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Abstract

Item response theory (IRT) is the study of how
people make probabilistic decisions, with di-
verse applications in education testing, recom-
mendation systems, among others. The Rasch
model of binary response data, one of the most
fundamental models in IRT, remains an active
area of research with important practical sig-
nificance. Recently, Nguyen and Zhang (2022)
proposed a new spectral estimation algorithm
that is efficient and accurate. In this work, we
extend their results in two important ways.
Firstly, we obtain a refined entrywise error
bound for the spectral algorithm, complement-
ing the ‘average error’ `2 bound in their work.
Notably, under mild sampling conditions, the
spectral algorithm achieves the minimax opti-
mal error bound (modulo a log factor). Build-
ing on the refined analysis, we also show that
the spectral algorithm enjoys optimal sample
complexity for top-K recovery (e.g., identi-
fying the best K items from approval/disap-
proval response data), explaining the empiri-
cal findings in the previous work.
Our second contribution addresses an impor-
tant but understudied topic in IRT: privacy.
Despite the human-centric applications of
IRT, there has not been any proposed privacy-
preserving mechanism in the literature. We
develop a private extension of the spectral al-
gorithm, leveraging its unique Markov chain
formulation and the discrete Gaussian mech-
anism (Canonne et al., 2020). Experiments
show that our approach is significantly more
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accurate than the baselines in the low-to-
moderate privacy regime.

1 INTRODUCTION

Item response theory (IRT) was originally developed
within the psychometric community in the early 60s
(Rasch, 1960; Van der Linden and Hambleton, 1997)
as a tool to model patients’ responses to psychologi-
cal tests. Since its conception, item response theory
has been applied to diverse settings including educa-
tion testing (Lord, 2012), crowdsourcing (Whitehill
et al., 2009), recommendation systems (Chen et al.,
2005), finance (Schellhorn and Sharma, 2013), market-
ing (Brzezińska et al., 2016) and more recently the eval-
uation of machine learning algorithms (Moraes et al.,
2020; Chen and Ahn, 2020; Martínez-Plumed et al.,
2019).

One of the most fundamental models in IRT is the
Rasch model (Rasch, 1960). It assumes that the binary
response Xli ∈ {0, 1} of person l with latent character-
istic θ∗l ∈ R to item i with latent parameter β∗i ∈ R is
given as follows.

P(Xli = 1) = 1
1 + exp (−(θ∗l − β∗i )) . (1)

As an example in education testing, θ∗l corresponds to
the ability of student l and β∗i the difficulty of problem
i. The random response variable Xli is whether the
student correctly solves the problem.

Recently, Nguyen and Zhang (2022) proposed a new
spectral algorithm for one-sided parameter estimation
under the Rasch model (i.e., estimate β∗). Experimen-
tally, the spectral algorithm is significantly faster than
its competitors while being comparatively accurate. As
the spectral algorithm is entirely new, we identify two
important open directions from the previous work.

Entrywise Error Guarantee. The guarantee in
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Nguyen and Zhang (2022) is an `2 error bound for
parameter estimation (cf., Theorem 3.3), which can be
roughly considered the average estimation error. In
certain domains, we might desire a small entrywise
error guarantee. For example, consider a conference
reviewing system where reviewers vote to reject or ac-
cept papers. We would like to accurately identify the
top papers from reject/accept data. One approach is
to estimate the quality parameters of the papers and
accept K papers with the higest parameter values1.
The `2 error does not indicate how the estimation error
distributes among the papers. The average error may
still be low if all the error is concentrated in a single
estimate. Really good papers could get rejected or sub-
par papers get accepted. On the other hand, a small
entrywise parameter estimation error ensures that the
quality for each paper is accurately measured.

Privacy. The study of privacy-preserving mechanisms
in IRT is understudied. This is quite concerning be-
cause many item response theory models and algo-
rithms are deployed on human response data containing
sensitive information (e.g., a student passing a test, a
voter supporting a legislation). One may consider the
binary nature of the response data and propose ran-
domized response (Warner, 1965) as a natural solution.
However, as we will show in our experiments, even
when the number of responses per person is moderate
m ≈ 10, the amount of noise that randomized response
needs to inject to ensure sufficient privacy is too large
for any downstream algorithm to obtain accurate pa-
rameter estimates. On the other hand, analyzing the
sensitivity (cf. Definition 3.1 in Dwork et al. (2014))
of the algorithms used in the IRT literature including
optimization based algorithms (Andersen, 1973; Fis-
cher, 1981; Haberman, 1977; Hambleton et al., 1991)
is substantially more difficult. This might explain the
seeming lack of progress towards developing a private
algorithm in IRT.

Our Contributions. In this work, we make progress
in both of the above open directions.

• In section 3, we obtain refined entrywise analysis
of the spectral algorithm, coupled with a matching
lower bound, showing that under mild sampling
conditions, the spectral algorithm achieves optimal
entrywise error guarantee (up to a log factor). As
a result of this optimality, we also show that the
spectral algorithm can accurately identify all of
the top K items using only a constant factor more
than the information theoretically minimal sample
size.

1To adapt the Rasch model to this application, define
Xli = 0 if reviewer l accepts paper i. β∗

i corresponds to the
quality of paper i and θ∗

l the ‘harshness’ of reviewer l.

• In Section 4, we propose a privacy-preserving mech-
anism that is designed with the discrete nature
of human response data in mind. We take advan-
tage of the Markov chain formulation underlying
the spectral algorithm and the discrete Gaussian
mechanism to develop a conceptually simple yet
performant private algorithm. The algorithm pro-
vides strong and controllable privacy guarantee
and outperforms other approaches, especially in
the low-to-moderate privacy regime.

2 PROBLEM DESCRIPTION &
THE SPECTRAL ALGORITHM

We follow the notations of Nguyen and Zhang (2022).
Consider a universe with n people and m items. Each
person l has parameter θ∗l ∈ R and each item i
has parameter β∗i ∈ R. To overcome a fundamental
identifiability issue associated with parameter trans-
lation, we assume a normalization constraint on the
item parameters β∗>1m = 0. We also assume that
β∗i ∈ [β∗min, β

∗
max] ∀i ∈ [m] for some constants β∗min,

β∗max. Similarly, we assume that θ∗l ∈ [θ∗min, θ
∗
max] for

some constants θ∗min, θ
∗
max. Let A ∈ {0, 1}n×m denote

the assignment matrix where Ali = 1 if person l re-
sponds to item i and 0 indicates missing data. The
observed data is X ∈ {0, 1, ∗}n×m where ∗ denotes
missing data. For entries where Ali = 1, Xli is indepen-
dently distributed per Equation (1). Let us consider the
uniform sampling model where Ali = 1 with probability
p for some p > 0.

The Spectral Algorithm. We summarize the orig-
inal formulation of the spectral algorithm here. For
more details on its implementation and analysis, we
refer the reader to Nguyen and Zhang (2022). For
each item pair i 6= j, define the pairwise differential
measurement as

Yij =
n∑
l=1

AliAljXli(1−Xlj) ∀i 6= j ∈ [m] . (2)

Note that this is a discrete-valued quantity. Given the
pairwise differential measurements, the algorithm con-
structs a Markov chain M̂ ∈ [0, 1]m×m whose transition
probabilities are defined as follows:

M̂ij =
{

1
dYij if i 6= j

1−
∑
k 6=i

1
dYik if i = j

, (3)

where d is a sufficiently large normalization factor cho-
sen so that the resulting pairwise transition proba-
bility matrix M̂ does not contain any negative en-
tries. Typically, d = O(maxi∈[m]

∑
k 6=iBik) where

Bik =
∑n
l=1AliAlk. The algorithm then computes
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the stationary distribution π of M̂ and recovers β us-
ing a post-processing step. Algorithm 1 summarizes
the spectral algorithm.

Algorithm 1 The Spectral Algorithm
Input: Binary response data X ∈ {0, 1, ∗}n×m.
Output: Item parameter estimate (βi)mi=1.

1: Construct a Markov chain M̂ per Equation (3).
2: Compute the stationary distribution of M̂ :

Initialize π(0) = [ 1
m , . . . ,

1
m ].

For t = 1, 2, . . . until convergence, compute

π(t)> = π(t−1)>M̂

‖π(t−1)>M̂‖1
.

3: Compute z = π/d and β̄ = log(z) and return the
normalized item parameters, i.e., β = β̄ − β̄>1/m.

3 FINE-GRAIN ANALYSIS OF THE
SPECTRAL ALGORITHM

3.1 Entrywise Error Bound

In this section we provide refined entrywise error bound
for the spectral algorithm. Recall the example with
conference reviewing and that our practical motivation
is to show that the estimation error incurred by the
spectral algorithm ‘spreads out’ among the parameters.
This is to prevent the case where the estimation error
is concentrated on a few items.
Theorem 3.1. Consider the uniform sampling model
described in Section 2. There exist constants C1, C2
such that if np2 ≥ C1 logm and mp ≥ C2 log n then
the output of the spectral algorithm satisfies

‖β − β∗‖∞ ≤
C
√

logm
√
np

with probability at least 1−O
(
m−10)−O (n−10) where

C is an absolute constant.

The above theorem is a refinement of Theorem 3.3 in
Nguyen and Zhang (2022). In that paper, the authors
show that the output of the spectral algorithm satisfies
‖β − β∗‖2 = O

( √
m√
np

)
. Comparing the this `2 bound

with Theorem 3.1 reveals that the magnitude of the
entrywise error is no more than O

(√
logm
m

)
the size

of the `2 error. This shows that the cummulative error
indeed distributes evenly among the parameters and
no two error terms differ in magnitude by more than a
log factor.

Readers who are familiar with the learning to rank
literature might see the parallel between this result and

that in the Bradley-Terry-Luce (BTL) model where a
similar algorithm – spectral ranking – enjoys a favor-
able entrywise error guarantee. However, the results
are only superficially familiar and are based on similar
fundamental theorems of Markov chain perturbation.
Our results for the entrywise error bound and top-K
recovery in the next section are not simple extensions
of the known results in the BTL literature. Firstly,
the sampling model considered here fundamentally dif-
fers from the Erdos-Reyni comparison graph sampling
model considered in the BTL model analysis. Addi-
tionally, the construction of the spectral algorithm
is also different from the spectral ranking algorithm.
Specifically, the pairwise transition probabilities and
the construction of the Markov chain in Algorithm 1
and the spectral ranking algorithm are different.

Besides the spectral algorithm, we are only aware of
entryise error guarantee for joint maximum likelihood
estimate (JMLE) (Andersen, 1973; Haberman, 1977),
formally stated in Theorem 2 of Chen et al. (2021).
However, it is well known that JMLE produces an in-
consistent estimate of β∗ whenm is constant (Andersen,
1973; Ghosh, 1995). In the supplementary materials,
we provide a complementary entrywise error bound for
the spectral algorithm where we remove the assumption
mp = Ω (log n) from Theorem 3.1, showing that the
spectral method always gives a consistent estimation
of individual item parameters. On a practical note,
the spectral algorithm has been shown to be similar in
terms of accuracy but is significantly faster than JMLE
(Nguyen and Zhang, 2022).

3.2 Top-K Recovery Guarantee

In this section, we analyze the performance of the spec-
tral algorithm in terms of top-K recovery, building on
the entrywise error bound obtained earlier. Curiously,
Nguyen and Zhang (2022) show through experimental
results that the spectral algorithm often outperforms
the baseline IRT algorithms in terms of top-K accuracy.
In this section, we provide a theoretical justification for
its strong performance by furnishing an upper bound
on the sample complexity for top-K recovery of the
spectral algorithm. Under mild sampling conditions,
this upper bound turns out to have a matching lower
bound which we will show in Section 3.3.

To ground our discussion, we first define a theoretical
quantity that captures the model-dependent difficulty
of the top-K recovery problem. Define ∆K = β∗[K] −
β∗[K+1] to be the gap between the K-th and the K + 1-
th best items. The smaller the gap, the harder it is to
separate the top K items from the remaining items.

The reader could intuitively see that if we have a finite-
sample entrywise error bound on β, we can obtain
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a finite sample error guarantee for top-K recovery.
Suppose that we have a sufficiently large sample size
such that ‖β−β∗‖∞ ≤ ∆K

2 . Then we separate all of the
top K items from the bottom n−K items and achieve
perfect top K recovery. Building on this intuition, we
have the following top-K recovery guarantee for the
spectral algorithm.
Theorem 3.2. Consider the setting of Theorem 3.1.
Consider a top-K estimator that first runs the spectral
algorithm on the response data and returns the K items
with the highest parameter values. There exists a con-
stant CK such that if np ≥ CK logm

∆2
K

, then this top-K
estimator correctly identifies all of the top K items with
probability at least 1−O

(
m−10)−O (n−10).

To summarize, the above theorem states that so long
as m,n, p satisfy

np = Ω
(

logm
∆2
K

)
, np2 = Ω (logm) andmp = Ω (log n) ,

then the spectral method accurately identifies all of the
top K items. To the best of our knowledge, this guar-
antee (and the lower bound shown in the next section)
is the first formal result for the ranking performance
of any estimation algorithm in the literature.

3.3 Lower Bounds

In this section, we complement the upper bounds ob-
tained in previous sections with corresponding infor-
mation theoretic lower bounds.

Firstly, for parameter estimation, we obtain a lower
bound result that generalizes Theorem 3.5 of Nguyen
and Zhang (2022). Note that Theorem 3.5 in the
previous work is a Cramer-Rao bound that only applies
to unbiased estimators. However, our new information
theoretic lower bound is strictly more general and is
applicable to all statistical estimators.
Theorem 3.3. Consider the sampling model described
in Section 2 and further assume that np = Ω(1). There
exists a class of Rasch models B such that for any
statistical estimator, the minimax risk is lower bounded
as

inf
β̂

sup
β∗∈B

E‖β̂ − β∗‖22 = Ω
(
m

np

)
.

As a consequence of the normed inequality ‖β−β∗‖∞ ≥
1√
m
‖β − β∗‖2, we can lower bound the minimax entry-

wise error for any statistical estimator as

inf
β̂

sup
β∗∈B

E‖β̂ − β∗‖2∞ = Ω
(

1
np

)
.

From Theorem 3.1, the spectral algorithm satisfies
‖β − β∗‖2∞ = O

(
logm
np

)
. This directly establishes the

optimality (modulo a log factor) of the spectral algo-
rithm.

Moving on to top-K recovery guarantee, the fol-
lowing theorem establishes the minimum sample com-
plexity required to accurately identify all of the top K
items from user-item binary response data.
Theorem 3.4. Consider the sampling model described
in Section 2. There is a class of Rasch model such
that if np ≤ cK logm

∆2
K

, where cK is a constant, then any
estimator will fail to identify all of the top K items
with probability at least 1

2 .

We compare the above lower bound to the upper bound
obtained in the previous section. The condition mp =
Ω (log n) is a mild one, requiring that the number of
items grows slowly and is appropriate in applications
such as recommendation systems or crowdsourcing.
We see that np = Ω

(
logm
∆2

K

)
is the necessary sample

size to accurate identify all of the top-K items and
the spectral algorithm needs the same condition. The
spectral algorithm also requires np2 = O (logm). This
is a consequence of the design of the algorithm that
operates on pairwise differential measurements.

In general, ∆K may be arbitrarily small and change
with m. For example, if each β∗i is uniformly sampled
from [β∗min, β

∗
max] then E[∆K ] = O( 1

m ). This makes
comparisons between the two conditions on n difficult.
In some real life situations, however, one can assume
that p = O(1). This is appropriate in settings such as
education testing where each student is shown a con-
stant fraction of all questions from a question bank, or
in recommendation systems where the users are shown a
constant fraction of a product catalogue. In this regime
of p, the lower bound simplifies to n = Ω

(
logm
∆2

K

)
.

Assuming that ∆K = O(1), the spectral algorithm
needs n = O

(
max

{
logm
∆2

K

, logm
})

= O
(

logm
∆2

K

)
to ac-

curately identify all of the top K items – the optimal
sample complexity for top-K recovery.

4 THE PRIVATE SPECTRAL
ALGORITHM

4.1 A Brief Introduction to Differential
Privacy

In this section, we propose, for the first time in the
IRT literature, a privacy-preserving estimation algo-
rithm. We focus on differential privacy (DP), which
has become the de facto framework for analyzing the
privacy guarantees of machine learning algorithms. To
simplify the description, we consider the full response
setting – a person responds to all items. The starting
point is the definition of two neighboring datasets.
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Definition 1. Let X,X ′ be two binary responses data
as described in Section 2. We write X ' X ′ to denote
that X and X ′ are neighboring datasets if X and X ′
differ by the entries of exactly one row.

Note that we are trying to provide user privacy in our
application. Intuitively, a randomized function or a
statistical query of a dataset (e.g., counting the number
of people who respond positively to an item) provides
privacy to the users if its output is not sensitive to
changes in a single user’s data. This is formalized by
the definition (approximate) differential privacy.
Definition 2 (Approximate Differential Privacy
(Dwork et al., 2014)). For any input domain X and
output domain Y, a randomized function f̃ : X → Y
satisfies (ε, δ)-differential privacy if for any two X ' X ′
and any C ⊆ Y, P(f̃(X ′) ∈ C) ≤ eε P(f̃(X) ∈ C) + δ .

The quantity ε is the privacy budget or desired privacy
level. The smaller its value, the stronger the privacy
guarantee but the private output tends to be less ac-
curate. When an algorithm makes multiple private
functions evaluation or queries on the same dataset, we
call it query composition. In general, privacy guaran-
tee decays linearly with the number of queries (Dwork
et al., 2014; Dwork and Rothblum, 2016). That is, for
a composition of k queries to satisfy overall ε∗ privacy
level, the privacy budget for each query is approxi-
mately ε∗/k. When k is large, the accuracy of DP
algorithms tend to suffer significantly. Motivated by
this practical consideration, researchers have developed
refined notions of privacy that enjoys better accuracy
under query composition than DP. One of these is
concentrated differential privacy (CDP).
Definition 3 (Concentrated Differential Privacy
(Dwork and Rothblum, 2016; Bun and Steinke, 2016)).
For any input domain X and output domain Y, a
randomized function f̃ : X → Y satisfies ε2

2 - concen-
trated differential privacy if for all X ' X ′ and α ∈
(1,∞), Dα(f̃(X) ‖ f̃(X ′)) ≤ ε2α

2 , where Dα(P‖Q) =
1

α−1 log
∑
yßY P (y)αQ(y)1−α is the Rényi divergence

between the distributions P and Q.

4.2 The Discrete Gaussian Mechanism

A common approach to preserve privacy is to add ran-
dom noise to the output of non-private functions. Gen-
erally, adding a larger the amount of noise gives better
the privacy guarantee at the expense of downstream
estimation accuracy. Within this class of mechanisms,
the discrete Gaussian mechanism (Canonne et al., 2020)
is a recently proposed noise adding mechanism utilizing
a discretized generalization of the Gaussian distribu-
tion. We deliberately choose a discrete noise mecha-
nism because it has been found that even innocuous

finite-precision calculations can be exploited by mali-
cious users to recover the original discrete data exactly
(Mironov, 2012). Given the discrete nature of the bi-
nary response data, we believe that this approach is
pertinent.

Secondly, we prefer the discrete Gaussian mechanism
to the discrete Laplace mechanism which adds discrete
Laplace noise (Ghosh et al., 2009). The discrete Gaus-
sian mechanism has over the Laplace mechanism is
that the Gaussian distribution has lighter tail than the
Laplace distribution. As our experiments will show,
when we have to repeatedly make a large number of
queries, the total variance of the Gaussian noise is
lower than that of the Laplace noise needed to achieve
a comparable privacy level and the resulting estimate
is more accurate.

For the design of our private spectral algorithm, recall
the definition of a pairwise differential measurement in
Equation (2). For a fixed privacy budget ε, define the
privatized pairwise differential measurement as

Ỹij =
n∑
l=1

AliAljXli(1−Xlj)+Zij ∀i 6= j ∈ [m] , (4)

where each Zij ∼ NZ(0, 1
ε2 ) is an independent random

variable drawn from the 0-mean discrete Gaussian dis-
tribution with variance 1

ε2 (see Algorithm 1 of Canonne
et al. (2020)).

There are m(m − 1) pairwise differential measure-
ments. Hence, a privatized spectral algorithm that
adds NZ(0, 1

ε2 ) to each pairwise differential measure-
ment Yij achieves 1

2m(m− 1)ε2-CDP overall (Canonne
et al., 2020). Conversely, if we desire an overall privacy
level ε∗, we can compute the noise variance needed for
each pairwise differential measurement.
Lemma 4.1. Consider a modified spectral algorithm
that first adds NZ

(
0,
√
m(m−1)
ε∗2

)
-distributed noise to

each pairwise differential measurement per Equation
(4). The algorithm then proceeds to use the private dif-
ferential measurements to construct the Markov chain
as in the original algorithm. Then the modified spectral
algorithm satisfies 1

2ε
∗2-CDP.

4.3 Changing the Privacy-Accuracy Tradeoff
via Sparsification

From Lemma 4.1, one can see that the variance of
the additive Gaussian noise scales as the square root
of the number of pairwise differential measurements.
When n� m, the additive noise will be dominated by
the signal from the user data and the private spectral
algorithm will produce an accurate estimate (e.g., see
Figure 1). On the other hand, suppose we have a large
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m (say m ≥ 100) but a relatively small n (n ≤ 500).

Adding NZ

(
0,
√
m(m−1)
ε2

)
-distributed noise to each

pairwise differential measurement may introduce a lot
of noise, dominating the signal and leading to a less
accurate final estimate.

To overcome this limitation, we propose a heuristic
modification to the private spectral algorithm. Instead
of constructing a “dense” Markov chain where every
pairwise transition probabilities are non-zero, we con-
struct a sparse approximation of this Markov chain. We
first generate an Erdős-Rényi graph with m vertices
and edge probability p0 = (1 + O(1)) logm

m . Note that
the condition on the edge probability is to ensure that
the resulting comparison graph is connected with high
probability (Erdos et al., 1960). If we further ensure
that all pairwise transition probabilities are positive2,
the resulting Markov chain will admit a unique station-
ary distribution and subsequently a unique parameter
estimate. The advantage here is that we only compute
(1 + O(1))m logm pairwise differential measurements.
Hence for each subsampled pairwise differential mea-
surement, we only need to add NZ

(
0,
√
O(m logm)
ε∗2

)
-

distributed noise and achieve the same CDP guarantee,
a
√
m factor reduction in variance compared to the

dense Markvo chain construction.

However, sparsification might also come with its own
limitation. By removing some of the pairwise transition
probabilities information from the Markov chain, the
final estimate obtained from the sparse Markov chain
may deviate from that using full information. As our
experiments will show, sparsification tradeoffs between
additive noise and approximation error. It is appropri-
ate to use sparsification to achieve a low-to-moderate
privacy guarantee with good estimation accuracy when
the number of items is large and the number of user
is small. Finally, Algorithm 2 summarizes our private
spectral algorithm.

Algorithm 2 The Private Spectral Estimator
Input: Response data X ∈ {0, 1}n×m, p0 (default

1) and desired privacy level ε∗.
Output: Private item estimate β̃

1: Construct a private Markov chain M̃ with underly-
ing comparison graph drawn from an Erdos-Reyni
distribution with edge probability p0 per Equation
(4) and desired privacy level ε∗.

2: Follow steps 2-3 in Algorithm 1 using M̃ .

2This can be achieved by adding regularization as de-
scribed in Nguyen and Zhang (2022)

5 EXPERIMENTS

In this section, we evaluate the privacy-accuracy trade-
off of the private spectral algorithm on synthetic and
real-life datasets. We use randomized response (on
the user data) and the discrete Laplace mechanism as
baseline methods. Recently it has been shown that
one can amplify the privacy guarantee of randomized
response by shuffling the randomized user data (cf.,
Theorem III.1 of Feldman et al. (2022)). We compare
the algorithms in terms of their approximate differen-
tial privacy guarantee 3. Specifically, we fix a common
δ = 10−4 and evaluate the accuracy at varying privacy
levels ε∗. For readers who are not familiar with privacy-
preserving mechanisms, we describe these approaches in
the supplementary materials and their implementation.

5.1 Synthetic Datasets.

Figure 1 shows the performance of the algorithms on
synthetic datasets where we know the ground truth
β∗. The amount of noise introduced by the discrete
Gaussian mechanism gets proportionally smaller than
the signal as n grows. Expectedly, given a sufficiently
large n (relative to m), we see almost identical per-
formance between the non-private estimator and the
private estimator using the discrete Gaussian mecha-
nism. At the very high privacy regime ε∗ ≈ 0.01, all
methods produce very inaccurate results. Sparsifica-
tion is significantly worse than the other approaches in
this regime because of the combined effect of a large
amount of additive noise and the approximation error
introduced by sparsification. The differences among the
methods become more apparent in the low-to-moderate
privacy regime. As ε∗ increases, the accuracy of the dis-
crete Gaussian mechanism improves significantly. On
the other hand, randomized response and the Laplace
mechanism would require either a very large n or a
very large privacy budget ε∗ to produce a reasonably
accurate estimate, neither of which is desirable.

5.2 Real-life Datasets.

For real life datasets, we do not have a ground truth β∗.
However, previous work has shown that the spectral
algorithm is competitive with the most commonly used
IRT algorithms. Also considering that we focus on
privacy-preservation in this work, we evaluate ‖β̃ −
β‖, where β is the output of the non-private spectral
algorithm and β̃ that of the corresponding private
algorithm.

3One can convert concentrated differential privacy guar-
antee of the spectral algorithm to approximate differential
privacy guarantee using Lemma 3.5 of Bun and Steinke
(2016).
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(a) Given the same number of users, in-
creasing m expectedly leads to a worse
privacy-accuracy tradeoff for all methods.
The discrete Gaussian mechanism generally
outperforms the baselines at the low-to-
moderate privacy regime.

(b) The privacy-accuracy tradeoff for the
discrete Gaussian mechanism gets better as
n increases (from 200 in the previous sub-
figure to 1000) while randomized response
and the Laplace mechanism see little gain
from a larger n.

Figure 1: Synthetic datasets. The discrete Gaussian
mechanism outperforms the baselines at low-to-moderate
privacy regime and enjoys substantial improvement from a
larger sample size n.

Education Datasets. We include commonly used
education testing datasets including LSAT (McDonald,
2013), UCI (Hussain et al., 2018) and the Three Grades
dataset (Cortez and Silva, 2008). These datasets have
a very small number of items. At very high privacy
level ε ≈ 0.01, all methods produce very inaccurate
estimate and randomized response is the most accurate
method. However, at a moderate privacy level ε∗ ≈ 1,
the Laplace mechanism and the Gaussian mechanism
outperform the randomized response approach. On the
other hand, to produce a reasonably accurate estimate,
randomized response would require a very large ε∗,
leading to a vacuous privacy guarantee.

(a) LSAT dataset.

(b) Three grades dataset.

(c) UCI student dataset.

Figure 2: Education datasets. The Gaussian mecha-
nism and the Laplace mechanism outperforms randomized
response at low-to-moderate privacy levels. The results
here suggest that for many education testing application
where the number of items is small, the spectral algorithm
with the discrete Gaussian (or Laplace) mechanism should
be the preferred privacy-preserving algorithm.

ML-100K Recommendation Systems Datasets.
For experiments on recommendation systems datasets
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(Harper and Konstan, 2015), we follow a similar ap-
proach to previous work to generate binary response
data from ratings data (Lan et al., 2018; Davenport
et al., 2014). We first perform a low rank matrix es-
timation of the user-item ratings matrix and use the
estimation as the user-item preference scores. For each
user, we convert scores that are lower than the average
to 1 and scores that are higher than the average to 0.
We then select a random subset of m items and extract
the corresponding submatrix as the response matrix.
From Figure 3, one can see that the discrete Gaus-
sian mechanism provides superi or privacy-accuracy
tradeoff compared to the other approaches. Notably,
sparsification provides a more accurate parameter es-
timation by reducing the amount of noise needed to
ensure the same level of privacy and this improvement
is significant when m is large.

From the experiments on synthetic and real-life
datasets, one can see that when we desire high ac-
curacy and a moderate level of privacy, the discrete
Gaussian mechanism should be the preferred approach.
Additionally, when the number of items m is large
while the number of users n is small, one should use
the sparse Markov chain construction.

6 ETHICAL DISCUSSIONS

Our work explores privacy matters for an algorithm of
which real-life applications often involve human data
with sensitive information. For example, the Rasch
model is often studied in the context of education
testing and psychological testing where the subjects
are students and patients. Therefore, deploying any
algorithms in such capacity needs to be accompanied
by thoughtful and thorough ethical considerations. In
this work, we provide the algorithmic tool to quantify
the error associated with the parameter estimates and
to preserve the privacy of the human subjects.

7 CONCLUSION

In this work, we made two contributions to the un-
derstanding of the spectral algorithm for parameter
estimation under the Rasch model. Firstly, we show
that the spectral algorithm achieves the optimal entry-
wise error bound, complementing its optimal `2 error
guarantee obtained in the previous work. Secondly, we
propose, for the first time in the item response theory
literature, a differentially private algorithm. We com-
plement our theoretical and algorithmic contributions
with experimental results showing that the discrete
Gaussian mechanism provides accurate parameter esti-
mation, outperforming the baselines. A possible future
extension of this work is a deeper analysis of the ran-

(a) When m is small, sparsification doesn’t sig-
nificantly improve the performance of the private
spectral algorithm.

(b) With the same n and a large number of items
m, the ‘sparse Markov chain’ approach is sig-
nificantly better than the ‘dense Markov chain’
approach.

Figure 3: ML-100K datasets. The discrete Gaussian
mechanism generally outperforms the baselines, especially
in the low-to-moderate privacy regime ε∗ ≥ 1.
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dom subsampling of the comparison graph in the sparse
discrete Gaussian mechanism. We believe that the ran-
domized sparsification step could provide some form of
privacy amplification. Furthermore, designing an accu-
rate estimation algorithm for the high privacy regime
(ε∗ ≈ 0.01) remains an unresolved challenge.
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1 Proofs of Entrywise Error Guarantee

1.1 Preliminaries
Define π∗i = e

β∗
i∑m

k=1
e
β∗
k

for i ∈ [m], π∗max = maxi∈[m]{π∗i }, π∗min = mini∈[m]{π∗i }. Define κ := β∗max − β∗min. We

have π∗max/π
∗
min = eκ. Let γ = minl∈[n],i,j∈[m] E[Xli(1 − Xlj)]. Define B = A>A (i.e., Bij =

∑n
l=1AliAlj)

and the following two events.

A = {np
2

2 ≤ Bij ≤
3np2

2 ∀i 6= j ∈ [m]} ,

A+ = A ∩ {mp2 ≤ A>l 1 ≤ 3mp
2 ∀l ∈ [n]} .

Both events happen with high probability under mild sampling conditions, as summarized by two lemmas
below. As a convenient notation, we use a & b to mean a = Ω(b).

Lemma 1.1. Consider the random sampling scheme described in Section 2. Suppose that np2 ≥ C0 logm,
for a sufficiently large constant C0 (e.g., C0 ≥ 20). We have

P(A) ≥ 1− exp
(
−(1− O(1))np

2

10

)
Proof. Invoking Chernoff bound, we have for a pair i 6= j,

P(|
n∑
l=1

AliAlj − E[AliAlj ]| >
1
2np

2) ≤ 2exp
(
−

1
4np

2

1
2 + 2

)
= exp

(
−np

2

10 + ln 2
)
.

1



Applying union bound over all pairs, we have

P

(
∃i 6= j : |

n∑
l=1

AliAlj − E[AliAlj ]| >
1
2np

2

)

≤
(
m

2

)
· exp

(
−np

2

10 + ln 2
)

≤ exp
(
−np

2

10 + ln 2− 2 lnm
)

≈ exp
(
−(1− O(1)) np

2

10

)
.

Lemma 1.2. Consider the random sampling scheme described in Section 2. Suppose that np2 ≥ C0 logm
and mp ≥ C ′0 log n for sufficiently large constants C0, C

′
0 (e.g., C0 ≥ 20, C ′0 ≥ 10), then

P(A+) ≥ 1− exp
(
−(1− O(1))np

2

10

)
− exp

(
−(1− O(1))mp10

)
.

Proof. The first term is obtained using the same argument as in the proof of Lemma 1.1. For the second
term, we again invoke Chernoff bound.

P(|
n∑
l=1

AliAlj − E[AliAlj ]| >
1
2mp) ≤ 2exp

(
−

1
4mp
1
2 + 2

)
= exp

(
−mp10 + ln 2

)
.

Applying union bound over all users n gives

P

(
∃l ∈ [n] : |

n∑
l=1

AliAlj − E[AliAlj ]| >
1
2mp

)
≤ n · exp

(
−mp10 + ln 2

)
= exp

(
−mp10 + ln 2− log n

)
≈ exp

(
−(1− O(1)) · mp10

)
.

This completes the proof.

Under either event A (or A+) happening, one can set d = 3mnp2

2 . One can verify the following useful
inequalities:

π∗min ≥
∑m
i=1 π

∗
i

meκ
= 1
meκ

.

π∗max ≤
eκ
∑m
i=1 π

∗
i

m
= eκ

m
.

2



1.2 Basic Entrywise Analysis
Pick an index i ∈ [m]. We have the following deterministic decomposition.

πi − π∗i = (π>M)i − (π∗>M∗)i
=
∑
j

πjMji −
∑
j

π∗jM
∗
ji

=
∑
j

πjMji −
∑
j

π∗j (M∗ji −Mji +Mji)

=
∑
j

(πj − π∗j )Mji −
∑
j

π∗j (M∗ji −Mji)

=
∑
j

(πj − π∗j )Mji +
∑
j

π∗j (Mji −M∗ji) .

=
∑
j 6=i

(πj − π∗j )Mji︸ ︷︷ ︸
I1

+(πi − π∗i )Mii +
∑
j 6=i

π∗j (Mji −M∗ji)︸ ︷︷ ︸
I3

+π∗i (Mii −M∗ii)︸ ︷︷ ︸
I4

.

Rearranging the terms gives

πi − π∗i = 1
1−Mii︸ ︷︷ ︸

I2

·
(∑
j 6=i

(πj − π∗j )Mji +
∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (Mii −M∗ii)
)
.

The goal in this section and the next is to provide a bound on the absolute deviation of the RHS by bounding
each of the terms separately. The main difference between the analysis in this section versus that in the next
section is the added assumption that m grows with log n, mp & log n. In this section, we do not assume
anything about m. The goal here is to show that when m is a constant or grows very slowly with n, the
spectral algorithm produces consistent entrywise estimate of the parameter β∗. This is in sharp contrast to
JMLE which produces an inconsistent estimate of β∗ under this regime (Andersen, 1973; Ghosh, 1995). In the
next section, we obtain better (in fact optimal) entrywise error bound when m grows at least logarithmically
with n.

For a single pair (i, j), note that

Mij −M∗ij = 1
d

n∑
l=1

AliAlj

(
Xli(1−Xlj)− E[Xli(1−Xlj)]

)
is a sum of n independent random variables. Using Chernoff bound, we have, for α ∈ (0, 1),

P
(
|Mij −M∗ij | > αM∗ij

∣∣∣∣A)
≤ 2exp

(
−
α2M∗ij

3

)
≤ 2exp

(
−α

2 (Bijγ)
3

)
≤ 2exp

(
−α

2 γ np2

12

)
.

Define the following event

EC =
{
|Mij −M∗ij | ≤

√
12
√
C log np2

√
γ
√
np2

·M∗ij ∀i 6= j

}
.

We have
P(¬EC | A) ≤ 2m2

(np2)C .

3



We first upper bound I2, I3, I4.

Lemma 1.3. Suppose events A and EC hold for some constant C. Then

I2 ≥
(

1−
√

12
√
C log np2

√
γ
√
np2

)
· γ3 ,

|I3|, |I4| ≤
√

12
√
C log np2

√
γ
√
np2

· ‖π∗‖∞ .

Proof. To avoid cluttering the notation, define αC =
√

12
√
C lognp2

√
γ
√
np2

. When both events A and E hold, recall

that Bij =
∑
lAliAlj ≤

3np2

2 and we set d = 3mnp2

2 . We have

1−Mii =
∑
j 6=i

Mij ≥
∑
j 6=i

(1− αC)M∗ij

= (1− αC) ·
∑
j 6=i

1
d

n∑
l=1

AliAljE[Xli(1−Xlj)]

≥ (1− αC) · 1
2d (m− 1)np2γ ≈ (1− αC) · γ3 .

We will now bound the term I3. ∑
j 6=i

π∗j (Mji −M∗ji)

≤ αC ·
∑
j 6=i

π∗jM
∗
ji = αC · π∗i ≤ αC · ‖π∗‖∞ .

Next, we bound I4, using a similar argument as that used to bound I3, we have

π∗i (Mii −M∗ii) = π∗i ·
∑
j 6=i

(M∗ij −Mij)

≤ π∗i ·
∑
j 6=i

αCM
∗
ij = αC ·

∑
j 6=i

π∗iM
∗
ij

= αC ·
∑
j 6=i

π∗jM
∗
ji = αCπ

∗
i ≤ αC · ‖π∗‖∞ ,

where between the second and third line we use the fact that the Markov chain M∗ is time-reversible
(Proposition 2.1 of Nguyen and Zhang (2022)). That is, π∗iM∗ij = π∗jM

∗
ji.

What remains is to bound the term I1.

Lemma 1.4. Suppose that events A and EC hold for some constant C. Then for a constant C ′ > 1,

P

(
|I1| ≥

1 + αC
γ

3e2κ − 2αC
·
‖π∗‖∞

√
4C ′max{1, log np2/m}√

3np2

)
≤ min

{
1

exp (4(C ′ − 1)m) ,
1

(np2)4(C′−1)

}
,

where αC =
√

12
√
C lognp2

√
γ
√
np2

.
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Proof. Using Cauchy-Schwarz inequality, we have

I1 ≤ ‖π − π∗‖2 ·
√∑

j 6=i
M2
ji .

There are two terms here. For the second term, we have√∑
j 6=i

M2
ji ≤

√∑
j 6=i

(M∗ji(1 + αC))2

≤ (1 + αC) ·
√∑

j 6=i
M∗ji

2 ≤ 1 + αC√
m

.

The last inequality comes from the fact that conditioned on A and E , M∗ji ≤
Bij
d ≤

3/2np2

3/2mnp2 = 1
m .

For the first term, we invoke the `2 analysis of the spectral method (cf. Lemma A.3 of Nguyen and Zhang
(2022)), we have the following useful deterministic inequality

‖π − π∗‖2 ≤
‖π∗>(M∗ −M)‖2

µ(M∗)− ‖M −M∗‖2
,

where µ(M∗) is the spectral gap of M∗. From Lemma A.6 of Nguyen and Zhang (2022), we have

µ(M∗) ≥ γ

3e2κ .

Define αC =
√

12
√
C lognp2

γ
√
np2

. We have already established that M∗ij ≤ 1
m for any i 6= j. We have

‖M −M∗‖2 ≤ ‖diag(M)I − diag(M∗)I‖2 + ‖[M −M∗]i6=j‖2
≤ max

i
|Mii −Mii|+ max

u,v:‖u‖=‖v‖=1

∑
i6=j

ui(Mij −M∗ij)vj

≤ max
i
|
∑
j 6=i

Mij −M∗ij |+ max
i6=j
|Mij −M∗ij | ·

∑
i6=j
|ui||vj |

≤ 2m ·max
i6=j
|Mij −M∗ij | ≤ 2mαC max

i6=j
M∗ij ≤ 2αC .

Then
µ(M∗)− ‖M −M∗‖2 ≥

γ

3e2κ − 2αC .

For the numerator term ‖π∗>(M∗−M)‖2, we follow a simlar argument as in the proof of Lemma 8.4 in Chen
et al. (2020) in turning the normed term into a linear term. This has also appeared in the analysis of the `2
error of the spectral algorithm (cf., Lemma A.9 of Nguyen and Zhang (2022)). For completeness we reproduce
this argument here. We first have

‖π∗>(M −M∗)‖2 =

√√√√ n∑
i=1

( n∑
j=1

π∗j (Mji −M∗ji)
)2

=

√√√√ n∑
i=1

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (Mii −M∗ii)
)2

=

√√√√ n∑
i=1

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (
∑
j 6=i

M∗ij −Mij)
)2

=

√√√√ n∑
i=1

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)2

.

5



Let B denote the unit norm ball in Rm and V denote a 1/2-net of B. That is, for every u ∈ B, there exists
v ∈ V such that ‖u− v‖2 ≤ 1

2 . For any u ∈ B and any corresponding v, we have

n∑
i=1

ui

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)

=
n∑
i=1

vi

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)

+
n∑
i=1

(ui − vi)
(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)

≤
n∑
i=1

vi

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)

+ 1
2 ·

√√√√ n∑
i=1

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)2

.

Maximizing both sides of the above inequality with respect to u and rearranging the terms gives√√√√ n∑
i=1

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)2
≤ 2 max

v∈V

n∑
i=1

vi

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)
.

In summary, we can upper bound the normed term the following linear term.

‖π∗>(M −M∗)‖2 =

√√√√ n∑
i=1

( n∑
j=1

π∗j (Mji −M∗ji)
)2

≤ 2 max
v∈V

n∑
i=1

vi

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)
.

(1)

We now expand on the linear term.

m∑
i=1

vi

(∑
j 6=i

π∗j (Mji −M∗ji) + π∗i (M∗ij −Mij)
)

= 1
d

m∑
i=1

vi

(∑
j 6=i

π∗j
[ n∑
l=1

AliAlj
(
Xlj(1−Xli)− E[Xlj(1−Xli)]

)]
−
∑
j 6=i

π∗i
[ n∑
l=1

AliAlj
(
Xli(1−Xlj)− E[Xli(1−Xlj)]

)])

= 1
d

n∑
l=1

m∑
i=1

(∑
j 6=i

viπ
∗
jAliAlj

[
Xlj(1−Xli)− E[Xlj(1−Xli)]

])
− 1
d

n∑
l=1

m∑
i=1

(∑
j 6=i

viπ
∗
iAliAlj

[
Xli(1−Xlj)− E[Xli(1−Xlj)]

])
= 1
d

n∑
l=1

m∑
i=1

∑
j 6=i

(
(vi − vj)π∗jAliAlj

[
Xlj(1−Xli)− E[Xlj(1−Xli)]

])
.

We will use the method of bounded difference to obtain a high probability bound on the above sum. Note that
this sum is essentially a function f of n×m independent Bernoulli random variables {Xli}. Let X and X ′ be
identical copies except for Xli 6= X ′li. That is, when one changes the outcome of a single random variable Xli.
We have the following bound on the deviation of f following such changes.

|f(X)− f(X ′)| = 1
d
|
∑
j 6=i

AliAlj(vi − vj)[Xlj(π∗i − π∗j )− π∗i ]| . (2)

6



Using Cauchy-Schwarz, we can upper bound the absolute difference term as

1
d

∑
j 6=i

AliAlj(vi − vj) [Xlj(π∗i − π∗j )− π∗i ]︸ ︷︷ ︸
≤max{π∗

i
,π∗
j
}≤‖π∗‖∞

≤ 1
d
‖π∗‖∞ ·

√
m ·

√∑
j 6=i

AliAlj(vi − vj)2 .

At this point we can invoke concentration inequalities based on bounded difference (e.g., Hoeffding’s inequality).
We have

P
(
‖π∗>(P −M∗)‖2 > t |A

)
≤ P

(
1
d

n∑
l=1

m∑
i=1

∑
j 6=i

(vi − vj)π∗jAliAlj
[
Xlj(1−Xli)− E[Xlj(1−Xli)]

]
> t ∀v ∈ V |A

)

≤ 2 · 5m · exp
(
− 4d2t2

3‖π∗‖2∞m2np2

)
≤ exp

(
−3np2t2

‖π∗‖2∞
+ 4m

)
,

where the 5m term comes from applying union bound over all v ∈ V and we know that |V| ≈ 5m (cf. Corollary
4.2.13 Vershynin (2018)). Set

t = ‖π
∗‖∞

√
4C ′max{m, log np2}√

3np2
.

We have

P
(
‖π∗>(P −M∗)‖2 >

‖π∗‖∞
√

4C ′max{m, log np2}√
3np2

∣∣∣∣A) ≤ exp
(
−4(C ′ − 1) max{m, log np2}

)
= min

{
1

exp (4(C ′ − 1)m) ,
1

(np2)4(C′−1)

}

Combining the bounds for µ(M∗) − ‖M −M∗‖2 ≥ γ
3e2κ − 2αC and

√∑
j 6=iM

2
ji ≤

1+αC√
m

obtained earlier
finishes the proof.

Theorem 1.5. There exist a constant C such that if np2 ≥ C logm. For any C ′ > 1, with probability at least

1−m
(

min
{

1
exp (4(C ′ − 1)m) ,

1
(np2)4(C′−1)

})
+ 2m2

(np2)C + exp
(
− (1− O(1))np2

10

)
,

the following holds true.

‖π − π∗‖∞
‖π‖∞

≤ 3
γ(1− αC) ·

(
1 + αC
γ

3e2κ − 2αC
·
√

4C ′max{1, log np2/m}√
3np2

+ 2αC

)
,

where

αC =
√

12
√
C log np2

√
γ
√
np2

.
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Proof. Suppose that events A, EC hold, then

|π − π∗i | ≤
1

1−Mii
· (|I1|+ |I3|+ |I4|)

≤ 3
γ(1− αC) ·

(
1 + αC
γ

3e2κ − 2αC
·
‖π∗‖∞

√
4C ′max{1, log np2/m}√

3np2
+ 2
√

12
√
C log np2

γ
√
np2

· ‖π∗‖∞

)

with probability at least 1 − exp (−4(C ′ − 1)). In other words

P

|πi − π∗i | ≥
3

γ(1− αC) ·
(

1 + αC
γ

3e2κ − 2αC
·
√

4C ′max{1, log np2/m}√
3

+ 2
√

12
√
C log np2

γ

)
︸ ︷︷ ︸

α∗
C,C′

· ‖π
∗‖∞√
np2

∣∣∣∣A, EC


≤ exp (−4(C ′ − 1)m) .

We have

P

(
∃i ∈ [m] : |πi − π∗i | ≥ α∗C,C′ ·

‖π∗‖∞√
np2

)

≤ P

(
∃i ∈ [m] : |πi − π∗i | ≥ α∗C,C′ ·

‖π∗‖∞√
np2

∣∣∣∣A, EC
)

+ P(¬A) + P(¬EC)

≤ P

(
∃i ∈ [m] : |πi − π∗i | ≥ α∗C,C′ ·

‖π∗‖∞√
np2

∣∣∣∣A, EC
)

+ 2P(¬A) + P(¬EC |A)

≤ m ·min
{

1
exp (4(C ′ − 1)m) ,

1
(np2)4(C′−1)

}
+ exp

(
− (1− O(1))np2

10

)
+ 2m2

(np2)C .

The last inequality in the derivation comes applying union bound over all i ∈ [m].

The result we have obtained provides a bound on ‖π−π∗‖∞
π∗max

. Recall that we are ultimately interested in
‖β − β∗‖∞.

Lemma 1.6. Let π be the stationary distribution of the empirical Markov chain constructed in Algorithm 1
and β the final output. Then

‖β − β∗‖∞ ≤ 2meκ · ‖π − π∗‖∞ .

Proof. Let L be a factor such that such that |log x− log x′| ≤ L|x− x′| for all x, x′ ∈ [π∗min, π
∗
max]. Note that

L may change with m as we will show later. The output of the spectral algorithm is essentially

βi = log πi −
1
m

m∑
k=1

log πk ,

where π is the stationary distribution of the Markov chain constructed in Algorithm 1. And β∗ is similarly
related to π∗:

β∗i = log π∗i −
1
m

m∑
k=1

log π∗k .

8



One can see that

|βi − β∗i | ≤ |log πi − log π∗i |+
1
m

m∑
k=1
|log πk − log π∗k|

≤ 2 max
k
|log πk − log π∗k|

≤ 2L max
k
|πk − π∗k|

≤ 2L · ‖π − π∗‖∞ .

Observe that π∗min ≤ 1
meκ . One can thus easily see that the log function within the dynamic range has gradient

absolutely bounded by meκ. Therefore L ≤ meκ. Substituting this upper bound on L into the inequality
obtained above finishes the proof.

Theorem 1.7. There exists a constant C such that if np2 ≥ C logm, then with probability at least

1−m
(

min
{

1
exp (4(C ′ − 1)m) ,

1
(np2)4(C′−1)

})
+ 2m2

(np2)C + exp
(
− (1− O(1))np2

10

)
,

the following holds true for any constant C ′ > 1.

‖β − β∗‖∞ ≤
6e2κ

γ(1− αC) ·
(

1 + αC
γ

3e2κ − 2αC
·
√

4C ′max{1, log np2/m}√
3np2

+ 2αC

)
,

where
αC =

√
12
√
C log np2

√
γ
√
np2

.

Proof. The proof combines Theorem 1.5, Lemma 1.6 and the fact that ‖π∗‖∞ ≤ eκ

m .

1.3 Improved Rates for the Regime mp & log n

In this section, we present the proof of Theorem 3.1 in the main paper. For a single pair (i, j), note that

Mij −M∗ij = 1
d

n∑
l=1

AliAlj

(
Xli(1−Xlj)− E[Xli(1−Xlj)]

)
is a sum of n independent random variables. Again using Chernoff bound, we have, for α ∈ (0, 1),

P
(
|Mij −M∗ij | > αM∗ij

∣∣∣∣A+
)

≤ 2exp
(
−
α2M∗ij

3

)
≤ 2exp

(
−α

2 (Bijγ)
3

)
≤ 2exp

(
−α

2 γ np2

12

)
Define the following event

E+
C =

{
|Mij −M∗ij | ≤

√
12
√
C logm

√
γ
√
np2

·M∗ij ∀i 6= j

}
.

We have
P(¬E+

C | A) ≤ 2
mC−2 .

9



Lemma 1.8. Suppose events A+ and E+
C hold for some constant C. There exist a constant C+ such that

I2 ≥
(

1−
√

12
√
C logm

√
γ
√
np2

)
· γ3 ,

|I3|, |I4| ≤
√

12
√
C+ logm√

2√np
· ‖π∗‖∞

with probability at least 1− 4
mC+ .

Proof. Note that event A+ is a special case of event A. Therefore, the first statement is the same as that in
Lemma 1.3. More precisely, conditioned on event A+, the first statement holds It remains to obtain a sharper
bound for I3 and I4.

We first tackle the term I3 using the method of bounded difference.

I3 =
∑
j 6=i

π∗j (Pji − P ∗ji) = 1
d
·
∑
j 6=i

π∗j ·
n∑
l=1

AliAlj
[
Xlj(1−Xli)− E[Xlj(1−Xli)]

]
.

For a fixed l if we change Xli, the sum above changes by at most 1
d ·
∑
j 6=i π

∗
jAliAlj . On the other hand, for a

fixed l and j 6= i, if we change Xlj , the sum above changes by at most 1
d · π

∗
jAliAlj ≤ 1

d · ‖π
∗‖∞AliAlj . Note

also that under the growing m regime and by Cauchy-Schwarz inequality, we have∑
j 6=i

1
d
π∗jAliAlj ≤ ‖π∗‖∞ ·

∑
j 6=i

Alj ·AliAlj

≤ 1
d
‖π∗‖∞ ·

√∑
j 6=i

Alj ·
√∑

j 6=i
AliAlj

≤ 1
d
‖π∗‖∞ ·

√
3/2 · √mp ·

√∑
j 6=i

AliAlj .

Invoking Hoeffding’s inequality, we have

P
(∑
j 6=i

π∗j ·
n∑
l=1

AliAlj
[
Xlj(1−Xli)− E[Xlj(1−Xli)]

]
> t | A+

)

≤ 2 exp

− 2t2
1
d2 ‖π∗‖2∞

(∑n
l=1(3/2)mp

∑
j 6=iAliAlj +

∑
j 6=i
∑n
l=1AliAlj

)


= 2 exp

− 2t2
1
d2 ‖π∗‖2∞(3/2mp+ 1)

(∑n
l=1
∑
j 6=iAliAlj

)


≤ 2 exp
(
− 2d2t2

‖π∗‖2∞(3/2mp+ 1)(m− 1) 3
2np

2

)
≤ 2 exp

(
− 2d2t2

‖π∗‖2∞9/4mp ·mnp2

)
[
Setting d = 3

2mnp
2
]

= 2 exp
(
− 2mnp2t2

‖π∗‖2∞mp

)
= 2 exp

(
− 2npt2
‖π∗‖2∞

)
.

We have, conditioned on event A+ and event E+
C ,

|I3| ≤
C3
√

logm‖π∗‖∞√
2√np

10



with probability at least 1 − 2
mC3 .

Similarly, we can bound the term I4 using the method of bounded difference. Specifically, we have

I4 = π∗i (Mii −M∗ii)

= π∗i
∑
j 6=i

n∑
l=1

1
d

(AliAljXli(1−Xlj)− E[Xli(1−Xlj)])

≤ ‖π∗‖∞
∑
j 6=i

n∑
l=1

1
d

(AliAljXli(1−Xlj)− E[Xli(1−Xlj)]) .

One can see that this can be bounded in the same way as I3 shown above. Therefore,

|I4| ≤
C4
√

logm‖π∗‖∞√
2√np

with probability at least 1 − 2
mC4 . To obtain the statement in the theorem we pick a common C+ = C3 = C4

and apply union bound. Namely, conditioned on event A+,

|I3|, |I4| ≤
√
C+ logm‖π∗‖∞√

2√np

with probability at least 1 − 4
mC+ .

We can obtain sharper bound for the term I1 under the assumption that mp & log n as well.

Lemma 1.9. Suppose that events A+ and E+
C hold for some constant C. Then for C+

1 > 1,

P

|I1| ≥ 1 + α+
C

γ
3e2κ − 2α+

C

·
‖π∗‖∞

√
4C+

1 logm
√

3np

 ≤ exp
(
−4(C+

1 − 1)m
)
,

where α+
C =

√
12
√
C logm

√
γ
√
np2

.

Proof. Using Cauchy-Schwarz inequality, we have

I1 ≤ ‖π − π∗‖2 ·
√∑

j 6=i
M2
ji .

Following the same argument in the proof of Lemma 1.4, we have√∑
j 6=i

M2
ji ≤

1 + α+
C√

m

and
µ(M∗)− ‖M −M∗‖2 ≥

γ

3e2κ − 2α+
C .

Now, we follow a similar argument as in the proof of Lemma 1.8 but with an added assumption that mp & log n
(event A+) to obtain a sharper bound for ‖π − π∗‖2. Firstly, follow the same argument as in the proof of
Lemma 1.4. The key difference is that under conditioned A+ we could obtain better bound also using the

11



bounded difference method. Namely, one can invoke Cauchy-Schwarz on the absolute difference term in
Equation (2) as follows:

1
d

∑
j 6=i

AliAlj(vi − vj) [Xlj(π∗i − π∗j )− π∗i ]︸ ︷︷ ︸
≤max{π∗

i
,π∗
j
}≤ eκm

≤ 1
d

eκ

m
·
∑
j 6=i

AliAlj(vi − vj) = 1
d

eκ

m
·
∑
j 6=i

AljAliAlj(vi − vj)

≤ 1
d

eκ

m
·
√√√√√√
∑
j

Alj︸ ︷︷ ︸
≤ 3

2mp

·
√∑

j 6=i
AliAlj(vi − vj)2 = 1

d

√
3/2 ·

eκ
√
p

√
m
·
√∑

j 6=i
AliAlj(vi − vj)2 .

Define V to be the 1
2 -net of the `2 ball. We have

P
(
‖π∗>(P −M∗)‖2 > t |A+

)
≤ P

(
1
d

n∑
l=1

m∑
i=1

∑
j 6=i

(vi − vj)π∗jAliAlj
[
Xlj(1−Xli)− E[Xlj(1−Xli)]

]
> t ∀v ∈ V |A+

)

≤ 2 · 5m · exp
(
− 2d2t2

‖π∗‖2∞ ·
∑n
l=1
∑m
i=1mp

∑
j 6=iAliAlj(vi − vj)2

)

≤ 2 · 5m · exp
(
− 2d2t2

mp ‖π∗‖2∞
∑
i6=j Bij(vi − vj)2

)

≤ exp
(
− 4/3d2t2

‖π∗‖2∞mpnp2 + 4m
)

= exp
(
−3mnpt2
‖π∗‖2∞

+ 4m
)
.

Set

t =
‖π∗‖∞

√
4/3C+

1 logm
√
np

.

Simple algebraic manipulations show that

P
(
‖π∗>(P −M∗)‖2 >

‖π∗‖∞
√

4/3C+
1 logm

√
np

∣∣∣∣A+
)
≤ exp

(
−4(C+

1 − 1)m
)
.

Combining the bounds for µ(M∗)− ‖M −M∗‖2 ≥ γ
3e2κ − 2α+

C and
√∑

j 6=iM
2
ji obtained earlier finishes the

proof.

We are now ready to put all of the bounds on I1, I3, I4 together.
Theorem 1.10. There exist constants C, C ′ such that if np2 ≥ C logm and that mp ≥ C ′ log n, then with
probability at least

1−m
(

exp
(
−4(C+

1 − 1)m
)

+ 4
mC+

)
+ exp

(
− (1− O(1))np2

10

)
+ exp

(
− (1− O(1))mp

10

)
+ 2
mC−2 ,

the following holds true for any C+
1 , C

+ > 1.

‖π − π∗‖∞
‖π‖∞

≤ 3
γ(1− α+

C)
·

(
1 + α+

C
γ

3e2κ − 2α+
C

·
√

4C+
1 logm+ 2

√
12
√
C+ logm
√
γ

)
· 1
√
np

,

12



where
α+
C =

√
12
√
C logm

√
γ
√
np2

.

Proof. We combine the implications of Lemma 1.5 and Lemma 1.9. Suppose that events A+, E+
C hold for

some constant C, then

|π − π∗i | ≤
1

1−Mii
· (|I1|+ |I3|+ |I4|)

≤ 3
γ(1− α+

C)
·

 1 + α+
C

γ
3e2κ − 2α+

C

·
‖π∗‖∞

√
4C+

1 logm
√

3np + 2
√

12
√
C+ logm

√
γ
√
np

· ‖π∗‖∞


with probability at least 1 − exp

(
−4(C+

1 − 1)
)
− 4

mC+ . We invert the probability to have

P


|πi − π∗i | ≥

3
γ(1− α+

C)
·

 1 + α+
C

γ
3e2κ − 2α+

C

·

√
4C+

1 logm
√

3
+ 2
√

12
√
C+ logm
√
γ


︸ ︷︷ ︸

α∗
C+,C+

1

· ‖π
∗‖∞√
np

∣∣∣∣A+, E+
C


≤ exp

(
−4(C+

1 − 1)m
)

+ 4
mC+ .

We have

P
(
∃i ∈ [m] : |πi − π∗i | ≥ α∗C+,C+

1
· ‖π

∗‖∞√
np

)
≤ P

(
∃i ∈ [m] : |πi − π∗i | ≥ α∗C+,C+

1
· ‖π

∗‖∞√
np

∣∣∣∣A+, E+
C

)
+ P(¬A+) + P(¬E+

C )

≤ P
(
∃i ∈ [m] : |πi − π∗i | ≥ α∗C+,C+

1
· ‖π

∗‖∞√
np

∣∣∣∣A+, E+
C

)
+ 2P(¬A+) + P(¬E+

C |A
+)

≤ m
(

exp
(
−4(C+

1 − 1)m
)

+ 4
mC+

)
+ exp

(
− (1− O(1))np2

10

)
+ exp

(
− (1− O(1))mp

10

)
+ 2
mC−2 .

The last step in the derivation applies union bound over all i ∈ [m].

Combining Lemma 1.6 with Theorem 1.10 gives the following extended version of Theorem 3.1.

Theorem 3.1. There exist constants C, C ′ > 1 such that if np2 ≥ C logm and that mp ≥ C ′ log n, then with
probability at least

1−m
(

exp
(
−4(C+

1 − 1)m
)

+ 4
mC+ logm

)
+ exp

(
− (1− O(1))np2

10

)
+ exp

(
− (1− O(1))mp

10

)
,

the following holds true for any C+
1 , C

+ > 1.

‖β − β∗‖∞ ≤
6e2κ

γ(1− α+
C)
·

(
1 + α+

C
γ

3e2κ − 2α+
C

·
√

4C+
1 logm+ 2

√
12
√
C+ logm
√
γ

)
· 1
√
np

,

where
α+
C =

√
12
√
C logm

√
γ
√
np2

.
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Proof. The proof is similar to that of Theorem 1.7.

To simplify the upper bound in theorem statement into the form we include in the main paper, observe that
for sufficiently large C+

1 and C+, we can simplify

6e2κ

γ(1− α+
C)

= O(1) .

For the two terms inside the paranthesis, the first term reduces to a constant factor. While the second term
scale as O(

√
logm). Also for sufficiently large C+

1 and C+, the probability bound can be further simplified as

1−O(exp (−4m))− 4/m10 − exp
(
−np2/10

)
− 1
n10 .

Note that under the assumption np2 & logm, the third term can be absorbed into the O(m−10) term.

Theorem 3.2. Consider the setting of Theorem 3.1. Consider a top-K estimator that first runs the spectral
algorithm on the response data and returns the K items with the highest parameter values. There exists a
constant CK such that if np ≥ CK logm

∆2
K

, then this top-K estimator correctly identifies all of the top K items
with probability at least 1−O

(
m−10)− exp

(
−O(np2)

)
−O

(
n−10) where C is an absolute constant.

Proof. One can see that given sufficiently large n such that

‖β − β∗‖∞ < ∆K ,

then the top K items with the highest parameter values per the spectral algorithm is also the true top K
items.
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2 Proofs of Lower Bounds
2.1 Estimation Error Lower Bound
In this section we prove the lower bound for the estimation error presented in the main paper. We emphasize
that this lower bound is different from the Cramer Rao lower bound obtained in Nguyen and Zhang (2022).
Specifically, Cramer-Rao lower bounds apply only to the class of unbiased estimators. However, the information
theoretic lower bound presented here applies to all statistical estimators, a strictly larger class of estimators.
We first restate the theorem statement and defer the proof to later.

Theorem 3.3. Consider the sampling model described in Section 2 and further assume that np = Ω(1). There
exists a class of Rasch models B such that for any statistical estimator, the minimax risk is lower bounded as

inf
β̂

sup
θ∗∈T ,β∗∈B

E‖β̂ − β∗‖22 = Ω
(
m

np

)
.

The proof of Theorem 3.3, which we defer to later, relies on the pairwise Fano’s inequality (Thomas and Joy,
2006).

Lemma 2.1. (Pairwise Fano minimax lower bound) Suppose that we can construct a set W = {β∗1, . . . , β∗M}
with cardinality M such that

max
a 6=b∈[M ]

‖β∗a − β∗b‖22 ≤ δ2 and max
a 6=b∈[M ]

DKL(Pa(X)‖Pb(X)) ≤ ξ ,

where Pa(X) denotes the distribution over X under a model parametrized by β∗a. Then the minimax risk is
lower bounded as

inf
β̂

sup
β∗∈B

E[‖β̂ − β∗‖22] ≥ δ2

2

(
1− ξ + log 2

logM

)
,

where β̂ is the output of any statistical estimator.

Intuitively, the theorem says that if we can construct a set of models where every pair of model is sufficiently
different (measured in `22 distance) yet they parametrize ‘similar’ distributions (measured in KL divergence),
then any statistical estimator will fail to identify the correct model and thus suffer from a minimum estimation
error. To construct the set of models, we follow the construction similar to that in the proof of Theorem 1 of
Shah et al. (2015). We first restate a coding theoretic due to Shah et al. (2015).

Lemma 2.2. (Lemma 7 of Shah et al. (2015)) For any α ∈ (0, 1
4 ), there exists a set of M(α) = Θ(exp (m))

binary vectors {z1, . . . , zM(α)} ⊂ {0, 1}m such that

αm ≤ ‖za − zb‖22 ≤ m ∀a 6= b ∈ [1, . . . ,M(α)] .

Consider a set {z1, . . . , zM(α)} ⊂ {0, 1}m of m-dimensional binary vectors given by as Lemma 2.2. Let

β∗a = δ√
m
· za ∀a ∈ [M(α)] ,

where δ is to be detemined later. It is easy to see that for a 6= b ∈ [M(α)]

‖β∗a − β∗b‖22 = δ2

m
· ‖z∗a − z∗b‖22 ≤ δ2 .

Lemma 2.3 (Reverse Pinsker’s inequality). Consider two probability measures P and Q defined on the same
measure space (A,F) the KL divergence between P and Q can be bounded as

DKL(P‖Q) ≤
(

log e
Qmin

)
· ‖P −Q‖2TV ,

where ‖P −Q‖TV is the total variation distance between the two distributions and Qmin := minx∈AQ(x).
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For our lower bound, it suffices to consider the case where θ1 = . . . = θn = 1
2 . Denote T = {θ : θ1 = . . . =

θn = 1
2}.

Lemma 2.4. Consider θ ∈ T and any two alternative parameter sets βa and βb. There exists a constant
c∗ = c∗(β∗min, β

∗
max) such that

DKL(Pa(X)‖Pb(X)) ≤ e2 log e
2c∗ · npδ2 .

Proof. As a short hand notation, define Pai := eθ

eθ+eβ
a
i

and analogously for Pbi .

DKL(Pa(X)‖Pb(X)) =
n∑
l=1

m∑
i=1

DKL(Pa(Xli)‖Pb(Xli))

= np

m∑
i=1

DKL(Pa‖Pb)

[Using the inverse Pinsker’s inequality]

≤ np
m∑
i=1

log e
c∗
· 2(Pai − Pbi )2

≤ np 2 log e
c∗

·
m∑
i=1

e2δ2

4m

≤ e2 log e
2c∗ · npδ2 .

The second line follows from

DKL(Pa(Xli)‖Pb(Xli)) = Pa(Xli = ∗) · log
(
Pa(Xli = ∗)
Pb(Xli = ∗)

)
+ Pa(Xli = 1) · log

(
Pa(Xli = 1)
Pb(Xli = 1)

)
+ Pa(Xli = 0) · log

(
Pa(Xli = 0)
Pb(Xli = 0)

)
= (1− p) · 0 + pPai · log

(
pPai
pPbi

)
+ p(1− Pai ) · log

(
p(1− Pai )
p(1− Pbi )

)
= p ·

(
Pai · log

(
Pai
Pbi

)
+ (1− Pai ) · log

(
(1− Pai )
(1− Pbi )

))
= pDKL(Pa‖Pb) .

The second inequality comes from applying inverse Pinsker’s inequality (for binary random variable) and the
observation that

min
Xli∈{0,1}

Pb(Xli) = min
{ √

e
√
e+ eβ

b
i

,
eβ

b
i

√
e+ eβ

b
i

}

≥ min
{ √

e√
e+ eβ

∗
max

,
eβ
∗
min

√
e+ eβ

∗
min

}
=: c∗ .
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The third inequality comes from

(Pai − Pbi )2 =
(

e1/2

e1/2 + eβ
a
i

− e1/2

e1/2 + eβ
b
i

)2

=
( √

e · (eβai − eβbi )
(
√
e+ eβ

a
i )(
√
e+ eβ

b
i )

)2

≤

( √
e(eδ/

√
m − 1)

(
√
e+ eδ/

√
m)(
√
e+ 1)

)2

≤
(

eδ

2
√
m

)2
= e2δ2

4m .

The second last inequality comes from the observation that βai , βbi ∈ {0, δ√
m
}. To see why the last inequality

holds, one can verify the following useful inequality.

ex − 1
(
√
e+ ex)(

√
e+ 1) ≤

x

2e ∀x > 0 .

Finally, the proof for Theorem 3.3 follows from Lemma 2.4 and Lemma 2.2.

Proof. (Of Theorem 3.3) We can now apply Lemma 2.1. The minimax risk is lower bounded as

inf
β̂

sup
β∗∈B

E[‖β̂ − β‖22] ≥ δ2

2

(
1− Cnpδ2 + log 2

m

)
,

where C is e2 log e
2c∗ . Setting δ2 = m

2Cnp gives us

inf
β̂

sup
β∗∈B

E[‖β̂ − β‖22] ≥ m

4C np ·
(

1− m/2 + log 2
m

)
&
m

np
.

This completes the proof.

2.2 Top-K Recovery Lower Bound
We first restate a different version of Fano’s inequality Thomas and Joy (2006) which will be useful to the
construction of our lower bound. Note that this Fano’s inequality is designed for hypothesis testing questions
which is different from the pairwise Fano’s inequality used to prove the lower bound for parameter estimation.
An algorithm does not have to produce parameter estimates in order to produce top-K estimate. Therefore,
we need to develop a separate theorem proving the lower bound for top-K recovery.

Lemma 2.5 (Fano’s inequality). Consider a set of L distributions {P1, . . . ,PL}. Suppose that we observe a
random variable (or a set of random variables) Y that was generated by first picking an index A ∈ {1, . . . , L}
uniformly at random and then Y ∼ PA. Fano’s inequality states that any hypothesis test φ for this problem
has an error probability lower bounded as

P[φ(Y ) 6= A] ≥ 1−
maxa,b∈[L],a 6=b DKL(Pa(Y )‖Pb(Y )) + log 2

logL .

The intuition behind the above version of Fano’s inequality is the same as that for the version used
in proving the estimation error lower bound. Suppose that we can construct a set of models where the
distributions parametrized by any pair of models are similar (as measured in terms of KL divergence). Then
no statistical estimator can accurately identify a single model that has been uniformly chosen from this set.
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Construction of the models. Let us consider the following constructions for m − K + 1 models. For
simplicity, let us consider the unnormalized parameter space for now. This is valid because we are only
concerned about the KL divergence between any pair of models, which is not affected by the normalization
step and only by the relative difference among the items. For model a ∈ [K,K + 1, . . . ,m],

β∗ai =


δ if i ≤ K − 1
δ if i−K = a

0 otherwise
.

In other words, the n −K + 1 models differ exactly by the identity of the K-th best item. It is also clear
that ∆K = δ in this context. For top-K recovery lower bound, it also suffices to consider the case where
θ1 = . . . = θn = 1

2 .
Lemma 2.6. Consider the model construction described above. There exists a constant c such that for any
two models a 6= b,

DKL(Pa‖Pb) ≤ c np∆2
K .

Proof. We follow the same argument as used in the proof of Lemma 2.4. We have

DKL(Pa(X)‖Pb(X)) =
n∑
l=1

m∑
i=1

DKL(Pa(Xli)‖Pb(Xli))

= np
m∑
i=1

DKL(Pa‖Pb)

[Using the inverse Pinsker’s inequality]

≤ np
m∑
i=1

log e
c∗
· 2(Pai − Pbi )2

≤ np 2 log e
c∗

·
m∑
i=1

e2δ2

4m

≤ e2 log e
2c∗ · npδ2 ,

where c∗ = min
{ √

e√
e+eβ∗max

, eβ
∗
min

√
e+eβ

∗
min

}
and the constant c in the lemma statement is e2 log e

2c∗ .

Theorem 3.4. Consider the sampling model described in Section 2. There is a class of Rasch model such
that if np ≤ cK logm

∆2
K

, where cK is a constant, then any estimator will fail to identify all of the top K items
with probability at least 1

2 .
Proof. Applying Lemma 2.5 and Lemma 2.6, we have

P[φ(Y ) 6= A] ≥ 1−
maxa,b∈[L],a 6=b DKL(Pa(Y )‖Pb(Y )) + log 2

logL

≥ 1−
4npδ2

c + log 2
log(m−K + 1)

≈ 1− 4npδ2

c logm ,

where c = e2 log e
2c∗ . The above lower bound tells us that if

np ≤ c logm
8∆2

K

then P[φ(Y ) 6= A] ≥ 1
2 . This finishes the proof.
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3 Differentially Private Spectral Algorithm
The following lemma establishes the desirable property of concentrated differential privacy that both post-
processing and composition preserve concentrated differential-privacy. Intuitively, one can see that the con-
struction of the private pairwise differential measurement in Equation (4) is analogous to a data-preprocessing
step. By ensuring that this step is private, the final output of the algorithm remains private as well. An
analogous result for DP can be found in Dwork et al. (2014).

Lemma 3.1 (Lemma 2.3 of Bun and Steinke (2016)). Consider domains X , Y, Z and two functions
f : X → Y, f ′ : X × Y → Z. Suppose that f satisfies ξ-concentrated differential privacy and f ′ satisfies
ξ′-concentrated differential privacy. Define f ′′ : X → Y as f ′′(x) = f ′(x, f(x)). Then f ′′ satisfies (ξ + ξ′)-
concentrated differential privacy.

The following lemma establishes the privacy guarantee of the discrete Gaussian mechanism.

Lemma 3.2 (Theorem 4 of Canonne et al. (2020)). Let ∆, ε > 0. For an input domain X , let f : X → Z
satisfy |f(x)−f(x′)| ≤ ∆ for all x ' x′ differing on a single entry. Define a randomized algorithm M : X → Z
as M(x) = q(x) + Y where Y ∼ NZ(0, ∆2

ε2 ). Then M satisfies 1
2ε

2-concentrated differential privacy.

The quantity ∆ in the theorem statement is often referred to as the sensitivity of a query f . Simply put,
it is the maximum change in output of a query f when one changes the data of a single user. With the above
two Lemmas, we are ready to prove the privacy guarantee of the private spectral algorithm. This quantity
will reappear in the analysis of the discrete Laplace mechanism.

Lemma 4.1. Consider a modified spectral algorithm that first adds NZ
(

0,
√
m(m−1)
ε∗2

)
-distributed noise to

each pairwise differential measurement per Equation (4). This algorithm then proceeds to use the private
differential measurements in the same way as in the original algorithm. This modified spectral algorithm
satisfies 1

2ε
∗2-concentrated differential privacy.

Proof. Recall the construction of the pairwise differential measurement for a pair of items i, j as

Yij(X) =
n∑
l=1

AliAljXli(1−Xlj) . (3)

It is clear that for any neighboring datasets X ' X ′, |Yij(X)− Yij(X ′)| ≤ 1 (sensitivity). Invoking Lemma
3.2, we conclude that the privatized function

Ỹij(X) = Yij(X) + Zij ,

where Zij ∼ NZ
(
0, 1

ε2

)
satisfies 1

2ε
2-concentrated differential privacy. Invoking lemma 3.1 with ∆ = 1, we see

that the privatized spectral algorithm that constructs m(m− 1) pairwise differential measurements where
each non-private measurement is added with NZ

(
0, 1

ε2

)
-distributed noise satisfies m(m−1)

2 ε2-concentrated
differential privacy.

Using simple algebra, one can check that for ε = ε∗√
m(m−1)

, m(m−1) compositions of 1
2ε

2-concentrated dif-

ferentially private queries (using NZ

(
0,
√
m(m−1)
ε2

)
-distributed noise for each query) satisfies 1

2ε
∗2-concentrated

differential privacy overall. Now, since concentrated differential privacy is closed under post-processing, the
entire private spectral algorithm also satisfies the same privacy guarantee as the private pairwise measurements
computation step, which is 1

2ε
∗2-concentrated differentially private.

Entrywise Error Analysis of the Private Spectral Algorithm. During the submission process of this
paper, an anonymous reviewer has kindly pointed out that our theoretical analysis would be more complete
with a study of the entrywise error guarantee of the spectral algorithm. It is indeed possible to obtain some
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rough analysis as follows. Firstly, note that the spectral algorithm constructs a Markov chain. Per our analysis,
the statistical noise for the pairwise transition probabilities can be bounded as

|Mij −M∗ij | = O

( √
logm

m
√
np2

)
∀i 6= j ∈ [m] ,

where Mij is the non-private estimate and M∗ij is the idealized estimate. On the other hand, the discrete
Gaussian distribution ‘behaves’ similarly to a continuous Gaussian distribution Canonne et al. (2020) (i.e.,
light-tailed). That is, with high probability, the amount of noise introduced by the Gaussian mechanism to
the pairwise transition probabilities (cf. Equation (4)) is bounded as∣∣∣∣Zijd

∣∣∣∣ = O

(√
logm
np2ε∗

)
.

Hence, the deviation of the private pairwise transition probabilities from the idealized pairwise transition
probabilities can be bounded as

|M̃ij −M∗ij | = O

( √
logm

m
√
np2

+
√

logm
np2ε∗

)
.

One can see that given sufficiently large sample size, np2 = Ω
(
m2

ε∗2

)
, the additive noise introduced by the

Gaussian mechanism is on the same order as or dominated by the statistical noise and we obtain the same
error guarantees as the non-private spectral algorithm (up to a constant factor). Formalizing this argument,
one obtains the following entrywise error guarantee of the private spectral algorithm.

Theorem 3.3. Consider the uniform sampling model described in Section 2. There exist constants C1, C2

such that if np2 ≥ C ′1
{

logm, m2

(ε∗)2

}
and mp ≥ C2 log n then the output of the spectral algorithm satisfies

‖β − β∗‖∞ ≤
C ′
√

logm
√
np

with probability at least 1−O
(
m−10)−O (n−10) where C ′ is an absolute constant.

Proof. The proof is relatively simple and is thus omitted.
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4 Additional Experimental Details
Additional Experiments. During the submission process, an anonymous reviewer has kindly suggested that
we can perform additional experiments examining other aspects of the algorithm such as time complexity and
how the performance varies with p0 (the sampling probability when applying the sparse Gaussian mechanism).
Firstly, in terms of time complexity, both randomized response and the Gaussian mechanism are essentially
data processing algorithms and both very fast compared to underlying non-private algorithm. The time
complexity for the Gaussian mechanism is O(m2) while that for randomized response is O(mn) where m is
the number of items and n the number of users. In many real life data sets, n� m, the Gaussian mechanism
is a more efficient procedure. The effect of p0 on the performance of the Gaussian mechanism depends on the
privacy regime. The figure below shows how the performance of the sparse Discrete Gaussian mechanism
varies with p0. Note that the line in blue is the proposed sparse method in our paper with p0 = logn

n . While

Figure 1: In the high-privacy regime (small ε∗), a larger p0 generally leads to better performance. In the low-privacy
regime (larg ε∗), using a sparse sampling graph results in more accurate estimates. In our work, we propose p0 = log n

n

as a basic starting point for designing a sparse Gaussian mechanism that performs decently well.

the experiments in our work focus primarily on privacy mechanisms and parameter estimation under the
Rasch model, we can also follow the experimental setup in previous works such as Nguyen and Zhang (2022)
to explore private ranking applications. We also like to point out that a commonly studied algorithm in the
ranking literature is spectral ranking Negahban et al. (2017) also constructs a Markov chain in its procedure.
The application of Gaussian mechanism in our algorithm can be extended to that setting to construct a
differentially private algorithm specifically for ranking applications.

Privacy Guarantee of Randomized Response with Shuffling. Firstly, we recall the procedure
behind randomized response Warner (1965) for binary responses. For each user l and a response Xli for
i ∈ [m]. The following procedure ensures (ε, 0)-differential privacy (cf. Wang et al. (2016)).

1. The participant flips a coin with bias eε

1+eε toward heads (outcome unknown to the statistician).

2. If the outcome is heads, the participant answers truthfully. If the outcome is tails, the participant
reports the answer opposite to the truth.

We include here our implementation for randomized response.

import numpy as np

def randomized response(data, epsilon):

# With probability eˆepsilon/(1+eˆepsilon) , f l ip the label
# For each user , we need to compute the number of responses , then divide epsilon by that number
num responses = np.sum(data != INVALID RESPONSE , 0)

m, n = data.shape
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privatized data = np.copy(data)

for l in range(n):

effective epsilon = epsilon / num responses[l]

# The epsilon we should be using for each user to f l ip their responses
rand p = np.random.rand(m) # Flip the binary response with probability 1/(1+eˆepsilon)
privatized data[:, l] = np.where(np.logical and(rand p < 1/(1+np.exp(effective epsilon)), \

data[:, l] != INVALID RESPONSE), 1 − data[:, l], data[:, l])

return privatized data

Recall that the privacy guarantee of DP decays linearly with the number of queries, m in our application.
Hence, to ensure a ε∗ privacy level overall for each user, each response Xli by the same user l needs to be
randomized using the above procedure with ε = ε∗/m. Randomized response satisfies a special notion of
DP known as local DP (Kasiviswanathan et al., 2011). It is also well known that local DP implies global
DP. Furthermore, it has been shown recently that one can futher amplify the privacy guarantee of local DP
mechanisms such as randomized response simply by permuting the randomized user data. In our application,
since we are concerned primarily with estimating the item parameters, the algorithm is completely agnostic of
this shuffling procedure.

Lemma 4.1 (Theorem III.1 of Feldman et al. (2022)). For any domain D, let R(i) : S(1)×. . .×S(i−1)×D → S(i)

for i ∈ [n] be a sequence of algorithms such that R(i)(z1:i−1, ·) is an ε0-DP local randomizer for all values
pf auxiliary inputs z1:i−1 ∈ S(1) × . . . × S(i−1). Let As : Dn → S(1) × . . . × S(n) be the algorithm that
given a dataset x1:n ∈ Dn, samples a uniform random permutation σ over [n], then sequentially computes
zi = R(i)(z1:i−1, xσ(i)) for i ∈ [n] and outputs z1:n. Then for any δ ∈ [0, 1] such that ε0 ≤ log

(
n

16 log(2/δ)

)
, As

is (ε, δ)-DP, where

ε ≤ log
(

1 + eε0 − 1
eε0 + 1

(
8
√
eε0 log(4/δ)√

n

))
.

Since the bound on ε in the theorem statement is a monotonous function in ε0, we can find ε0 using a
simple bisection search algorithm. We include the code for computing ε0 below.

def find effective epsilon0 rr(overall epsilon , overall delta , n):

# epsilon0 is the maximum epsilon0 such that
# eˆeps = 1 + (eˆeps0 − 1)/(eˆeps0+1) (8 sqrt(eˆeps0 log (4/delta))/sqrt(n) + 8eˆeps/n)
# Solve for eps0

def eps estimate(eps0):

eeps0 = np.exp(eps0)

temp1 = (8 ∗ np.sqrt(eeps0 ∗ np.log(4/overall delta)))/(np.sqrt(n))
temp2 = 8 ∗ eeps0/n
return np.log(1 + (eeps0−1)/(eeps0+1) ∗ (temp1 + temp2))

# Just do bi−section search
lower = 0.00001

upper = np.log(n/(16∗np.log(2/overall delta)))

if upper < 0:

return overall epsilon

while eps estimate(lower) > overall epsilon:

lower /= 2
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while upper − lower > 1e−8:
mid = (upper + lower)/2

if eps estimate(mid) < overall epsilon:

lower = mid

else:

upper = mid

return mid

The discrete Laplace Mechanism. The discrete Laplace mechanism is another noise-adding mechanism
to ensure privacy that we consider in this work. Firstly, we restate the definition of the discrete Laplace
mechanism (Ghosh et al., 2009).

Definition 1. Let t > 0. The discrete Laplace distribution with scale parameter t is denoted LapZ(t). It is a
probability distribution supported on the integers and defined by

P
X←LapZ(t)

[X = x] = e1/t − 1
e1/t + 1 · e

−|x|/t

for all x ∈ Z.

The Laplace mechanism adds discrete noise to a non-private query, with variance proportional to the
sensitivity of the query.

Lemma 4.2 (Theorem 1 of Ghosh et al. (2009)). Let ∆, ε > 0. For an input domain X , let f : X → Z satisfy
|f(x)− f(x′)| ≤ ∆ for all x ' x′ differing on a single entry. Define a randomized algorithm M : X → Z as
M(x) = q(x) + Y where Y ∼ LapZ(0, ∆

ε ). Then M satisfies ε-differential privacy.

It is possible to draw the discrete Laplace distribution using the following code.

import numpy as np

def laplace noise(eps):

def zero prob(alpha):

return 0 if np.random.rand() < (1.0 − alpha)/(1.0 + alpha) else 1

def sign prob():

return −1 np.random.rand() < 0.5 else 1

alpha = np.exp(−eps) # Between 0 and 1
# This implementation is based on the usual geometric distribution
# With probability (1−alpha)/(1+alpha) , return 0
# Otherwise, draw from the geometric distribution but with random sign flipping

return zero prob(alpha) ∗ np.random.geometric(1−alpha) ∗ sign prob()

Drawing from the discrete Gaussian distribution. The following code can be used to draw from the
discrete Gaussian distribution. This is based on Algorithm 1 in Canonne et al. (2020).

import numpy as np

def exponential bernoulli sample(gamma):

assert(gamma >= 0)
if 0 <= gamma <= 1:
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K = 1

while(1):

A = 1 if np.random.rand() < gamma/K else 0

if A == 0:

break

else:

K += 1

return 1 if K % 2 == 1 else 0

else:

for k in range(1, int(np.floor(gamma) + 1)):

B = exponential bernoulli sample(1)

if B == 0:

return 0

return exponential bernoulli sample(gamma − np.floor(gamma))

def discrete gaussian sample(sigma):

t = int(np.floor(sigma) + 1)

while(1):

U = np.random.choice(t)

D = exponential bernoulli sample(U/t)

if D == 0:

# Restart
return discrete gaussian sample(sigma)

V = 0

while(1):

A = exponential bernoulli sample(1)

if A == 0:

break

V += 1

B = 1 if np.random.rand() < 1./2 else 0

if B == 1 and U == 0 and V == 0:

return discrete gaussian sample(sigma)

Z = (1 − 2∗B) ∗ (U + t ∗ V)
C = exponential bernoulli sample((np.abs(Z)−sigma∗∗2/t)∗∗2/(2∗sigma∗∗2))

if C == 0:

return discrete gaussian sample(sigma)

return Z

The private spectral algorithm. We now have all the necessary components to construct the private
spectral algorithm. We include the implementation of the private spectral algorithm including the function
to subsample for a random graph in the construction of the sparse Markov chain. For the code to run and
produce our experiment results, refer to the attached python script in the supplementary materials.

def subsampl graph(m, p):

subsample graph = np.zeros((m, m))

for i in range(m−1):
for j in range(i+1, m):

if np.random.rand() < p:
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subsample graph[i, j] = 1

subsample graph[j, i] = 1

return subsample graph

def construct markov chain private(performances , lambd=1., epsilon=0.1, subsample graph=None):

m = len(performances)

if subsample graph is None:

subsample graph = np.ones((m, m))

D = np.ma.masked where(performances == INVALID RESPONSE , performances)

D compl = 1. − D
M = np.ma.dot(D, D compl.T)

A = np.ma.masked where(performances == INVALID RESPONSE , np.ones like(performances))

B = np.ma.dot(A, A.T)

np.fill diagonal(M, 0)

np.nan to num(M, False)

M = np.round(M)

M non priv = np.copy(M)

M add = np.copy(M)

# Add discrete Gaussian noise
for i in range(m):

for j in range(m):

if j != i and M[i, j] != 0 and np.abs(subsample graph[i, j] − 1) < 1e−6:
noise = discrete gaussian sample((1./epsilon))

M[i, j] = max(1, M[i, j] + noise)

M add[i, j] = noise

if j != i and np.abs(subsample graph[i, j] − 0) < 1e−6:
M non priv[i, j] = 0

M[i, j] = 0

M add[i, j] = 0

# Add regularization to the ’missing ’ entries
M = np.where(np.logical or((M != 0), (M.T != 0)), M+lambd, M)

# d = np.ma.sum(M, 1) + 1
d = np.ones((m,)) ∗ np.ma.max(np.ma.sum(M, 1) + 1)

for i in range(m):

di = d[i]

M[i, :] /= di

M[i, i] = 1. − np.sum(M[i, :])

return M non priv , M add , M, d
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def spectral estimate private(A, lambd=1., epsilon=0.1, subsample graph=None,

max iters=1000, eps=1e−5):
, , M, d = construct markov chain private(A, lambd=lambd, epsilon=epsilon,

subsample graph=subsample graph)

assert(not np.any(np.isnan(M)))

from scipy.sparse import csc matrix

M = csc matrix(M)

m = len(A)

pi = np.ones((m,)).T

for in range(max iters):

pi next = (pi @ M)

pi next /= np.sum(pi next)

if np.linalg.norm(pi next − pi) < eps:

pi = pi next

break

pi = pi next

pi = pi.T

# pi = np.maximum(pi , 1e−12)
pi /= np.sum(pi)

pi = (pi/d)/np.sum(pi/d)

assert(not np.any(np.isnan(pi)))

beta = np.log(pi)

beta = beta − np.mean(beta)
assert(not np.any(np.isnan(beta)))

return beta

Converting Concentrated Differential Privacy to Approximate Differential Privacy.

Lemma 4.3 (Lemma 3.5 of Bun and Steinke (2016)). Let M be a ρ-concentrated differentially private
algorithm. Then M also satisfies (ε, δ)-approximate differential privacy for all δ > 0 and

ε = ρ+
√

4ρ log(1/δ) .

Generally, to achieve a desired (ε, δ)-differential privacy guarantee, it suffices to satisfy ρ-CDP with

ρ ≈ ε2

4 log(1/δ) .

Recall that the discrete Gaussian mechanism that adds NZ

(
0, 1

ε2
0

)
noise to a non-private query satisfies

1
2ε

2
0-CDP. By setting 1

2ε
2
0 to the approximation in the theorem statement above, we can solve for ε0 using the

following one-line code.

import numpy as np

def find effective epsilon0 zgauss(overall epsilon , overall delta):

return overall epsilon/np.sqrt(2 ∗ np.log(1./overall delta))
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