F^{e}-modules with applications to D-modules

Wenliang Zhang ${ }^{1}$
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States of America

A R T I C L E I N F O

Article history:

Received 24 March 2022
Available online 15 November 2022
Communicated by Claudia Polini

MSC:

13A35
13N10
13D45
14B15
Keywords:
D-modules
F-modules
Local cohomology

A B S T R A C T

Using a theory of F^{e}-modules (a natural extension of Lyubeznik's F-module theory), we extend results on Matlis dual of F-finite F-modules to D-submodules of F^{e}-finite F^{e}-modules and apply these results to address the LyubeznikYildirim conjecture in mixed characteristic.
© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The theory of F-modules, whose roots can be found in [15,5,7], is introduced in [10]. Since its introduction, it has been proven indispensable in the study of rings of prime characteristic p (see, for instance, $[4,1,11,16,12]$). Replacing the Peskine-Szpiro functor $F(-)$ by its e-th iteration $F^{e}(-)$, one obtains the theory of $F^{e}(-)$-modules (details can be found in §2).

The motivations behind this article are two-fold:

[^0](\dagger) It follows from $[8,7.4]$ that there exists an F-finite F-module which admits a simple D-submodule that is not an F-submodule ($c f$. Example 2.5). The structure of such D-submodules warrants further investigations.
(\ddagger) Let R be the completion of $\mathbb{Z}\left[x_{1}, \ldots, x_{6}\right]$ at the maximal ideal $\left(2, x_{1}, \ldots, x_{6}\right)$ and let I be the monomial ideal associated with the minimal triangulation of the projective plane. Then it is proved in $[3,4.5]$ that the support of the Matlis dual of $H_{I}^{4}(R)$ is $\operatorname{Spec}(R /(2))$, a proper subset of $\operatorname{Spec}(R)$, which provides a counterexample to [13, Conjecture 1]. It is natural to ask whether $\operatorname{Spec}(R /(\pi))$ is always contained in the support of the Matlis dual of $H_{I}^{j}(R)$ whenever $R=V\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and $V=(V, \pi V)$ is a complete DVR of mixed characteristic $(0, p)$.

One of our results regarding (\dagger) is the following.
Theorem 1.1. Let R be a noetherian regular ring of characteristic p which is a finitely generated R^{p}-module. If \mathcal{N} is a simple $D_{R^{\prime}}$-submodule of an F^{e}-finite F^{e}-module \mathcal{M}, then there exists a positive integer e^{\prime} such that \mathcal{N} is an $F^{e^{\prime} e}$-submodule of \mathcal{M}.

Since each F^{e}-module is naturally a D_{R}-module (Remark 2.7), it is feasible to consider D-submodules of an F^{e}-module in the statement of Theorem 1.1. Example 2.5 shows that, in general, it is necessary to have $e^{\prime}>1$, even when $e=1$. This provides one of the justifications for the necessity of considering F^{e}-modules (with $e>1$).

As a consequence of our Theorem 1.1, we have the following result concerning (\ddagger).
Theorem 1.2. Let (R, \mathfrak{m}) be a noetherian regular local ring of finite type over a regular local ring A such that A is module-finite over A^{p}. Let \mathcal{N} be an arbitrary (not necessarily simple) D_{R}-submodule of an F^{e}-finite F^{e}-module. Assume that (0) is not an associated prime of \mathcal{N}. Then

$$
\operatorname{Supp}_{R}\left(\mathcal{N}^{\vee}\right)=\operatorname{Spec}(R)
$$

where $\mathcal{N} \vee$ denotes the Matlis dual of \mathcal{N}.
Theorem 1.3. Let $R=V\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ be a formal power series ring over a complete $D V R$ $(V, \pi V, k)$ of mixed characteristic and I be an ideal of R. Assume that $\left[k: k^{p}\right]<\infty$. If
(1) either $\operatorname{Coker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right) \neq 0$
(2) or $\operatorname{Ker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right) \neq 0$,
then

$$
\operatorname{Spec}(R / \pi R) \subseteq \operatorname{Supp}_{R}\left(H_{I}^{j}(R)^{\vee}\right)
$$

where $H_{I}^{j}(R)^{\vee}$ denotes the Matlis dual of $H_{I}^{j}(R)$.

Theorem 1.2 is a natural extension of the main theorem in [13]. Without any further assumptions on I, Theorem 1.3 is the best possible since " \subseteq " can be " $=$ " in general; see Remark 4.2 for details.

This article is organized as follows. In $\S 2$, we collect some necessary preliminaries on F^{e}-modules and D-modules; in $\S 3$, we prove Theorem 1.1 and its corollary; in $\S 4$, we apply results proved in $\S 3$ to the investigation of the support of Matlis dual of D-modules, especially local cohomology modules.

Acknowledgment

The author thanks the referee for carefully reading the article and for the comments which improve the exposition of the article.

2. Background and some results on \boldsymbol{D}-modules and \boldsymbol{F}^{e}-modules

Let A be a commutative ring with identity. A (Z्Z-linear) differential operator of order 0 is the multiplication by an element of A. A differential operator of order $\leq \ell$ is an additive map $\delta: A \rightarrow A$ such that the commutator $[\delta, \tilde{a}]=\delta \circ \tilde{a}-\tilde{a} \circ \delta$ is a differential operator of order $\leq \ell-1$, where $\tilde{a}: A \rightarrow A$ is the multiplication by $a \in A$, for every $a \in A$. These differential operators form a ring, denoted by $D_{A \mid \mathbb{Z}}$ or simply D_{A}.

If $k \subseteq A$ is a subring, then the ring of k-linear differential operators, denoted by $D_{A \mid k}$, is the subring of D_{A} consisting of k-linear elements of D_{A}. Given any element $f \in A, A_{f}$ carries a natural $D_{A \mid k}$-module structure. Consequently, the local cohomology modules $H_{\mathfrak{a}}^{j}(A)$ carry a natural $D_{A \mid k}$-module structure for each ideal \mathfrak{a} in A.

Assume now that A contains a field of characteristic p, and let $A^{p^{e}}$ be the subring of A consisting of all the p^{e}-th powers of all elements in A for each positive integer e. Then, every differential operator $\delta \in D_{A}$ of order $\leq p^{e}-1$ is $A^{p^{e}}$-linear; that is $\delta \in \operatorname{Hom}_{A^{p^{e}}}(A, A)$. Let k be a perfect subfield of $A(e . g . k=\mathbb{Z} / p \mathbb{Z})$. Assume that A is a finite $k\left[A^{p}\right]$-module, then

$$
D_{A}=D_{A \mid k}=\bigcup_{e} \operatorname{Hom}_{A^{p^{e}}}(A, A)
$$

$\operatorname{Hom}_{A^{p^{e}}}(A, A)$ is also denoted by $D^{(e)}$ in the literature.
When $A=B\left[x_{1}, \ldots, x_{n}\right]$ or $A=B\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ where B is a commutative ring with identity, the ring $D_{A \mid B}$ can be described explicitly as follows. Set $\partial_{i}^{[t]}:=\frac{1}{t!} \frac{\partial^{t}}{\partial x_{i}^{t}}$; that is

$$
\partial_{i}^{[t]}\left(x_{i}^{s}\right)= \begin{cases}0 & s<t \\ \binom{s}{t} x_{i}^{s-t} & s \geq t\end{cases}
$$

Then $D_{A \mid B}$ is the ring extension of A generated by $\partial_{i}^{[t]}$ for all i and all $t \geq 1$. Furthermore, if B is a perfect field of characteristic p, then $D^{(e)}$ is the ring extension of A generated by $\partial_{i}^{[t]}$ for all i and all $t \leq p^{e}-1$.

Remark 2.1. Given this explicit descriptions of the rings of differential operators, one can check the following (cf. [2,2.1] for details). Assume that $R=V\left[x_{1}, \ldots, x_{n}\right]$ or $R=V\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ where $V=(V, \pi V, k)$ is a DVR with a uniformizer π. Set $\bar{R}=R /(\pi)$. Given each $D_{R \mid V}$-module M, the multiplication map $M \xrightarrow{\pi} M$ is $D_{R \mid V}$-linear as $\pi \in V$; consequently, the submodule $\operatorname{Ann}_{M}(\pi)$ and the quotient module $M / \pi M$ are naturally $D_{R \mid V^{-}}$-modules and $D_{\bar{R} \mid k}$-modules. The short exact sequence $0 \rightarrow R \xrightarrow{\pi} R \rightarrow \bar{R} \rightarrow 0$ induces a long exact of local cohomology modules

$$
\cdots \rightarrow H_{I}^{j-1}(\bar{R}) \rightarrow H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R) \rightarrow H_{I}^{j}(\bar{R}) \rightarrow \cdots
$$

which is an exact sequence in the category of $D_{R \mid V^{-}}$-modules, for each ideal I of R. In particular, the modules $\operatorname{Coker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right)$ and $\operatorname{Ker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right)$ are naturally $D_{R \mid V}$-modules and $D_{\bar{R} \mid k}$-modules. Consequently, the natural maps

$$
\operatorname{Coker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right) \rightarrow H_{I}^{j}(\bar{R}), H_{I}^{j-1}(\bar{R}) \rightarrow \operatorname{Ker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right)
$$

are morphisms in the category of $D_{R \mid V^{-}}$-modules and morphisms in the category of $D_{\bar{R} \mid k^{-}}$ modules.

Let A be a commutative ring that contains a field of characteristic p. Then there is a natural functor on the category of A-modules called the Peskine-Szpiro functor and defined as follows. Let $F_{*}^{e} A$ denote the A-module whose underlying abelian group is the same as A and whose A-module structure is induced by the e-th Frobenius $A \xrightarrow{a \mapsto a^{p^{e}}} A$. The Psekine-Szpiro functor $F_{A}^{e}(-)$ on the category of A-modules is defined by

$$
F_{A}^{e}(M)=F_{*}^{e} A \otimes_{A} M
$$

Remark 2.2. Assume R is a noetherian regular ring of characteristic p. Then a classical theorem due to Kunz ([9]) asserts that the Peskine-Szpiro functor F_{R}^{e} is an exact functor.

Moreover, assume that R is a finite generated R^{p}-module. Then the category of R modules is equivalent to the category of $D^{(e)}$-modules ($[1$, Proposition 2.1]). The functor from the category of R-modules to the category of $D^{(e)}$-modules is precisely the PeskineSzpiro functor F_{R}^{e}. Since one can identify $\operatorname{Hom}_{R^{p^{e}}}(R, R)$ with $\operatorname{Hom}_{R}\left(F_{*}^{e} R, F_{*}^{e} R\right)$, the $D^{(e)}$-module structure on $F_{R}^{e}(M)=F_{*}^{e} R \otimes_{R} M$ is induced by the action on $F_{*}^{e} R$. We refer the reader to [1] for details.

The following result, [1, Proposition 2.3], will be useful in the sequel.
Theorem 2.3. Let R be a noetherian regular ring of characteristic p. Assume that R is a finitely generated R^{p}-module. Then the Peskine-Szpiro functor F_{R}^{e} is an equivalence of the category of D_{R}-modules with itself.

Considerations on the Peskine-Szpiro functor have proven to be fruitful in the investigation of rings of prime characteristic p. When R is regular, the theory of F-modules is introduced in [10]. Since this theory is readily adapted to the e-th Peskine-Szpiro functor $F^{e}(-)$, we opt to explain here the theory of F^{e}-modules.

For the rest of the section, R denotes a noetherian regular ring of prime characteristic p.

Definition 2.4. Let e be a positive integer.
(1) An R-module \mathcal{M} is an F^{e}-module if there is an R-module isomorphism

$$
\theta: \mathcal{M} \rightarrow F^{e}(\mathcal{M})=F_{*}^{e} R \otimes_{R} \mathcal{M}
$$

called the structure isomorphism.
When $e=1$, we will write F instead of F^{1} whenever the context is clear.
(2) If $\left(\mathcal{M}, \theta_{\mathcal{M}}\right)$ and $\left(\mathcal{N}, \theta_{\mathcal{N}}\right)$ are F^{e}-modules, then an F^{e}-module morphism from $\left(\mathcal{M}, \theta_{\mathcal{M}}\right)$ to $\left(\mathcal{N}, \theta_{\mathcal{N}}\right)$ consists of the following commutative diagram:

We will simply write this F^{e}-module morphism as $\varphi: \mathcal{M} \rightarrow \mathcal{N}$ whenever the context is clear.
(3) A generating morphism of an F^{e}-module is an R-module homomorphism $\beta: M \rightarrow$ $F^{e}(M)$, where M is an R-module, such that \mathcal{M} is the direct limit of the top row of the following commutative diagram

and the structure isomorphism $\theta: \mathcal{M} \rightarrow F^{e}(\mathcal{M})$ is induced by the vertical morphism in the diagram.
(4) An F^{e}-module \mathcal{M} is F^{e}-finite if it admits a generating morphism $\beta: M \rightarrow F^{e}(M)$ where M is a finitely generated R-module.

We will denote the category of F^{e}-modules by \mathscr{F}^{e}.

Results on F-modules in the literature, e.g. [10] and [1], can be readily extended to F^{e}-modules by simply replacing the functor $F(-)$ with the functor $F^{e}(-)$. Before proceeding to properties of F^{e}-modules, we would like to explain one of the motivations behind introducing these modules and hopefully to answer the natural question: why not just work with F-modules?

Example 2.5. Let $R=\mathbb{F}_{11}[x, y, z]$ and let $f=x^{7}+y^{7}+z^{7}$. Denote $H_{(f)}^{1}(R)$ by \mathcal{H}. Then [8, 7.4] shows that

$$
\ell_{\mathscr{D}}(\mathcal{H})>\ell_{\mathscr{F}}(\mathcal{H})
$$

where $\ell_{\mathscr{D}}(\mathcal{H})$ (or $\ell_{\mathscr{F}}(\mathcal{H})$, respectively) denotes the length of \mathcal{H} in the category of \mathscr{D} modules (or in \mathscr{F}, respectively). Let H be a simple D-submodule of \mathcal{H}. If H is an F submodule of \mathcal{H}, then it follows from [10, Theorem 2.8] that H is an F-finite F-submodule of \mathcal{H} and consequently \mathcal{H} / H is an F-finite F-module. Note $\ell_{\mathscr{D}}(\mathcal{H} / H)>\ell_{\mathscr{F}}(\mathcal{H} / H)$. Continuing this process, after at most $\ell_{\mathscr{F}}(\mathcal{H})$ steps, one can see that there is an F-finite F-module \mathcal{H}^{\prime} (a quotient of \mathcal{H} in the category of F-modules) such that \mathcal{H}^{\prime} admits a simple D-submodule that is not an F-submodule of \mathcal{H}^{\prime}. (Similarly, one can also deduce that \mathcal{H} admits a \mathscr{D}-submodule which is not an F-submodule.)

Example 2.5 shows that the theory of F^{e}-modules may be applicable to \mathscr{D}-submodules of an F-finite F-module which may not be F-submodules in general.

Remark 2.6. Assume that (\mathcal{M}, θ) is an F^{e}-module for a positive integer e. Then, for every positive integer t, the composition

$$
\mathcal{M} \xrightarrow{\theta} F^{e}(\mathcal{M}) \xrightarrow{F^{e}(\theta)} \cdots \rightarrow F^{t e}(\mathcal{M})
$$

is also an R-module isomorphism. Hence \mathcal{M} is an $F^{t e}$-module for every positive integer t. In particular, an F-module is also an F^{e}-module for every positive integer e. Consequently, all local cohomology modules $H_{I}^{j}(R)$ (and iterated local cohomology modules) are F^{e}-modules for every positive integer e.

Assume that (\mathcal{M}, θ) is an F^{e}-module for a positive integer e. Then so is $F^{t}(\mathcal{M})$ for every positive integer t since $F^{t}(\mathcal{M}) \cong F^{t}\left(F^{e}(\mathcal{M})\right)=F^{e}\left(F^{t}(\mathcal{M})\right)$.

Let e, f be positive integers such that $e \mid f$. Then \mathscr{F}^{e} can be naturally viewed as a subcategory of \mathscr{F}^{f}. Let \mathcal{M} be an F^{e}-module. By an F^{f}-submodule \mathcal{N} of \mathcal{M} we mean a sub-object of \mathcal{M} when \mathcal{M} is viewed as an object in \mathscr{F}^{f}.

Remark 2.7. Every F^{e}-module admits a natural D-module structure. This follows from Remark 2.2. Let δ be a differential operator. Then there exists an positive integer t such that its order (as a differential operator) is less than $t e$. Let α_{t} denote the composition

$$
\mathcal{M} \xrightarrow{\theta} F^{e}(\mathcal{M}) \xrightarrow{F^{e}(\theta)} \cdots \rightarrow F^{t e}(\mathcal{M})
$$

Given an arbitrary element $m \in \mathcal{M}$, write $\alpha_{t}(m)=\sum_{i} r_{i} \otimes m_{i}$. Then, for every element $m \in \mathcal{M}$, set

$$
\delta \cdot m:=\alpha_{t}^{-1}\left(\sum_{i}\left(\delta \cdot r_{i}\right) \otimes m_{i}\right)
$$

Whenever we view an F^{e}-module as a D_{R}-module, we always refer to the D_{R}-module structure specified in the previous paragraph. Under this $D_{R^{-}}$module structure, an $F^{e_{-}}$ module morphism between any two F^{e}-modules is also a D_{R}-module morphism.

We now collect some results on F^{e}-modules which are natural analogues of corresponding results on F-modules in the literature.

Remark 2.8. Let R be a noetherian regular ring of characteristic p that is module-finite over R^{p}. Let \mathcal{M} be an F^{e}-module for a positive integer e.
(1) The F^{e}-finite modules form a full abelian subcategory of the category of F^{e}-modules which is closed under formation of submodules, quotient modules and extensions. When $e=1$, this is [10, Theorem 2.8]. When e is an arbitrary positive integer, the same proof goes through (by replacing $F(-)$ with $\left.F^{e}(-)\right)$.
(2) The structure isomorphism $\theta: \mathcal{M} \rightarrow F^{e}(\mathcal{M})$ is $D_{R^{\prime}}$-linear, where the D_{R}-module structure is as in Remark 2.7. When $e=1$, this is [1, Lemma 2.4]. When e is an arbitrary positive integer, the same proof goes through (by replacing $F(-)$ with $\left.F^{e}(-)\right)$.
(3) Assume further that R is of finite type over a regular local ring A such that A is module-finite over A^{p}. Then every F^{e}-finite F^{e}-module has finite length in \mathscr{F}^{e} and in the category of D_{R}-modules, for each positive integer e. When $e=1$, this is [10, Theorem 3.2] and [1, Theorem 2.5], respectively. When e is an arbitrary positive integer, the same proofs go through (by replacing $F(-)$ with $F^{e}(-)$).

3. Interactions between \boldsymbol{F}^{e}-modules and \boldsymbol{D}-modules

The main goal of this section is to prove Theorem 1.1. We begin with the following observation.

Proposition 3.1. Let R be a noetherian regular ring of finite type over a regular local ring A such that A is module-finite over A^{p} and let \mathcal{M} be an F^{e}-finite F^{e}-module. Let \mathcal{N} be

Proof. Since $F^{e}(\mathcal{N})$ is naturally a D_{R}-submodule of \mathcal{M} (due to Theorem 2.3) and $F^{e}(\mathcal{N}) \subseteq \mathcal{N}$, we have a descending chain of D_{R}-submodules of \mathcal{M} :

[^1]$$
\mathcal{N} \supseteq F^{e}(\mathcal{N}) \supseteq F^{2 e}(\mathcal{N}) \supseteq \cdots .
$$

Since \mathcal{M} has finite length in the category of D_{R}-modules (Remark 2.8), this chain must terminate in finitely many steps; that is $F^{t e}(\mathcal{N})=F^{(t+1) e}(\mathcal{N})=F^{t e}\left(F^{e}(\mathcal{N})\right)$ for an integer t. Hence $\mathcal{N} \cong F^{e}(\mathcal{N})$ which completes the proof.

We are now in position to prove Theorem 1.1, whose proof is inspired by the proof of [10, Theorem 5.6].

Proof of Theorem 1.1. Since \mathcal{M} is an F^{e}-module, $F^{t e}(\mathcal{N}) \subseteq F^{t e}(\mathcal{M}) \cong \mathcal{M}$ for each positive integer t. We will view $F^{t e}(\mathcal{N})$ as a D-submodule of \mathcal{M}. It follows from Theorem 2.3 that $F^{t e}(\mathcal{N})$ is also a simple D-submodule of \mathcal{M} for every positive integer t. Let t be the least positive integer such that

$$
\mathcal{N}+F^{e}(\mathcal{N})+\cdots+F^{(t-1) e}(\mathcal{N})=\mathcal{N} \oplus F^{e}(\mathcal{N}) \oplus \cdots \oplus F^{(t-1) e}(\mathcal{N})
$$

that is, t is the least positive integer such that

$$
\left(\mathcal{N}+F^{e}(\mathcal{N})+\cdots+F^{(t-1) e}(\mathcal{N})\right) \cap F^{t e}(\mathcal{N}) \neq \emptyset
$$

Set

$$
\mathcal{L}:=\mathcal{N}+F^{e}(\mathcal{N})+\cdots+F^{(t-1) e}(\mathcal{N})=\mathcal{N} \oplus F^{e}(\mathcal{N}) \oplus \cdots \oplus F^{(t-1) e}(\mathcal{N}) .
$$

By the construction of \mathcal{L}, one sees that \mathcal{L} is a semi-simple $D_{R^{-}}$-module.
We claim that \mathcal{L} is an F^{e}-submodule of \mathcal{M} and we reason as follows. Since $F^{t e}(\mathcal{N})$ is also a simple D_{R}-module by Theorem 2.3 and $F^{t e}(\mathcal{N}) \cap \mathcal{L} \neq \emptyset$, we have

$$
F^{t e}(\mathcal{N}) \subset \mathcal{L}
$$

Consequently $F^{e}(\mathcal{L}) \subseteq \mathcal{L}$. It follows from Proposition 3.1 that \mathcal{L} is an F^{e}-submodule of \mathcal{M} and hence is also an F^{e}-finite F-finite module by Remark 2.8.

This shows that \mathcal{N} is a simple D_{R}-submodule of an F^{e}-finite F^{e}-module \mathcal{L} such that $\mathcal{L}=\mathcal{N} \oplus \cdots \oplus F^{(t-1) e}(\mathcal{N})$, where $\mathcal{N}, \ldots, F^{(t-1) e}(\mathcal{N})$ are simple D-submodules of \mathcal{L}. Since \mathcal{L} is a semi-simple D_{R}-module stable under $F^{e}(-)$ and $F^{e}(-)$ is an equivalence on the category of D-modules (Theorem 2.3), the functor $F^{e}(-)$ cycles through its direct summands $\mathcal{N}, \ldots, F^{(t-1) e}(\mathcal{N})$. Therefore, there exists a positive integer e^{\prime} such that $\mathcal{N} \cong F^{e^{\prime} e}(\mathcal{N})$. This finishes the proof.

Corollary 3.2. Let R be as in Theorem 1.1. Assume that \mathcal{N} is a D_{R}-module quotient of an F^{e}-finite F^{e}-module \mathcal{M}. Then there exists a positive integer e^{\prime} such that \mathcal{N} is an $F^{e^{\prime}}$-finite $F^{e^{\prime}}$-module.

Proof. We will use induction on the length of \mathcal{M} as a D_{R}-module; note that \mathcal{M} has finite length in the category of D_{R}-modules according to Remark 2.8.

When \mathcal{M} is a simple D_{R}-module, then either $\mathcal{N}=0$ or $\mathcal{N}=\mathcal{M}$. The conclusion is clear.

Let $\ell_{\mathscr{D}}(\mathcal{M})$ denote the D_{R}-module length of \mathcal{M}. Assume now $\ell_{\mathscr{D}}(\mathcal{M}) \geq 2$ and the theorem has been proved for all F-finite F-modules with D_{R}-module length $\leq \ell_{\mathscr{D}}(\mathcal{M})-1$. Since \mathcal{N} is a D_{R}-module quotient, there is a $D_{R^{\prime}}$-submodule \mathcal{L} of \mathcal{M} such that $\mathcal{N}=\mathcal{M} / \mathcal{L}$. Since $\ell_{\mathscr{D}}(\mathcal{L})<\infty$, there is a simple $D_{R^{-}}$submodule \mathcal{L}^{\prime} of \mathcal{L}. Since \mathcal{L}^{\prime} is a simple $D_{R^{-}}$ submodule of \mathcal{M}, by Theorem $1.1 \mathcal{L}^{\prime}$ is an $F^{t e}$-submodule of \mathcal{M} for a positive integer t. Consequently, $\mathcal{M} / \mathcal{L}^{\prime}$ is an $F^{t e}$-finite $F^{t e}$-finite module. Set $\overline{\mathcal{M}}:=\mathcal{M} / \mathcal{L}^{\prime}$ and $\overline{\mathcal{L}}:=\mathcal{L} / \mathcal{L}^{\prime}$. Since $\ell_{\mathscr{D}}(\overline{\mathcal{M}})<\ell_{\mathscr{D}}(\mathcal{M})$, by induction $\overline{\mathcal{M}} / \overline{\mathcal{L}}$ is an $F^{e^{\prime}}$-finite $F^{e^{\prime}}$-module for a positive integer e^{\prime}. Since $\mathcal{N}=\mathcal{M} / \mathcal{L} \cong \overline{\mathcal{M}} / \overline{\mathcal{L}}$, this completes the proof.

Remark 3.3. When $R=k\left[x_{1}, \ldots, x_{n}\right]$ where k is a field of characteristic p, one can also develop the notions of graded F^{e}-modules and graded F^{e}-finite F^{e}-modules and to extend results on graded F-modules to graded F^{e}-modules. For instance, one can show that a graded F^{e}-finite F^{e}-module is also an Eularian graded $D_{R^{-}}$-module; the interested reader is referred to [14] for the notion of Eulerian graded D-modules. We opt not to pursue this in the current article.

4. Applications to Matlis dual

Prompted by the work of Hellus in [6], Lyubeznik and Yildirim conjectured (in [13, Conjecture 1]) that, if R is a noetherian regular local ring and $H_{I}^{j}(R) \neq 0$ where I is an ideal of R, then $\operatorname{Supp}_{R}\left(H_{I}^{j}(R)^{\vee}\right)=\operatorname{Spec}(R)$. Here $H_{I}^{j}(R)^{\vee}$ denotes the Matlis dual of $H_{I}^{j}(R)$. This conjecture is proved in [13] in characteristic p. In mixed characteristic, this conjecture is shown to be false as stated ([3, 4.5]). One may notice that the example in [3, 4.5] (cf. Remark 4.2) is the kernel of multiplication by the uniformizer π on a local cohomology module $H_{I}^{j}(R)$; where (R, V) is a formal power series ring over a complete discrete valuation ring V with a uniformizer π. The main purpose of this section is to prove Theorem 1.3 which generalizes [3, 4.5].

We begin with the following extension of [13, Theorem 1.1].
Theorem 4.1. Let (R, \mathfrak{m}) be a complete regular local ring of characteristic p and let \mathcal{M} be an F^{e}-finite F^{e}-module for a positive integer e. Assume that $(0) \notin \operatorname{Ass}_{R}(\mathcal{M})$. Then

$$
\operatorname{Supp}\left(\operatorname{Hom}_{R}\left(\mathcal{M}, E_{R}(R / \mathfrak{m})\right)\right)=\operatorname{Spec}(R)
$$

where $E_{R}(R / \mathfrak{m})$ denotes the injective hull of R / \mathfrak{m}.
Proof. Once one replaces the functor $F(-)$ by $F^{e}(-)$, the proof is the same as the one of [13, Theorem 1.1]. To avoid duplication, we opt not to repeat the details here.

For each R-module M, we will denote its Matlis dual, $\operatorname{Hom}_{R}\left(M, E_{R}(R / \mathfrak{m})\right)$, by M^{\vee}.
We now can prove our Theorem 1.2 which is a natural extension of Theorem 4.1 to $D_{R^{-s u b m o d u l e s ~ o f ~}} F^{e}$-finite F^{e}-modules.

Proof of Theorem 1.2. Let \mathcal{L} be a simple D_{R}-submodule of \mathcal{N}. Since $\operatorname{Ass}_{R}(\mathcal{L}) \subseteq$ $\operatorname{Ass}_{R}(\mathcal{N})$ and $(0) \notin \operatorname{Ass}_{R}(\mathcal{N})$, we have $(0) \notin \operatorname{Ass}_{R}(\mathcal{L})$. The short exact sequence $0 \rightarrow \mathcal{L} \rightarrow \mathcal{N} \rightarrow \mathcal{N} / \mathcal{L} \rightarrow 0$ induces a short exact sequence

$$
0 \rightarrow(\mathcal{N} / \mathcal{L})^{\vee} \rightarrow \mathcal{N}^{\vee} \rightarrow \mathcal{L}^{\vee} \rightarrow 0
$$

If $\operatorname{Supp}\left(\mathcal{L}^{\vee}\right)=\operatorname{Spec}(R)$, then it follows from the short exact sequence above that $\operatorname{Supp}\left(\mathcal{N}^{\vee}\right)=\operatorname{Spec}(R)$. We are now reduced to proving that $\operatorname{Supp}\left(\mathcal{L}^{\vee}\right)=\operatorname{Spec}(R)$.

Since \mathcal{L} is a simple $D_{R^{-}}$-submodule of an F^{e}-finite F^{e}-module, it follows from Theorem 1.1 that \mathcal{L} is an $F^{e^{\prime} e}{ }_{-}$-submodule of \mathcal{M}. Since \mathcal{M} is F^{e}-finite (hence $F^{e^{\prime} e} e_{\text {-finite) }}$ and \mathcal{L} is an $F^{e^{\prime} e}$-submodule, \mathcal{L} must be $F^{e^{\prime} e}$-finite as well because of Remark 2.8. Now Theorem 4.1 finishes the proof.

We now apply Theorem 1.2 to prove Theorem 1.3.
Proof of Theorem 1.3. The short exact sequence $0 \rightarrow R \xrightarrow{\pi} R \rightarrow R / \pi R \rightarrow 0$ induces a long exact sequence

$$
\cdots \rightarrow H_{I}^{j-1}(\bar{R}) \rightarrow H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R) \rightarrow H_{I}^{j}(\bar{R}) \rightarrow \cdots
$$

which implies
(1) an injection Coker $\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right) \hookrightarrow H_{I}^{j}(\bar{R})$, and
(2) a surjection $H_{I}^{j-1}(\bar{R}) \rightarrow \operatorname{Ker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right)$.

Note that $\operatorname{Coker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right), \operatorname{Ker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right), H_{I}^{j}(\bar{R}), H_{I}^{j-1}(\bar{R})$ carry a natural $D_{\bar{R} \mid k}$-module structure, and that both the injection and the surjection are $D_{\bar{R} \mid k}$-linear (cf. Remark 2.1). This makes
(1) $\operatorname{Coker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right)$ a $D_{\bar{R} \mid k}$-submodule of $H_{I}^{j}(\bar{R})$ which is an $F_{\bar{R}^{-}}$finite $F_{\bar{R}^{-}}$ module, and
(2) $\operatorname{Ker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right)$ a $D_{\bar{R} \mid k}$-module quotient of $H_{I}^{j-1}(\bar{R})$ which is an $F_{\bar{R}}$-finite $F_{\bar{R}}$-module.

Assume $\operatorname{Coker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right)=H_{I}^{j}(R) / \pi H_{I}^{j}(R) \neq 0$. Then it follows that $H_{I}^{j}(\bar{R}) \neq 0$. Hence $H_{I}^{j}(R) / \pi H_{I}^{j}(R)$ satisfies the assumptions in Theorem 1.2; our assumption on k ensures that \bar{R} satisfies the hypothesis in Theorem 1.2. Consequently

$$
\operatorname{Spec}(\bar{R})=\operatorname{Supp}_{\bar{R}} \operatorname{Hom}_{\bar{R}}\left(H_{I}^{j}(R) / \pi H_{I}^{j}(R), \bar{E}\right)
$$

where \bar{E} denotes the injective hull of k as an \bar{R}-module.
Since $\bar{E} \cong \operatorname{Hom}_{R}(\bar{R}, E)$ where $E=E_{R}(k)$, by the adjunction between \otimes and Hom, we have

$$
\operatorname{Hom}_{\bar{R}}\left(H_{I}^{j}(R) / \pi H_{I}^{j}(R), \bar{E}\right) \cong \operatorname{Hom}_{R}\left(H_{I}^{j}(R) / \pi H_{I}^{j}(R), E\right)
$$

It follows that

$$
\operatorname{Spec}(\bar{R})=\operatorname{Supp}_{R} \operatorname{Hom}_{R}\left(H_{I}^{j}(R) / \pi H_{I}^{j}(R), E\right)
$$

where $\operatorname{Spec}(\bar{R})$ is considered a closed subset of $\operatorname{Spec}(R)$.
The surjection $H_{I}^{j}(R) \rightarrow H_{I}^{j}(R) / \pi H_{I}^{j}(R)$ induces an injection $\left(H_{I}^{j}(R) / \pi H_{I}^{j}(R)\right)^{\vee} \hookrightarrow$ $H_{I}^{j}(R)^{\vee}$. Therefore,

$$
\operatorname{Spec}(\bar{R}) \subseteq \operatorname{Supp}_{R}\left(H_{I}^{j}(R)^{\vee}\right)
$$

Assume $\operatorname{Ker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right) \neq 0$ and set $\mathcal{K}:=\operatorname{Ker}\left(H_{I}^{j}(R) \xrightarrow{\pi} H_{I}^{j}(R)\right)$. Then \mathcal{K} is a $D_{\bar{R} \mid k}$-module quotient of $H_{I}^{j-1}(\bar{R})$ and $H_{I}^{j-1}(\bar{R})$ is an $F_{\bar{R}}$-finite $F_{\bar{R}}$-module. According to Corollary 3.2, \mathcal{K} is an $F^{e^{\prime \prime}}$-finite $F^{e^{\prime \prime}}$-module and consequently

$$
\operatorname{Supp}_{R}\left(\mathcal{K}^{\vee}\right)=\operatorname{Spec}(\bar{R})
$$

by Theorem 4.1. The injection $\mathcal{K} \hookrightarrow H_{I}^{j}(R)$ induces a surjection $H_{I}^{j}(R)^{\vee} \rightarrow \mathcal{K}^{\vee}$ which proves that $\operatorname{Supp}_{R}\left(\mathcal{K}^{\vee}\right) \subseteq \operatorname{Supp}_{R}\left(H_{I}^{j}(R)^{\vee}\right)$. This completes the proof.

Remark 4.2. Let R be the completion of $\mathbb{Z}\left[x_{1}, \ldots, x_{6}\right]$ at the maximal ideal $\mathfrak{m}=$ $\left(2, x_{1}, \ldots, x_{6}\right)$. Let I the monomial ideal associated with the minimal triangulation of the real projective plane. It is proved in [3, 4.5] that

$$
H_{I}^{4}(R) \cong \operatorname{Hom}_{R}\left(R /(2), H_{\mathfrak{m}}^{7}(R)\right)
$$

and consequently $\operatorname{Supp}_{R}\left(H_{I}^{4}(R)^{\vee}\right)=\operatorname{Spec}(R /(2))$.
Therefore, without any further assumptions, the conclusion in Theorem 1.3 is the best possible.

In light of Theorem 1.3, we would like to ask the following.

Question 4.3. Let R be a complete unramified regular local ring of mixed characteristic and $(V, \pi V)$ be its coefficient ring.
(1) Is it always true that

$$
\operatorname{Spec}(R / \pi R) \subseteq \operatorname{Supp}_{R}\left(H_{I}^{j}(R)^{\vee}\right)
$$

for each ideal I and each integer j ?
(2) Can one characterize the local cohomology modules $H_{I}^{j}(R)$ such that

$$
\operatorname{Supp}_{R}\left(H_{I}^{j}(R)^{\vee}\right)=\operatorname{Spec}(R) ?
$$

Data availability

No data was used for the research described in the article.

References

[1] J. Alvarez-Montaner, M. Blickle, G. Lyubeznik, Generators of D-modules in positive characteristic, Math. Res. Lett. 12 (4) (2005) 459-473, 2155224.
[2] B. Bhatt, M. Blickle, G. Lyubeznik, A.K. Singh, W. Zhang, Local cohomology modules of a smooth \mathbb{Z}-algebra have finitely many associated primes, Invent. Math. 197 (3) (2014) 509-519, 3251828.
[3] R. Datta, N. Switala, W. Zhang, Annihilators of D-modules in mixed characteristic, arXiv:1907. 09948, Math. Res. Lett. (2022), in press.
[4] M. Emerton, M. Kisin, The Riemann-Hilbert correspondence for unit F-crystals, Astérisque 293 (2004), vi+257, 2071510.
[5] R. Hartshorne, R. Speiser, Local cohomological dimension in characteristic p, Ann. Math. (5) 105 (1) (1977) 45-79, MR0441962 (56 \#353).
[6] M. Hellus, Local cohomology and Matlis duality, habilitation dissertation, University of Leipzig, 2007, arXiv:math./0703124, 2007.
[7] C.L. Huneke, R.Y. Sharp, Bass numbers of local cohomology modules, Trans. Am. Math. Soc. 339 (2) (1993) 765-779, 1124167 (93m:13008).
[8] M. Katzman, L. Ma, I. Smirnov, W. Zhang, D-module and F-module length of local cohomology modules, Trans. Am. Math. Soc. 370 (12) (2018) 8551-8580, 3864387.
[9] E. Kunz, Characterizations of regular local rings for characteristic p, Am. J. Math. 91 (1969) 772-784, MR0252389 (40 \#5609).
[10] G. Lyubeznik, F-modules: applications to local cohomology and D-modules in characteristic $p>0$, J. Reine Angew. Math. 491 (1997) 65-130, 1476089.
[11] G. Lyubeznik, On the vanishing of local cohomology in characteristic $p>0$, Compos. Math. 142 (1) (2006) 207-221, 2197409 (2007b:13029).
[12] G. Lyubeznik, A.K. Singh, U. Walther, Local cohomology modules supported at determinantal ideals, J. Eur. Math. Soc. (JEMS) 18 (11) (2016) 2545-2578, 3562351.
[13] G. Lyubeznik, T. Yildirim, On the Matlis duals of local cohomology modules, Proc. Am. Math. Soc. 146 (9) (2018) 3715-3720, 3825827.
[14] L. Ma, W. Zhang, Eulerian graded \mathscr{D}-modules, Math. Res. Lett. 21 (1) (2014) 149-167, 3247047.
[15] C. Peskine, L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. (42) (1973) 47-119, MR0374130 (51 \#10330).
[16] W. Zhang, Lyubeznik numbers of projective schemes, Adv. Math. 228 (1) (2011) 575-616, 2822240 (2012j:13027).

[^0]: E-mail address: wlzhang@uic.edu.
 ${ }^{1}$ The author is partially supported by NSF through DMS- 1752081.

[^1]: ${ }^{2}$ Here we identify $F^{e}(\mathcal{N})$ with an R-submodule of \mathcal{M} under the isomorphism $F^{e}(\mathcal{M}) \cong \mathcal{M}$.

