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 Introduction

otation 1.1. Throughout we will use the following conventions: K will be a field of characteristic zero, and 
and I are the default names for a regular K-algebra and an ideal in R. We write

Rn := K[x1, . . . , xn], X := An
K = Spec (Rn)

r the special case of a polynomial ring over K in n indeterminates, and the associated affine space. Our 
fault affine variety will be

Y := Var(I) ⊆ X, with complement U = X � Y,

d if I is homogeneous then

Ỹ := Proj (Rn/I) ⊆ Pn−1
K

ill be the projective scheme associated to I, with complement Ũ := PU = Pn−1
K � Ỹ . The homogeneous 

relevant ideal of Rn will be denoted m = 〈x1, . . . , xn〉 and d will stand for dim(Y ).
The ring of K-linear differential operators on R is denoted DK(R), but if R = Rn then we just write Dn

r the Weyl algebra DK(Rn). If X ′ is a smooth K-variety, then we write DX′,K for the sheaf of K-linear 
fferential operators on OX′ , but if K is understood then we write just DX′ . Unless specified otherwise, we 
nsider left DX′-modules. �

Hartshorne’s seminal work [16] begins with

“The idea of using differential forms and their integrals to define numerical invariants of algebraic varieties 
goes back to Picard and Lefschetz. . . ”

d then outlines the development of this branch of mathematics until the writing of his article on algebraic 
 Rham cohomology. While originally the base field was the complex numbers C, Hartshorne works in 
eater generality over fields K of characteristic zero. It has become clear since, particularly through the 
ork of Lyubeznik [29], that Kashiwara’s framework of D-modules is the right set-up for these investigations. 
his article is a contribution to this general theme, with the two main characters defined as follows.

If a variety Y ′ can be embedded into a smooth K-variety X ′ of dimension n, one can define the de Rham 
mology and cohomology functors of Y ′ as

HdR
q (Y ′) := H2n−q

Y ′ (X ′, Ω•
X′), Hq

dR(Y ′) := Hq(X ′, Ω̂•
X′).

ere, H(−) denotes hypercohomology functor on complexes of sheaves, Ω•
X′ is the de Rham complex (relative 

 K) of X ′, and the hat denotes completion along Y ′. Hartshorne proves that these quantities do not depend 

 X ′ or on the chosen embedding of Y ′, and demonstrates many interesting facts about these two functors.
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We focus on de Rham homology for a moment, under the assumption that X ′ is affine (and smooth). 
hen hypercohomology collapses to global sections since the modules in Ω•

X′ are coherent, equal to exterior 
owers of the free OX′-module Ω1

X′ of rank n given by the Kähler differentials on X ′. The set-theoretic 
ctions-with-support functor on a coherent sheaf agrees with algebraic local cohomology. In particular, 
2n−q
Y ′ (X ′, Ωi

X′) is just local cohomology H2n−q
Y ′ (Ωi

X′) of the module of i-forms (identifying sheaves with 
eir global sections).
The sheaf ωX := Ωn

X has a natural right module structure over the sheaf DX of K-linear differential 
erators on X. The global sections of the sheaf of differential operators DX on X are the elements of the 
eyl algebra

Dn = Rn〈∂1, . . . , ∂n〉

here ∂i stands for the partial differentiation operator ∂
∂xi

. On the other hand, Ωi
X is the free OX -module 

 rank 
(

n
i

)
generated by the symbols dxI = dxj1 ∧ · · · ∧ dxji

with I ⊆ 2[n] and |I| = i, and the global 
ctions of ωX are the elements of the right Dn-module Dn/∂ · Dn := Dn/(∂1, . . . , ∂n)Dn.
Let us write Ω•

D,X for the Koszul co-complex on DX generated by left multiplication by the derivations 
1, . . . , ∂n. This is a free resolution of right DX-modules for ωX shifted right n steps, and yields an explicit 
rm of the de Rham cohomology functors

Hi
dR(−) := Hi−n(X, ωX ⊗L

DX
(−)) = Hi(Ω•

D,X ⊗DX
(−))

om the category of left DX-modules to the category of K-vector spaces. Since the constituents of Ω•
D,X

e DX -free and X is DX -affine, for each left DX -module M with global sections M one has

Hi
dR(M) = Hi−n((Dn/∂ · Dn) ⊗L

Dn
M).

 M is holonomic, these vector spaces are K-finite since they are the cohomology of the D-module theoretic 
irect image functor under the map to a point, as one sees by inspecting the transfer module Dpt←X (see 
1, 1.3.1, 1.3.3]) and construction of direct images (see [21, p. 50]).
We return to de Rham homology H2n−q

Y (X, Ω•
X) with X equal to affine n-space, as always. Since Ωj

X is 
nite free over OX , there is a natural identification of Hi

Y (Ωj
X) with Ωj

X ⊗OX
Hi

Y (OX). The complex

. . . −→ Ωj−1
X ⊗OX

Hi
Y (OX) −→ Ωj

X ⊗OX
Hi

Y (OX) −→ Ωj+1
X ⊗OX

Hi
Y (OX) −→ . . .

ith differential induced by the usual exterior derivative is quasi-isomorphic to the complex Ω•
D,X ⊗DX

i
Y (OX).
Since X is affine, Γ(X, −) induces a spectral sequence for hypercohomology,

Hp
dR(Hq

Y (Rn)) =⇒ Hp+q
Y (X, Ω•

X) = HdR
2n−p−q(Y ) (1.0.1)

at has been considered in [43, Lemma 2.16] in the complete local case, and in [20,3] in the context we are 
orking in. We note that over the complex numbers, the abutment is naturally equal to the reduced singular 
homology of the open complement U = U(I) given as U(I) := X \ Y , so there is a spectral sequence

E2
p,q = Hp

dR(Hq
Y (Rn)) =⇒ H̃p+q−1(U ;C) (1.0.2)

 the reduced cohomology of U . For I = m, the abutment is Hn
dR(Hn

I (Rn)) = C[2n], the reduced coho-
ology of the (2n − 1)-sphere shifted by one. For details see for example [16, p. 67], [27, Thm. 3.1], or [20, 

rop. 4.2].
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The articles [43,3] proceed to show that the Er-pages, r ≥ 2, of these spectral sequences are isomorphic 
r all embeddings of Y . In consequence, the terms on pages r ≥ 2 of (1.0.1) are numerical invariants of Y .

efinition 1.2. Let Y = Var(I) be an affine variety embedded in X = Spec (Rn) defined by the ideal 
⊆ Rn = K[x1, . . . , xn] over the field K of characteristic zero. For r ≥ 2, the (r, p, q)-Čech–de Rham number
 Y is the dimension

ρr
p,q(Y ) := dimK(En−p,n−q

r )

 the corresponding entry in the spectral sequence (1.0.1). If r = 2 we denote ρr
p,q(Y ) = Hn−p

dR (Hn−q
I (Rn))

 just ρp,q(Y ). �

Switala defined these for ideals in the power series ring [43, Dfn. 2.23]; they are well-defined by [43, 
rop. 2.17] and [3, Thm. 1.1]. The dimensions ρr

p,q are invariant under field extensions, and one can compute 
em algorithmically over any field of definition for I, see [36,37,44].

A related construction appeared in [29], where Lyubeznik shows that the socle dimensions of the E2-terms 
 the Grothendieck spectral sequence

Ep,q
2 = Hp

m(Hq
I (Rn)) =⇒ Hp+q

m (Rn) (1.0.3)

e independent of the closed embedding of Y = Spec (Rn/I) into any affine space An
K = Spec (Rn) and 

es it to define numerical invariants

λp,q(Rn/I) := dimC Hom(Rn/m, Hp
m(Hn−q

I (Rn))).

hese numbers, known as Lyubeznik numbers have been investigated for nearly three decades and are indeed 
nctions of the ring R/I (and do not depend on the presentation of R/I as a quotient of a polynomial 
ng). For detailed information on the history and the status quo we refer to the survey articles [33,46].
In this article we develop further the theory of the Lyubeznik numbers on one side, and on the other 
scribe a number of properties that the invariants introduced by Switala and Bridgland enjoy.
More precisely, in the next section we study vanishing of the Čech–de Rham numbers, explore them 

r small dimension of Y , and investigate the collapse of the corresponding spectral sequence. We identify 
asses of examples where this collapse happens on the E2-page, and explain why this is so for subspace 
rangements, by stringing together known results of Goresky–MacPherson, and Àlvarez–García–Zarzuela. 
e further explore the behavior of the Čech–de Rham numbers under Veronese maps and deduce that most 
 the Čech–de Rham numbers associated to the affine cone over a given projective variety Ỹ only depend 
 the class of the line bundle that the cone choice induces on Ỹ .
In the third section we discuss Lyubeznik numbers. We elaborate on the results from [40] by establishing 

me classes of projective varieties Ỹ with Picard number one that have almost all Lyubeznik numbers 
 the affine cone Y independent of the chosen cone. This includes determinantal varieties, certain toric 
rieties, and horospherical varieties. We also prove for certain projective varieties of dimension four or less 
at their Lyubeznik numbers are independent of the embedding.

Some known facts.
Since we will have to refer to them a few times, we state here some results from the literature.

emark 1.3. (1) If K is of characteristic zero, then local cohomology, algebraic de Rham cohomology, injective 

mension, dimension, socle dimension all behave well under field extensions. Since all varieties are defined 
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y a finite number of data, one can restrict all questions we discuss from the given field K to a field of 
efinition for I, and then extend to C. In particular, we can assume that K = C whenever it is convenient.
) ([29, (4.4.iii)]) Suppose Y ⊆ X = An

K is an affine variety. Then the local cohomology module Hi
I(Rn)

as support dimension at most n − i, and it vanishes if i < c := codim(Y, X). If Y is equi-dimensional and 
> c, then Hi

I(Rn) has support dimension less than n − i.
) ([29, Thm. 2.4] in the power series case; the polynomial case reduces to this) If M is a holonomic Dn-
odule, then Hi

m(M) is a finite sum of copies of the (Artinian, indecomposable) injective hull Hn
m(Rn) of 

 = Rn/m. More generally, one has for all Dn-modules that

injdimR(M) ≤ dim Supp(M).

hus, all right derived functors of Rn-modules with derivation level greater than n − i vanish on Hi
I(Rn), 

d those of derivation level n − i vanish if I is equi-dimensional and i > c.
) If G is a group acting linearly on Rn and stabilizes I, the local cohomology modules Hi

I(Rn) become 
trongly) equivariant Dn-modules. For details and references on equivariance of D-modules, see for example 
8, Section 2.1].
) Let I ⊆ Rn = K[x1, . . . , xn] be a homogeneous ideal such that dim(Rn/I) ≥ 2. Assume that K is 
parably closed. Hartshorne proved in [15, Theorem 7.5] that if Proj (Rn/I) is connected then Hn

I (Rn) =
n−1
I (Rn) = 0, and named this result the Second Vanishing Theorem. This theorem subsequently has been 
tended to the local settings as follows: Let R be either a complete regular local ring of dimension n that 
ntains a separably closed coefficient field or an unramified complete regular local ring of dimension n in 
ixed characteristic with a separably closed residue field. Let I ⊆ R be an ideal. Then Hn

I (R) = Hn−1
I (R) =

if and only if dim(R/I) ≥ 2 and the punctured spectrum of R/I is connected, [34,39,18,49].
) Over C, the local cohomology groups H•

I (Rn) are (up to shift) the global sections of the pushforward 
 the structure sheaf on the open set U to Cn, which carry a natural mixed Hodge module structure. The 
rresponding perverse sheaves encode information on the intersection cohomology of U and this can be 

sed to study Lyubeznik and Čech–de Rham numbers in characteristic zero, see [40]. �

The following is a special case of a more general result comparing direct image to a point and restriction 
 a point.

emma 1.4 ([41, Lemma 3.3]). Suppose K = C. Assume that M is a regular holonomic DX-module on 
= Cn and that its global sections M form a standard graded Rn-module. Suppose further that M is 

trongly) equivariant as a DX-module with respect to the C∗-action corresponding to this grading. Then its 
 Rham cohomology groups agree with the restriction groups to the origin of the holonomically dual module. 
 particular, the dimensions of these groups satisfy

dimC(Hi
dR(M)) = dimC(HomRn

(Rn/m, Hn−i
m (D(M))),

here D is the holonomic duality functor. �
 Čech–de Rham numbers

1. Basic structure results

Basic properties of the de Rham functor imply that ρr
p,q is zero for p outside the interval [0, n]. On the 
her hand, local cohomology Hj
I (Rn) is nonzero only when codim(I, Rn) ≤ j ≤ n, and so ρr

p,q is zero 
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r q outside the interval [0, dim(Y )]. Our first statement on these numbers is that they are confined to a 
iangular region:

heorem 2.1. The Čech–de Rham numbers satisfy for all r ≥ 2 that

ρr
p,q(Y ) = 0 if p > dim Supp(Hn−q

I (Rn)).

 particular, this vanishing occurs whenever p > q.

Before entering the proof we set up some notation and collect several facts and from [7,21,25] on con-
ructible sheaves and the Riemann–Hilbert correspondence. All spaces mentioned in the sequel are assumed 
 be algebraic varieties.

emark 2.2. Let X be a smooth algebraic variety.

) For any algebraic map f between algebraic sets we denote, on the level of constructible sheaves, the 
ual direct and inverse image functors by f∗ and f−1, and the proper direct and exceptional inverse image 
nctors by f! and f ! respectively. For the sake of notational brevity, we mean by these symbols always the 
rived functors on the appropriate derived categories (so that, for example, we write j∗ instead of Rj∗ as 
functor on the bounded derived category of constructible sheaves). This abuse of notation is common in 
e relevant literature.
) On the level of D-modules, we will use f+ and f! for the usual and proper direct image functors, and f+

d f† for the usual and exceptional inverse image functors. For reference and comparison, our D-functors 
, f!, f+, f† are (in this sequence) denoted by 

∫
f
, 
∫

f !, f
†, f� in [21].

) Let X ′ be a smooth variety. The Riemann–Hilbert correspondence sets up an equivalence between 
e derived category of bounded complexes of DX′-modules with holonomic cohomology, and the derived 
tegory of bounded complexes of constructible sheaves Db

c.s.(X ′). The correspondence is induced by the de 
ham functor Ω•

X′an ⊗L
DX′an (−) computed on the analytic space attached to X ′.

Under this correspondence, taking cohomology of a complex of DX′-modules corresponds to an operation 
 complexes of constructible sheaves that is denoted pH and called taking perverse cohomology. Perverse 
homology of a complex of constructible sheaves is not the same as the usual cohomology. The perverse 
homology of a complex is a perverse sheaf, but most perverse sheaves are not representable by a single 
odule but are a proper complex (see [7, Def. 4.5.10, Thm. 7.2.5, 8.1.28]). We call perverse exact any functor 
 the derived category of the category of constructible sheaves that commutes with pH.
) Suppose f : X ′ −→ X ′′ is a morphism of smooth algebraic varieties. Under the Riemann–Hilbert corre-
ondence, the functors for D-modules correspond to those on constructible sheaves as follows:

DRX′′ ◦f+ 
 f∗ ◦ DRX′ ; DRX′′ ◦f! 
 f! ◦ DRX′ ;

DRX′ ◦f+ 
 f ! ◦ DRX′′ ; DRX′ ◦f† 
 f−1 ◦ DRX′′ .

he last two identifications are not misprints; for inverse images, the Riemann–Hilbert correspondence via 
e de Rham functor aligns a regular inverse image with an exceptional one).
) Consider an open embedding j : U ↪→ X and a closed embedding i : Y ↪→ X where Y is closed (and, 
fortiori, constructible) and where U is the complement of Y in X. We have the following properties of 
duced functors for complexes of constructible sheaves:

i! = i∗ is perverse exact ([7, Thm. 5.2.4]) and exact (since i is a closed embedding);

i−1 is exact ([7, Rmk. 2.3.8]) but usually not perverse exact;
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i! and j∗ are usually neither exact nor perverse exact;
j−1 = j! is exact and perverse exact ([7, Rmk. 2.3.8, Thm. 5.2.4]);
j! is exact (clear from the definition) but usually not perverse exact.

) In the situation of item (5), we have the following distinguished triangles, Verdier dual to one another, 
 Db

c.s.(X):

i!i
!F • −→F • −→ j∗j−1 +1−→ ,

j!j
−1F • −→F • −→ i!i

−1F • +1−→ .

) We will always denote by aS the map from a space S to a point, which we sometimes denote with pt
d occasionally identify with the vertex of a cone if a cone is present. �

We now enter the

roof of Theorem 2.1. It suffices to consider r = 2. We will use the Riemann–Hilbert correspondence to 
anslate ρp,q = dimC(Hn−p

dR (Hn−q
I (Rn))) into the language of constructible sheaves. The de Rham functor 

kes the local cohomology Hn−q
I (OX) to pHn−qh!h

!CX [n] 
 h!(pH−qωY ) where h : Y → X = An
C is the 

nonical embedding, CX [n] is the constant sheaf on X shifted to the left by n and

ωY = DCY (2.1.1)

 the (topological) dualizing complex R Homc.s.(CY , CY ) for constructible sheaves on Y . (We use D also 
 denote Verdier duality, the operation corresponding to holonomic duality under the Riemann–Hilbert 
rrespondence).
The theorem will follow from a more general fact that can be seen as a companion result to [29, Thm. 2.4]:

emma 2.3. Let M be a regular holonomic Dn-module. Then Hn−p
dR (M) = 0 if p > dim Supp(M).

roof. Denote by M the DX -module corresponding to M , let Z be the support of M and write CM for the 
erverse sheaf on X that corresponds to M under the Riemann–Hilbert correspondence. Then Z is closed 
d Supp(M) = Supp(M) = Supp(CM ). Write

iZ : Z ↪→ X, jZ : (X \ Z) ↪→ X.

There is an exact triangle

RΓZ −→ id −→ (jZ)+(jZ)† +1−→

r DX -modules, that corresponds via Riemann–Hilbert to

(iZ)!(iZ)! −→ id −→ (jZ)∗(jZ)−1 +1−→

r constructible sheaves. (The advantage of the use of constructible sheaves is that one can talk about them 
 singular spaces).
Since (jZ)−1(CM ) = 0, one has (iZ)!(iZ)!(CM ) = CM . But iZ is proper, so (iZ)∗(iZ)!(CM ) = CM since 

Z)∗ = (iZ)!. This shows that the hypercohomology of CM (computed on X) equals the hypercohomology 

 (iZ)!(CM ) (which is computed on Z).



8 T. Reichelt et al. / Topology and its Applications 313 (2022) 107983

[7

≤

in

H
of

2.

fie

O
a 

j)
ei
th
co
on
ar
[2

C
di

P

E
th
st
m
no
For every perverse sheaf F on Z, the hypercohomology Hk(Z, F) vanishes for k /∈ [− dim(Z), 0] (see e.g. 
, Cor. 5.2.18] and [7, Prop. 5.2.20]). The lemma follows now from

dimC(Hn−p
dR (M) = dimC(H−p(X, CM )) = dimC(H−p(Z, (iZ)!(CM ))). �

Theorem 2.1 now follows with M = Hn−q
I (Rn) since dim(Supp(h!(pH−qωY ))) = dim(Supp(Hn−q

I (Rn)))
q by Remark 1.3. �
If one pictures the ρr

p,q as a table, it thus takes the following general form, assuming that Y is embedded 
to An

K, cut out by the ideal I ⊆ Rn of dimension d:

P r(Y ) = ((ρr
p,q)) :=

⎛⎜⎜⎜⎜⎝
ρr

0,0 · · · · · · ρr
0,d

0
. . .

...
...

. . .
. . .

...
0 · · · 0 ρr

d,d

⎞⎟⎟⎟⎟⎠ (2.1.2)

ere, p is the row index counting downward, q the column index counting towards the right, and the arrows 
 the Čech–de Rham spectral sequence point North to Northeast.

2. Degeneration

Switala raised in [43, Question 8.2] the following question for a complete local ring A with coefficient 
ld K of characteristic zero:

“Does the Čech–de Rham homology (1.0.2) spectral sequence degenerate at E2?”

ne can ask a similar question for the affine scenario. We discuss interesting classes where this question has 
positive answer.
Degeneration is certain if only one Hj

I (Rn) is nonzero (whence I must be equi-dimensional of codimension 
, for example for local complete intersections. Another example arises when I is equi-dimensional, and 
ther has isolated singularities or is a local complete intersection outside a finite number of points. Indeed, 
en H>codim(I,Rn)

I (Rn) is supported inside these points, hence these local cohomology modules are sums of 
pies of the Rn-injective hull of the residue field at these points. For such modules, de Rham cohomology is 
ly nonzero in degree n, and that implies that for all differentials in (1.0.2) either the target or the source 
e zero. (So, in the table (2.1.2), the only nonzero terms are in the top row and rightmost column). See 
0, Thm. 4.3] for more details. In light of Theorem 2.1, one obtains in the same way:

orollary 2.4. The Čech–de Rham spectral sequence degenerates on the E2-page if Y ⊆ X = Cn is equi-
mensional and the singular locus has dimension at most 1.

roof. Nonzero entries on the E2-page only exist then in rows 0 and 1, and in column d. �
xample 2.5. Suppose Y = Var(I) is a complex subspace arrangement. Let PY be its intersection lattice, 
e collection of all possible intersections of the components of Y , ordered by inclusion. (This differs from 
andard notation in arrangement theory, where the order is the reverse). We agree that PY has a unique 
aximal element corresponding to the ambient space, but it may have several minimal elements as we do 

t insist that I be homogeneous (so, the arrangement may not be central).
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It is well-known that the cohomology of the complement Cn
� Y is determined by the combinatorics 

 P: building on work of Brieskorn, Orlik and Solomon [35] showed that the cohomology algebra of this 
mplement is given by a purely combinatorial algebra constructed from the matroid of the arrangement.
Goresky and MacPherson [11, III, Thm. 1.3] proved that the Betti numbers of the complement can be 
mputed as a sum of non-negative integers, one for each element of PY . Here, the integers for each flat 
∈ P are computed as Betti numbers of the simplicial complex K(> p). (While Goresky and MacPherson 
hrase this in terms of relative homology for the pair (K(≥ p), K(> p)), the space K(≥ p) is contractible 
d one can convert into an absolute homology without harm).
Àlvarez, García and Zarzuela established the degeneration on page two of a certain spectral sequence

E−i,j
2 = lim←−−

p∈PY

(i)Hj
Ip

(Rn) =⇒ Hj−i
I (Rn) (2.2.1)

r the local cohomology groups H•
I (Rn), the inverse limits being taken over the poset PY viewed as a 

tegory with a morphism for each containment. In [1, Thm. 1.2], the structure of the derived inverse limits 
 explained as direct sums of modules Hj

Ip
(Rn) with codim(Ip, Rn) = j and multiplicity given by the 

pological Betti numbers of K(> p). In [1, Cor. 1.3], this is used to give a formula for the cohomology 
oups of the complement of Y , by translating the Goresky–MacPherson formula.
The affine complement of an affine space is homotopy equivalent to a sphere, hence applying the de 

ham functor to a module of the form Hj
Ip

(Rn) gives exactly one (reduced) cohomology group. Thus, the 

tries of the E2-page of the Čech–de Rham spectral sequence (1.0.2) correspond exactly to the composition 
ctors of Hj−i

I (Rn) in the spectral sequence (2.2.1) from [1] on one side, and to the direct summands for 
•(Cn

� Y ) in [11] on the other. It follows that for complex subspace arrangements Y the Čech–de Rham 
ectral sequence collapses on the E2-page. �

In small dimensions we show that Switala’s question has a positive answer as well.

roposition 2.6. If I is homogeneous and dim(Var(I)) ≤ 3 then the Čech–de Rham spectral sequence degen-
ates at E2.

roof. Let Y be of dimension 2 or less. If follows from Theorem 2.1 that no nonzero differential can exist 
 the spectral sequence.
Let now dim(Y ) = 3. Then Theorem 2.1 implies that then there might be at most one nonzero differential,

d2 : Hn−2
dR (Hn−2

I (Rn)) −→ Hn
dR(Hn−3

I (Rn)), (2.2.2)

nking ρ2,2 and ρ0,3.
Assume for the time being that Y is purely 3-dimensional. Remark 1.3 says that dim Supp(Hn−i

I (Rn)) <
for i < 3. In particular, by Lemma 1.4, dim Hn−2

dR (Hn−2
I (Rn)) equals the socle dimension of 

2
m(DHn−2

I (Rn)) = 0. Thus, the degeneration of the spectral sequence is forced.
Now relax the equi-dimensionality condition and let Y3 and Y ′ be the 3-dimensional and smaller dimen-

onal components of Y respectively. Then Y3 ∩Y ′ is of dimension 1 or less, and the Mayer–Vietoris sequence 
plies that Hn−3

Y3
(Rn) ⊕ Hn−3

Y ′ (Rn) = Hn−3
Y (Rn) and that there is a short exact sequence

0 −→ Hn−2
Y3

(Rn) ⊕ Hn−2
Y ′ (Rn) −→ Hn−2

Y (Rn) −→ C −→ 0

here C is a (graded) submodule of Hn−1
Y3∩Y ′(Rn). In particular, the dimension of the support of C is one or 
ss by Remark 1.3 and so H≤n−2
dR (C) is zero, being dual to the socle of H≥2

m (C) = 0.
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Applying the de Rham functor, the resulting long exact sequence shows that Hn−2
dR (Hn−2

Y3
(Rn) ⊕

n−2
Y ′ (Rn)) equals Hn−2

dR (Hn−2
Y (Rn)). Then the map (2.2.2) is the direct sum of the corresponding d2-

orphisms for Y3 and for Y ′ separately. But it is zero on Hn−2
dR (Hn−2

Y3
(Rn)) since the source of d2 is zero in 

at case, and it is zero on Hn−2
dR (Hn−2

Y ′ (Rn)) since the target is zero in that case. �
3. Affine complements

In the next two Subsections 2.3.1 and 2.3.2, we investigate to what extent the cohomology of the affine 
mplement, or its table of Čech–de Rham numbers, of a homogeneous variety Y is determined by the 
sociated projective variety Ỹ . We start in Subsection 2.3.1 with looking at the top cohomology group 
 the affine complement, and then investigate in Subsection 2.3.2 the affine complement under Veronese 
aps. In the process we review some algorithmic ideas that lead to a condition on the de Rham classes of 
aded DX -modules on affine space.
So, throughout, Ỹ is a projective variety and Y ⊆ Cn is a cone for Ỹ .

3.1. High cohomology groups of the affine complement

emark 2.7. Let Ỹ be a projective variety with cone Y = Spec (Rn/I). The following facts are due to Ogus 
4] Let

fY := min(k ∈ N|H�
I(Rn) is Artinian for all � > k)

d

vY := min(k ∈ N|H�
I(Rn) is zero for all � > k).

) The number n − fY is intrinsic to Ỹ , it does not depend on the choice of the cone Y , [34, Thm. 4.1].
) The number n − vY is intrinsic to Ỹ , it does not depend on the choice of the cone Y , [34, Thm. 4.4]

and the remark following it.

 particular,

ρr
p,q = 0

{
if q < n − νY ,

or p > 0 and q < n − fY .
�

We show next that in fact the top de Rham cohomology group of the affine cone complement is usually 
termined by Ỹ .

emma 2.8. Let X = An
C and suppose Ỹ ⊆ PX = Pn−1

C is defined by the homogeneous ideal I ⊆ Rn :=
(X, OX). Let Y = Var(I) ⊆ X and assume that Y has codimension at least two. Then the index and the 
mension of the top non-vanishing de Rham cohomology group of U := X � Y is encoded on Ỹ .

roof. We recall Alexander duality, compare [22, V.6.6]: if P is a C-orientable manifold and Ỹ a closed 
bset then the topological local cohomology group Hi

Ỹ
(P ; C) is canonically identified with the C-dual of 

e cohomology with compact support H2 dimC P−i
c (Ỹ ; C). If Ỹ is, in addition, compact, the latter is just 

2 dimC P−i(Ỹ ; C).
On the other hand, [22, II.9.2] states the existence of a long exact sequence

i i i ˜ +1

H

Ỹ
(P ; F) −→ H (P ; F) −→ H (P � Y ; F) −→ (2.3.1)
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here F is a sheaf of Abelian groups on P and we ease notation by ignoring the pull-backs of F to Ỹ and 
s complement respectively. Notice that one can get this long exact sequence by applying hypercohomology 
 the first triangle in Remark 2.2 (4). We use these with P = PX and Ỹ as above.
Via Poincaré duality, the map Hi

Ỹ
(PX; C) −→ Hi(PX; C) becomes H2n−2−i(Ỹ ; C)∨ −→ H2n−2−i(PX;

)∨. This is the dual of H2n−2−i(PX; C) −→ H2n−2−i(Ỹ ; C) induced by restriction from PX to Ỹ . The 
striction Hi(PX; C) −→ Hi(Ỹ ; C) is injective1 for i ≤ 2 dim Ỹ and necessarily zero for i > 2 dimC(Ỹ )
nce Ỹ is a CW-complex of dimension 2 dimC(Ỹ ). Thus, one can determine from the topological Betti 
umbers of Ỹ alone the sizes of the kernels of the left-most morphisms in display (2.3.1). This in turn 
etermines the sizes of the cohomology groups of PU := PX � Ỹ .

As codim(Y, Pn−1
C ) ≥ 2, U is simply connected by [12, Thm. 2.3]. Thus, the C∗-fiber bundle U −→ PU

as a Leray spectral sequence

Hi(PU ; Hj(C∗;C)) =⇒ Hi+j(U ;C)

 which the coefficients on the left are global (in a trivial vector bundle). Let m be the largest index with 
m(PU ; C) �= 0. Since all differentials out of and into Hm(PU ; H1(C∗; C)) �= 0 are zero, m + 1 must be 
e largest index with Hm+1(U ; C) �= 0 and dimC Hm(PU ; C) = dimC Hm+1(U ; C). �
orollary 2.9. Let Y be an affine variety defined by the homogeneous ideal I ⊆ Rn = C[x1, . . . , xn]. If 
>�
I (Rn) = 0 then the socle dimension s of H�

I(Rn) is encoded in the projective variety Ỹ = P (Y ) and does 
ot depend on the choice of the cone Y .

roof. Let X = Spec (Rn) and set U = X � Y . By [27, Thm. 3.1], s = dimC Hn+�−1(U ; C), and U has no 
igher non-vanishing singular cohomology groups. Then Lemma 2.8 implies that s is encoded on Ỹ . �
3.2. Integrals of Eulerian modules
We investigate next to what extent the ρr

p,q, or the abutment terms HdR
• (Y ) of the Čech–de Rham 

ectral sequence are independent of the cone Y (i.e., the line bundle L on Ỹ that induces the cone). In 
e following we show that replacing L by a power of itself does not change the HdR

• (Y ).
For this we give an account on the main results on algorithmic computation of the integral of a Dn-

odule along ∂1, . . . , ∂n. See [36,37,44] for details, and a generalization to the case when M is a bounded 
mplex of finitely generated modules that has holonomic cohomology.
We define a grading gri

Ṽ
(Dn) := {P ∈ Dn| deg(P ) = i} on Dn by setting

deg(xj) = 1 = − deg(∂j)

r all 1 ≤ j ≤ n. With it we define a filtration on Dn by

Ṽ k(Dn) =
∑
i≤k

gri
Ṽ

(Dn).

Let M be a Dn-module, finitely generated by elements m1, . . . , mr, and choose integers s1, . . . , sr. Then 
efine a filtration on M by setting

The cohomology fundamental class of Y in H2 dimC(Ỹ )(PX; C) evaluates on the homology class of a generic Pn−1−dimC(Ỹ ) ⊆ PX
 the 0-cycle given by the intersection of Ỹ with that generic subspace. But this intersection is the degree of Ỹ , hence positive. 
hus the restriction of the class represented by this subspace on PX, a generator of H2 dimC(Ỹ )(PX; C), to Ỹ is nonzero. But 
homology of projective space is a polynomial algebra in the hyperplane section, and if the dimC(Ỹ )-power of the hyperplane 

stricts to a nonzero class on Ỹ then so do all smaller powers.
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Ṽ k(M) =
r∑

i=1
Ṽ k−si(Dn) · mi.

enote the operator − 
∑n

j=1 ∂j · xj by Ẽ.
It is a result of Kashiwara [23] that when M is holonomic there is a b-function for integration b̃M (s). 

his is a univariate polynomial that satisfies

b̃M (Ẽ + n + k) · Ṽ k(M) ⊆ Ṽ k−1(M) (2.3.2)

r all k ∈ Z. We describe now ideas that lead to a proof for Proposition 2.12 below.
As before, let ωn be the right Dn-module (Dn/∂ ·Dn) where ∂ = {∂1, . . . , ∂n}. This is a free rank one Rn-

odule, and can be naturally identified with the Dn-module Extn
Dn

(Rn, Dn) (and with the global sections 
 the right DX-module of top differential forms OX · dx1 ∧ . . . ∧ dxn that is denoted ΩX in [21]). Give it a 
-filtration by placing the generator 1 + ∂ · Dn into Ṽ -level n.
The D-module theoretic direct image functor π+ for the projection map π : Cn −→ C0 can on global 

ctions be identified with ωn ⊗L
Dn

(−) shifted by n, computing the Tor-functors against ωn. This derived 
nsor product can be viewed as the tensor product of ωn with a free Dn-resolution F • of the input module 
, or of a free resolution K• of ωn with M , or of the tensor product of K• with F •. There are natural 
orphisms from the last scenario to the two former ones that induce isomorphisms on cohomology.
One major difficulty in identifying π+(M) is that its homology consists of finite-dimensional vector spaces 

ith no further module structure, while the modules that appear in the complex are infinite-dimensional 
ctors spaces with no further module structure.
A free resolution F • of M is Ṽ -strict if each F i is equipped with a Ṽ -filtration Ṽ (F i) such that every 

fferential δi : F i −→ F i+1 satisfies δi(Ṽ k(F i)) ⊆ Ṽ k(F k+1) and moreover δi(F i) ∩Ṽ k(F i+1) = δi(Ṽ k(F i)). 
 is a theorem of algorithmic algebraic analysis that finitely generated V -filtered Dn-modules do allow Ṽ -
rict resolutions of finite length. The Ṽ -filtration on F • induces a quotient filtration on ωn ⊗Dn

F •. This 
tered complex may not be strict anymore, but still the morphisms will respect the filtration. The Ṽ -
tration on ωn ⊗Dn

F • is bounded below while on F • it is not. Moreover, grk
Ṽ

(F i) is infinite dimensional 
er C, while each grk

Ṽ
(ωn ⊗Dn

F i) is C-finite. Nonetheless, the C-dimension of each ωn ⊗Dn
F i is still 

finite.
Let � be the largest and s the smallest integral root of the b-function b̃M (s).

heorem 2.10 (Integration Theorem [36,37]). With notation as introduced above, the morphisms

ωn ⊗Dn
F • ←↩ Ṽ �(ωn ⊗Dn

F •) � Ṽ �(ωn ⊗Dn
F •)/Ṽ s−1(ωn ⊗Dn

F •)

e quasi-isomorphisms.
In other words, every cohomology class of TorDn

• (ωn, M) has a representative inside Ṽ �(ωn ⊗Dn
F •), and 

e complex Ṽ s−1(ωn ⊗Dn
F •) is exact.

Note that the subquotient complex Ṽ �(ωn ⊗Dn
F •)/Ṽ s−1(ωn ⊗Dn

F •) is, in contrast to ωn ⊗F •, C-finite, 
ducing the computation of π+(M) to finite-dimensional linear algebra in this subquotient complex.
One can now just as well resolve ωn and M , or just ωn, and obtain other complexes that represent 

n ⊗L
Dn

M . A natural resolution for ωn is the cohomological Koszul complex K• on the left-multiplications 
 Dn by the various ∂j . (So, K• is the complex of global sections of Ω•

D,X). The module K� has a natural 
nerating set given by the size-�-subsets of 1, . . . , n. We place these generators in Ṽ -level � and extend 
to each K� by Dn-linearity. Since ∂i is in Ṽ -level −1, this produces a Ṽ -strict resolution of ωn. Having 
solutions K•, F • with Ṽ -filtration, there is an induced Ṽ -filtration on K• ⊗Dn
F •.
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The complex K• ⊗Dn
M is sometimes called the (affine, global) de Rham complex of M . If M is a space 

 functions on which one can differentiate, multiplication by ∂i in K• corresponds to differentiation by xi

 the usual de Rham complex.

Suppose now that M =
⊕

�∈Z M� is a graded module over the graded ring Dn, with homogeneous 
nerators m1, . . . , mr of degrees s1, . . . , sr. Choosing the degrees of the generators as shifts (i.e., si =

eg(mi)) for the Ṽ -filtration on M one obtains a direct sum of the graded components of M ,

Ṽ k(M) =
r∑

i=1
Ṽ k−si(Dn) · mi =

⊕
�≤k

M�. (2.3.3)

ince the twisted Euler operator Ẽ = − 
∑n

j=1 ∂jxj is Ṽ -homogeneous of degree zero, the defining equation 
.3.2) becomes

b̃M (Ẽ + n + k) · Mk = 0

r all k ∈ Z.
For Ṽ -graded M one can arrange the resolution F • to respect this grading, and K• is graded in any case. 

 now ηF is a cohomology class generator in Hi(ωn ⊗Dn
F •), one can lift it into Kn ⊗Dn

F i and then chase 
 into a class ηK of K• ⊗Dn

M , since Tor is a balanced functor. The grading of the resolutions involved 
plies that the Ṽ -level of this class in K• ⊗Dn

M is the same as the Ṽ -level of ηF in ωn ⊗Dn
F •.

We recall the notion of an Eulerian Dn-module.

efinition 2.11 ([32]). The graded Dn-module M =
⊕

i∈Z Mi is Eulerian if for every homogeneous m ∈ Mi

e has (
∑n

j=1 xj∂j)m = i · m.
In terms of Ẽ this is equivalent to (Ẽ + n + deg(m))m = 0. �

Eulerian Dn-modules are a very special case of Brylinski’s monodromic modules, which are those on 
hich the Euler operator has a minimal polynomial. They include (iterated) local cohomology modules 
i1
I1

(. . . (Hik

Ik
(Rn) . . .) for homogeneous ideals I1, . . . , Ik.

roposition 2.12. Let M be a finitely generated Eulerian Dn-module. Then every nonzero cohomology class 
 ωn ⊗L

Dn
M has degree zero.

roof. Since the module is Eulerian, we have (Ẽ + n + deg(m))m = 0 for every homogeneous m ∈ M . We 
ut the Ṽ -filtration on M that is induced by a finite set of homogeneous generators as in (2.3.3), with shifts 
= deg(mI). Then, a b-function for integration is given by b̃(s) = s. The conclusion is immediate from the 
tegration Theorem 2.10. �
emark 2.13. Let us call quasi-Eulerian a graded monodromic Dn-module M . Then one can easily generalize 
roposition 2.12 to: if M is quasi-Eulerian then the degree of every cohomology class of ωn ⊗L

Dn
M must 

e an integral root of the minimal polynomial of Ẽ on M .
There is a version of the Integration Theorem for complexes of holonomic modules (more generally, for 
mplexes that have a b-function for integration), see [44]. This allows a further generalization to finite 
aded complexes with quasi-Eulerian cohomology. �

We now consider the Eulerian Dn-module that arises as the localization M = Rn[1/f ] of Rn at a 
omogeneous polynomial f . It is clear that this is an Eulerian module since the Euler operator E acts on 
rational homogeneous function of degree k by multiplication with k. Thus, K• ⊗Dn

M is Ṽ -graded and 

ery class in ωn ⊗L

Dn
M has native degree zero.
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If one reads elements of K� ⊗ M as differential �-forms on M , this implies that the cohomology of 
• ⊗Dn

M is spanned as vector space by differential forms of degree zero: forms of the type

∑
|I|=�

I⊆{1,...,n}

gIdxI

fkI

here dxI = ∧i∈Idxi, where gI is a homogeneous element of Rn, and where deg(gI) + � = kI · deg(f). 
milarly, integrating a graded complex M• with Eulerian cohomology modules yields a de Rham complex 
 M• with cohomology groups concentrated in degree zero.

orollary 2.14. If I is a homogeneous ideal in Rn then the de Rham cohomology of the affine complement 
(I) = X � Var(I) of the affine variety Var(I) ⊆ X := Cn is generated by chains of differential forms of 
gree zero. Moreover, the de Rham cohomology groups Hi

dR(Hj
I (Rn)) all are concentrated in degree zero. �

roof. The Grothendieck comparison theorem asserts that the cohomology of K• ⊗Dn
Č• is the de Rham 

homology of U(I). The rest follows from Proposition 2.12. �
emark 2.15. Since multiplication by C � λ �= 0 is an isomorphism on U(f), the de Rham cohomology of 
(f) of a divisor is spanned by homogeneous differential forms (homothety eigenvectors) for all homogeneous 
∈ Rn. Alex Dimca pointed out that path-connectedness of C∗ implies that this multiplication is in fact 
motopy equivalent to the identity, and thus does not change the class. Hence, the cohomology of U(f)
ust be eigenvectors to eigenvalue 1, and thus of degree zero. Moreover, it was pointed out to us by 
. Lőrincz that C∗-equivariance can be used to obtain Proposition 2.12; see Lem. 2.1 and Cor. 2.2 in the 
cent preprint arXiv :2105 .00271 for a more general result. �

4. On Veronese maps

Throughout this subsection, 2 ≤ d, n ∈ N. Let

vd
n : X = Cn −→ CN =: W (2.4.1)

 the d-th Veronese morphism on the affine level, so N =
(

n+d−1
n−1

)
. If n, d are understood, we abbreviate 

to just v. We set X ′ := v(X) ⊆ W , W ◦ = W � {0}, X◦ := X � {0} and X ′◦ := X ′
� {0}.

Let Rn = C[x1, . . . , xn] = OX(X) and RN = C[{yS | S ∈ Nn, |S| = d}] = OW (W ). Let I ⊆ Rn be a 
mogeneous ideal and Y the associated variety. Denote U the complement X�Y , and let Y ′, U ′ the images 
 Y, U under v. Let UW be the complement W � v(Y ). In this subsection we will compare the cohomology 
 the affine complements of Y and Y ′.

Note that v# : RN −→ Rn sends yS �→ xS in multi-index notation. The d-th roots of unity μμd act 
agonally on X, as well as on every other variety of a homogeneous ideal of Rn, by multiplication on each 
. Moreover, v is the orbit map to this action, followed by inclusion into W . The image of v has a unique 
olated singularity at the origin, and v is a d : 1 covering of X ′◦ by X◦.
Note that μμd is the covering group of the map U −→ U ′, and its order d is nonzero in C. Under these 

rcumstances, H•(U ′; C) is the group of μμd-invariants in H•(U ; C). Using the de Rham manifestation of 
•(U ; C), in which we showed that every class has a representative that is of degree zero, the entire space 
•(U ; C) is μμd-invariant, so that
H•
dR(U ;C) = H•

dR(U ′;C).
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In what follows, we replace de Rham cohomology by singular cohomology, since we will have need to step 
tside the category of smooth algebraic varieties. Known comparison theorems over C assure functorial 

omorphisms between these cohomology theories whenever both exist.
It will turn out to be useful to know the cohomology of W � X ′ = W ◦

� X ′◦. Note that X ′◦ has 
e homology of the homotopy (2n − 1)-sphere X◦ and is a closed submanifold of the 2N -dimensional 
anifold W ◦, the latter being homotopy equivalent to the (2N −1)-sphere S2N−1. Alexander duality gives an 
omorphism Hi

X′◦(W ◦; C) 
 HomC(H2N−i
c (X ′◦; C), C) with the dual of compactly supported cohomology, 

2, Alexander Duality V.6.6]. But then X ′◦ being a 2n-dimensional real manifold yields by Poincaré duality 
at HomC(H2N−i

c (X ′◦; C), C) 
 H2n−2N+i(X ′◦; C), [4, I.(5.4)]. The latter is C for i = 2N − 1 and 
= 2N − 2n, and zero otherwise. In the long exact sequence

· · · −→ Hi
X′◦(W ◦;C) −→ Hi(W ◦;C) −→ Hi(W ◦

� X ′◦;C) +1−→,

e have Hi
X′◦(W ◦; C) �= 0 only when i = 2N − 1, 2(N − n) and Hi(W ◦; C) �= 0 only if i = 2N − 1, 0. 

he map C = H2N−1
X′◦ (W ◦; C) −→ H2N−1(W ◦; C) = C is surjective (hence bijective) since W ◦

� X ′◦ is 
omotopy equivalent to an open subset of a (2N − 1)-sphere) and so H2N−1(W ◦

� X ′◦; C) = 0. It follows 
at

Hi(W � X ′;C) = Hi(W ◦
� X ′◦;C) =

{
C if i = 0, 2(N − n) − 1;
0 else.

(2.4.2)

Next we compute the cohomology of UW = W �Y ′, Y ′ = v(Y ) where Y = Var(I) for some homogeneous 
eal I ⊆ Rn. Since U ′ = v(U) is an embedded submanifold of UW with complex codimension N − n, we 
n consider the tubular neighborhood T ′ of U ′ that arises via the tubular neighborhood theorem as the 
tal space of the normal bundle of U ′ in UW . Then

UW = W � Y ′ = (W � X ′) ∪ U ′ = (W � X ′) ∪ T ′,

ith intersection (W � X ′) ∩ T ′ = T ′◦.
As U ′, UW are complex manifolds, the removal of the zero section U ′ from T ′ leaves a space T ′◦ homotopic 

 an oriented sphere bundle Sq ↪→ T ′◦ � U ′ where

q = 2(N − n) − 1.

he q-sphere bundle T ◦ yields a Gysin sequence

. . . −→ Hi(T ′◦;C) π∗−→ Hi−q(U ′;C) e∪−→ Hi+1(U ′;C) π∗
−→ Hi+1(T ′◦;C) −→ . . .

ere, π : T ′◦ −→ U ′ is the fibration map, π∗ is the pullback under this map, and e is the Euler class of the 
undle T ′◦ when restricted from relative cohomology to absolute cohomology on T . The map π∗ is special 
 the situation of bundles with fibers homotopic to compact manifolds, and is induced by integration 
ong the fibers in the following sense. For any oriented Rk-bundle E −→ B with E◦ = E � B there is a 
ndamental class u ∈ Hk(E, E◦; Z) that restricts in each fiber to the canonical class in Hk(Rk, Rk \{0}; Z); 
is canonical class is the given orientation on the bundle (an orientation is a global section of the orientation 

undle with fiber Hk(Rk, Rk \ {0}; Z)). The existence of the fundamental class is the content of the Thom 
omorphism theorem for oriented vector bundles, and the cup product with u sets up an isomorphism 
∪ : Hj(E; Z) −→ Hj+k(E, E◦; Z). The cap product with the Poincaré dual of u induces an isomorphism 

j(E, E◦; Z) −→ Hj−k(E; Z), the “integration along the fibers” above (compare [31, Ch. 9-12]). The image 

 u in Hk(E; Z) is the Euler class (by definition). If the fiber dimension k is large, Hk(E; Z) = Hk−1(E; Z) =
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 In that case, the Euler class of the bundle must be zero and then u corresponds to the class in Hk−1(E◦; Z)
ith the property that it restricts in each fiber to the canonical generator of Hk−1(Rk

� {0}; Z).
Our Gysin sequence above arises from the long exact sequence to the pair (T ′, T ′◦) with replacements 
ming from the Thom isomorphism and the fact that U ′, T ′ are homotopic.
Since dimC(U ′) = n, Hi(U ′; C) = 0 if i ≥ 2n. On the other hand, the Euler class is of homological 
gree q + 1 = 2(N − n). Thus, if 2(N − n) ≥ 2n then either the source or the target of the Euler map 
i−q(U ′; C) e∪−→ Hi+1(U ′; C) is zero for every i. But N =

(
n+d−1

n−1
)

≥ 2n for n, d ≥ 2 unless d = n = 2, and 
ually much larger. Thus the Gysin sequence splits into isomorphisms

Hi(T ′◦;C) π∗−→ Hi−q(U ′;C) = Hi(T ′;C) if i ≥ 2n; (2.4.3)

Hi(T ′;C) = Hi(U ′;C) π∗
−→ Hi(T ′;C◦) if i < 2n. (2.4.4)

Note that the composition Hi(T ′; C) −→ Hi(T ′◦; C) −→ Hi(U ′; C) is an isomorphism since U ′ ↪→ T ′ is 
homotopy equivalence; so the left map is an isomorphism if and only if the right one is. Now consider the 
ayer–Vietoris sequence to the pair (W � X ′) ∪ T ′ = UW with T ′◦ = (W � X ′) ∩ T ′:

· · · −→ Hi((W � X ′) ∪ T ′;C) −→ Hi(W � X ′;C) ⊕ Hi(T ′;C) −→ Hi(T ′◦;C) −→ · · ·

ere, each (component of a) map is the natural restriction, possibly with a (−1) factor.
If i < 2n, the map Hi(T ′; C) −→ Hi(T ′◦; C) in the Mayer–Vietoris sequence is therefore the identity 
 (2.4.4). It follows that in this range, Hi((W � X ′) ∪ T ′; C) −→ Hi(W � X ′; C) is an isomorphism as 

ell. But in that range, by (2.4.2), only H0(W �X ′; C) is nonzero and so Hi((W �X ′) ∪ T ′; C) is zero for 
< i < 2n.
If 2n −1 ≤ i < q, then Hi((W �X ′) ∪T ′; C) vanishes since Hi(W �X ′; C) = Hi(T ′; C) = Hi(T ′◦; C) = 0.
Let us look at the situation when i = q:

Hq−1(T ′◦;C)︸ ︷︷ ︸
=H−1(U ′;C)=0

−→ Hq((W � X ′) ∪ T ′;C) −→ Hq(W � X ′;C)︸ ︷︷ ︸
=C

⊕ Hq(T ′;C)︸ ︷︷ ︸
=0

−→

Hq(T ′◦;C)︸ ︷︷ ︸
=H0(U ′;C)=C

−→ Hq+1((W � X ′) ∪ T ′;C) −→ Hq+1(W � X ′;C)︸ ︷︷ ︸
=0

⊕ Hq+1(T ′;C)︸ ︷︷ ︸
=0

.

 one restricts the morphism Hq(W � X ′; C) −→ Hq(T ′◦; C) to the intersection with a small ball around 
generic point of Y ′, both spaces become homotopic to Sq and so the morphism Hq(W � X ′; C) −→
q(T ′◦; C) restricts to an isomorphism C −→ C. But since Hq(W �X ′; C) and Hq(T ′◦; C) are also equal to 
, the morphism Hq(W�X ′; C) −→ Hq(T ′◦; C) is an isomorphism. Thus, Hq(UW ; C) = Hq+1(UW ; C) = 0.
If i > q, Hi(T ′; C) = Hi(W � X ′; C) = 0. Thus, Hi−q(U ′; C) = Hi(T ′◦; C) = Hi+1((W � X ′) ∪ T ′; C).
We have proved

roposition 2.16. We use notation as defined at the start of Subsection 2.4. Let T ′ −→ U ′ be the normal 
ndle of U ′ in W ◦. With UW := W \ Y ′ = (W � X ′) ∪ T ′, and q =

(
n+d−1

n−1
)

> 2n we have on the level of 
duced cohomology for every i ∈ Z the isomorphisms

Hi(U ′;C) π∗


 Hi(T ′;C)

e∪



e0∪

 Hi+q(T ′◦;C)

δ∗


δ∗


 Hi+q+1(UW ;C)
Hi+q+1(T ′, T ′◦;C)
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ere e ∈ Hq+1(T ′, T ′◦; Z) is the Euler class of the bundle, e0 ∈ Hq(T ′◦; Z) is its preimage, the vertical δ∗

 the connecting morphism for the pair (T ′, T ′◦), and the horizontal δ∗ is the connecting morphism for the 
ayer–Vietoris spectral sequence for the cover UW = (W � X ′) ∪ T ′.
In particular, the singular reduced cohomology groups of the complements of the cones Y and Y ′ over Ỹ

e the same up to a cohomological shift by q + 1 = 2(N − n).

orollary 2.17. If Y ⊆ X = Cn is homogeneous and of equi-dimension three, then the Čech–de Rham 
umbers ρr

p,q(Y ) are invariant under Veronese maps of Y .

roof. With Y ′ ⊆ W and notation on Y ′, U, UW as set at the start of Subsection 2.4, the Čech–de Rham 
ectral sequence degenerates for dimensional reasons by Proposition 2.6, both for Y ⊆ X and for Y ′ ⊆ W . 
ccording to Proposition 2.16, the two complements have the same reduced cohomology up to a shift by 
e relative dimension. Hence, up to that same shift, the two Čech–de Rham spectral sequences have the 
me abutment. The degeneration shows that the abutment determines the ρ2

p,q, except for the numbers 
2
2,2 and ρ2

3,0 for which it follows that their sum is equal to dimC Hn−3
dR (U) = dimC HN−3

dR (WU ). However, 
2
2,2 is the dimension of Hn−2

dR (Hn−2
I (Rn)) and HN−2

dR (HN−2
I (RN )) respectively, and thus equals the socle 

imension of H2
m(DHn−2

I (Rn)) and H2
m(DHN−2

I (RN )) respectively, by Lemma 1.4. But equi-dimensionality 
d Remark 1.3 show that these latter integers are both zero. This implies invariance of ρ2

3,0 and settles the 
se r = 2. But no higher nonzero differentials can exist by degeneration. �
We show next that, under less stringent conditions, most of the Čech-de Rham numbers of level two are, 

r cones over projective varieties, still unchanged under Veronese maps. The idea of the proof is inspired 
y the companion result Lemma 3.2 for Lyubeznik numbers, which in turn is based on results in [40].

heorem 2.18. Let Ỹ be a projective variety and suppose Y is a cone for Ỹ , embedded as a closed subvariety 
 an affine space X = Cn. Then, for k ≥ 2, the Čech–de Rham numbers ρ2

k,� derived from Y agree with 
ose derived from any Veronese of the pair Y ⊆ X.

The proof will start with translating the ρk,� into objects of constructible sheaves involving the Verdier 
ual ωY of the constant sheaf on Y , see (2.1.1). After some rewriting we use Lemma 1.4 to exchange a direct 
age functor to a point for the pullback to the origin and then use an adjunction triangle to reformulate 
em in terms of Y ◦, the complement of the origin in Y . We finally lift to Ỹ where an interpretation in 
rms of Chern classes makes it easy to compare the construction for Y to the corresponding construction 
r the Veronese embedding.
During the proof we shall use the following diagram of maps

{0}

iY

{0}

i

Y

aY

h
Cn =: X

aX

Y0

jY

π

h0
Cn \ {0} =: X◦

j

p

Ỹ
g

Pn−1
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roof of Theorem 2.18. The Čech–de Rham numbers of level 2 are given by

ρk,� := dim Hn−k
dR (Hn−�

I Rn) = dim pH−ka∗(pHn−�h!h
!CX [n]),

here CX [n] is the constant sheaf on X with stalk C. (The shift from −n + k on the left to −k on the right 
curs since the de Rham functor used in the Riemann–Hilbert correspondence arises from the “natural” 
gebraic de Rham functor—which goes along with the tensor product with ω—by analytification and a 
ift by n).
We have

pH−ka∗(pHn−�h!h
!CX [n])

(a)

 pH−ka∗(pHn−�h!h

!a!
XCpt[−n])

(b)

 pH−ka∗(pHn−�h!ωY [−n])
(c)

 pH−ka∗h!(pHn−�ωY [−n])
(d)

 pH−ka∗h∗(pHn−�ωY [−n]) (2.4.5)


 pH−k(aY )∗(pHn−�ωY [−n])


 pH−k(aY )∗(pH−�ωY )
(e)

 pH−k(iY )−1(pH−�ωY )

he justifications are as follows: (a) holds since the real dimension of X is 2n; (b) follows from the definition 
 ωY ; (c) holds since h is a closed embedding and hence h! is perverse exact; (d) comes from h∗ = h! for 
osed embeddings; (e) is Lemma 3.3 in [41] (quoted as Lemma 1.4 in the present article).
We have the following triangle from the inclusion of the origin into Y :

jY !j
−1
Y (pH−�ωY ) −→ pH−�ωY −→ iY !i

−1
Y (pH−�ωY ) +1−→

d it induces the following long exact sequence

. . . pH−3iY !(iY )−1(pH−�ωY )

pH−2jY !(jY )−1(pH−�ωY ) 0 pH−2iY !(iY )−1(pH−�ωY )

pH−1jY !(jY )−1(pH−�ωY ) 0 pH−1iY !(iY )−1(pH−�ωY )

pH0jY !(jY )−1(pH−�ωY ) pH−�ωY
pH0iY !(iY )−1(pH−�ωY ) 0

We now use that k ≥ 2, which yields the following isomorphisms from the long exact sequence above:

pH−kiY !(iY )−1(pH−�ωY ) 
 pH−k+1jY !(jY )−1(pH−�ωY )
(f)

 pH−k+1jY !(pH−�ωY ◦)
(g)


 pH−k+1jY !(pH−�π!ωỸ ) (2.4.6)
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 pH−k+1jY !(pH−�+1π![−1]ωỸ )
(h)

 pH−kjY !π

!(pH−�+1ωỸ )

ith justifications as follows: (f) since jY is open and so (jY )−1 is perverse exact; (g) is dual to the fact 
at CY ◦ = π−1CỸ ; (h) is because π is smooth so that π![−1] is perverse exact.
We have then

pHiaY !
pH−k(jY !π

!(pH−�+1ωỸ )) 
 pHiaY !(pH−k(iY !(iY )−1(pH−�ωY ))) = 0 for i �= 0

nce pH−n+kiY !(iY )−1(pH−�ωY ) is at most supported on a point. A spectral sequence argument shows 
erefore that

pH0aY !
pH−kjY !π

!(pH−�+1ωỸ ) 
 pH−kaY !jY !π
!(pH−�+1ωỸ ). (2.4.7)

ummarizing we have for k ≥ 2 that

pH−ka∗(pHn−�h!h
!CV [n])

(i)

 pH−k(iY )−1(pH−�ωY )
(j)

 pH0aY !iY !(pH−k(iY )−1(pH−�ωY )) (2.4.8)
(k)

 pH0aY !(pH−kiY !(iY )−1(pH−�ωY ))
(l)

 pH−kaY !jY !π

!(pH−�+1ωỸ ), (2.4.9)

here (i) follows from display (2.4.5); (j) follows since aY ◦ iY is the identity on {0}; (k) is since iY ! is 
erverse exact as iY is closed; (l) comes from displays (2.4.6) and (2.4.7).

Now let L be the quasi-coherent pullback of OPn−1(1) via g. By abuse of notation we denote the total 
ace of the corresponding line bundle by the same letter. Notice that Y ◦ 
 L � {zero section}. Consider 
e following diagram

{0}

iY

Ỹ

ĩ

Y Lu q
Ỹ

Y ◦

jY

Y ◦

j̃
π

 which q is the bundle map, ĩ the embedding of the zero section, and u is the contraction of the zero 
ction. We have

pH−kaY !jY !π
!(pH−�+1ωỸ ) 
 pH−kaY !jY !π

−1[2](pH−�+1ωỸ )


 pH−k+2aY !jY !π
−1(pH−�+1ωỸ )


 pH−k+2aY !jY !(j̃)−1q−1(pH−�+1ωỸ )


 pH−k+2aX!q! j̃!(j̃)−1q−1(pH−�+1ωỸ )


 pH−k+2aX!π!π
−1(pH−�+1ωỸ )

−k+2 −1 p −�+1

 Hc (X, π!π ( H ωỸ ))
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ere the first isomorphism comes from the fact that π−1[1] = π![−1] is perverse exact, and the last one 
cause cohomology of compact supports is the cohomology of the exceptional direct image functor.
From the closed embedding of Ỹ into L arises a triangle

j̃!(j̃)−1q−1(pH−�+1ωỸ ) −→ q−1(pH−�+1ωỸ ) −→ ĩ!(̃i)−1q−1(pH−�+1ωỸ ) +1−→ (2.4.10)

pplying q! we get

π!π
−1G−�+1 −→ q!q

−1G−�+1 −→ G−�+1
+1−→

here we have set G−� := pH−�ωỸ and used π = q ◦ j̃. We have G 
 q!q
!G 
 q!q

−1G[2] for any G ∈ Perv(Ỹ )
nce q is smooth of relative dimension 1. This gives the triangle

π!π
−1G−�+1 −→ G−�+1[−2] −→ G−�+1

+1−→

s in [40, (1.3.1)], this triangle is dual to a triangle F −→ F [2] −→ p∗π!F +1−→ where the first map is 
duced by

e ⊗ 1 : CỸ ⊗ F −→ CỸ [2] ⊗ F ,

ith e ∈ HomDb
c.s.(Ỹ )(CỸ , CỸ [2]) 
 HomDb

c.s.(pt)(C, RΓ(Ỹ ; CỸ [2])) 
 H2(Ỹ ; C) is the image of the Euler 
ass of the vector bundle L.
We get a long exact sequence

→H−k+2
c (Ỹ , π!π

−1G−�+1) −→ H−k
c (Ỹ , G−�+1)(−1) −→ H−k+2

c (Ỹ , G−�+1) −→ H−k+3
c (Ỹ , π!π

−1G−�+1)−→

In particular we get short exact sequences

0 −→ H−k+1
c (Ỹ , G−�+1)L −→ H−k+2

c (Ỹ , π!π
−1(pH−�+1ωỸ )) −→ H−k

c (Ỹ , G−�+1)L −→ 0

here

H−k+1
c (Ỹ , G−�+1)L := coker

(
H−k−1

c (Ỹ , G−�+1)(−1) −→ H−k+1
c (Ỹ , G−�+1)

)
H−k

c (Ỹ , G−�+1)L := ker
(
H−k

c (Ỹ , G−�+1)(−1) −→ H−k+2
c (Ỹ , G−�+1)

)
Putting everything together we get that

ρk,� = dimH−k+2
c (Ỹ , π!π

−1(pH−�+1ωỸ )) = dimH−k+1
c (Ỹ , G−�+1)L + dimH−k

c (Ỹ , G−�+1)L

 unchanged under Veronese maps for k ≥ 2, since the Euler class of a bundle power is a multiple of the 
iginal Euler class (and over C, scaling preserves kernels and cokernels of linear maps). �
uestion 2.19. Are all Čech-de Rham numbers invariant under Veronese maps? �

5. Incomplete linear series

We wish here to compare the Čech–de Rham numbers of a projective variety induced by cones that 
long to the same line bundle. So, let Ỹ ⊆ Pn−1

C be a projective variety, let Rn be the coordinate ring of 
n−1
C and I ⊆ Rn the ideal defining Ỹ . Denote m the homogeneous maximal ideal of Rn and L the line 

ndle OỸ (1) induced by this embedding.
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We assume that the n coordinate functions are linearly independent on Ỹ , since otherwise a coordinate 
ange can be used to replace Pn−1

C by a smaller projective space for which Lyubeznik and Čech–de Rham 
umbers are the same as for the given embedding.

Then there is an exact sequence

0 −→ Γm(Rn/I) −→ Rn/I −→
⊕
k∈Z

Γ(Ỹ , Lk)︸ ︷︷ ︸
=:S̄

−→ H1
m(Rn/I) −→ 0.

et V = (Rn)1 be the space of linear functions on Pn−1
C and let V̄ := Γ(Ỹ , L) be the complete linear system 

tached to L. Write R̄n := C[V̄ ] and let Ī ⊆ R̄n be the ideal cutting out Ỹ inside the dual projective space 
V̄ ∗.
As Rn/I is Noetherian, Hi

m(Rn/I) is Artinian for all i, and so 
(
Hi

m(Rn/I)
)

≥k0
is zero for large k0. It 

llows that the containments (Rn/I)≥k0 ⊆ (R̄n/Ī)≥k0 ⊆ S̄≥k0 are equalities. This implies that the d-th 
eronese iterates of the two projective embeddings of Ỹ to Rn/I and R̄n/Ī are the same up to a projective 
ordinate change, provided that d ≥ k0. Thus, their cones yield identical Čech–de Rham numbers ρ2

p,q, for 
> 1.
By Theorem 2.18, at least for p > 1, the invariants ρp,q derived from the cones inside V ∗ and V̄ ∗ agree.

orollary 2.20. If two projective embeddings of Ỹ induce the same line bundle on Ỹ then the respective cones 
oduce the same Čech–de Rham numbers ρ2

p,q respectively, at least for p > 1.

 Lyubeznik numbers

In this section we study the Lyubeznik numbers and their spectral sequence (1.0.3). After surveying some 
nown facts we discuss to what extent a projective variety determines the Lyubeznik numbers of its cone(s). 
e look first specifically at varieties of Picard number 1, listing some examples and open questions. After 
at we discuss cases where in small dimension the Lyubeznik tables of all cones agree.

1. Basic properties

We should begin with drawing some parallels to the case of the Čech–de Rham numbers. Quite immedi-
ely, being defined as the socle dimensions of the E2-terms in the Grothendieck spectral sequence (1.0.3), 
e Lyubeznik numbers vanish for q /∈ [codim(I, Rn), n] and for p /∈ [0, n]. In fact, similarly to the ρr

p,q, 
yubeznik numbers fit into a triangular region

Λ(Y ) :=

⎛⎜⎜⎜⎝
λ0,0 · · · · · · λ0,d

0
. . .

...
...

. . .
. . .

...
0 · · · 0 λd,d

⎞⎟⎟⎟⎠ ,

ee [29]). In this picture, the differentials of the spectral sequence point South to Southeast.
For notational ease, we will hereafter indicate a zero entry in a Lyubenik table by a single dot.

emark 3.1. The fact that the abutment of (1.0.3) is Hn
m(Rn) implies that the entries
λ0,d = λ1,d = 0
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ways vanish unless the dimension of I is less than two, in which cases the Lyubeznik tables are (1) and 
· ·
· 1

)
respectively. �

The number λd,d is never zero by [29] and related to connectedness issues. For example, if dim(Y ) = 2

en Λ =
( · a − 1 ·

· · ·
· · a

)
where a is the number of connected components of the punctured spectrum of the 

ng defining the purely 2-dimensional part of I, [45,24]. By [47], λd,d is the number of connected components 
 the Hochster–Huneke graph of the completed strict Henselization of R/I.
It was first observed in [10] that the Lyubeznik numbers encode interesting topological information also in 

gher dimension. However, it is often not easy to decode this information. Garcia and Sabbah concentrate 
 the case of an isolated singularity and find that the topology of the singularity link carries all information 
 Λ. Other relations to connectedness dimensions are discussed in the survey [33].

2. Lyubeznik numbers and projective schemes

Suppose Ỹ is a projective variety in Pn−1
K , with defining ideal I ⊆ Rn = K[x1, . . . , xn]. Different embed-

ngs of Ỹ give rise to different ideals in different polynomial rings, and thus potentially to different sets 
 Lyubeznik numbers. That this is indeed a possibility was shown to be the case in [40, Sections 2.2, 2.3]
here a projective variety with two embeddings is constructed that produce (partially) different λp,q. On 
e other hand, if Ỹ is smooth or a Q-homology manifold or analytically locally a set-theoretic complete 
tersection, then all cones for Ỹ yield the same Lyubeznik numbers [10,42,40].
A new angle was introduced in [40] by applying the theory of perverse sheaves and mixed Hodge modules 

 the problem. It is proved there that if I is homogeneous then the λp,q(R/I) measure, for p > 1, the 
ilure of a certain morphism of cohomology groups of certain perverse sheaves on Ỹ to be an isomorphism. 
follows that, for the purpose of studying the Lyubeznik numbers with p > 1 of cones Y over a fixed Ỹ , one 
n move freely between line bundles on Ỹ and cones, as cones that produce different Lyubeznik numbers 
r p > 1 must induce different line bundles on Ỹ .
That examples of cones over Ỹ with varying Lyubeznik numbers exist over C is rather surprising at first, 

nce similar examples cannot exist in any positive characteristic. Indeed, it is shown in [48] that Lyubeznik 
mbers in finite characteristic can be seen as eigenvalues of certain operators on sheaves that are intrinsic 
 the projective variety Ỹ associated to I.
All known examples of projective varieties with possibly varying Lyubeznik numbers of their cones come 

om varieties with Picard number at least two. This is not an accident as we show now.

emma 3.2. Let Y be a cone over the projective variety Ỹ ⊆ Pn−1
C . Let vd

n be the d-th Veronese applied to 
e cone Y , and write Y ′ = vd

n(Y ) for the new cone. Then for p ≥ 2, the Lyubeznik numbers λp,q(Y ) and 

,q(Y ′) agree.
In particular, if the Picard number of Ỹ equals one, then the Lyubeznik numbers λ≥2,q(Y ) to cones over 
are independent of the cone.

roof. Let ι1, ι2 be two embeddings of Ỹ into projective spaces Pn−1
K , Pm−1

K and denote Y1 ⊆ X1, Y2 ⊆ X2

e two cones over Ỹ , sitting in the respective affine spaces that belong to the two embeddings. Let L1, L2

 the associated line bundles on Ỹ obtained as pullbacks of OPn−1
K

(1) and OPm−1
K

(1) respectively. Then 

 [40, Prop. 1,2,3], the Lyubeznik numbers λp,q of Ỹ that belong to Yi and have p ≥ 2 are determined by 
e (co)kernel sizes of the Chern classes of Li on certain cohomology groups of Ỹ with rational coefficients. 

hese cohomology groups themselves (see [40, Prop. 2]) do not depend on the bundles Li.
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If ι2 is the d-fold Veronese applied to ι1 then the (first) Chern class of L2 is d times that of L1. In 
articular, their kernels and cokernels on Q-spaces are identical and the first claim follows.

Now suppose that the target of the natural map

φ : Pic(Ỹ ) −→ Pic(Ỹ ) ⊗Z Q

 Q. If ι1, ι2 are both projective embeddings of Ỹ , ampleness implies that φ(Li) > 0. Then if φ(L1) = q1
d φ(L2) = q2, both positive rational numbers, we have for k � 0 with kq1, kq2 ∈ N that Lk|q2|

1 = Lk|q1|
2 . 

hen by the first part of the proof, ι1, ιkq2
1 , ιkq1

2 and ι2 all yield the same Lyubeznik numbers λp,q for p ≥ 2
here we write ι� for the �-th Veronese of the embedding ι). �
For p < 2, we do not know how to compare the λp,q of different cones.

roblem 3.3. Do all Lyubeznik numbers of all cones Y of Ỹ agree if the Picard number of Ỹ is one? �

Here are three interesting sets of varieties to which the lemma applies.

2.1. Determinantal ideals

roposition 3.4. The Lyubeznik numbers λp,q with p ≥ 2 of (the cones over) the projective determinantal 
rieties Ỹm,n,t cut out by the t × t minors of an m × n matrix of indeterminates are unique.

roof. Let Am,n,t be the ring obtained as quotient of the polynomial ring K[xi,j|1 ≤ i ≤ m, 1 ≤ j ≤ n] by 
e t-minors of the matrix x := ((xi,j)).
The case t = 1 is trivial. If t = 2, the associated projective variety is the product of two projective 
aces, and in particular smooth. By [10], or [42], the Lyubeznik numbers of Ỹm,n,2 are independent of the 
bedding.
Now consider the case t > 2. By [5, Cor. 8.4], the divisor class group of Am,n,t is Z, a generator being 
e ideal Īm,n,t−1 of Am,n,t generated by the (t − 1)-minors of the first t − 1 rows (or columns) of x.
Since determinantal varieties are normal, they satisfy condition (∗) in [17, Page 130]. By [17, Exercise 

.6.3], there is a short exact sequence 0 −→ Z −→ Cl(Ỹ ) −→ Cl(Y ) −→ 0, Y the cone over Ỹ , where the 
st map factors through the class group Cl(Y � P ) of the complement of the origin in Y . For t ≥ 2 this 
plies that Cl(Ỹm,n,t) = Z ⊕ Z. In this sequence, 1 ∈ Z is sent to the generic hyperplane section of Ỹ . 
 order to determine the Picard group of Ỹm,n,t we need by [17, Prop. II.6.15] to determine the Cartier 
asses of Cl(Ỹm,n,t). From the preceding, this amounts to checking which multiples of Īm,n,t−1 are Cartier 
 the punctured spectrum of Am,n,t. One sees easily that for t = 2, Īm,n,t−1 is Cartier on the punctured 
ectrum. For t > 2 only its trivial power is Cartier: by the coordinate change expounded in [27], powers 
 Īm,n,t−1 are locally principal on the open set Ux1,1 if and only if corresponding powers of Īm−1,n−1,t−2
e locally principal everywhere on Ym−1,n−1,t−1; for t = 3 this is clearly not so. Hence the Picard group of 

m,n,t is Z for t > 2. Now use Lemma 3.2. �
emark 3.5. In particular, the Lyubeznik numbers λp,q of determinantal varieties computed by Lörincz and 
aicu in [26] for the standard embedding equal those of any embedding, at least for p ≥ 2. �

emark 3.6. Suppose G is a semisimple linear algebraic group, P a parabolic subgroup and w an element of 
e Weyl group of G. The Schubert variety XP (w) := BwP/P sits inside the homogeneous space G/P , and 
ery line bundle on XP (w) is the restriction of a line bundle on G/P , [30]. In particular, the Picard group 
 XP (w) is (freely) generated by the Schubert divisors (the Schubert varieties inside XP (w) of codimension 

e), and the interior points of the positive Schubert cone are very ample [2, Prop. 2.2.8, Prop. 1.4.1]. �
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roblem 3.7. Compute the Lyubeznik numbers of Schubert varieties induced from embeddings interior to 
e positive Schubert divisor cone �

2.2. Toric varieties
Suppose Ỹ is the toric variety attached to a complete fan Δ that is projective. If Δ is smooth, or at least 

mplicial, then the Picard group of Ỹ is a free Abelian group generated by the torus invariant (Cartier) 
visors corresponding to the n rays of Δ, [6, Thm. 4.2.1]. The ambient lattice imposes d := dim(Ỹ ) many 
dependent relations on these divisors, so that Pic(Ỹ ) = Zn−d. In order for this number to be 1, there is 
ry little choice for Δ; it forces Ỹ to be a weighted projective space. These are Q-homology manifolds and 
us yield the same Lyubeznik numbers under all embeddings by [40].
However, singular fans fail the Picard rank formula above and can have Picard group Z with greater 
riety. The Picard group is free if the fan is full-dimensional by [6, Thm. 4.2.5], and equals the inverse limit 
 the quotient lattices M/M(σ), taken modulo M by [6, Thms. 4.2.1,4.2.9].

xample 3.8. If Δ is a complete rational fan in Z3, one can use the description of the Picard group via 
pport functions to show that if Δ has at most one simplicial cone, then the Picard group of the associated 
ric variety is rank one. For example, the fan over the sides of a cube leads to a projective three-fold with 
icard number one. The generating support function takes the value zero on one square and one on the 
posing square (see [9, Exa. 1.5.(3)]). Our next result shows that all projective toric threefolds have their 

yubeznik table independent of the embedding. �

heorem 3.9. Let Ỹ be the projective variety attached to a complete projective fan in Z3 with Picard number 
+ 1. Then for any cone Y over Ỹ its Lyubeznik numbers take the form

Λ(Y ) =

⎛⎜⎜⎜⎝
· · · p̃ ·
· · · · ·
· · · · p̃
· · · · ·
· · · · 1

⎞⎟⎟⎟⎠
We postpone the proof until the end of the final subsection.

roblem 3.10. Express Lyubeznik numbers of projective toric varieties (of Picard rank 1 or otherwise) in 
rms of fan data (and embedding polytopes, if necessary). �

2.3. Horospherical varieties
Horospherical varieties are complex normal algebraic varieties on which a connected complex reductive 

gebraic group G acts with an open orbit that is isomorphic to a torus bundle over a flag variety; the 
mension of this torus is referred to as the rank of the variety. In particular, toric and flag varieties are 
amples of horospherical varieties.
Any flag variety G/P with P a parabolic subgroup of G is smooth and projective. Their Lyubeznik 
mbers are hence all topological, by [42]. By [38, Thm. 0.1], a smooth projective horospherical variety of 

icard number 1 must either be a homogeneous space or have horospherical rank one.
There are many singular horospherical varieties of Picard number one. For example, let G be a simple 
ear algebraic group and choose two dominant weights χ1 and χ2 that cannot be written as the sum of a 
mmon dominant weight with another dominant weight. Writing V (χ) for the simple G-module of weight 

, let Ỹ be the closure of the G-orbit of the sum of two highest weight vectors in P (V (χ1) ⊕ V (χ2)). It is a 
ojective variety of horospherical rank one, it has Picard number one and is smooth only in very few cases, 
mely when χ1 and χ2 are fundamental weights �α and �β and (G, α, β) is in the list of [38, Thm. 1.7]. 
 has three G-orbits (one open and two closed), the singularities if they exist, are on the closed orbit(s). 
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y taking a longer list of weights χ1, . . . , χn one can produce (usually singular) varieties of horospherical 
nk n − 1.
In all these Picard rank 1 cases, the Lyubeznik numbers λp,q with p > 1 of the cone of Ỹ are embedding 

dependent, and can hence be computed from the embedding that arises from the definition.

roblem 3.11. Compute Lyubeznik numbers of horospherical varieties of Picard number one for the standard 
milies. �

3. Lyubeznik numbers in small dimension

We consider here to what extent the Lyubeznik numbers of varieties of small dimension are functions of 
e associated projective variety only. Some independence is known quite generally.

emark 3.12. (1) If Ỹ is a projective scheme of dimension at most 1 over any field (not necessarily connected 
 equi-dimensional) then R/I is two-dimensional for any embedding, and so Λ is independent of embeddings 

y [45,24]
) Set d − 1 = dim(Ỹ ). Then λd,d is independent of embeddings unconditionally by [47]. �

We begin with some preparations involving Hartshorne’s (local) algebraic de Rham cohomology.

heorem 3.13. Let Ỹ ⊆ Pn−1
K be a projective variety over a field K of characteristic 0, let Y ⊆ An

K be the 
ne cone of Ỹ , and let P be its vertex. Let Hj

P (Y ) denote the local de Rham cohomology of Y supported 
 {P}. Assume that the Picard group of Ỹ has rank 1. Then dimk(Hj

P (Y )) depends only on Ỹ , but not on 
e embedding Ỹ ⊆ Pn

K. More precisely, if Ỹ ⊆ Pn′−1
K is another embedding of Ỹ into a projective space and 

′ is its affine cone with the vertex P ′, then dimK(Hj
P (Y )) = dimK(Hj

P ′(Y ′)).

To prove Theorem 3.13, we need the following result of Hartshorne.

heorem 3.14 (Proposition III.3.2 in [16]). Let Ỹ , Y, P be the same as in Theorem 3.13. Then H0
P (Y ) = 0

d there are two exact sequences:

0 −→ K −→ H0
dR(Ỹ ) −→ H1

P (Y ) −→ 0

d

0 −→ H1
dR(Ỹ ) −→ H2

P (Y ) −→ H0
dR(Ỹ ) −→ H2

dR(Ỹ ) −→ H3
P (Ỹ ) −→ H1

dR(Ỹ ) −→ H3
dR(Ỹ ) −→ · · ·

here the maps Hi
dR(Ỹ ) −→ Hi+2

dR (Ỹ ) are given by the cup product with the Chern class ξ ∈ H2
dR(Ỹ ) of the 

perplane section ( i.e., the first Chern class of OỸ (1)). �
roof of Theorem 3.13. The case when j ≤ 1 is clear from the long exact sequence above.
Since the Picard group of Ỹ has rank 1, any two very ample line bundles on Ỹ have a common power. It 

 thus sufficient to consider the case where the two ample line bundles in question are L and Lm.
Let ξ(L) ∈ H2

dR(Ỹ ) be the first Chern class of L, represented by a generic hyperplane section 
ith the embedding given by L. Then we have ξ(Lm) = mξ(L). Since the cup product is linear and 

ar(K) = 0, the maps Hi
dR(Ỹ ) ∪ξ−−→ Hi+2

dR (Ỹ ) and Hi
dR(Ỹ ) ∪mξ−−−→ Hi+2

dR (Ỹ ) have the same rank. Therefore 
imK(ker(Hi

dR(Ỹ ) −→ Hi+2
dR (Ỹ ))) and dimK(coker(Hi

dR(Ỹ ) −→ Hi+2
dR (Ỹ ))) depend only on Ỹ , but not on 

e choice of the embedding (or equivalently, not on the choice of ample line bundles L). When j ≥ 2 we 

ave
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dimK(Hj
P (Y ) = dimK(ker(Hj−2

dR (Ỹ ) −→ Hj
dR(Ỹ )))) + dimK(coker(Hj−3

dR (Ỹ ) −→ Hj−1
dR (Ỹ )))),

nce the conclusion holds for dimk(Hj
P (Y )) when j ≥ 2. �

orollary 3.15. Assume that the Picard group of Ỹ has rank 1. Then λp,q is independent of embeddings for 
l q < n − fY , with fY as in Remark 2.7.

roof. Assume q < n − fY . Since Supp(Hn−q
I (Rn)) ⊆ {m}, [29] shows that Hn−q

I (Rn) ∼= Hn
m(Rn)λ0,q and 

p
m(Hn−q

I (Rn)) = 0 for p ≥ 1. Hence λp,q = 0 for all p ≥ 1 (and q < n − fY ).
Let D(−) denote the Matlis dual. Then D(H�

I(Rn)) ∼= R̂n
λ0,n−� whenever H�

I(Rn) is Artinian. On the 
her hand, [34, Proposition 2.2,Theorem 2.3] shows that, for q < n − fY ,

D(Hn−q
I (Rn)) ∼= Hq

P (X̂, OX̂) ∼= R̂n ⊗ Hq
P (Y )

here Y denotes the affine cone of Ỹ with vertex P and X̂ denotes the formal completion of Spec (R̂n)
ong the subscheme defined by I. This shows that dimK(Hq

P (Y )) = λ0,q. Hence λ0,q depends only on Ỹ by 
heorem 3.13. �
emark 3.16. An alternative way to look at Corollary 3.15 arises through Proposition 2.16: for q > fY , 
e multiplicities of Hn

m(Rn) in Hj
I (Rn) are exactly the Betti numbers Hn−1+j(U) where U is the affine 

mplement of Y , because of the spectral sequence (1.0.2). By Proposition 2.16 these do not change under 
eronese maps. �

We now consider the effect of Serre’s conditions (St) in Rn/I on the Lyubeznik numbers.

emark 3.17. Assume that “Ỹ satisfies (St) locally everywhere”, by which we mean that each local ring 

Ỹ ,ỹ of the projective scheme Ỹ = Proj (Rn/I) satisfies Serre’s condition (St).
Let Y be the cone Spec (Rn/I) as always and P the vertex; then the punctured cone Y ◦ = Y � P is a 
ndle over Ỹ . It follows that every local ring of Y ◦ also is (St). So for each non-maximal prime ideal p of 

n such that dim((Rn/I)p) ≥ t, one has depth((Rn/I)p) ≥ t.
In general, if (A, n) −→ (A′, n′) is a faithfully flat morphism, then

depth(A′) = depth(A) + depth(A′/nA).

 A′ is the strict Henselization Ash or the completion Â of A, then A′ is faithfully flat over A. Therefore,

depth
((

((Rn/I)p)̂)sh
)̂

≥ t. �

emma 3.18. If Ỹ is equi-dimensional and locally everywhere (S2) then the off-diagonal entries λi−1,i vanish 
r 1 < i < d := dim(Ỹ ) + 1, and Hn−1

I (Rn) is Artinian and injective.

roof. By Remark 3.17, for each non-maximal prime ideal p of Rn with dim((Rn/I)p) ≥ 2, we have 

pth
((

((Rn/I)p)̂)sh
)̂

≥ 2. Hence the punctured spectrum of this ring is connected by [14, Thm. 2.2]. 

he Second Vanishing Theorem implies that H>codim(P,Rn)−2
I (Rn)p = 0 for each prime ideal P such that 

m((Rn/I)p) ≥ 2. Therefore the support dimension of Hi
I(Rn) with n − 1 > i > n − d is at most equal to 

 −i −2 and so Hi−1
m Hn−i

I (Rn) = 0 by Grothendieck’s vanishing theorem. For Hn−1
I (Rn), localization shows 

 conjunction with the Hartshorne–Lichtenbaum theorem that its support is at best at P . By Lyubeznik’s 

ork, it is hence Artinian and injective. �
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For the next three result we will use the following reduction.

emma 3.19. Let Ỹ be an equi-dimensional projective variety of dimension at least two. If the Lyubeznik 
umbers for the cones over all connected components of Ỹ are independent of the choice of the cone then 
e same is true for Ỹ itself.

roof. Let Y ′, Y ′′ be two cones for Ỹ and let Ỹ = Ỹ1 � Ỹ2 be a disconnection. The resulting cones Y ′
1 , Y ′′

1
d Y ′

2 , Y ′′
2 satisfy: Y ′

1 ∩ Y ′
2 and Y ′′

1 ∩ Y ′′
2 both equal the origin. Let I ′, I ′′ be the defining ideals for Y ′, Y ′′

d denote the defining ideals of Y ′
1 , Y ′

2 , Y ′′
1 , Y ′′

2 by I ′
1, I ′

2 ⊆ Rn′ and I ′′
1 , I ′′

2 ⊆ Rn′′ respectively. All these 
eals have dimension three or more.
Then Hq

I′(Rn′) = Hq
I′

1
(Rn′) ⊕ Hq

I′
2
(Rn′) and Hq

I′′(Rn′′) = Hq
I′′

1
(Rn′′) ⊕ Hq

I′′
2

(Rn′′) for all q < n − 1 as 
llows from the Mayer–Vietoris sequence.
It follows that, apart from q = n, n − 1, the Lyubeznik numbers satisfy λp,q(Y ′) = λp,q(Y ′

1) + λp,q(Y ′
2)

d λp,q(Y ′′) = λp,q(Y ′′
1 ) + λp,q(Y ′′

2 ). By the presumed embedding independence of Λ(Y1) and Λ(Y2), the 
me follows for Λ(Y ), except for columns n, n − 1.
In column n all entries in all cases are zero by the Hartshorne–Lichtenbaum theorem. So is the diagonal 
try λ1,1 for all three ideals by equi-dimensionality. Thus, λ0,1(Yi) = λ0,1(Y ′

i ) + λ0,1(Y ′′
i ) + 1 for i = 1, 2

 follows from the Grothendieck spectral sequence (which implies that the alternating sum of all λp.q is 1). 
herefore, all Lyubeznik numbers of Ỹ are embedding independent. �
heorem 3.20. Let Ỹ be an equi-dimensional projective scheme of dimension two, which

) either satisfies locally everywhere Serre’s condition S2,
) or has Picard number one.

hen the Lyubeznik numbers of all affine cones Y over Ỹ agree.

roof. Let Y be any cone over Ỹ . It is a scheme of pure dimension 3, and thus by Remark 1.3, the Lyubeznik 
ble of Y is

⎛⎜⎝ · λ0,1 λ0,2 ·
· · λ1,2 ·
· · · λ2,3
· · · λ3,3

⎞⎟⎠ .

By Lemma 3.19, we can assume that Ỹ is connected. That assures that λ0,1 is zero by the Second 
anishing Theorem [15, Theorem 7.5].
If Ỹ is (S2) locally everywhere then by Lemma 3.18, Hn−2

I (Rn) has support dimension zero and is the top 
cal cohomology module, and so λ1,2 = 0. It follows from [29] that Hn−2

I (Rn) is injective. By Corollary 2.9, 
e socle dimension λ0,2 of this module is determined by the topology of Ỹ . Finally, the convergence of the 
ectral sequence to Hn

m(Rn) implies that λ2,3 = λ0,2.
Suppose now that Ỹ has Picard number one. Then by Lemma 3.2, the λi,j with i > 1 are a function of 
alone. The only possibly nonzero differentials are:

on page two the morphism E0,n−2
2 −→ E2,n−3

2 and E1,n−2
2 −→ E3,n−3

2 ;

on page three the morphism E0,n−1

3 −→ E3,n−3
3 .
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Convergence of the spectral sequence forces E0,n−2
2 −→ E2,n−3

2 to be an isomorphism,2 and the maps 
1,n−2
2 −→ E3,n−3

2 and E0,n−1
3 −→ E3,n−3

3 to be injective. Moreover, the cokernel of E0,n−1
3 −→ E3,n−3

3
ust be one copy of Hn

m(Rn).
Since all modules in Ep,q

≥2 are injective, socle dimensions are additive in short exact sequences. Thus, 
,2 = λ2,3, and λ3,3 = λ1,2 + λ0,1 + 1 = λ1,2 + 1. This settles the claim for λ0,2. But λ3,3 is a function of Ỹ
 [47], and it follows that λ1,2 is a function of Ỹ as well. �

heorem 3.21. Let Ỹ be a projective complex scheme that is of equi-dimension three. Assume that every 
cal ring OỸ ,ỹ satisfies (S2) and that the Picard group of Ỹ has rank 1. Then Λ(Y ) is independent of the 
oice of the cone Y for Ỹ .

roof. By Lemma 3.19 we can assume that Ỹ is connected. This forces λ0,1(Y ) = 0 for any cone Y of Ỹ
 the Second Vanishing Theorem [15, Theorem 7.5].
Using the equi-dimensionality and the (S2)-property, the Lyubeznik table is by Remark 1.3 and 

emma 3.18 equal to

Λ =

⎛⎜⎜⎜⎝
· · λ0,2 λ0,3 ·
· · · λ1,3 ·
· · · · λ2,4
· · · · λ3,4
· · · · λ4,4

⎞⎟⎟⎟⎠ ,

oreover, Hn−2
I (Rn) is supported only in the origin, hence injective. By Corollary 2.9, its socle dimension is 

e dimension of the top de Rham group of the affine cone complement. By Proposition 2.16, this dimension 
 well-defined. Thus, λ0,2 is a function of Ỹ alone, reflecting the de Rham group H2n−2(An

K�Y ) independent 
 the choice of the cone.
Convergence of the spectral sequence forces, similarly to the proof of Theorem 3.20, that λ3,4 = λ1,3 +λ0,2
d that λ2,4 = λ0,3. By the Picard number condition, λ2,4 is the same for every cone, and hence so is λ0,3. 
nce λ0,2 is a function of Ỹ , and since λ≥2,∗ is independent of the embedding by the Picard number 
ndition, the same is true for λ1,3. �
heorem 3.22. Let Ỹ be a projective complex scheme of equi-dimension four. Assume that Ỹ is locally 
erywhere (S3), and that the Picard group of Ỹ has rank 1. Then Λ(Y ) is independent of the choice of the 
ne Y for Ỹ .

roof. By Lemma 3.19 we can assume that Ỹ is connected. This forces λ0,1(Y ) = 0 for any cone Y of Ỹ
 the Second Vanishing Theorem [15, Theorem 7.5].
Write Ỹ = Proj (R/I) where R = C[x1, . . . , xn]. Since (S3) implies (S2), Remark 1.3 and Lemma 3.18

sure that the Lyubeznik table of R/I is

Λ =

⎛⎜⎜⎜⎜⎝
· · λ0,2 λ0,3 λ0,4 ·
· · · λ1,3 λ1,4 ·
· · · · λ2,4 λ2,5
· · · · · λ3,5
· · · · · λ4,5
· · · · · λ5,5

⎞⎟⎟⎟⎟⎠ .

ow take a prime p of height n − 2 that contains I. Then depth((Rn/I)p) = 3 and so by [8, Corollary 2.8], 
(n−2)−3+1
I (Rn))p = 0. Thus, dim(Hn−4

I (Rn)) ≤ 1 and λ2,4 = 0.
This isomorphism property holds for any ideal I of dimension greater than two.
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Localizing at primes of height n − 1 yields, with the result of Dao and Takagi [8, Corollary 2.8], that 
n−2
I (Rn) and Hn−3

I (Rn) are Artinian. It follows that λ1,3 = 0, and fY ≤ n − 3. By Corollary 3.15, since 
e Picard number is one, λ0,2 and λ0,3 are independent of the embedding choice.
Convergence of the spectral sequence to Hn

m(Rn) forces that

λ0,4 = λ2,5 and λ1,4 = λ3,5 − λ0,3 (and λ0,2 = λ4,5).

s the Picard number is one, the λi,j are independent of embeddings for all i ≥ 2 and all j. This then fixes 
l λp,q. �
roof of Theorem 3.9. Toric projective varieties are connected and locally the spectra of semigroup rings 
 saturated semigroups. They are hence normal, and so by Hochster’s theorem Ỹ is Cohen–Macaulay, 
9]. The coordinate ring Rn/I of the cone Y thus has a Lyubeznik table as in the proof of Theorem 3.21. 
oreover, Hn−2

I (Rn) is Artinian.
Additional vanishings are due to the (S3)-condition on the punctured spectrum of Y . As in the proof of 

heorem 3.22, localization at a prime of Rn of height n − 1 shows with [8, Thm. 2.8] that the support of 
n−3
I (Rn) is zero-dimensional, hence λ1,3 = 0.
At this point, let us assume that Ỹ is not a hypersurface, and hence of codimension two or more.
If λ0,2 is nonzero, it is therefore the dimension of Hn

dR(Hn−2
I (Rn)) = H2n−3(U ; C) where U is the affine 

mplement of Y . By the spectral sequence argument in the proof of Lemma 2.8, it also equals the dimension 
 the top cohomology group H2n−4(PU ; C) of the projective complement PU .
The long exact sequence (2.3.1) takes the form

H2n−4
Ỹ

(Pn−1;C) −→ H2n−4(Pn−1;C) −→ H2n−4(PU ;C) −→ H2n−3
Ỹ

(Pn−1;C) −→ · · ·

d by [22, V.6.6] H2n−3
Ỹ

(Pn−1; C) is dual to H1
c (Ỹ ; C) = H1(Ỹ ; C). But projective toric varieties (or more 

nerally toric varieties to a fan with a full-dimensional cone) are simply connected by [9, 3.2]. So H1(Ỹ ; C)
d H2n−3

Ỹ
(Pn−1; C) are zero.

The morphism H2n−4
Ỹ

(Pn−1; C) −→ H2n−4(Pn−1; C) is via Alexander and Poincaré duality dual to 
e (injective) restriction morphism H2(Pn−1; C) −→ H2(Ỹ ; C), hence itself surjective. It follows that 
2n−4(PU ; C) = H2n−3(U ; C) = 0, and hence λ0,2 and Hn−2

I (Rn) are both zero.
It now follows that actually the Artinian module Hn−3

I (Rn) is the top local cohomology group of I, and 
2n−5(PU ; C) is the top cohomology group of PU . Repeating the above computations, we now have a long 
act sequence

0 = H2n−5(Pn−1;C) −→ H2n−5(PU ;C) −→ H2n−4
Ỹ

(Pn−1;C) −→ H2n−4(Pn−1;C) −→ · · ·

 which the arrow H2n−4
Ỹ

(Pn−1; C) −→ H2n−4(Pn−1; C) is dual to the (injective) morphism H2(Pn−1; C)
→ H2(Ỹ ; C), and where H2n−5(PU ; C) = H2n−4(U ; C) is a vector space of dimension λ0,3.

For projective toric varieties (and more generally, when all cones of the fan are top-dimensional), the 
icard group of Ỹ is isomorphic to H2(Ỹ ; C), [6, Thm. 12.3.2]. The long exact sequence above thus shows 
e equation λ0,3 = p̃.
Finally, by convergence of the spectral sequence, λ4,4 = 1 and λ3,4 = λ0,2 = 0 and λ2,4 = λ0,3.
This settles the problem for all embeddings in which Ỹ is not a hypersurface. If in some embedding Ỹ

appens to be a hypersurface, necessarily in P 4
C, its Lyubeznik table is trivial for this embedding, simply for 

ck of higher local cohomology. On the other hand, [13, Exp. XII, Cor 3.7] asserts that the Picard group of 

is then cyclic, equal to that of P 4

C. Thus, p̃ is zero and we see that all Lyubeznik tables of Ỹ agree. �
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