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 Introduction

The theory of F -modules, whose roots can be found in [15,5,7], is introduced in [10]. 
ince its introduction, it has been proven indispensable in the study of rings of prime 
aracteristic p (see, for instance, [4,1,11,16,12]). Replacing the Peskine-Szpiro functor 
(−) by its e-th iteration F e(−), one obtains the theory of F e(−)-modules (details can 
e found in §2).

The motivations behind this article are two-fold:

E-mail address: wlzhang@uic.edu.

The author is partially supported by NSF through DMS-1752081.

tps://doi.org/10.1016/j.jalgebra.2022.11.008
21-8693/© 2022 Elsevier Inc. All rights reserved.



W. Zhang / Journal of Algebra 617 (2023) 340–351 341

(†

(‡

T
ge
th

D

th
th

T
lo
si
pr

w

T
(V

(1
(2

th

w

) It follows from [8, 7.4] that there exists an F -finite F -module which admits a simple 
D-submodule that is not an F -submodule (cf. Example 2.5). The structure of such 
D-submodules warrants further investigations.

) Let R be the completion of Z[x1, . . . , x6] at the maximal ideal (2, x1, . . . , x6) and let 
I be the monomial ideal associated with the minimal triangulation of the projective 
plane. Then it is proved in [3, 4.5] that the support of the Matlis dual of H4

I (R) is 
Spec(R/(2)), a proper subset of Spec(R), which provides a counterexample to [13, 
Conjecture 1]. It is natural to ask whether Spec(R/(π)) is always contained in the 
support of the Matlis dual of Hj

I (R) whenever R = V [[x1, . . . , xn]] and V = (V, πV )
is a complete DVR of mixed characteristic (0, p).

One of our results regarding (†) is the following.

heorem 1.1. Let R be a noetherian regular ring of characteristic p which is a finitely 
nerated Rp-module. If N is a simple DR-submodule of an F e-finite F e-module M, 
en there exists a positive integer e′ such that N is an F e′e-submodule of M.

Since each F e-module is naturally a DR-module (Remark 2.7), it is feasible to consider 
-submodules of an F e-module in the statement of Theorem 1.1. Example 2.5 shows 
at, in general, it is necessary to have e′ > 1, even when e = 1. This provides one of 
e justifications for the necessity of considering F e-modules (with e > 1).
As a consequence of our Theorem 1.1, we have the following result concerning (‡).

heorem 1.2. Let (R, m) be a noetherian regular local ring of finite type over a regular 
cal ring A such that A is module-finite over Ap. Let N be an arbitrary (not necessarily 
mple) DR-submodule of an F e-finite F e-module. Assume that (0) is not an associated 
ime of N . Then

SuppR(N ∨) = Spec(R),

here N ∨ denotes the Matlis dual of N .

heorem 1.3. Let R = V [[x1, . . . , xd]] be a formal power series ring over a complete DVR 
, πV, k) of mixed characteristic and I be an ideal of R. Assume that [k : kp] < ∞. If

) either Coker(Hj
I (R) π−→ Hj

I (R)) �= 0
) or Ker(Hj

I (R) π−→ Hj
I (R)) �= 0,

en

Spec(R/πR) ⊆ SuppR(Hj
I (R)∨),
here Hj
I (R)∨ denotes the Matlis dual of Hj

I (R).
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Theorem 1.2 is a natural extension of the main theorem in [13]. Without any further 
sumptions on I, Theorem 1.3 is the best possible since “⊆” can be “=” in general; see 
emark 4.2 for details.
This article is organized as follows. In §2, we collect some necessary preliminaries on 

e-modules and D-modules; in §3, we prove Theorem 1.1 and its corollary; in §4, we 
ply results proved in §3 to the investigation of the support of Matlis dual of D-modules, 
pecially local cohomology modules.

cknowledgment

The author thanks the referee for carefully reading the article and for the comments 
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 Background and some results on D-modules and F e-modules

Let A be a commutative ring with identity. A (Z-linear) differential operator of order 
is the multiplication by an element of A. A differential operator of order ≤ � is an 
ditive map δ : A → A such that the commutator [δ, ̃a] = δ ◦ ã − ã ◦ δ is a differential 
erator of order ≤ � − 1, where ã : A → A is the multiplication by a ∈ A, for every 

 ∈ A. These differential operators form a ring, denoted by DA|Z or simply DA.
If k ⊆ A is a subring, then the ring of k-linear differential operators, denoted by DA|k, 

 the subring of DA consisting of k-linear elements of DA. Given any element f ∈ A, Af

rries a natural DA|k-module structure. Consequently, the local cohomology modules 
j
a(A) carry a natural DA|k-module structure for each ideal a in A.
Assume now that A contains a field of characteristic p, and let Ape be the subring 

 A consisting of all the pe-th powers of all elements in A for each positive integer 
 Then, every differential operator δ ∈ DA of order ≤ pe − 1 is Ape-linear; that is 
∈ HomApe (A, A). Let k be a perfect subfield of A (e.g. k = Z/pZ). Assume that A is 
finite k[Ap]-module, then

DA = DA|k =
⋃
e

HomApe (A, A).

omApe (A, A) is also denoted by D(e) in the literature.
When A = B[x1, . . . , xn] or A = B[[x1, . . . , xn]] where B is a commutative ring with 

entity, the ring DA|B can be described explicitly as follows. Set ∂[t]
i := 1

t!
∂t

∂xt
i
; that is

∂
[t]
i (xs

i ) =
{

0 s < t(
s
t

)
xs−t

i s ≥ t

hen DA|B is the ring extension of A generated by ∂[t]
i for all i and all t ≥ 1. Furthermore, 

 B is a perfect field of characteristic p, then D(e) is the ring extension of A generated 

y ∂[t]

i for all i and all t ≤ pe − 1.
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emark 2.1. Given this explicit descriptions of the rings of differential operators, one 
n check the following (cf. [2, 2.1] for details). Assume that R = V [x1, . . . , xn] or 
= V [[x1, . . . , xn]] where V = (V, πV, k) is a DVR with a uniformizer π. Set R̄ = R/(π). 
iven each DR|V -module M , the multiplication map M π−→ M is DR|V -linear as π ∈ V ; 
nsequently, the submodule AnnM (π) and the quotient module M/πM are naturally 

R|V -modules and DR̄|k-modules. The short exact sequence 0 → R
π−→ R → R̄ → 0

duces a long exact of local cohomology modules

· · · → Hj−1
I (R̄) → Hj

I (R) π−→ Hj
I (R) → Hj

I (R̄) → · · ·

hich is an exact sequence in the category of DR|V -modules, for each ideal I of R. 
 particular, the modules Coker(Hj

I (R) π−→ Hj
I (R)) and Ker(Hj

I (R) π−→ Hj
I (R)) are 

turally DR|V -modules and DR̄|k-modules. Consequently, the natural maps

Coker(Hj
I (R) π−→ Hj

I (R)) → Hj
I (R̄), Hj−1

I (R̄) → Ker(Hj
I (R) π−→ Hj

I (R))

e morphisms in the category of DR|V -modules and morphisms in the category of DR̄|k-
odules.

Let A be a commutative ring that contains a field of characteristic p. Then there is 
natural functor on the category of A-modules called the Peskine-Szpiro functor and 
fined as follows. Let F e

∗ A denote the A-module whose underlying abelian group is the 

me as A and whose A-module structure is induced by the e-th Frobenius A a�→ape

−−−−→ A. 
he Psekine-Szpiro functor F e

A(−) on the category of A-modules is defined by

F e
A(M) = F e

∗ A ⊗A M.

emark 2.2. Assume R is a noetherian regular ring of characteristic p. Then a classical 
eorem due to Kunz ([9]) asserts that the Peskine-Szpiro functor F e

R is an exact functor.
Moreover, assume that R is a finite generated Rp-module. Then the category of R-

odules is equivalent to the category of D(e)-modules ([1, Proposition 2.1]). The functor 
om the category of R-modules to the category of D(e)-modules is precisely the Peskine-
piro functor F e

R. Since one can identify HomRpe (R, R) with HomR(F e
∗ R, F e

∗ R), the 
(e)-module structure on F e

R(M) = F e
∗ R ⊗R M is induced by the action on F e

∗ R. We 
fer the reader to [1] for details.

The following result, [1, Proposition 2.3], will be useful in the sequel.

heorem 2.3. Let R be a noetherian regular ring of characteristic p. Assume that R is 
finitely generated Rp-module. Then the Peskine-Szpiro functor F e

R is an equivalence of 

e category of DR-modules with itself.
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Considerations on the Peskine-Szpiro functor have proven to be fruitful in the inves-
gation of rings of prime characteristic p. When R is regular, the theory of F -modules is 
troduced in [10]. Since this theory is readily adapted to the e-th Peskine-Szpiro functor 
e(−), we opt to explain here the theory of F e-modules.
For the rest of the section, R denotes a noetherian regular ring of prime characteristic 

efinition 2.4. Let e be a positive integer.

) An R-module M is an F e-module if there is an R-module isomorphism

θ : M → F e(M) = F e
∗ R ⊗R M

called the structure isomorphism.
When e = 1, we will write F instead of F 1 whenever the context is clear.

) If (M, θM) and (N , θN ) are F e-modules, then an F e-module morphism from 
(M, θM) to (N , θN ) consists of the following commutative diagram:

M
ϕ

θM

N

θN

F e(M)
F e(ϕ)

F e(N )

We will simply write this F e-module morphism as ϕ : M → N whenever the context 
is clear.

) A generating morphism of an F e-module is an R-module homomorphism β : M →
F e(M), where M is an R-module, such that M is the direct limit of the top row of 
the following commutative diagram

M
β

β

F e(M)
F e(β)

F e(β)

F 2e(M) · · ·

F e(M)
F e(β)

F 2e(M)
F 2e(β)

F 3e(M) · · ·

and the structure isomorphism θ : M → F e(M) is induced by the vertical morphism 
in the diagram.

) An F e-module M is F e-finite if it admits a generating morphism β : M → F e(M)
where M is a finitely generated R-module.
e will denote the category of F e-modules by F e.
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Results on F -modules in the literature, e.g. [10] and [1], can be readily extended 
 F e-modules by simply replacing the functor F (−) with the functor F e(−). Before 
oceeding to properties of F e-modules, we would like to explain one of the motivations 

ehind introducing these modules and hopefully to answer the natural question: why not 
st work with F -modules?

xample 2.5. Let R = F11[x, y, z] and let f = x7 + y7 + z7. Denote H1
(f)(R) by H. Then 

, 7.4] shows that

�D(H) > �F (H),

here �D(H) (or �F (H), respectively) denotes the length of H in the category of D-
odules (or in F , respectively). Let H be a simple D-submodule of H. If H is an F -
bmodule of H, then it follows from [10, Theorem 2.8] that H is an F -finite F -submodule 
 H and consequently H/H is an F -finite F -module. Note �D(H/H) > �F (H/H). 
ontinuing this process, after at most �F (H) steps, one can see that there is an F -finite 
-module H′ (a quotient of H in the category of F -modules) such that H′ admits a 
mple D-submodule that is not an F -submodule of H′. (Similarly, one can also deduce 
at H admits a D-submodule which is not an F -submodule.)

Example 2.5 shows that the theory of F e-modules may be applicable to D-submodules 
 an F -finite F -module which may not be F -submodules in general.

emark 2.6. Assume that (M, θ) is an F e-module for a positive integer e. Then, for 
ery positive integer t, the composition

M θ−→ F e(M) F e(θ)−−−−→ · · · → F te(M)

 also an R-module isomorphism. Hence M is an F te-module for every positive integer 
 In particular, an F -module is also an F e-module for every positive integer e. Conse-
ently, all local cohomology modules Hj

I (R) (and iterated local cohomology modules) 
e F e-modules for every positive integer e.
Assume that (M, θ) is an F e-module for a positive integer e. Then so is F t(M) for 
ery positive integer t since F t(M) ∼= F t(F e(M)) = F e(F t(M)).
Let e, f be positive integers such that e|f . Then F e can be naturally viewed as a 
bcategory of F f . Let M be an F e-module. By an F f -submodule N of M we mean a 
b-object of M when M is viewed as an object in F f .

emark 2.7. Every F e-module admits a natural D-module structure. This follows from 
emark 2.2. Let δ be a differential operator. Then there exists an positive integer t such 
at its order (as a differential operator) is less than te. Let αt denote the composition

θ F e(θ)
M −→ F e(M) −−−−→ · · · → F te(M)
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Given an arbitrary element m ∈ M, write αt(m) =
∑

i ri ⊗ mi. Then, for every 
ement m ∈ M, set

δ · m := α−1
t (

∑
i

(δ · ri) ⊗ mi)

Whenever we view an F e-module as a DR-module, we always refer to the DR-module 
ructure specified in the previous paragraph. Under this DR-module structure, an F e-
odule morphism between any two F e-modules is also a DR-module morphism.

We now collect some results on F e-modules which are natural analogues of corre-
onding results on F -modules in the literature.

emark 2.8. Let R be a noetherian regular ring of characteristic p that is module-finite 
er Rp. Let M be an F e-module for a positive integer e.

) The F e-finite modules form a full abelian subcategory of the category of F e-modules 
which is closed under formation of submodules, quotient modules and extensions. 
When e = 1, this is [10, Theorem 2.8]. When e is an arbitrary positive integer, the 
same proof goes through (by replacing F (−) with F e(−)).

) The structure isomorphism θ : M → F e(M) is DR-linear, where the DR-module 
structure is as in Remark 2.7. When e = 1, this is [1, Lemma 2.4]. When e is an 
arbitrary positive integer, the same proof goes through (by replacing F (−) with 
F e(−)).

) Assume further that R is of finite type over a regular local ring A such that A is 
module-finite over Ap. Then every F e-finite F e-module has finite length in F e and 
in the category of DR-modules, for each positive integer e. When e = 1, this is [10, 
Theorem 3.2] and [1, Theorem 2.5], respectively. When e is an arbitrary positive 
integer, the same proofs go through (by replacing F (−) with F e(−)).

 Interactions between F e-modules and D-modules

The main goal of this section is to prove Theorem 1.1. We begin with the following 
servation.

roposition 3.1. Let R be a noetherian regular ring of finite type over a regular local ring 
such that A is module-finite over Ap and let M be an F e-finite F e-module. Let N be 
DR-submodule of M. Assume that2 F e(N ) ⊆ N . Then N is an F e-submodule of M.

roof. Since F e(N ) is naturally a DR-submodule of M (due to Theorem 2.3) and 
e(N ) ⊆ N , we have a descending chain of DR-submodules of M:
Here we identify F e(N ) with an R-submodule of M under the isomorphism F e(M) ∼= M.
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N ⊇ F e(N ) ⊇ F 2e(N ) ⊇ · · · .

nce M has finite length in the category of DR-modules (Remark 2.8), this chain must 
rminate in finitely many steps; that is F te(N ) = F (t+1)e(N ) = F te(F e(N )) for an 
teger t. Hence N ∼= F e(N ) which completes the proof. �
We are now in position to prove Theorem 1.1, whose proof is inspired by the proof of 

0, Theorem 5.6].

roof of Theorem 1.1. Since M is an F e-module, F te(N ) ⊆ F te(M) ∼= M for each pos-
ive integer t. We will view F te(N ) as a D-submodule of M. It follows from Theorem 2.3
at F te(N ) is also a simple D-submodule of M for every positive integer t. Let t be 
e least positive integer such that

N + F e(N ) + · · · + F (t−1)e(N ) = N ⊕ F e(N ) ⊕ · · · ⊕ F (t−1)e(N )

at is, t is the least positive integer such that

(N + F e(N ) + · · · + F (t−1)e(N )) ∩ F te(N ) �= ∅.

t

L := N + F e(N ) + · · · + F (t−1)e(N ) = N ⊕ F e(N ) ⊕ · · · ⊕ F (t−1)e(N ).

y the construction of L, one sees that L is a semi-simple DR-module.
We claim that L is an F e-submodule of M and we reason as follows. Since F te(N ) is 

so a simple DR-module by Theorem 2.3 and F te(N ) ∩ L �= ∅, we have

F te(N ) ⊂ L.

onsequently F e(L) ⊆ L. It follows from Proposition 3.1 that L is an F e-submodule of 
and hence is also an F e-finite F -finite module by Remark 2.8.

This shows that N is a simple DR-submodule of an F e-finite F e-module L such that 
 = N ⊕ · · · ⊕ F (t−1)e(N ), where N , . . . , F (t−1)e(N ) are simple D-submodules of L. 
nce L is a semi-simple DR-module stable under F e(−) and F e(−) is an equivalence on 
e category of D-modules (Theorem 2.3), the functor F e(−) cycles through its direct 
mmands N , . . . , F (t−1)e(N ). Therefore, there exists a positive integer e′ such that 
∼= F e′e(N ). This finishes the proof. �

orollary 3.2. Let R be as in Theorem 1.1. Assume that N is a DR-module quotient of 
 F e-finite F e-module M. Then there exists a positive integer e′ such that N is an 
′ ′
e -finite F e -module.
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roof. We will use induction on the length of M as a DR-module; note that M has 
nite length in the category of DR-modules according to Remark 2.8.

When M is a simple DR-module, then either N = 0 or N = M. The conclusion is 
ear.
Let �D(M) denote the DR-module length of M. Assume now �D(M) ≥ 2 and the 
eorem has been proved for all F -finite F -modules with DR-module length ≤ �D(M) −1. 

ince N is a DR-module quotient, there is a DR-submodule L of M such that N = M/L. 
ince �D(L) < ∞, there is a simple DR-submodule L′ of L. Since L′ is a simple DR-
bmodule of M, by Theorem 1.1 L′ is an F te-submodule of M for a positive integer t. 
onsequently, M/L′ is an F te-finite F te-finite module. Set M̄ := M/L′ and L̄ := L/L′. 
ince �D(M̄) < �D(M), by induction M̄/L̄ is an F e′-finite F e′ -module for a positive 
teger e′. Since N = M/L ∼= M̄/L̄, this completes the proof. �
emark 3.3. When R = k[x1, . . . , xn] where k is a field of characteristic p, one can 
so develop the notions of graded F e-modules and graded F e-finite F e-modules and to 
tend results on graded F -modules to graded F e-modules. For instance, one can show 
at a graded F e-finite F e-module is also an Eularian graded DR-module; the interested 
ader is referred to [14] for the notion of Eulerian graded D-modules. We opt not to 

ursue this in the current article.

 Applications to Matlis dual

Prompted by the work of Hellus in [6], Lyubeznik and Yildirim conjectured (in [13, 
onjecture 1]) that, if R is a noetherian regular local ring and Hj

I (R) �= 0 where I is an 
eal of R, then SuppR(Hj

I (R)∨) = Spec(R). Here Hj
I (R)∨ denotes the Matlis dual of 

j
I (R). This conjecture is proved in [13] in characteristic p. In mixed characteristic, this 
njecture is shown to be false as stated ([3, 4.5]). One may notice that the example in 
, 4.5] (cf. Remark 4.2) is the kernel of multiplication by the uniformizer π on a local 
homology module Hj

I (R); where (R, V ) is a formal power series ring over a complete 
iscrete valuation ring V with a uniformizer π. The main purpose of this section is to 
rove Theorem 1.3 which generalizes [3, 4.5].

We begin with the following extension of [13, Theorem 1.1].

heorem 4.1. Let (R, m) be a complete regular local ring of characteristic p and let M
 an F e-finite F e-module for a positive integer e. Assume that (0) /∈ AssR(M). Then

Supp(HomR(M, ER(R/m))) = Spec(R),

here ER(R/m) denotes the injective hull of R/m.

roof. Once one replaces the functor F (−) by F e(−), the proof is the same as the one 

 [13, Theorem 1.1]. To avoid duplication, we opt not to repeat the details here. �
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For each R-module M , we will denote its Matlis dual, HomR(M, ER(R/m)), by M∨.
We now can prove our Theorem 1.2 which is a natural extension of Theorem 4.1 to 

R-submodules of F e-finite F e-modules.

roof of Theorem 1.2. Let L be a simple DR-submodule of N . Since AssR(L) ⊆
ssR(N ) and (0) /∈ AssR(N ), we have (0) /∈ AssR(L). The short exact sequence 
→ L → N → N /L → 0 induces a short exact sequence

0 → (N /L)∨ → N ∨ → L∨ → 0.

 Supp(L∨) = Spec(R), then it follows from the short exact sequence above that 
pp(N ∨) = Spec(R). We are now reduced to proving that Supp(L∨) = Spec(R).
Since L is a simple DR-submodule of an F e-finite F e-module, it follows from The-

em 1.1 that L is an F e′e-submodule of M. Since M is F e-finite (hence F e′e-finite) 
d L is an F e′e-submodule, L must be F e′e-finite as well because of Remark 2.8. Now 

heorem 4.1 finishes the proof. �
We now apply Theorem 1.2 to prove Theorem 1.3.

roof of Theorem 1.3. The short exact sequence 0 → R
π−→ R → R/πR → 0 induces a 

ng exact sequence

· · · → Hj−1
I (R̄) → Hj

I (R) π−→ Hj
I (R) → Hj

I (R̄) → · · ·

hich implies

) an injection Coker
(

Hj
I (R) π−→ Hj

I (R)
)

↪→ Hj
I (R̄), and

) a surjection Hj−1
I (R̄) → Ker

(
Hj

I (R) π−→ Hj
I (R)

)
.

Note that Coker(Hj
I (R) π−→ Hj

I (R)), Ker(Hj
I (R) π−→ Hj

I (R)), Hj
I (R̄), Hj−1

I (R̄) carry 
natural DR̄|k-module structure, and that both the injection and the surjection are 

R̄|k-linear (cf. Remark 2.1). This makes

) Coker(Hj
I (R) π−→ Hj

I (R)) a DR̄|k-submodule of Hj
I (R̄) which is an FR̄-finite FR̄-

module, and
) Ker(Hj

I (R) π−→ Hj
I (R)) a DR̄|k-module quotient of Hj−1

I (R̄) which is an FR̄-finite 
FR̄-module.

Assume Coker(Hj
I (R) π−→ Hj

I (R)) = Hj
I (R)/πHj

I (R) �= 0. Then it follows that 
j
I (R̄) �= 0. Hence Hj

I (R)/πHj
I (R) satisfies the assumptions in Theorem 1.2; our as-
mption on k ensures that R̄ satisfies the hypothesis in Theorem 1.2. Consequently
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w

w

It

w

H

D

to

b
p

R
(2
th

an

p

Q
an
Spec(R̄) = SuppR̄ HomR̄(Hj
I (R)/πHj

I (R), Ē),

here Ē denotes the injective hull of k as an R̄-module.
Since Ē ∼= HomR(R̄, E) where E = ER(k), by the adjunction between ⊗ and Hom, 

e have

HomR̄(Hj
I (R)/πHj

I (R), Ē) ∼= HomR(Hj
I (R)/πHj

I (R), E).

 follows that

Spec(R̄) = SuppR HomR(Hj
I (R)/πHj

I (R), E)

here Spec(R̄) is considered a closed subset of Spec(R).
The surjection Hj

I (R) → Hj
I (R)/πHj

I (R) induces an injection (Hj
I (R)/πHj

I (R))∨ ↪→
j
I (R)∨. Therefore,

Spec(R̄) ⊆ SuppR(Hj
I (R)∨).

Assume Ker(Hj
I (R) π−→ Hj

I (R)) �= 0 and set K := Ker(Hj
I (R) π−→ Hj

I (R)). Then K is a 

R̄|k-module quotient of Hj−1
I (R̄) and Hj−1

I (R̄) is an FR̄-finite FR̄-module. According 

 Corollary 3.2, K is an F e′′ -finite F e′′-module and consequently

SuppR(K∨) = Spec(R̄)

y Theorem 4.1. The injection K ↪→ Hj
I (R) induces a surjection Hj

I (R)∨ � K∨ which 
roves that SuppR(K∨) ⊆ SuppR(Hj

I (R)∨). This completes the proof. �
emark 4.2. Let R be the completion of Z[x1, . . . , x6] at the maximal ideal m =
, x1, . . . , x6). Let I the monomial ideal associated with the minimal triangulation of 
e real projective plane. It is proved in [3, 4.5] that

H4
I (R) ∼= HomR(R/(2), H7

m(R))

d consequently SuppR(H4
I (R)∨) = Spec(R/(2)).

Therefore, without any further assumptions, the conclusion in Theorem 1.3 is the best 
ossible.

In light of Theorem 1.3, we would like to ask the following.

uestion 4.3. Let R be a complete unramified regular local ring of mixed characteristic 

d (V, πV ) be its coefficient ring.
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(1

(2

D

R

[

[

[

[

[

[

[

[

[

[1

[1

[1

[1

[1
[1

[1
) Is it always true that

Spec(R/πR) ⊆ SuppR(Hj
I (R)∨)

for each ideal I and each integer j?
) Can one characterize the local cohomology modules Hj

I (R) such that

SuppR(Hj
I (R)∨) = Spec(R)?
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