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1. Introduction

Notation 1.1. Throughout we will use the following conventions: K will be a field of characteristic zero, and
R and [ are the default names for a regular K-algebra and an ideal in R. We write

Rn = K[.’El,...,xn], X = A% = Spec(Rn)

for the special case of a polynomial ring over K in n indeterminates, and the associated affine space. Our
default affine variety will be

Y :=Var(I) C X, with complement U = X \'Y,
and if I is homogeneous then
Y := Proj (R, /I) C P!

will be the projective scheme associated to I, with complement U := PU = Pﬂz_l < Y. The homogeneous
irrelevant ideal of R,, will be denoted m = (x1,...,z,) and d will stand for dim(Y").

The ring of K-linear differential operators on R is denoted Dk (R), but if R = R, then we just write D,
for the Weyl algebra Dk (R,,). If X’ is a smooth K-variety, then we write Dy, g for the sheaf of K-linear
differential operators on Ox/, but if K is understood then we write just Dx/. Unless specified otherwise, we
consider left Dx/-modules. ¢

Hartshorne’s seminal work [16] begins with

“The idea of using differential forms and their integrals to define numerical invariants of algebraic varieties
goes back to Picard and Lefschetz. ..”

and then outlines the development of this branch of mathematics until the writing of his article on algebraic
de Rham cohomology. While originally the base field was the complex numbers C, Hartshorne works in
greater generality over fields K of characteristic zero. It has become clear since, particularly through the
work of Lyubeznik [29], that Kashiwara’s framework of D-modules is the right set-up for these investigations.
This article is a contribution to this general theme, with the two main characters defined as follows.

If a variety Y’ can be embedded into a smooth K-variety X’ of dimension n, one can define the de Rham
homology and cohomology functors of Y/ as

HIR(Y') = Hy (X, Q%) Hi(Y') == HY(X', Q%)

Here, H(—) denotes hypercohomology functor on complexes of sheaves, 2%, is the de Rham complex (relative
to K) of X', and the hat denotes completion along Y. Hartshorne proves that these quantities do not depend
on X’ or on the chosen embedding of Y’, and demonstrates many interesting facts about these two functors.
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We focus on de Rham homology for a moment, under the assumption that X’ is affine (and smooth).
Then hypercohomology collapses to global sections since the modules in 2%, are coherent, equal to exterior
powers of the free Ox/,-module Q%, of rank n given by the Kéhler differentials on X’. The set-theoretic
sections-with-support functor on a coherent sheaf agrees with algebraic local cohomology. In particular,
H%;f_q(X’?Q&/) is just local cohomology Hff,l_q(Qé(,) of the module of i-forms (identifying sheaves with
their global sections).

The sheaf wx := Q% has a natural right module structure over the sheaf Dx of K-linear differential
operators on X. The global sections of the sheaf of differential operators Dx on X are the elements of the
Weyl algebra

Dy = Ry(0,...,0,)

where 0; stands for the partial differentiation operator % On the other hand, Q% is the free Ox-module
of rank (”) generated by the symbols dz; = daj, A -+ Adzj, with I C 2" and |I| = 4, and the global
sections of wy are the elements of the right D,-module D,,/d - D,, := D,,/(01,...,0,)Dp.

Let us write Q.D, y for the Koszul co-complex on Dx generated by left multiplication by the derivations
01, -..,0,. This is a free resolution of right Dx-modules for wx shifted right n steps, and yields an explicit

form of the de Rham cohomology functors
Hig (=) = H'"(X,wx @5 (=) = H'(Qp x @px (-))

from the category of left Dx-modules to the category of K-vector spaces. Since the constituents of 0 y
are Dx-free and X is Dx-affine, for each left Dx-module M with global sections M one has

If M is holonomic, these vector spaces are K-finite since they are the cohomology of the D-module theoretic
direct image functor under the map to a point, as one sees by inspecting the transfer module D, x (see
[21, 1.3.1, 1.3.3]) and construction of direct images (see [21, p. 50]).

We return to de Rham homology H%"_q(X ,92%) with X equal to affine n-space, as always. Since QJX is
finite free over Ox, there is a natural identification of H% () with Q% ®o, Hi-(Ox). The complex

.. — Qg(_l Rox H;;(Ox) — Qg( Rox H;;(Ox) — Qg(——i_l Koy H%;(Ox) —_— ...

with differential induced by the usual exterior derivative is quasi-isomorphic to the complex 3, v ®p
Hy (Ox).
Since X is affine, T'(X, —) induces a spectral sequence for hypercohomology,
HYp (HY (Rn)) = HYM (X, Q%) = Hyy' oY) (1.0.1)
that has been considered in [43, Lemma 2.16] in the complete local case, and in [20,3] in the context we are

working in. We note that over the complex numbers, the abutment is naturally equal to the reduced singular
cohomology of the open complement U = U(I) given as U(I) := X \ Y, so there is a spectral sequence

Ej , = Hiyg (HL(R,)) = HPT7(U;C) (1.0.2)

to the reduced cohomology of U. For I = m, the abutment is HJ (H}(R,)) = C[2n], the reduced coho-
mology of the (2n — 1)-sphere shifted by one. For details see for example [16, p. 67], [27, Thm. 3.1], or [20,
Prop. 4.2].
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The articles [43,3] proceed to show that the E,-pages, r > 2, of these spectral sequences are isomorphic
for all embeddings of Y. In consequence, the terms on pages r > 2 of (1.0.1) are numerical invariants of Y.

Definition 1.2. Let Y = Var(I) be an affine variety embedded in X = Spec(R,,) defined by the ideal
I C R, =Kl[z1,...,2,] over the field K of characteristic zero. For r > 2, the (r, p, q)-Cech—de Rham number
of Y is the dimension

p;’q (V) := dimg (E;~P"79)

of the corresponding entry in the spectral sequence (1.0.1). If 7 = 2 we denote p}, (V) = Hiz"(H; " *(Ry,))
by just pp4(Y). ©

Switala defined these for ideals in the power series ring [43, Dfn. 2.23]; they are well-defined by [43,
Prop. 2.17] and [3, Thm. 1.1]. The dimensions Pp.q are invariant under field extensions, and one can compute
them algorithmically over any field of definition for I, see [36,37,44].

A related construction appeared in [29], where Lyubeznik shows that the socle dimensions of the F>-terms
of the Grothendieck spectral sequence

EYY = HL(H{(Ry)) = HE™(Ry) (1.0.3)

are independent of the closed embedding of Y = Spec (R,,/I) into any affine space A} = Spec (R,) and
uses it to define numerical invariants

Ap,g(Rn/I) := dimc Hom(R,,/m, HY (H;} " 9(R,,))).

These numbers, known as Lyubeznik numbers have been investigated for nearly three decades and are indeed
functions of the ring R/I (and do not depend on the presentation of R/I as a quotient of a polynomial
ring). For detailed information on the history and the status quo we refer to the survey articles [33,46].

In this article we develop further the theory of the Lyubeznik numbers on one side, and on the other
describe a number of properties that the invariants introduced by Switala and Bridgland enjoy.

More precisely, in the next section we study vanishing of the Cech-de Rham numbers, explore them
for small dimension of Y, and investigate the collapse of the corresponding spectral sequence. We identify
classes of examples where this collapse happens on the Fs-page, and explain why this is so for subspace
arrangements, by stringing together known results of Goresky-MacPherson, and Alvarez-GarciaZarzuela.
We further explore the behavior of the Cech-de Rham numbers under Veronese maps and deduce that most
of the Cech-de Rham numbers associated to the affine cone over a given projective variety ¥ only depend
on the class of the line bundle that the cone choice induces on Y.

In the third section we discuss Lyubeznik numbers. We elaborate on the results from [40] by establishing
some classes of projective varieties Y with Picard number one that have almost all Lyubeznik numbers
of the affine cone Y independent of the chosen cone. This includes determinantal varieties, certain toric
varieties, and horospherical varieties. We also prove for certain projective varieties of dimension four or less
that their Lyubeznik numbers are independent of the embedding.

Some known facts.
Since we will have to refer to them a few times, we state here some results from the literature.

Remark 1.3. (1) If K is of characteristic zero, then local cohomology, algebraic de Rham cohomology, injective
dimension, dimension, socle dimension all behave well under field extensions. Since all varieties are defined
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by a finite number of data, one can restrict all questions we discuss from the given field K to a field of
definition for I, and then extend to C. In particular, we can assume that K = C whenever it is convenient.

(2) (29, (4.4.iii)]) Suppose Y C X = AZ is an affine variety. Then the local cohomology module H}(R,,)
has support dimension at most n — 4, and it vanishes if i < ¢ := codim(Y, X). If Y is equi-dimensional and
i > ¢, then H%(R,) has support dimension less than n — i.

(3) ([29, Thm. 2.4] in the power series case; the polynomial case reduces to this) If M is a holonomic D,,-
module, then H{ (M) is a finite sum of copies of the (Artinian, indecomposable) injective hull H?(R,,) of
K = R, /m. More generally, one has for all D,-modules that

injdimp (M) < dim Supp(M).

Thus, all right derived functors of R,,-modules with derivation level greater than n — i vanish on H:(R,,),
and those of derivation level n — ¢ vanish if I is equi-dimensional and ¢ > c.

(4) If G is a group acting linearly on R, and stabilizes I, the local cohomology modules H%(R,) become
(strongly) equivariant D,,-modules. For details and references on equivariance of D-modules, see for example
[28, Section 2.1].

(5) Let I C R, = K[x1,...,2,] be a homogeneous ideal such that dim(R,/I) > 2. Assume that K is
separably closed. Hartshorne proved in [15, Theorem 7.5] that if Proj (R,,/I) is connected then H}(R,,) =
H}“l(Rn) = 0, and named this result the Second Vanishing Theorem. This theorem subsequently has been
extended to the local settings as follows: Let R be either a complete regular local ring of dimension n that
contains a separably closed coefficient field or an unramified complete regular local ring of dimension n in
mixed characteristic with a separably closed residue field. Let I C R be an ideal. Then H}(R) = H} '(R) =
0 if and only if dim(R/I) > 2 and the punctured spectrum of R/I is connected, [34,39,18,49].

(6) Over C, the local cohomology groups H(R,,) are (up to shift) the global sections of the pushforward
of the structure sheaf on the open set U to C", which carry a natural mixed Hodge module structure. The
corresponding perverse sheaves encode information on the intersection cohomology of U and this can be
used to study Lyubeznik and Cech-de Rham numbers in characteristic zero, see [40]. o

The following is a special case of a more general result comparing direct image to a point and restriction
to a point.

Lemma 1.4 ([/1, Lemma 3.3]). Suppose K = C. Assume that M is a regular holonomic Dx-module on
X = C" and that its global sections M form a standard graded R, -module. Suppose further that M 1is
(strongly) equivariant as a Dx-module with respect to the C*-action corresponding to this grading. Then its

de Rham cohomology groups agree with the restriction groups to the origin of the holonomically dual module.
In particular, the dimensions of these groups satisfy

dimc (Hgr(M)) = dime (Homp, (Ry/m, Hy™ (D(M))),
where D is the holonomic duality functor. O
2. Cech-de Rham numbers
2.1. Basic structure results

Basic properties of the de Rham functor imply that pj, . is zero for p outside the interval [0,n]. On the
other hand, local cohomology Hj(R,) is nonzero only when codim(I, R,) < j < n, and so p;, , is zero
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for ¢ outside the interval [0,dim(Y")]. Our first statement on these numbers is that they are confined to a
triangular region:

Theorem 2.1. The Cech-de Rham numbers satisfy for all r > 2 that
PpY) =0 if p> dimSupp(H; *(R,)).
In particular, this vanishing occurs whenever p > q.

Before entering the proof we set up some notation and collect several facts and from [7,21,25] on con-
structible sheaves and the Riemann—Hilbert correspondence. All spaces mentioned in the sequel are assumed
to be algebraic varieties.

Remark 2.2. Let X be a smooth algebraic variety.

(1) For any algebraic map f between algebraic sets we denote, on the level of constructible sheaves, the
usual direct and inverse image functors by f. and f~', and the proper direct and exceptional inverse image
functors by fi and f' respectively. For the sake of notational brevity, we mean by these symbols always the
derived functors on the appropriate derived categories (so that, for example, we write j, instead of Rj, as
a functor on the bounded derived category of constructible sheaves). This abuse of notation is common in
the relevant literature.

(2) On the level of D-modules, we will use f; and f, for the usual and proper direct image functors, and f*
and f1 for the usual and exceptional inverse image functors. For reference and comparison, our D-functors
fu, fi, fT, fT are (in this sequence) denoted by ff,fﬂ,fT,f* in [21].

(3) Let X’ be a smooth variety. The Riemann—Hilbert correspondence sets up an equivalence between
the derived category of bounded complexes of Dx,-modules with holonomic cohomology, and the derived
category of bounded complexes of constructible sheaves D? . (X”). The correspondence is induced by the de
Rham functor Q% /e ®%X,m (—) computed on the analytic space attached to X'

Under this correspondence, taking cohomology of a complex of Dx,-modules corresponds to an operation
on complexes of constructible sheaves that is denoted PH and called taking perverse cohomology. Perverse
cohomology of a complex of constructible sheaves is not the same as the usual cohomology. The perverse
cohomology of a complex is a perverse sheaf, but most perverse sheaves are not representable by a single
module but are a proper complex (see [7, Def. 4.5.10, Thm. 7.2.5, 8.1.28]). We call perverse exact any functor
on the derived category of the category of constructible sheaves that commutes with P7H.

(4) Suppose f: X’ — X" is a morphism of smooth algebraic varieties. Under the Riemann—Hilbert corre-
spondence, the functors for D-modules correspond to those on constructible sheaves as follows:

-DRX” Of+";’f*ODRX/; -DRX” Of! Zf!ODRX/;
DRy ofT ~ f' o DRxn; DRy oft ~ f=' o DRy~ .

(The last two identifications are not misprints; for inverse images, the Riemann—Hilbert correspondence via
the de Rham functor aligns a regular inverse image with an exceptional one).

(5) Consider an open embedding j: U < X and a closed embedding i: ¥ < X where Y is closed (and,
a fortiori, constructible) and where U is the complement of Y in X. We have the following properties of
induced functors for complexes of constructible sheaves:

o 4 =i, is perverse exact ([7, Thm. 5.2.4]) and exact (since i is a closed embedding);
o i~1is exact ([7, Rmk. 2.3.8]) but usually not perverse exact;
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e ' and j, are usually neither exact nor perverse exact;
o j~! =j'is exact and perverse exact ([7, Rmk. 2.3.8, Thm. 5.2.4]);
e ji is exact (clear from the definition) but usually not perverse exact.

(6) In the situation of item (5), we have the following distinguished triangles, Verdier dual to one another,
in DY, (X):
Wi'F* ——F* — gt
GRS P —s g tre
(7) We will always denote by ag the map from a space S to a point, which we sometimes denote with pt
and occasionally identify with the vertex of a cone if a cone is present. ¢

We now enter the

Proof of Theorem 2.1. It suffices to consider r = 2. We will use the Riemann—Hilbert correspondence to
translate pp , = dime (Hjg " (H; ™ ?(Ry))) into the language of constructible sheaves. The de Rham functor
takes the local cohomology H; ™ /(Ox) to p?—l”’qhgh!(CX[n] ~ h(PH %wy) where h : Y — X = A is the
canonical embedding, Cx[n] is the constant sheaf on X shifted to the left by n and

Wy :DCY (2.1.1)

is the (topological) dualizing complex RHom,s (Cy,Cy) for constructible sheaves on Y. (We use D also
to denote Verdier duality, the operation corresponding to holonomic duality under the Riemann—Hilbert

correspondence).
The theorem will follow from a more general fact that can be seen as a companion result to [29, Thm. 2.4]:

Lemma 2.3. Let M be a regular holonomic D,,-module. Then Hig " (M) =0 if p > dim Supp(M).

Proof. Denote by M the Dx-module corresponding to M, let Z be the support of M and write Cp; for the
perverse sheaf on X that corresponds to M under the Riemann—Hilbert correspondence. Then Z is closed
and Supp(M) = Supp(M) = Supp(Cys). Write

izlz‘—>X, jz(X\Z);)X

There is an exact triangle

RT7 —s id — (jz)4 (jz)T *5

for Dx-modules, that corresponds via Riemann—Hilbert to

+1
R

(iz)i(iz)' — id — (jz)«(jz)”
for constructible sheaves. (The advantage of the use of constructible sheaves is that one can talk about them
on singular spaces).

Since (jz)~'(Car) = 0, one has (iz)1(iz)"(Car) = Car. But iz is proper, so (iz)«(iz)'(Car) = Car since
(iz)s« = (iz). This shows that the hypercohomology of Cj; (computed on X) equals the hypercohomology
of (iz)"(Cpr) (which is computed on Z).
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For every perverse sheaf F on Z, the hypercohomology H¥(Z, F) vanishes for k ¢ [—dim(Z),0] (see e.g.
[7, Cor. 5.2.18] and [7, Prop. 5.2.20]). The lemma follows now from

dime (H}R P (M) = dime (H™P(X,Cp)) = dime (H(Z, (iz)'(Cn))). O

Theorem 2.1 now follows with M = H;"%(R,,) since dim(Supp(hi(PH 9wy ))) = dim(Supp(H; *(R,)))
< g by Remark 1.3. O

If one pictures the pj, , as a table, it thus takes the following general form, assuming that Y is embedded
into Ag, cut out by the ideal I C R,, of dimension d:

06,0 ot Pg,d
. . 0 :
Pr(Y) = ((p},)) = (2.1.2)
0 0 Py

)

Here, p is the row index counting downward, ¢ the column index counting towards the right, and the arrows
of the Cech-de Rham spectral sequence point North to Northeast.

2.2. Degeneration

Switala raised in [43, Question 8.2] the following question for a complete local ring A with coefficient
field K of characteristic zero:

“Does the Cech-de Rham homology (1.0.2) spectral sequence degenerate at Ey?”

One can ask a similar question for the affine scenario. We discuss interesting classes where this question has
a positive answer.

Degeneration is certain if only one H7(R,,) is nonzero (whence I must be equi-dimensional of codimension
j), for example for local complete intersections. Another example arises when I is equi-dimensional, and
either has isolated singularities or is a local complete intersection outside a finite number of points. Indeed,
then HfCOdim(I’R”) (R,,) is supported inside these points, hence these local cohomology modules are sums of
copies of the R,-injective hull of the residue field at these points. For such modules, de Rham cohomology is
only nonzero in degree n, and that implies that for all differentials in (1.0.2) either the target or the source
are zero. (So, in the table (2.1.2), the only nonzero terms are in the top row and rightmost column). See
[20, Thm. 4.3] for more details. In light of Theorem 2.1, one obtains in the same way:

Corollary 2.4. The Cech-de Rham spectral sequence degenerates on the Fay-page if Y C X = C™ is equi-
dimensional and the singular locus has dimension at most 1.

Proof. Nonzero entries on the Fs-page only exist then in rows 0 and 1, and in column d. O

Example 2.5. Suppose Y = Var(]) is a complex subspace arrangement. Let Py be its intersection lattice,
the collection of all possible intersections of the components of Y, ordered by inclusion. (This differs from
standard notation in arrangement theory, where the order is the reverse). We agree that Py has a unique
maximal element corresponding to the ambient space, but it may have several minimal elements as we do
not insist that I be homogeneous (so, the arrangement may not be central).
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It is well-known that the cohomology of the complement C™ 'Y is determined by the combinatorics
of P: building on work of Brieskorn, Orlik and Solomon [35] showed that the cohomology algebra of this
complement is given by a purely combinatorial algebra constructed from the matroid of the arrangement.

Goresky and MacPherson [11, III, Thm. 1.3] proved that the Betti numbers of the complement can be
computed as a sum of non-negative integers, one for each element of Py. Here, the integers for each flat
p € P are computed as Betti numbers of the simplicial complex K (> p). (While Goresky and MacPherson
phrase this in terms of relative homology for the pair (K (> p), K(> p)), the space K(> p) is contractible
and one can convert into an absolute homology without harm).

Alvarez, Garcia and Zarzuela established the degeneration on page two of a certain spectral sequence

By = lim WH] (R,) = H]"'(R,) (2.2.1)
pEPy

for the local cohomology groups HP(R,,), the inverse limits being taken over the poset Py viewed as a
category with a morphism for each containment. In [1, Thm. 1.2], the structure of the derived inverse limits
is explained as direct sums of modules HIZP(R,L) with codim([,, R,,) = j and multiplicity given by the
topological Betti numbers of K(> p). In [1, Cor. 1.3], this is used to give a formula for the cohomology
groups of the complement of Y, by translating the Goresky—MacPherson formula.

The affine complement of an affine space is homotopy equivalent to a sphere, hence applying the de
Rham functor to a module of the form H i} (Ry) gives exactly one (reduced) cohomology group. Thus, the
entries of the Ey-page of the Cech-de Rham spectral sequence (1.0.2) correspond exactly to the composition
factors of H f;i(Rn) in the spectral sequence (2.2.1) from [1] on one side, and to the direct summands for
H*(C™\Y) in [11] on the other. It follows that for complex subspace arrangements Y the Cech-de Rham
spectral sequence collapses on the Ey-page. ¢

In small dimensions we show that Switala’s question has a positive answer as well.

Proposition 2.6. If I is homogeneous and dim(Var(I)) < 3 then the Cech-de Rham spectral sequence degen-
erates at Fs.

Proof. Let Y be of dimension 2 or less. If follows from Theorem 2.1 that no nonzero differential can exist
in the spectral sequence.
Let now dim(Y") = 3. Then Theorem 2.1 implies that then there might be at most one nonzero differential,

dy: Hip*(Hp ™ (Rn)) — Hig (H7 7 (Rn)), (2.2.2)

linking p2 2 and po 3.

Assume for the time being that Y is purely 3-dimensional. Remark 1.3 says that dim Supp(H} *(R,,)) <
i for i < 3. In particular, by Lemma 1.4, dim Hjz?(H} ?(R,)) equals the socle dimension of
H2(DH}2(R,)) = 0. Thus, the degeneration of the spectral sequence is forced.

Now relax the equi-dimensionality condition and let Y3 and Y’ be the 3-dimensional and smaller dimen-
sional components of Y respectively. Then Y3NY” is of dimension 1 or less, and the Mayer—Vietoris sequence
implies that H;};B(Rn) ® HY 3 (R,) = Hy?(R,,) and that there is a short exact sequence

0 — Hy *(Rn) ® HY 2 (Ry) — HY ?(Rp) — C — 0

where C' is a (graded) submodule of H. Qg_ﬁly, (Ry). In particular, the dimension of the support of C' is one or
less by Remark 1.3 and so HdSP?_Q(C’) is zero, being dual to the socle of HZ2(C') = 0.
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Applying the de Rham functor, the resulting long exact sequence shows that HJp 2(117373_2(1%,1) @
Hy72(Ry)) equals Hip?(Hy 2(R,)). Then the map (2.2.2) is the direct sum of the corresponding do-
morphisms for Y3 and for Y’ separately. But it is zero on Hj 2(H{ﬁg_Q(Rn)) since the source of dj is zero in
that case, and it is zero on Hjjy >(Hy ?(R,)) since the target is zero in that case. O

2.8. Affine complements

In the next two Subsections 2.3.1 and 2.3.2, we investigate to what extent the cohomology of the affine
complement, or its table of Cech-de Rham numbers, of a homogeneous variety Y is determined by the
associated projective variety Y. We start in Subsection 2.3.1 with looking at the top cohomology group
of the affine complement, and then investigate in Subsection 2.3.2 the affine complement under Veronese
maps. In the process we review some algorithmic ideas that lead to a condition on the de Rham classes of
graded Dx-modules on affine space.

So, throughout, Y is a projective variety and Y C C” is a cone for Y.

2.8.1. High cohomology groups of the affine complement

Remark 2.7. Let Y be a projective variety with cone Y = Spec (R, /I). The following facts are due to Ogus
[34] Let

fy :=min(k € N|H}(R,,) is Artinian for all £ > k)
and
vy := min(k € N|H¥(R,,) is zero for all £ > k).

(1) The number n — fy is intrinsic to Y, it does not depend on the choice of the cone Y, [34, Thm. 4.1].
(2) The number n — vy is intrinsic to Y, it does not depend on the choice of the cone Y, [34, Thm. 4.4]
and the remark following it.

In particular,

=0 it g<n-—vy, o
pa or p>0andg<n— fy.

We show next that in fact the top de Rham cohomology group of the affine cone complement is usually
determined by Y.

Lemma 2.8. Let X = A{ and suppose Y C PX = IP’(EL*l is defined by the homogeneous ideal I C R, :=
I'(X,0x). Let Y = Var(I) C X and assume that Y has codimension at least two. Then the index and the
dimension of the top non-vanishing de Rham cohomology group of U :== X \Y is encoded on Y.

Proof. We recall Alexander duality, compare [22, V.6.6]: if P is a C-orientable manifold and Y a closed
subset then the topological local cohomology group H‘}, (P; C) is canonically identified with the C-dual of
the cohomology with compact support H2dmc P_i(f/; C). If Y is, in addition, compact, the latter is just
H?2 dimc ]P’—i(f/; (C)

On the other hand, [22, I1.9.2] states the existence of a long exact sequence

HL(P;F) — H/(P;F) — H(P\Y;F) (2.3.1)



T. Reichelt et al. / Topology and its Applications 313 (2022) 107983 11

where F is a sheaf of Abelian groups on P and we ease notation by ignoring the pull-backs of F to Y and
its complement respectively. Notice that one can get this long exact sequence by applying hypercohomology
to the first triangle in Remark 2.2 (4). We use these with P = PX and Y as above.

Via Poincaré duality, the map HL (PX;C) — H'(PX;C) becomes H*"~2~/(Y;C)Y — H*"">"(PX;
C)V. This is the dual of H?>"2~/(PX;C) — H?"~27%(Y;C) induced by restriction from PX to Y. The
restriction HY(PX;C) — H(Y;C) is injective' for i < 2dimY and necessarily zero for i > 2dimc(Y)
since ¥ is a CW-complex of dimension 2dimc (}7) Thus, one can determine from the topological Betti
numbers of Y alone the sizes of the kernels of the left-most morphisms in display (2.3.1). This in turn
determines the sizes of the cohomology groups of PU := PX \ Y.

As codim(Y, ]P’(g_l) > 2, U is simply connected by [12, Thm. 2.3]. Thus, the C*-fiber bundle U — PU

has a Leray spectral sequence
HY(PU; H(C*;C)) = H"™(U;C)

in which the coefficients on the left are global (in a trivial vector bundle). Let m be the largest index with
H™(PU;C) # 0. Since all differentials out of and into H™(PU; H!(C*;C)) # 0 are zero, m + 1 must be
the largest index with H™T1(U;C) # 0 and dim¢ H™(PU;C) = dim¢ H™(U;C). O

Corollary 2.9. Let Y be an affine variety defined by the homogeneous ideal I C R, = Clay,...,z,]. If
H7Y(R,,) = 0 then the socle dimension s of Hy(Ry,) is encoded in the projective variety Y = P(Y) and does
not depend on the choice of the cone Y.

Proof. Let X = Spec (R,,) and set U = X \ Y. By [27, Thm. 3.1], s = dim¢ H"*~}(U;C), and U has no
higher non-vanishing singular cohomology groups. Then Lemma 2.8 implies that s is encoded on Y. O

2.3.2. Integrals of Eulerian modules

We investigate next to what extent the p? . or the abutment terms H{®(Y) of the Cech-de Rham
spectral sequence are independent of the cone Y (i.e., the line bundle £ on Y that induces the cone). In
the following we show that replacing £ by a power of itself does not change the HIR(Y).

For this we give an account on the main results on algorithmic computation of the integral of a D,,-
module along 94, ...,0,. See [36,37,44] for details, and a generalization to the case when M is a bounded
complex of finitely generated modules that has holonomic cohomology.

We define a grading grl‘ﬁ/(Dn) :={P € D,|deg(P) =i} on D,, by setting

deg(z;) =1 = —deg(0;)

for all 1 < j < n. With it we define a filtration on D,, by

VF(Dn) =Y gri(Dy).

i<k

Let M be a D,-module, finitely generated by elements my, ..., m,, and choose integers si,...,s.. Then
define a filtration on M by setting

I The cohomology fundamental class of Y in H? 4™c¢(Y) (P X C) evaluates on the homology class of a generic P~ 1~dimc(Y) € px
to the O-cycle given by the intersection of Y with that generic subspace. But this intersection is the degree of Y, hence positive.
Thus the restriction of the class represented by this subspace on PX, a generator of H?2 Uli”“C(Y>(]IJ’X;(C), to Y is nonzero. But
cohomology of projective space is a polynomial algebra in the hyperplane section, and if the dimc(f/)—power of the hyperplane
restricts to a nonzero class on Y then so do all smaller powers.
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VE(M) = XT:V’Hi (Dy,) - m;.

i=1

Denote the operator — Z?:1 0; - x; by E.
It is a result of Kashiwara [23] that when M is holonomic there is a b-function for integration bys(s).
This is a univariate polynomial that satisfies

by (E+n+k)-VEM) C VM) (2.3.2)

for all k € Z. We describe now ideas that lead to a proof for Proposition 2.12 below.

As before, let w,, be the right D,,-module (D,,/9- D,,) where 0 = {01, ...,0,}. This is a free rank one R,,-
module, and can be naturally identified with the D,-module Ext}, (R,,D,) (and with the global sections
of the right Dx-module of top differential forms Ox -dxy A ... A dz, that is denoted Qx in [21]). Give it a
V-filtration by placing the generator 1+ 0 - D,, into V-level n.

The D-module theoretic direct image functor 7, for the projection map m: C* — C can on global
sections be identified with w, ®1L)n (—) shifted by n, computing the Tor-functors against w,. This derived
tensor product can be viewed as the tensor product of w,, with a free D,-resolution F'® of the input module
M, or of a free resolution K*® of w, with M, or of the tensor product of K*® with F'*. There are natural
morphisms from the last scenario to the two former ones that induce isomorphisms on cohomology.

One major difficulty in identifying . (M) is that its homology consists of finite-dimensional vector spaces
with no further module structure, while the modules that appear in the complex are infinite-dimensional
vectors spaces with no further module structure.

A free resolution F'* of M is V-strict if each F' is equipped with a V-filtration V(F?) such that every
differential §°: F* — F*! satisfies 6*(VF(F?)) C VF(F*+1) and moreover 6*(F*)NVF(Fitl) = §1(VF(F?)).
It is a theorem of algorithmic algebraic analysis that finitely generated V-filtered D,,-modules do allow V-
strict resolutions of finite length. The V-filtration on F*® induces a quotient filtration on w, ®p, F'*. This
filtered complex may not be strict anymore, but still the morphisms will respect the filtration. The V-
filtration on w, ®p, F* is bounded below while on F'* it is not. Moreover, gr"?/(F %) is infinite dimensional
over C, while each gr"i/ (w, ®p, F') is C-finite. Nonetheless, the C-dimension of each w, ®p, F? is still
infinite.

Let £ be the largest and s the smallest integral root of the b-function by(s).

Theorem 2.10 (Integration Theorem [36,37]). With notation as introduced above, the morphisms
wn @p, F* ¢ Vi(wn ®p, F*) - Vi(wn @p, F*)/V* " (wn @p, F*)

are quasi-isomorphisms.
In other words, every cohomology class of Tor?“ (Wn, M) has a representative inside f/e(wn ®p, F*), and
the complex Vo~ (w, ®p, F*) is ezact.

Note that the subquotient complex V¥ (w, ®p, F*)/V* ! (w, ®p, F*) is, in contrast to w, ® F*, C-finite,
reducing the computation of 7, (M) to finite-dimensional linear algebra in this subquotient complex.

One can now just as well resolve w, and M, or just w,, and obtain other complexes that represent
Wn, @5” M. A natural resolution for w, is the cohomological Koszul complex K*® on the left-multiplications
on D, by the various 9;. (So, K* is the complex of global sections of Q. +)- The module K* has a natural
generating set given by the size-f-subsets of 1,...,n. We place these generators in V-level ¢ and extend
V to each K* by D,-linearity. Since 9; is in V-level —1, this produces a V-strict resolution of w,,. Having
resolutions K*®, F* with V-filtration, there is an induced V-filtration on K*® ® b, F*.
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The complex K® ®p,, M is sometimes called the (affine, global) de Rham complex of M. If M is a space
of functions on which one can differentiate, multiplication by 9; in K*® corresponds to differentiation by x;
in the usual de Rham complex.

Suppose now that M = @,., M, is a graded module over the graded ring D,, with homogeneous
generators my,...,m, of degrees sq,...,s,. Choosing the degrees of the generators as shifts (i.e., s; =
deg(m;)) for the V-filtration on M one obtains a direct sum of the graded components of M,

VHM) = Z V(D) - my = @Mz~ (2.3.3)
i=1 <k
Since the twisted Euler operator E = — 2?21 0jx; is V-homogeneous of degree zero, the defining equation

(2.3.2) becomes
bu(E4+n+k) M, =0

for all k € Z.

For V-graded M one can arrange the resolution F'* to respect this grading, and K is graded in any case.
If now 7 is a cohomology class generator in H'(w,, ®p, F'*), one can lift it into K" ®p, F* and then chase
it into a class nx of K®* ®p, M, since Tor is a balanced functor. The grading of the resolutions involved
implies that the V-level of this class in K* ®@p, M is the same as the V-level of np in w, @p, F*.

We recall the notion of an Eulerian D,,-module.

Definition 2.11 (/92/). The graded D,-module M = @, , M; is Eulerian if for every homogeneous m € M;
one has (3-7_, ;0;)m = i-m.
In terms of E this is equivalent to (E + n + deg(m))m = 0. o

Eulerian D,-modules are a very special case of Brylinski’s monodromic modules, which are those on
which the Euler operator has a minimal polynomial. They include (iterated) local cohomology modules
Hp' (... (Hf*(Ry) . ..) for homogeneous ideals I, ..., I.

Proposition 2.12. Let M be a finitely generated FEulerian D.,,-module. Then every nonzero cohomology class
of wp, ®f)n M has degree zero.

Proof. Since the module is Eulerian, we have (E + n + deg(m))m = 0 for every homogeneous m € M. We
put the V-filtration on M that is induced by a finite set of homogeneous generators as in (2.3.3), with shifts
s; = deg(my). Then, a b-function for integration is given by l;(s) = s. The conclusion is immediate from the
Integration Theorem 2.10. O

Remark 2.13. Let us call quasi-FEulerian a graded monodromic D,,-module M. Then one can easily generalize
Proposition 2.12 to: if M is quasi-Eulerian then the degree of every cohomology class of wy, ®f)n M must
be an integral root of the minimal polynomial of E on M.

There is a version of the Integration Theorem for complexes of holonomic modules (more generally, for
complexes that have a b-function for integration), see [44]. This allows a further generalization to finite
graded complexes with quasi-Eulerian cohomology. ¢

We now consider the Eulerian D,-module that arises as the localization M = R,[1/f] of R, at a
homogeneous polynomial f. It is clear that this is an Eulerian module since the Euler operator E acts on
a rational homogeneous function of degree k by multiplication with k. Thus, K* ®p,_ M is V-graded and
every class in w, ®f, M has native degree zero.
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If one reads elements of K¢ ® M as differential ¢-forms on M, this implies that the cohomology of
K*®* ®p, M is spanned as vector space by differential forms of degree zero: forms of the type

Z grdx;
%

|T|=¢ e

IC{1,...n}

where dz; = A;erdz;, where g; is a homogeneous element of R, and where deg(g;) + ¢ = k; - deg(f).
Similarly, integrating a graded complex M*® with Eulerian cohomology modules yields a de Rham complex
of M*® with cohomology groups concentrated in degree zero.

Corollary 2.14. If I is a homogeneous ideal in R, then the de Rham cohomology of the affine complement
U(I) = X ~ Var(I) of the affine variety Var(I) C X := C™ is generated by chains of differential forms of
degree zero. Moreover, the de Rham cohomology groups Hip (H7(Ry,)) all are concentrated in degree zero. O

Proof. The Grothendieck comparison theorem asserts that the cohomology of K* ®p, C* is the de Rham
cohomology of U(I). The rest follows from Proposition 2.12. O

Remark 2.15. Since multiplication by C © X\ # 0 is an isomorphism on U(f), the de Rham cohomology of
U(f) of a divisor is spanned by homogeneous differential forms (homothety eigenvectors) for all homogeneous
f € R,. Alex Dimca pointed out that path-connectedness of C* implies that this multiplication is in fact
homotopy equivalent to the identity, and thus does not change the class. Hence, the cohomology of U(f)
must be eigenvectors to eigenvalue 1, and thus of degree zero. Moreover, it was pointed out to us by
A. Lorincz that C*-equivariance can be used to obtain Proposition 2.12; see Lem. 2.1 and Cor. 2.2 in the
recent preprint arXiv:2105.00271 for a more general result. <

2.4. On Veronese maps
Throughout this subsection, 2 < d,n € N. Let

vl X =C" —CVN =W (2.4.1)
be the d-th Veronese morphism on the affine level, so N = (anzl) If n,d are understood, we abbreviate
v to just v. We set X/ :=v(X) C W, W° =W ~ {0}, X°:= X ~ {0} and X'° := X'~ {0}.

Let R, = Clz1,...,2,] = Ox(X) and Ry = C[{ys | S € N, |S| = d}] = Ow(W). Let I C R, be a
homogeneous ideal and Y the associated variety. Denote U the complement X \ Y, and let Y’, U’ the images
of Y, U under v. Let Uy be the complement W~ v(Y"). In this subsection we will compare the cohomology
of the affine complements of Y and Y.

Note that v#: Ry — R, sends ys — 27

diagonally on X, as well as on every other variety of a homogeneous ideal of R,,, by multiplication on each

in multi-index notation. The d-th roots of unity m, act

x;. Moreover, v is the orbit map to this action, followed by inclusion into W. The image of v has a unique
isolated singularity at the origin, and v is a d : 1 covering of X’° by X°.

Note that pm, is the covering group of the map U — U’, and its order d is nonzero in C. Under these
circumstances, H*(U’; C) is the group of p4-invariants in H*(U;C). Using the de Rham manifestation of
H*(U;C), in which we showed that every class has a representative that is of degree zero, the entire space
H*(U;C) is pg-invariant, so that

H(;R(U§(C) = HJR(U/§(C)~
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In what follows, we replace de Rham cohomology by singular cohomology, since we will have need to step
outside the category of smooth algebraic varieties. Known comparison theorems over C assure functorial
isomorphisms between these cohomology theories whenever both exist.

It will turn out to be useful to know the cohomology of W ~ X’ = W° ~. X’°. Note that X’° has
the homology of the homotopy (2n — 1)-sphere X° and is a closed submanifold of the 2N-dimensional
manifold W°, the latter being homotopy equivalent to the (2N —1)-sphere S2V~1. Alexander duality gives an
isomorphism H%,. (W°; C) ~ Homc (H2Y~%(X'?; C), C) with the dual of compactly supported cohomology,
[22, Alexander Duality V.6.6]. But then X’° being a 2n-dimensional real manifold yields by Poincaré duality
that Homc (H2N~4(X'°;C),C) ~ H*™ 2N+i(X'°,C), [4, 1.(5.4)]. The latter is C for i = 2N — 1 and
1 = 2N — 2n, and zero otherwise. In the long exact sequence

o — Hio(W°;C) — HY(W®;C) — HY(W° ~ X'°;C) 15,

we have H,.(W°;C) # 0 only when ¢ = 2N — 1,2(N —n) and H'(W®°;C) # 0 only if i = 2N — 1,0.
The map C = HEH(We;C) — H?*N-1(W°;C) = C is surjective (hence bijective) since W° ~ X'° is
homotopy equivalent to an open subset of a (2N — 1)-sphere) and so H2N~1(W° . X'°;C) = 0. It follows
that

C if i=0,2(N—n)—1;

2.4.2
0 else. ( )

HW~X;C)=H(W°~X'"C) = {

Next we compute the cohomology of Uy = W \Y") Y’ = v(Y) where Y = Var(I) for some homogeneous
ideal I C R,,. Since U’ = v(U) is an embedded submanifold of Uy, with complex codimension N — n, we
can consider the tubular neighborhood T” of U’ that arises via the tubular neighborhood theorem as the
total space of the normal bundle of U’ in Uy, . Then

Uy =WY =W~ X)UU' = (W~ X)UT,

with intersection (W ~ X')NT" =T"°.
As U’, Uy are complex manifolds, the removal of the zero section U’ from T" leaves a space T'° homotopic
to an oriented sphere bundle S¢ < T’° — U’ where

qg=2(N—n)-—1.
The g-sphere bundle T° yields a Gysin sequence
= HY(T'®;C) =5 H- (U C) <5 HHY (U5 C) 2 HPY(T'°;C) — ...

Here, 7: T'° — U’ is the fibration map, 7* is the pullback under this map, and e is the Euler class of the
bundle T”° when restricted from relative cohomology to absolute cohomology on T. The map 7, is special
to the situation of bundles with fibers homotopic to compact manifolds, and is induced by integration
along the fibers in the following sense. For any oriented R¥-bundle E — B with E° = E ~\ B there is a
fundamental class u € H¥(E, E°; Z) that restricts in each fiber to the canonical class in H*(R* R*\ {0}; Z);
this canonical class is the given orientation on the bundle (an orientation is a global section of the orientation
bundle with fiber H*(R¥ R¥\ {0};Z)). The existence of the fundamental class is the content of the Thom
isomorphism theorem for oriented vector bundles, and the cup product with u sets up an isomorphism
ulU: HY(E;Z) — HI**(E,E°;Z). The cap product with the Poincaré dual of u induces an isomorphism
H,(E,E°;Z) — H;_y(E;Z), the “integration along the fibers” above (compare [31, Ch. 9-12]). The image
of uin H*(E;Z) is the Euler class (by definition). If the fiber dimension k is large, H*(E;Z) = H*"1(E; Z) =
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0. In that case, the Euler class of the bundle must be zero and then u corresponds to the class in H*~(E°; Z)
with the property that it restricts in each fiber to the canonical generator of H*~1(R* \ {0};Z).

Our Gysin sequence above arises from the long exact sequence to the pair (77,7'°) with replacements
coming from the Thom isomorphism and the fact that U’, T’ are homotopic.

Since dimc (U’) = n, HY(U';C) = 0 if i > 2n. On the other hand, the Euler class is of homological
degree ¢ + 1 = 2(N — n). Thus, if 2(N — n) > 2n then either the source or the target of the Euler map
Hi=(U";C) < H*L(U';C) is zero for every i. But N = ("Zf;l) > 2n for n,d > 2 unless d = n = 2, and
usually much larger. Thus the Gysin sequence splits into isomorphisms

HY(T'®;C) = H™(U';C) = H(T';C) if i > 2n; (2.4.3)
Hi(T';C) = H'(U';C) = H\(T';C°) if § < 2n. (2.4.4)

Note that the composition H*(T';C) —s H(T'°;C) — H*(U’;C) is an isomorphism since U’ < T is
a homotopy equivalence; so the left map is an isomorphism if and only if the right one is. Now consider the
Mayer—Vietoris sequence to the pair (W ~ X')UT' = Uy with T"° = (W~ X')NT":

i — HY(W N X)UT;C) — H' (W~ X';C)® H(T';C) — H(T'*;C) — - --

Here, each (component of a) map is the natural restriction, possibly with a (—1) factor.

If i < 2n, the map HY(T';C) — H*(T'°;C) in the Mayer—Vietoris sequence is therefore the identity
by (2.4.4). It follows that in this range, H'(W ~ X')UT’;C) — H*(W ~ X’;C) is an isomorphism as
well. But in that range, by (2.4.2), only H%(W ~ X’; C) is nonzero and so H'((W ~ X')UT";C) is zero for
0<i<2n.

If 2n—1 < i < g, then H((W~ X")UT"; C) vanishes since HY (W~ X';C) = HY(T';C) = H{(T'*;C) = 0.

Let us look at the situation when i = ¢:

HIYT'°:C) — HY((W~XUT';C) — HI(W ~X";C)p HY(T';C) —
N———— N— e N——
=H-1(U’;C)=0 =C =0

HY(T"®;C) — H™ (W~ X)UT';C) — H™' (W~ X';C) e HPY(T';C).

————
=HO(U’;C)=C =0 =0

If one restricts the morphism HY(W ~\ X';C) — H9(T'°; C) to the intersection with a small ball around

a generic point of Y’, both spaces become homotopic to S? and so the morphism HI(W \ X';C) —

HY(T'?; C) restricts to an isomorphism C — C. But since H4(W ~. X’; C) and H?(T'°; C) are also equal to

C, the morphism HY(W~X';C) — HY(T'®;C) is an isomorphism. Thus, H?(Uy; C) = HI Y (Uy; C) = 0.
If i > q, H(T';C) = H{(W ~ X’;C) = 0. Thus, H""4(U’;C) = H{(T'*;C) = H*Y (W ~ X")UuT’;C).
We have proved

Proposition 2.16. We use notation as defined at the start of Subsection 2.4. Let T — U’ be the normal
bundle of U' in W°. With Uy :==W\Y' = (W~ X)UT’, and ¢ = (":i;l) > 2n we have on the level of
reduced cohomology for every i € Z the isomorphisms

Hi(U";C) —— HY(T';C) — s Hi+4(T7°;C) — = HH+a+1(Uy; C)

~
~

et

H+at (T T'°;C)
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Here e € HITY(T',T'°; Z) is the Euler class of the bundle, eq € H1(T'°;Z) is its preimage, the vertical §*
is the connecting morphism for the pair (T',T'°), and the horizontal §* is the connecting morphism for the
Mayer—Vietoris spectral sequence for the cover Uy = (W~ X" )UT".

In particular, the singular reduced cohomology groups of the complements of the cones Y and Y’ over Y
are the same up to a cohomological shift by ¢+ 1 = 2(N —n).

Corollary 2.17. If Y C X = C™ is homogeneous and of equi-dimension three, then the Cech—de Rham
numbers py, (Y) are invariant under Veronese maps of Y.

Proof. With Y’ C W and notation on Y’,U, Uy as set at the start of Subsection 2.4, the Cech-de Rham
spectral sequence degenerates for dimensional reasons by Proposition 2.6, both for Y C X and for Y/ C W.
According to Proposition 2.16, the two complements have the same reduced cohomology up to a shift by
the relative dimension. Hence, up to that same shift, the two Cech-de Rham spectral sequences have the
same abutment. The degeneration shows that the abutment determines the pf,’q, except for the numbers
p3 5 and p3 o for which it follows that their sum is equal to dimc Hyy 3(U) = dime HY;?(Wyy). However,
p3., is the dimension of Hjy*(H} *(R,)) and HJy *(H} ~*(Ry)) respectively, and thus equals the socle
dimension of H2(DH} *(R,)) and H2(DH} ~?(Ry)) respectively, by Lemma 1.4. But equi-dimensionality
and Remark 1.3 show that these latter integers are both zero. This implies invariance of p3  and settles the
case r = 2. But no higher nonzero differentials can exist by degeneration. O

We show next that, under less stringent conditions, most of the Cech-de Rham numbers of level two are,
for cones over projective varieties, still unchanged under Veronese maps. The idea of the proof is inspired
by the companion result Lemma 3.2 for Lyubeznik numbers, which in turn is based on results in [40].

Theorem 2.18. Let Y be a projective variety and suppose Y is a cone forY , embedded as a closed subvariety
of an affine space X = C™. Then, for k > 2, the Cech~de Rham numbers pﬁl derived from Y agree with
those derived from any Veronese of the pair Y C X.

The proof will start with translating the py , into objects of constructible sheaves involving the Verdier
dual wy of the constant sheaf on Y, see (2.1.1). After some rewriting we use Lemma 1.4 to exchange a direct
image functor to a point for the pullback to the origin and then use an adjunction triangle to reformulate
them in terms of Y°, the complement of the origin in Y. We finally lift to ¥ where an interpretation in
terms of Chern classes makes it easy to compare the construction for Y to the corresponding construction
for the Veronese embedding.

During the proof we shall use the following diagram of maps

{0} ———{0}

iy >ay ¢>ax
h : X

Cr =

Jjy J
ho
Yo e ©n\ {0} = X°

™ p

Pn—l

s
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Proof of Theorem 2.18. The Cech-de Rham numbers of level 2 are given by
pre i= dim HigF(HPR,,) = dim PH  Fa. (PH" b/ C ¢ [n]),

where C y[n] is the constant sheaf on X with stalk C. (The shift from —n + & on the left to —k on the right
occurs since the de Rham functor used in the Riemann—Hilbert correspondence arises from the “natural”
algebraic de Rham functor—which goes along with the tensor product with w—Dby analytification and a
shift by n).

We have

PHFa, (PH" T ' C ¢ [n]) @ PHFa, (PH" " h'ax Cpi[—n])

© pak a, (PH Ry [—n])

D ppyFa, h(PH oy [—n])

D o= b (P oy [—n]) (2.4.5)

~ PR *(ay) . (PH"  wy [-n)])
~ PR (ay ). (PH  wy)
D pg k(i) P wy)

The justifications are as follows: (a) holds since the real dimension of X is 2n; (b) follows from the definition
of wy; (c) holds since h is a closed embedding and hence hy is perverse exact; (d) comes from h, = hy for
closed embeddings; (e) is Lemma 3.3 in [41] (quoted as Lemma 1.4 in the present article).

We have the following triangle from the inclusion of the origin into Y:

jy[j;l(pHisz) — szfle — iy!i;l(p/HilOJy) +—1>

and it induces the following long exact sequence

PH 30y (iy ) "L PH wy)

PH2 v (Jy) (PR wy) 0 PH iy (iy) " H(PH  wy)
pH_leI(jY)_l(pH_ewY) 0 p'H_ll.Y!(iy)_l(p’H_éwy)

——

PHO iy Gy ) L (PR wy ) ——— PH fwy —— PHOiyv (iy) L (PH fwy ) ——= 0
We now use that k > 2, which yields the following isomorphisms from the long exact sequence above:

PH Fiy (iy) T PR wy) = PHT Y GGy ) TR wy)

f
& ek (P y o)

(;EJ) prk%»le!(pH*Zﬂ_!wY) (246)
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~ pH_k+1jy! (pH—£+17TI [_1]‘*)17)

h
(:) pH_ijm!(pH—leY)

with justifications as follows: (f) since jy is open and so (jy)~! is perverse exact; (g) is dual to the fact
that Cy. = 7~ 1Cy; (h) is because 7 is smooth so that 7'[—1] is perverse exact.
We have then

PH ay PHF (v (PH T F wg)) o~ PH v (PH T (iv1 (iy) L (PH fwy ) = 0 for i#0

n+k,;

since PH " iy (iy) " (PH ‘wy) is at most supported on a point. A spectral sequence argument shows

therefore that
pHan!pH_kjy!ﬂl(p/H_eJ'_lw}?) ~ p/H_kay!jygﬁ!(p’H_eJrlwy). (2.4.7)
Summarizing we have for k > 2 that
PHFa, (PH BTy [n]) 2 PHE (i) (P )

L PR i (H i) R ) (2:48)

QO POy (PH iy (i) (P wy )

1
g prfkaYijgﬂl(p’H7£+1w}7), (2.4.9)

where (i) follows from display (2.4.5); (j) follows since ay o iy is the identity on {0}; (k) is since iy is
perverse exact as iy is closed; (1) comes from displays (2.4.6) and (2.4.7).

Now let £ be the quasi-coherent pullback of Op.-1(1) via g. By abuse of notation we denote the total
space of the corresponding line bundle by the same letter. Notice that Y° ~ £ ~\ {zero section}. Consider
the following diagram

{0} <—— VY
N
Y L Y
1
S

in which ¢ is the bundle map, 7 the embedding of the zero section, and u is the contraction of the zero
section. We have

p?—[*kaygjygw!(p%*”lwy) ~ leikaygjygﬂ'il[Q (p'HJHwy)
~ PHR 20y iy T (PH T g
~ PR 2ay v (5) g (PH T wy)
~ PR axig 51(5) g (PH T wy)
o PH R g mr L (PR )

~ ]HIC_’“"'Q(X7 77;71'_1(”7-[_“'1&137))
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Here the first isomorphism comes from the fact that 7—'[1] = 7'[—1] is perverse exact, and the last one
because cohomology of compact supports is the cohomology of the exceptional direct image functor.
From the closed embedding of Y into £ arises a triangle

HO TR T W) — ¢ PR T wy) — 0 (D) T PH T ) (2.4.10)
Applying ¢ we get
_ _ 1
mr G — g G — Gy =

where we have set G_; := PH ‘wy and used 7 = ¢ 0j. We have G ~ qi¢'G ~ qi¢~'G[2] for any G € Perv(f’)
since ¢ is smooth of relative dimension 1. This gives the triangle

mr G i1 — Grp1[~2] — Gri1 L,

As in [40, (1.3.1)], this triangle is dual to a triangle F — F[2] — p.n'F 1 Where the first map is
induced by

e®1:Cyp @ F — Cy[2] @ F,
with e € Hompy (3(Cy, Cy[2]) =~ Hompy () (C,RT(Y;Cy[2])) ~ H?(Y;C) is the image of the Euler
class of the vector bundle L.
We get a long exact sequence
— H (Y, mr Gor) — HH (Y, Gopga) (1) — HFP(Y,Gopn) — HOP (Y, mr G i) —
In particular we get short exact sequences
0— H;k+1<?7 g,¢+1)£ — Hc_k+2(}7,7ﬁ7‘r—1(p7'l_e+lwy)) — Hc_k(f/, Q,ZH)L —0

where

H;* N (Y, G py1) == coker (HZ ¥ (Y, G_p41)(—1) — HZ¥ (Y, Gr11))
HH (Y, Gop1)” o= ker (HI*(Y,G_p41)(—1) — H" (Y, G_r11))

Putting everything together we get that
pre = dimH_ 2V mr L PHwp)) = dim H P N(Y, G pyy) e + dimHI (Y, G_py1)”

is unchanged under Veronese maps for k > 2, since the Euler class of a bundle power is a multiple of the
original Euler class (and over C, scaling preserves kernels and cokernels of linear maps). O

Question 2.19. Are all Cech-de Rham numbers invariant under Veronese maps? o
2.5. Incomplete linear series

We wish here to compare the Cech-de Rham numbers of a projective variety induced by cones that
belong to the same line bundle. So, let ¥ C Pg_l be a projective variety, let R,, be the coordinate ring of
Pg_l and I C R, the ideal defining Y. Denote m the homogeneous maximal ideal of R, and L the line
bundle Oy (1) induced by this embedding.
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We assume that the n coordinate functions are linearly independent on Y, since otherwise a coordinate
change can be used to replace ngl by a smaller projective space for which Lyubeznik and Cech-de Rham
numbers are the same as for the given embedding.

Then there is an exact sequence

0 — T(Rp/I) — Ry /I — TV, LY) — HL(R,/I) — 0.

kEZ
N—————
=:5

Set V = (R,)1 be the space of linear functions on P&~ " and let V := I'(Y, L) be the complete linear system
attached to £. Write R,, := C [V] and let I C R,, be the ideal cutting out Y inside the dual projective space
PV

As R,,/I is Noetherian, H: (R, /I) is Artinian for all i, and so (H&(Rn/I))>ko is zero for large k. It
follows that the containments (R, /I)>k, C (Rn/j)Zko - Szko are equalities. This implies that the d-th
Veronese iterates of the two projective embeddings of Y to R, /I and R,,/I are the same up to a projective
coordinate change, provided that d > kq. Thus, their cones yield identical Cech-de Rham numbers pz, o for
p> 1.

By Theorem 2.18, at least for p > 1, the invariants p,, , derived from the cones inside V* and V* agree.

Corollary 2.20. If two projective embeddings of Y induce the same line bundle on'Y then the respective cones
produce the same Cech—de Rham numbers pf),q respectively, at least for p > 1.

3. Lyubeznik numbers

In this section we study the Lyubeznik numbers and their spectral sequence (1.0.3). After surveying some
known facts we discuss to what extent a projective variety determines the Lyubeznik numbers of its cone(s).
We look first specifically at varieties of Picard number 1, listing some examples and open questions. After
that we discuss cases where in small dimension the Lyubeznik tables of all cones agree.

3.1. Basic properties

We should begin with drawing some parallels to the case of the Cech-de Rham numbers. Quite immedi-
ately, being defined as the socle dimensions of the Es-terms in the Grothendieck spectral sequence (1.0.3),
the Lyubeznik numbers vanish for ¢ ¢ [codim(/, R,,),n] and for p ¢ [0,n]. In fact, similarly to the p} .
Lyubeznik numbers fit into a triangular region

Xoo o Ao
Av) =] © ,
RN

(see [29]). In this picture, the differentials of the spectral sequence point South to Southeast.
For notational ease, we will hereafter indicate a zero entry in a Lyubenik table by a single dot.

Remark 3.1. The fact that the abutment of (1.0.3) is HZ(R,,) implies that the entries

Ao,d = A1, =0
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always vanish unless the dimension of I is less than two, in which cases the Lyubeznik tables are (1) and

< 1) respectively. ¢
The number \g 4 is never zero by [29] and related to connectedness issues. For example, if dim(Y') = 2
- a—1
then A = ( : . ) where a is the number of connected components of the punctured spectrum of the
. . a
ring defining the purely 2-dimensional part of I, [45,24]. By [47], A4,q is the number of connected components
of the Hochster—Huneke graph of the completed strict Henselization of R/I.
Tt was first observed in [10] that the Lyubeznik numbers encode interesting topological information also in
higher dimension. However, it is often not easy to decode this information. Garcia and Sabbah concentrate

on the case of an isolated singularity and find that the topology of the singularity link carries all information
on A. Other relations to connectedness dimensions are discussed in the survey [33].

8.2. Lyubeznik numbers and projective schemes

Suppose Y is a projective variety in }P’Hz_l, with defining ideal I C R,, = K[z, ..., x,]. Different embed-
dings of Y give rise to different ideals in different polynomial rings, and thus potentially to different sets
of Lyubeznik numbers. That this is indeed a possibility was shown to be the case in [40, Sections 2.2, 2.3]
where a projective variety with two embeddings is constructed that produce (partially) different A, ,. On
the other hand, if ¥ is smooth or a Q-homology manifold or analytically locally a set-theoretic complete
intersection, then all cones for Y yield the same Lyubeznik numbers [10,42,40].

A new angle was introduced in [40] by applying the theory of perverse sheaves and mixed Hodge modules
to the problem. It is proved there that if I is homogeneous then the A, ;(R/I) measure, for p > 1, the
failure of a certain morphism of cohomology groups of certain perverse sheaves on Y to be an isomorphism.
I follows that, for the purpose of studying the Lyubeznik numbers with p > 1 of cones Y over a fixed Y, one
can move freely between line bundles on Y and cones, as cones that produce different Lyubeznik numbers
for p > 1 must induce different line bundles on Y.

That examples of cones over Y with varying Lyubeznik numbers exist over C is rather surprising at first,
since similar examples cannot exist in any positive characteristic. Indeed, it is shown in [48] that Lyubeznik
numbers in finite characteristic can be seen as eigenvalues of certain operators on sheaves that are intrinsic
to the projective variety Y associated to I.

All known examples of projective varieties with possibly varying Lyubeznik numbers of their cones come
from varieties with Picard number at least two. This is not an accident as we show now.

Lemma 3.2. Let Y be a cone over the projective variety Y C qu. Let v& be the d-th Veronese applied to
the cone Y, and write Y’ = v&(Y) for the new cone. Then for p > 2, the Lyubeznik numbers X\, ,(Y) and
Ap.q(Y') agree.

In particular, if the Picard number of Y equals one, then the Lyubeznik numbers A>2.4(Y) to cones over
Y are independent of the cone.

Proof. Let t1,12 be two embeddings of Y into projective spaces Pﬁ_l, Pﬁg‘_l and denote Y7 C X1,Y5 C X5
the two cones over Y, sitting in the respective affine spaces that belong to the two embeddings. Let £1, Lo
be the associated line bundles on Y obtained as pullbacks of O]P’HQ*I(I) and O]P;Hr&nfl (1) respectively. Then
by [40, Prop. 1,2,3], the Lyubeznik numbers A, ; of ¥ that belong to ¥; and have p > 2 are determined by
the (co)kernel sizes of the Chern classes of £; on certain cohomology groups of Y with rational coefficients.
These cohomology groups themselves (see [40, Prop. 2]) do not depend on the bundles £;.
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If 15 is the d-fold Veronese applied to ¢1 then the (first) Chern class of Lo is d times that of L;. In
particular, their kernels and cokernels on Q-spaces are identical and the first claim follows.
Now suppose that the target of the natural map

¢: Pic(Y) — Pic(Y) @z Q

is Q. If 11,15 are both projective embeddings of Y, ampleness implies that ¢(£;) > 0. Then if ¢(L1) = ¢
and ¢(L2) = g2, both positive rational numbers, we have for k > 0 with kqq,kga € N that £’1<\q2| = Eglql‘.
Then by the first part of the proof, ¢q, Llqu, qul and ¢y all yield the same Lyubeznik numbers A, 4 for p > 2
(where we write ¢* for the /-th Veronese of the embedding ). O

For p < 2, we do not know how to compare the A, , of different cones.
Problem 3.3. Do all Lyubeznik numbers of all cones Y of ¥ agree if the Picard number of Y is one? o

Here are three interesting sets of varieties to which the lemma applies.

3.2.1. Determinantal ideals

Proposition 3.4. The Lyubeznik numbers A, , with p > 2 of (the cones over) the projective determinantal
varieties f’m,n’t cut out by the t X t minors of an m X n matriz of indeterminates are unique.

Proof. Let A, be the ring obtained as quotient of the polynomial ring K[z, ;|1 < <m,1 < j <n] by
the ¢-minors of the matrix = := ((z; ;)).

The case t = 1 is trivial. If ¢ = 2, the associated projective variety is the product of two projective
spaces, and in particular smooth. By [10], or [42], the Lyubeznik numbers of Ymm,g are independent of the
embedding.

Now consider the case t > 2. By [5, Cor. 8.4], the divisor class group of A,, . is Z, a generator being
the ideal fm7n)t_1 of Ay, n¢ generated by the (¢ — 1)-minors of the first ¢ — 1 rows (or columns) of x.

Since determinantal varieties are normal, they satisfy condition () in [17, Page 130]. By [17, Exercise
I1.6.3], there is a short exact sequence 0 — Z — CI(Y) — CI(Y) — 0, Y the cone over Y, where the
last map factors through the class group CI(Y ~ P) of the complement of the origin in Y. For ¢ > 2 this
implies that Cl(f’m,n’t) = Z & Z. In this sequence, 1 € Z is sent to the generic hyperplane section of Y.
In order to determine the Picard group of Ym,n’t we need by [17, Prop. 11.6.15] to determine the Cartier
classes of Cl(f’m,n,t). From the preceding, this amounts to checking which multiples of fm’n,t,l are Cartier
on the punctured spectrum of A,, ,, ;. One sees easily that for ¢t = 2, I_m,n,tq is Cartier on the punctured
spectrum. For ¢ > 2 only its trivial power is Cartier: by the coordinate change expounded in [27], powers
of I_m’n,t,l are locally principal on the open set Uy, , if and only if corresponding powers of I_m,l,n,lﬁt,g
are locally principal everywhere on Y,,_1 _1,:—1; for ¢ = 3 this is clearly not so. Hence the Picard group of

Yint is Z for t > 2. Now use Lemma 3.2. O

Remark 3.5. In particular, the Lyubeznik numbers )\, ; of determinantal varieties computed by Loérincz and
Raicu in [26] for the standard embedding equal those of any embedding, at least for p > 2. ¢

Remark 3.6. Suppose G is a semisimple linear algebraic group, P a parabolic subgroup and w an element of
the Weyl group of G. The Schubert variety Xp(w) := BwP/P sits inside the homogeneous space G/ P, and
every line bundle on Xp(w) is the restriction of a line bundle on G/ P, [30]. In particular, the Picard group
of Xp(w) is (freely) generated by the Schubert divisors (the Schubert varieties inside X p(w) of codimension
one), and the interior points of the positive Schubert cone are very ample [2, Prop. 2.2.8, Prop. 1.4.1]. ¢
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Problem 3.7. Compute the Lyubeznik numbers of Schubert varieties induced from embeddings interior to
the positive Schubert divisor cone ¢

3.2.2. Toric varieties

Suppose Y is the toric variety attached to a complete fan A that is projective. If A is smooth, or at least
simplicial, then the Picard group of Y is a free Abelian group generated by the torus invariant (Cartier)
divisors corresponding to the n rays of A, [6, Thm. 4.2.1]. The ambient lattice imposes d := dim(Y") many
independent relations on these divisors, so that Pic(Y) = Z"~. In order for this number to be 1, there is
very little choice for A; it forces Y to be a weighted projective space. These are Q-homology manifolds and
thus yield the same Lyubeznik numbers under all embeddings by [40].

However, singular fans fail the Picard rank formula above and can have Picard group Z with greater
variety. The Picard group is free if the fan is full-dimensional by [6, Thm. 4.2.5], and equals the inverse limit
of the quotient lattices M /M (o), taken modulo M by [6, Thms. 4.2.1,4.2.9].

Example 3.8. If A is a complete rational fan in Z3, one can use the description of the Picard group via
support functions to show that if A has at most one simplicial cone, then the Picard group of the associated
toric variety is rank one. For example, the fan over the sides of a cube leads to a projective three-fold with
Picard number one. The generating support function takes the value zero on one square and one on the
opposing square (see [9, Exa. 1.5.(3)]). Our next result shows that all projective toric threefolds have their
Lyubeznik table independent of the embedding. ¢

Theorem 3.9. Let Y be the projective variety attached to a complete projective fan in Z* with Picard number
P+ 1. Then for any cone Y over Y its Lyubeznik numbers take the form

p

IR DA

We postpone the proof until the end of the final subsection.

Problem 3.10. Express Lyubeznik numbers of projective toric varieties (of Picard rank 1 or otherwise) in
terms of fan data (and embedding polytopes, if necessary). <

3.2.3. Horospherical varieties

Horospherical varieties are complex normal algebraic varieties on which a connected complex reductive
algebraic group G acts with an open orbit that is isomorphic to a torus bundle over a flag variety; the
dimension of this torus is referred to as the rank of the variety. In particular, toric and flag varieties are
examples of horospherical varieties.

Any flag variety G/P with P a parabolic subgroup of G is smooth and projective. Their Lyubeznik
numbers are hence all topological, by [42]. By [38, Thm. 0.1], a smooth projective horospherical variety of
Picard number 1 must either be a homogeneous space or have horospherical rank one.

There are many singular horospherical varieties of Picard number one. For example, let G be a simple
linear algebraic group and choose two dominant weights y; and x» that cannot be written as the sum of a
common dominant weight with another dominant weight. Writing V() for the simple G-module of weight
X, let Y be the closure of the G-orbit of the sum of two highest weight vectors in P(V(x1) @ V(x2)). It is a
projective variety of horospherical rank one, it has Picard number one and is smooth only in very few cases,
namely when x; and x2 are fundamental weights w, and wg and (G, «, 8) is in the list of [38, Thm. 1.7].
It has three G-orbits (one open and two closed), the singularities if they exist, are on the closed orbit(s).
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By taking a longer list of weights x1,...,x» one can produce (usually singular) varieties of horospherical
rank n — 1.

In all these Picard rank 1 cases, the Lyubeznik numbers A, ; with p > 1 of the cone of Y are embedding
independent, and can hence be computed from the embedding that arises from the definition.

Problem 3.11. Compute Lyubeznik numbers of horospherical varieties of Picard number one for the standard
families. ¢

3.8. Lyubeznik numbers in small dimension

We consider here to what extent the Lyubeznik numbers of varieties of small dimension are functions of
the associated projective variety only. Some independence is known quite generally.

Remark 3.12. (1) If Y is a projective scheme of dimension at most 1 over any field (not necessarily connected
or equi-dimensional) then R/I is two-dimensional for any embedding, and so A is independent of embeddings
by [45,24]

(2) Set d — 1 = dim(Y"). Then A4 4 is independent of embeddings unconditionally by [47]. o

We begin with some preparations involving Hartshorne’s (local) algebraic de Rham cohomology.

Theorem 3.13. Let Y C Pﬂzfl be a projective variety over a field K of characteristic 0, let Y C Ag be the
affine cone of Y, and let P be its vertex. Let H%,(Y) denote the local de Rham cohomology of Y supported
in {P}. Assume that the Picard group of Y has rank 1. Then dimy(H%H(Y)) depends only on Y, but not on
the embedding Y C Pg. More precisely, ifY C Pﬂglfl is another embedding of Y into a projective space and
Y’ is its affine cone with the vertex P', then dimg (H)(Y)) = dimg (Hp, (Y")).

To prove Theorem 3.13, we need the following result of Hartshorne.

Theorem 3.14 (Proposition II1.3.2 in [16]). Let Y,Y, P be the same as in Theorem 3.13. Then H%(Y) = 0
and there are two exact sequences:

0—K— HIRg(Y) — HLY) —0
and
0— Hig(Y) — Hp(Y) — Hig(Y) — Hig(Y) — HBH(Y) — Hig(Y) — Hig(Y) — -

where the maps Hip (V) — Hé;rf(f/) are given by the cup product with the Chern class &€ € H3(Y) of the
hyperplane section (i.e., the first Chern class of Oy(1)). O

Proof of Theorem 3.13. The case when j < 1 is clear from the long exact sequence above.

Since the Picard group of Y has rank 1, any two very ample line bundles on Y have a common power. It
is thus sufficient to consider the case where the two ample line bundles in question are £ and £™.

Let &(L£) € HgR(f/) be the first Chern class of L, represented by a generic hyperplane section
with the embedding given by L. Then we have £(L™) = mé&(L). Since the cup product is linear and
char(K) = 0, the maps Hig(Y) N HF2(Y) and Hig(Y) ome, H'F2(Y) have the same rank. Therefore
dimg (ker(H} (V) — H L2 (Y))) and dimg (coker(HY,(Y) — H::2(Y))) depend only on Y, but not on
the choice of the embedding (or equivalently, not on the choice of ample line bundles £). When j > 2 we
have
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dimg (H7,(Y) = dimg (ker(Hj (V) — Hip (V) + dimg (coker(Hi*(V) — Hig'(V)))),
hence the conclusion holds for dimk(H{D(Y)) when j > 2. O

Corollary 3.15. Assume that the Picard group of Y has rank 1. Then Ap,q 18 independent of embeddings for
all ¢ <n — fy, with fy as in Remark 2.7.

Proof. Assume g < n — fy. Since Supp(H; %(R,)) C {m}, [29] shows that H; %(R,) = H2(R,) >« and
Hi(H %(R,)) =0 for p>1. Hence Ay, =0 for all p > 1 (and ¢ < n — fy).

Let D(—) denote the Matlis dual. Then D(H¥(R,,)) & RAn/\O’"% whenever H¥(R,,) is Artinian. On the
other hand, [34, Proposition 2.2, Theorem 2.3] shows that, for ¢ < n — fy,

D(H} (R,)) = HH(X,04) = R, ® HB(Y)

where Y denotes the affine cone of ¥ with vertex P and X denotes the formal completion of Spec (R,,)
along the subscheme defined by I. This shows that dimg (H%(Y)) = A 4. Hence Ao, depends only on Y by
Theorem 3.13. O

Remark 3.16. An alternative way to look at Corollary 3.15 arises through Proposition 2.16: for ¢ > fy,
the multiplicities of H7(R,) in H} (R,,) are exactly the Betti numbers H"~1*J(U) where U is the affine
complement of Y, because of the spectral sequence (1.0.2). By Proposition 2.16 these do not change under
Veronese maps. <

We now consider the effect of Serre’s conditions (Sy) in R,,/I on the Lyubeznik numbers.

Remark 3.17. Assume that “Y satisfies (S;) locally everywhere”, by which we mean that each local ring
Oy 5 of the projective scheme Y = Proj (R,/I) satisfies Serre’s condition (S;).

Let Y be the cone Spec (R,,/I) as always and P the vertex; then the punctured cone Y° =Y \ P is a
bundle over Y. It follows that every local ring of Y° also is (St). So for each non-maximal prime ideal p of
R,, such that dim((R,/I),) > t, one has depth((R,/I),) > t.

In general, if (A,n) — (A’,n’) is a faithfully flat morphism, then

depth(A’) = depth(A) + depth(A’/nA).

If A’ is the strict Henselization A" or the completion A of A, then A’ is faithfully flat over A. Therefore,

depth <(((Rn/1)p)A) Sh>A >t o

Lemma 3.18. IfY is equi-dimensional and locally everywhere (S2) then the off-diagonal entries Ai_1 ; vanish
forl1<i<d:=dim(Y)+1, and H}"'(R,,) is Artinian and injective.

Proof. By Remark 3.17, for each non-maximal prime ideal p of R, with dim((R,/I)y) > 2, we have

depth ((((Rn/I)p)A)Sh) > 2. Hence the punctured spectrum of this ring is connected by [14, Thm. 2.2].

The Second Vanishing Theorem implies that 1‘[,>C0dim(P’R")72(Rn)IJ = ( for each prime ideal P such that

dim((R,,/I)p) > 2. Therefore the support dimension of Hi(R,,) withn —1 > i > n — d is at most equal to
n—i—2and so Hi 'Hy~*(R,) = 0 by Grothendieck’s vanishing theorem. For H}'~*(R,,), localization shows
in conjunction with the Hartshorne-Lichtenbaum theorem that its support is at best at P. By Lyubeznik’s
work, it is hence Artinian and injective. O
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For the next three result we will use the following reduction.

Lemma 3.19. Let Y be an equi-dimensional projective variety of dimension at least two. If the Lyubeznik
numbers for the cones over all connected components of Y are independent of the choice of the cone then
the same is true for Y itself.

Proof. Let Y',Y" be two cones for Y and let Y = Y; UY, be a disconnection. The resulting cones Y7/, Y7’
and Yy, Yy satisfy: Y/ NYy and Y] NYy both equal the origin. Let I’, I” be the defining ideals for Y, Y
and denote the defining ideals of Y/, Yy, Y/, Yy by I{,I; C R, and I}, I} C R, respectively. All these
ideals have dimension three or more.

Then HY,(Rw) = HY,(Ryw) ® Hf,(Ry) and Hf,(Ryv) = Hiy(Ryr) & Hi, (Rpr) for all ¢ < n —1 as
follows from the Mayer—Vietoris sequence.

It follows that, apart from ¢ = n,n — 1, the Lyubeznik numbers satisfy A, o(Y') = A, (Y{) + Ap4(Y3)
and Ay ,(Y") = Ap (YY) + Ap4(Y3'). By the presumed embedding independence of A(Y7) and A(Y2), the
same follows for A(Y"), except for columns n,n — 1.

In column n all entries in all cases are zero by the Hartshorne-Lichtenbaum theorem. So is the diagonal
entry Ap; for all three ideals by equi-dimensionality. Thus, Ao 1(Y;) = M1 (YY) + M1 (YY) + 1 for i =1,2
as follows from the Grothendieck spectral sequence (which implies that the alternating sum of all A, 4 is 1).
Therefore, all Lyubeznik numbers of Y are embedding independent. O

Theorem 3.20. Let Y be an equi-dimensional projective scheme of dimension two, which

(1) either satisfies locally everywhere Serre’s condition Sa,

(2) or has Picard number one.

Then the Lyubeznik numbers of all affine cones Y over Y agree.

Proof. Let Y be any cone over Y. It is a scheme of pure dimension 3, and thus by Remark 1.3, the Lyubeznik
table of Y is

Aol Ao2
S VP

A23

A33

By Lemma 3.19, we can assume that Y is connected. That assures that Ao,1 is zero by the Second
Vanishing Theorem [15, Theorem 7.5].

If Y is (Sz) locally everywhere then by Lemma 3.18, H}~?(R,,) has support dimension zero and is the top
local cohomology module, and so A; o = 0. Tt follows from [29] that H}~2(R,,) is injective. By Corollary 2.9,
the socle dimension Ag 2 of this module is determined by the topology of Y. Finally, the convergence of the
spectral sequence to H7(R,,) implies that Ay 3 = Ag.2.

Suppose now that Y has Picard number one. Then by Lemma 3.2, the A; ; with ¢ > 1 are a function of
Y alone. The only possibly nonzero differentials are:

« on page two the morphism Ey" > — E;" % and By ™% — E3" %
« on page three the morphism Ey" ™' — E3" 7%,



28 T. Reichelt et al. / Topology and its Applications 313 (2022) 107983

Convergence of the spectral sequence forces Eg n=2 ES’"_?’ to be an isomorphism,? and the maps
Ey"? — EJ™ % and EY™' — E2™7® to be injective. Moreover, the cokernel of ES" ™! — E3™73
must be one copy of HZ(R,).

Since all modules in EZJ are injective, socle dimensions are additive in short exact sequences. Thus,
Ao2 = Ag3, and A3 3 = )\1,2_—1- Ao,1 +1 = A2+ 1. This settles the claim for A 2. But A3 3 is a function of Y
by [47], and it follows that A; 5 is a function of Y as well. O

Theorem 3.21. Let Y be a projective complex scheme that is of equi-dimension three. Assume that every
local ring Oy ; satisfies (S2) and that the Picard group of Y has rank 1. Then A(Y) is independent of the
choice of the cone Y forY .

Proof. By Lemma 3.19 we can assume that Y is connected. This forces X0,1(Y) = 0 for any cone Y of Y
by the Second Vanishing Theorem [15, Theorem 7.5].

Using the equi-dimensionality and the (Ss)-property, the Lyubeznik table is by Remark 1.3 and
Lemma 3.18 equal to

A2 o3
A1z
A = : A2,4 )
A34
Aa,4

Moreover, H ?_2(Rn) is supported only in the origin, hence injective. By Corollary 2.9, its socle dimension is
the dimension of the top de Rham group of the affine cone complement. By Proposition 2.16, this dimension
is well-defined. Thus, Ag 2 is a function of Y alone, reflecting the de Rham group H 2"_2(A]§ \Y) independent
of the choice of the cone.

Convergence of the spectral sequence forces, similarly to the proof of Theorem 3.20, that A3 4 = A1 3+ Xg,2
and that A\g 4 = Mg 3. By the Picard number condition, Ay 4 is the same for every cone, and hence so is Ag 3.
Since Ao is a function of Y, and since Asp . is independent of the embedding by the Picard number
condition, the same is true for A\; 3. O

Theorem 3.22. Let Y be a projective complex scheme of equi-dimension four. Assume that Y is locally
everywhere (S3), and that the Picard group of Y has rank 1. Then A(Y) is independent of the choice of the

cone Y forY.

Proof. By Lemma 3.19 we can assume that Y is connected. This forces X0,1(Y) = 0 for any cone Y of Y
by the Second Vanishing Theorem [15, Theorem 7.5].

Write Y = Proj (R/I) where R = C[zy,...,x,]. Since (S3) implies (S3), Remark 1.3 and Lemma 3.18
assure that the Lyubeznik table of R/I is

X022 Aoz Aoa
A3 §1,4 )\'
_ 24 25
A= A5
A5
As.5

Now take a prime p of height n — 2 that contains I. Then depth((R,,/I),) = 3 and so by [8, Corollary 2.8],
(H"P73(R,)), = 0. Thus, dim(H**(R,)) < 1 and Ay 4 = 0.

2 This isomorphism property holds for any ideal I of dimension greater than two.
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Localizing at primes of height n — 1 yields, with the result of Dao and Takagi [8, Corollary 2.8], that
H}“Z(Rn) and H}%S(Rn) are Artinian. It follows that A\; 3 = 0, and fy < n — 3. By Corollary 3.15, since
the Picard number is one, Ag 2 and Ag 3 are independent of the embedding choice.

Convergence of the spectral sequence to Hy (R,,) forces that

Aoa = A25 and A4 =A35 — Ao,3 (and o2 = Aujs5).

As the Picard number is one, the \; ; are independent of embeddings for all 4 > 2 and all j. This then fixes
all Apq. O

Proof of Theorem 3.9. Toric projective varieties are connected and locally the spectra of semigroup rings
to saturated semigroups. They are hence normal, and so by Hochster’s theorem Y is Cohen-Macaulay,
[19]. The coordinate ring R,,/I of the cone Y thus has a Lyubeznik table as in the proof of Theorem 3.21.
Moreover, H?"?(R,,) is Artinian.

Additional vanishings are due to the (S3)-condition on the punctured spectrum of Y. As in the proof of
Theorem 3.22, localization at a prime of R,, of height n — 1 shows with [8, Thm. 2.8] that the support of
H773(R,) is zero-dimensional, hence A\; 3 = 0.

At this point, let us assume that Y is not a hypersurface, and hence of codimension two or more.

If Ao 2 is nonzero, it is therefore the dimension of H7 (H} %(R,)) = H?**~3(U;C) where U is the affine
complement of Y. By the spectral sequence argument in the proof of Lemma 2.8, it also equals the dimension
of the top cohomology group H?*"~#(PU;C) of the projective complement PU.

The long exact sequence (2.3.1) takes the form

H2=4(P"hC) — H 4P L C) — HH(PU;C) — HZP (P71 C) — -+

and by [22, V.6.6] H?/"_:a(IP’"*l; C) is dual to HX(Y;C) = H'(Y;C). But projective toric varieties (or more
generally toric varieties to a fan with a full-dimensional cone) are simply connected by [9, 3.2]. So H*(Y’; C)
and Hé"ig(]P’”’l; C) are zero.

The morphism H}%,"_‘l([?”_l;@) — H?"=4(P"~1;C) is via Alexander and Poincaré duality dual to
the (injective) restriction morphism H?(P"~1;C) — HZ?(Y;C), hence itself surjective. It follows that
H?*~4(PU;C) = H*3(U;C) = 0, and hence Ao and H' ?(R,,) are both zero.

It now follows that actually the Artinian module H}“S(Rn) is the top local cohomology group of I, and
H?*"=5(PU;C) is the top cohomology group of PU. Repeating the above computations, we now have a long
exact sequence

0=H>"*P" % C) — H*(PU;C) — H*(P""};C) — H* *(P"5C) — - -

in which the arrow H;"_‘l(]P’”*l; C) — H?"4(P"~1;C) is dual to the (injective) morphism H?(P"~!;C)
— H?(Y;C), and where H?>"~%(PU;C) = H>"~*(U;C) is a vector space of dimension \ 3.

For projective toric varieties (and more generally, when all cones of the fan are top-dimensional), the
Picard group of Y is isomorphic to H?(Y;C), [6, Thm. 12.3.2]. The long exact sequence above thus shows
the equation \g 3 = p.

Finally, by convergence of the spectral sequence, Ay 4 =1 and Az 4 = Ag2 =0 and A4 = Ay 3.

This settles the problem for all embeddings in which Y is not a hypersurface. If in some embedding ¥
happens to be a hypersurface, necessarily in Pé, its Lyubeznik table is trivial for this embedding, simply for
lack of higher local cohomology. On the other hand, [13, Exp. XII, Cor 3.7] asserts that the Picard group of
Y is then cyclic, equal to that of IP’é. Thus, j is zero and we see that all Lyubeznik tables of Y agree. O
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