entire model, hence reducing
the complexity of the model. This straightforward idea
forms the basis of HDN, upon which we further lever-
age the power of data through training for an additional
boost in performance.

C. Training of HDN

So far, we have described the behavior of HDN at
test/deployment time, and now we turn our attention
to the training process. Conceptually, we want to set up
a loss function as an appropriate combination of classi-
fication error and model complexity, so that minimizing
the loss would achieve simultaneously accuracy and ef-
ficiency. However, a loss function directly based on the
above expressions @) and is undesirable because of
non-differentiability. Instead, we use soft surrogates for
the indicators I,. Define

I = é(ye) (12)

for £ =1,...,L — 1 where ¢(z) := 1= is the sigmoid
function, serving as a soft surrogate of the step function.
Also let I, = 0. Note that during training we can simply
compute y, for all layers regardless of whether previous
layers were passed, since this will only be a one-time of-
fline cost. Define the soft surrogates for y(x) and z(x)
accordingly:

o(1— Ip) H I, (13)

(1 —1Ip) H 1. (14)

Assume the training dataset is {(z;,y;)} Y, with Ny
positive entries and N_ negative entries. The loss func-
tion can be formulated as

Zfaccwm " Z P (15)

iyr =0
where
G =y logpi + (1 — y;) log(1 — pi) (16)
with p; = ﬁ is equivalent to the cross-entropy loss

for binary classification, and

5P = 5 (17)



is the soft approximate for the complexity of evaluate
the negative inputs. With the loss function defined
above, we can then train the model parameters {s;} and
{ti ¢} using first order optimization methods.

Experimental results of the HDN architecture will be
shown in Section[V]

IV. COMPLEXITY REDUCTION FROM
MULTIPLE LAYERS

Here we provide some theoretical insights into why the
hierarchical model achieves reduced complexity at similar
target performance levels, particularly with more layers.

Consider as an example a two-layer hierarchical model
with n1,no templates respectively on the layers. Let ay
and [, denote respectively the FPR and FNR of layer ¢
conditioned on data that reaches the corresponding layer.
The overall FPR, FNR and the complexity z can then be
represented as:

Qall = Q1 Qo (18)
Ban = 1+ (1 — 1) (19)
Zanl = N1 + a1(ng —ny) (20)

To understand why an improvement in complexity can
be expected, we consider the following example setup of
parametric detection as shown in FIG. The proba-
bility density of the two labeled classes are py and p;
respectively. Imagine a baseline MF model with decision

P1

. MF &
.. Layer 2

Po

Layer 1

FIG. 2. An example of the complexity advantage of hierar-
chical detection models.

boundary as shown by the green curve, at the cost of
n templates, where n has to be relatively large to ap-
proximate the smoothly curved boundary. Then we can
construct the following hierarchical model to achieve a
significantly lower complexity with identical statistical
accuracy. To do this, we construct a simple two-layer hi-
erarchical model, with the first layer decision boundary
as shown by the dotted blue line, and the second layer
decision boundary coinciding with that of the MF model.
Notice that the first layer features a very low complexity

ny (with ny = 2 in this example), and in the meantime
has a fairly high true negative rate 1 —«. Since the second
layer reproduces the MF decision boundary, the overall
decision rule of the hierarchical model is identical to that
of the MF model, and hence they share exactly the same
ROC (receiver operating characteristic) curves. However,
the complexity of the HDN model is n1 + aq(n2 — n1),
which is significantly smaller than ny provided nq is small
compared with ng and a7 is not too close to 1.

This example provides inspirations for a general recipe
for designing hierarchical models with reduced complex-
ity. For any decision rule given by a MF model, we can
construct a sequence of preceding layers whose negative
decision regions all lie inside the negative decision re-
gion of the MF, and finally let the very last layer be
equivalent to the original MF. The resulting hierarchical
model will again have exactly the same overall decision
rule and hence ROC curve, but with significantly reduced
complexity. An illustrating example is shown in FIG.

Layer 3
Layer 1 pPo

FIG. 3. A hierarchical model with more simple layers that lie
inside the overall negative decision region.

More generally, such constructions of hierarchical mod-
els can serve as good initializations for a HDN. One prac-
tical initialization scheme for an L-layer HDNSs is the fol-
lowing: first train a separate L — 1-layer model that only
consists of the latter L — 1 layers of the desired model.
Then we initialize the latter L — 1 layers of the original
model with the trained network, and initialize the first
layer with small ¢;; values such that almost all inputs
pass. This gives an initialization of the L-layer model
which at initialization essentially replicates the L—1-layer
model. From there, we train the initialized L-layer model
on data, which will leverage the higher architectural ca-
pacity for further improved performance and complexity.
An experiment that illustrates this approach is shown in

Section



V. SIMULATION AND EXPERIMENTS
A. Data Generation

In the experiments, we use open L1 strain data from
LIGO Livingston’s O2 run between August 1 and August
25, 2017 with ANALYSIS_READY flag [98]. The total
duration of the frame files is 389.12 hours. We downsam-
ple the strain data from the original 4096Hz to 2048Hz
for processing efficiency. The downsampled data is then
divided into segments of 2 seconds, with each segment
overlapping with 50% of its preceding segment.

To evaluate the accuracy of detection models, we need
both positive and negative datasets. For the negative
datasets, the strain data itself is used. For the positive
datasets, due to the very limited number of confirmed
detections of GW events, we generate positive data by
injecting synthetic waveforms into the noise strains, at a
preset SNR value.

The entire L1 strain dataset is first divided into two
sets to be used in training and test respectively, such that
any segment in the training set does not overlap with
any segment in the test set. For training and test respec-
tively, a positive and a negative dataset are generated.
For the positive datasets, synthetic waveforms are gener-
ated with masses mq, mz uniformly drawn from [20, 50]
and 3-dimensional spins drawn from an isotropic distri-
bution and with spin dimensionless magnitudes drawn
from a uniform distribution within [0,1]. The injected
waveforms are aligned such that the peak is located at
0.95 second, and the injection amplitude is chosen such
that the signal-to-noise ratio (SNR) after preprocessing
is constant at 9. The preprocessing is applied to all data
(after injection if applicable) by using an FIR bandpass
filter with cutoff frequency 30Hz and 400Hz, whitening
with power spectral density estimated from the L1 strain
data, and truncating to only keep the center 1 second.

B. Two-Layer Networks

In this experiment, we limit our HDN models to two
layers and no = 10n1. At initialization, the templates s;
are chosen as random gravitational waveforms from the
same parameter space, and the thresholds ¢; , are set to
the same within each of the two layers. The parameter
A is the loss function is fixed at A = 10™%. For the op-
timization procedure of the network, we use the Adam
optimizer and a constant learning rate of 10~%.

FIG. shows the comparison of the complexity-
performance trade-offs of MF and HDN models, where
the HDN models are two-layer architectures structured
as described above. The horizontal axis plots the loga-
rithm of the complexity measure defined in this paper,
and the vertical axis plots the logarithm of error rates at
the point on the ROC curve where FPR = FNR. This
choice of measure eliminates the arbitrariness of choos-
ing FNR at a fixed FPR level. For each architecture, 10
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FIG. 4. Complexity-performance trade-off of matched filter-
ing and the hierarchical neural network.
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FIG. 5. Proportion of error rate reduced by using HDN over
matched filtering.

independent runs are conducted, and the one with lowest
accuracy measure is shown. The red curve for HDN is
cut off early due to memory limitations of training the
model. We see that HDN consistently achieves a lower
complexity than MF at equal accuracy.

C. Three-Layer Networks

We further demonstrate the power of the proposed
model with a deeper three-layer network. Conceptually,
since adding more layers strictly improves model express-
ability, it should never hurt performance provided that
the parameters are initialized or trained appropriately.

In this experiment, we construct a 3-layer HDN with
layer sizes (ny,n2,nz) = (30,100,1000) in the following
way. First, a shallower 2-layer model with layer sizes
(100, 1000) is trained, and we use these trained parame-
ters to initialize the latter two layers of the 3-layer model.
We then initialize the first layer of the 3-layer model, set-
ting the per-template thresholds ¢; ; as the same value for
all 7, such that all training data passes this first layer at



initialization. This scheme ensures that at initialization,
the 3-layer model essentially replicates the performance
of the trained 2-layer model, giving it a head start be-
fore entering the training phase. The training is done in
the same way as described before. FIG. |§| illustrates the
architecture of this 3-layer model, along with the output
densities of test data that reaches that layer, separated
by the true class labels. Namely, the densities of layer
1 involves all input data, and the densities of layers 2
and 3 involve only the data that pass the previous layers.
We see that most of the negative data are successfully
intercepted by the initial layers, with very few of them
reaches the final layer, which corroborates our intuition.

input x -10* ‘

ko
yva

0 50 100

’l:IPos [ 1Neg

FIG. 6. Hlustration of the 3-layer architecture, and the output
densities on the test data from each layer. Only data entries
that reach a given layer is shown. We see that each layer suc-
cessfully rejects the vast majority of incoming negative data,
and barely any negative data reaches the last layer.

Here when evaluating the ROC curve, we adopt a
slightly different approach that is more consistent with
deep hierarchical models. Notice from equation that
the model uses a built-in threshold 0 to control the pass-
ing of each layer. When generating the ROC curve using
a varying threshold, such a threshold should be applied
at all layers instead of only the last layer. Therefore, at
test time only, we replace the threshold 0 in equation
with a variable threshold ¢ € R which is constant for all
layers, and compute the test outputs using as before
for each ¢ value. Varying this threshold ¢ produces the
ROC curve. Also note that ¢ determines which test en-
tries would pass the layers, hence it also affects the model
complexity evaluated on the negative test dataset. In ac-
tual deployment, the threshold ¢ should be fixed at some

level that gives the desired trade-off between FPR and
FNR, so this is only for demonstration purpose.
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FIG. 7. Comparison of ROC curves between three mod-

els. The numbers in parentheses show the complexity of the
model.

FIG. shows the comparison of ROC curves between
a matched filtering model with 100 templates, a 2-layer
HDN model with complexity 100.5 (used for initializing
the 3-layer model), and a 3-layer HDN model with com-
plexity 37.1 at the point of equal FPR and FNR. While
the complexity of the 3-layer model depends on the spe-
cific point chosen on the ROC curve, it does not exceed
65 for the entire segment of ROC curve shown in the
figure, and is thus always lower than the 2-layer model.
We see that the deeper 3-layer model excels at both accu-
racy and efficiency compared with the 2-layer model, and
significantly more so if compared with the matched fil-
tering model. This further showcases the power of depth
in hierarchical models, and corroborates our discussion
in Section

VI. DISCUSSION

In this paper, we showed that by leveraging ideas from
classical matched filtering and modern machine learn-
ing, we are able to design systems for GW detection
that simultaneously optimize statistical accuracy and ef-
ficiency. This general conceptual idea of trainable hierar-
chical matched filtering can be applied upon a wide range
of existing proposals for efficient detection pipelines.

While the proposed HDN model conducts hierarchi-
cal rejection on the data, an alternative can be proposed
to conduct hierarchical acceptance, namely to progres-
sively label parts of the data as positive rather than neg-
ative. This has the advantage of aligning better with



the matched filtering routine, since it suffices to use one
matching template to confirm a signal. In the specific
problem of GW signal detection, due to the class imbal-
ance from the scarcity of actual GW events, the majority
of computational complexity hinges on the classification
of negative data, and therefore a hierarchical rejection
model will have much more significant efficiency gains.
In more general signal detection problems, hierarchical
acceptance constructions can also be deployed in similar
fashions as HDN.

The proposed HDN can potentially have wider appli-
cations within the field of gravitational wave science. For
example, in the task of glitch detection and identification
[801 [99H103], one can combine existing constructions of
machine learning based models with hierarchical models,
to improve on both efficiency and accuracy.

One aspect to be further explored is how to select the
number of layers in the hierarchy. While having more lay-
ers can boost model expressability and further leverage
the efficiency gains, excessive hierarchy may offer dimin-
ishing returns, and also make training increasingly diffi-
cult. In the paper we demonstrated how a 3-layer model
excels over a 2-layer one, and there may be a “sweet
spot” number of layers for a given signal detection se-
tups. Another promising direction would be to incor-
porate prior knowledge about the signal domain such as
low-dimensionality and representative features into the
detection model, which may be able to further outper-
form these current models agnostic of the signal space
properties.
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