
1.  Introduction
The Beartooth Mountains of southern Montana and northern Wyoming primarily consist of ∼3.5–2.8 Ga base-
ment rocks of the Wyoming craton (e.g., Mueller & Frost, 2006; Mueller et al., 2008; Wooden et al., 1988). 
This region, located ∼100 km southeast of the northwest craton margin (Figure 1), has been involved in tectonic 
events spanning Archean to Cenozoic time (e.g., Chamberlain et al., 2003; Dickinson & Snyder, 1978; Mogk 
et al., 1992). Precambrian basement in the Beartooth Mountains was exhumed to the surface as an intraforeland 
uplift associated with the development of the North American Cordillera in late Mesozoic–early Cenozoic time 

Abstract  Archean rocks exposed in the Beartooth Mountains, Montana and Wyoming, have experienced 
a complex >2.5 Gyr thermal history related to the long-term geodynamic evolution of Laurentia. We constrain 
this history using “deep-time” thermochronology, reporting zircon U-Pb, biotite  40Ar/ 39Ar, and zircon and 
apatite [U-Th(-Sm)]/He results from three transects across the basement-core of the range. Our central transect 
yielded a zircon U-Pb concordia age of 2,805.6 ± 6.4 Ma. Biotite  40Ar/ 39Ar plateau ages from western samples 
are ≤1,775 ± 27 Ma, while those from samples further east are ≥2,263 ± 76 Ma. Zircon (U-Th)/He dates span 
686.4 ± 11.9 to 13.5 ± 0.3 Ma and show a negative relationship with effective uranium—a proxy for radiation 
damage. Apatite (U-Th)/He dates are 109.2 ± 23.9 to 43.6 ± 1.9 Ma and correlate with sample elevation. 
Multi-chronometer Bayesian time-temperature inversions suggest: (a) Cooling between ∼1.90 and ∼1.80 Ga, 
likely related to Big Sky orogeny thermal effects; (b) Reheating between ∼1.80 Ga and ∼1.35 Ga consistent 
with Mesoproterozoic burial; (c) Cooling to ≤100°C between Mesoproterozoic and early Paleozoic time, likely 
reflecting continental erosion; (d) Variable Paleozoic–Jurassic cooling, possibly related to Paleozoic tectonism 
and/or low eustatic sea level; (e) Rapid Cretaceous–Paleocene cooling, preceding accepted proxies for flat-slab 
subduction; (f) Eocene–Miocene reheating consistent with reburial by Cenozoic volcanics and/or sediments; 
(g) Post-20 Ma cooling consistent with Neogene development of topographic relief. Our results emphasize 
the utility of multi-chronometer thermochronology in recovering complex, non-monotonic multi-billion-year 
thermal histories.

Plain Language Summary  The Beartooth Mountains in southern Montana and northern Wyoming 
consist of some of the oldest rocks in North America. These rocks have been exhumed to Earth's surface and 
reburied numerous times. However, sedimentary rocks recording many of these events have been eroded, 
erasing much of the primary record of the geologic history of this region. To recover this history, we use 
minerals within existing rocks that act as heat-sensitive clocks. These “clocks” record a cooling date, reflecting 
the last time the rock was within a specific temperature range. We measure cooling dates for several different 
types of minerals and model the history of temperature fluctuations they record, corresponding to burial 
and erosion events. We interpret the results of these models by comparing them with the geologic history 
recorded in nearby preserved sedimentary rocks. We find that the Beartooth Mountains were involved in 
mountain-building events not previously recognized and cooling associated with building of the modern Rocky 
Mountains began earlier, and is more complex, than is generally recognized. The ability to recover such long 
histories of temperature fluctuations is important, suggesting we may be able to learn about events far in Earth's 
past even when the rock record is missing.
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(e.g., Dickinson & Snyder, 1978). Consequently, the Beartooth Mountains provide not only an opportunity to 
interrogate the timing and nature of this exhumation event, but also a window into the Archean to recent geody-
namic evolution of western Laurentia, where basement rock is commonly inaccessible due to Phanerozoic burial.

Previous application of high- to medium-temperature thermochronometers in the Beartooth Mountains typically 
yield Archean–early Paleoproterozoic ages (e.g., Gast et  al.,  1958; Wooden et  al.,  1988), while conventional 
low-temperature thermochronology has been used mainly to explore late Mesozoic–early Cenozoic thermal 
events (e.g., Carrapa et al., 2019; Cerveny, 1990; Omar et al., 1994; Peyton et al., 2012). These disparate data 
sets comprise snapshots into a vastly more complex thermal history which remains largely unresolved. However, 
recent work has demonstrated the utility of multi-chronometer thermal history inversions—coupling the broad 
temperature sensitivity of the zircon (U-Th)/He system with additional information from medium-temperature 
(i.e.,  40Ar/ 39Ar methods) and/or other low-temperature (that is, apatite (U-Th-Sm)/He (AHe) and apatite fission 
track (AFT)) systems—in constraining nearly continuous thermal histories below ∼400°C (see review in 
McDannell & Flowers, 2020). This approach enables the recovery of ancient thermal events in regions where 
other evidence of these events is overprinted or eroded (e.g., Baughman & Flowers,  2018,  2020; DeLucia 
et al., 2018; Krob et al., 2019; McDannell et al., 2018, 2019, 2022). Here, we apply this approach to investigate 
the deep-time thermal history of the Beartooth Mountains. Key tectonic/geodynamic questions of open debate are 
testable using an integrated thermal history of this study area. These include:

1.	 �What was the extent and nature of Paleoproterozoic thermotectonism in southwest Montana? Paleoprotero-
zoic (∼1.8–1.7 Ga) thermal overprinting in the region has long been recognized, with early work suggesting 
a maximum extent ∼100 km west of the Beartooth Mountains (Giletti, 1966). However, subsequent work 
revealed partial resetting of medium-temperature thermochronometers east of this transitional boundary (e.g., 
Montgomery & Lytwyn, 1984) and a complex spatiotemporal pattern of tectonism (Condit et al., 2015).

2.	 �How did Proterozoic rifting of the western Laurentian margin influence the thermal history of cratonic rocks 
to the east? The western margin of Laurentia experienced rifting events in early–middle Mesoproterozoic 
and middle–late Neoproterozoic time (e.g., Lonn et al., 2020; Yonkee et al., 2014). Previous studies have 
suggested the Neoproterozoic event caused erosional exhumation and cooling of cratonic rocks east of the 
rifting margin (e.g., Kaempfer et al., 2021; Peak et al., 2021). However, other authors have shown late Neopro-
terozoic cooling was likely not restricted to regions near the Laurentian margin, instead favoring Cryogenian 
glaciation as the dominant driver of continental exhumation in this interval (McDannell et al., 2022). Addi-
tional data from regions near the margin of Laurentia are essential to increase the spatiotemporal resolution 
of the thermal history of the craton, potentially helping constrain the thermal effects of rifting and driver(s) of 
Precambrian exhumation of the Laurentian continent.

3.	 �What is the Paleozoic burial and uplift history of the Beartooth Mountains? Sedimentologic and stratigraphic 
studies in the 1990s suggested the Beartooth Mountains comprised a paleohigh during late Paleozoic time, 
potentially reflecting uplift associated with the Antler and/or Ancestral Rocky Mountains (ARM) orogenic 
events (Dorobek et al., 1991; Maughan, 1990, 1993). Despite this sedimentologic support, recent thermo-
chronologic investigation has failed to resolve Paleozoic cooling associated with this hypothesized episode of 
tectonism (e.g., Carrapa et al., 2019; Peyton et al., 2012).

4.	 �What was the timing of late Mesozoic–early Cenozoic intraforeland basement uplift? Interest in the timing of 
basement deformation in southwest Montana has recently been renewed following the publication of thermo-
chronologic and sedimentologic evidence for exhumation as early as ∼100 Ma (Carrapa et al., 2019; Garber 
et al., 2020; summarized by Orme, 2020). If this is the case, basement exhumation significantly preceded 
evidence for flat-slab subduction in the region, provoking reconsideration of many existing geodynamic 
models for intraforeland basement uplift in the North American Cordillera (e.g., Bird, 1984, 1998; Carrapa 
et al., 2019; Dickinson & Snyder, 1978; Parker & Pearson, 2021). Although the Beartooth Mountains figure 
centrally in this debate, existing estimates for the timing of cooling initiation vary wildly between studies (that 
is, ≥110 Ma from Carrapa et al. (2019) versus ≤65 Ma from Omar et al. (1994)) and no study has yet been 
able to reconcile these disparate results.

5.	 �When and why did the Laramide ranges acquire their modern relief? Early thermochronologic work on the 
Beartooth Mountains suggested the development of significant topographic relief during Miocene–early Plio-
cene time but was unable to differentiate late-stage erosion of basement versus Oligocene–Miocene reburial 
and subsequent basin evacuation (Omar et al., 1994). Work in the neighboring Big Horn and Wind River 
ranges largely support the latter interpretation (e.g., Caylor & Carrapa, 2021; McKenna, 1980; McKenna & 
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Love, 1972; Steidtmann & Middleton, 1991; Steidtmann et al., 1989), but this issue has only been cursorily 
reexamined in the Beartooth Mountains (Carrapa et al., 2019).

We address these questions using a newly reported data set of zircon U-Pb, biotite  40Ar/ 39Ar, ZHe, and AHe 
geo- and thermochronologic data from samples collected along three transects in the Beartooth Mountains. We 
input information from these and previously reported data sets in a series of Bayesian QTQt time-temperature 
(t-T) inversions to explore the thermal evolution of the range. In turn, we integrate results of t-T inversions with 
structural, sedimentologic, and stratigraphic observations in a kinematic evolution model capable of explaining 
observed spatiotemporal trends in the Phanerozoic thermal history.

Collectively, our results indicate Paleoproterozoic tectonism affected at least the western Beartooth Moun-
tains, leading to ≤1.8 Ga biotite  40Ar/ 39Ar ages. Models suggest late Paleoproterozoic to early Mesoprotero-
zoic reheating—possibly reflecting burial by unpreserved Mesoproterozoic sediments—followed by cooling to 
<200°C by the end of Mesoproterozoic time. Model resolution in Neoproterozoic time is generally poor, but our 
best-resolved models suggest an episode of cooling initiating 800 ± 200 Ma. Models ubiquitously indicate reheat-
ing during early Paleozoic time, consistent with burial by passive margin deposits, and suggest at least one previ-
ously unresolved later Paleozoic to Mesozoic cooling event. Modeled spatially variable, rapid cooling in middle 
Cretaceous–Paleogene time reflects the complex evolution of tectonic exhumation likely associated with both 
foreland basin flexure and compressional stresses linked to retroarc shortening. Several transects suggest Ceno-
zoic reheating coeval with Eocene volcanism and/or Oligocene–early Miocene intermontane basin sedimenta-
tion. Final cooling of these samples occurred post-20 Ma, suggesting Neogene basin evacuation and development 
of intra-foreland topographic relief. This study demonstrates multi-chronometer deep-time thermochronology 

Figure 1.  Tectonic map of the Northern Rocky Mountains region, showing the distribution of major tectonic features. The study area (orange extent box) in the 
Beartooth Mountains lies in the northwestern portion of the Archean Wyoming craton and in the northernmost portion of the Laramide Province, as classically 
defined (e.g., Dickinson & Snyder, 1978). Dashed line divides provinces of the Wyoming craton (e.g., Mogk et al., 1992). Modified from Ronemus et al. (2020) after 
Whitmeyer and Karlstrom (2007) and Yonkee and Weil (2015). Other tectonic elements adapted from: Basement-cored ranges—Peyton et al. (2012), Belt Supergroup—
Lonn et al. (2020), and Vuke et al. (2007), Windermere Supergroup—Brennan et al. (2020).
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can reconstruct broadly continuous Precambrian-to-recent thermal histories, even in regions that have experi-
enced significant Phanerozoic burial and tectonism.

2.  Geologic Setting and Tectonic History
2.1.  Geographic and Structural Setting

The Beartooth Mountains are a ∼8,250 km 2 northwest-southeast trending mountain range in southern Montana 
and northernmost Wyoming (Figure 1; e.g., Foose et al., 1961). The range stands with ≥2.5 km of topographical 
prominence over bordering basins—the Bighorn Basin to the east and southeast, the Crazy Mountain Basin to the 
north, and the Paradise Valley to the west (Figures 1 and 2). The southern and southwestern regions of the range 
are buried by the Eocene Absaroka Volcanic Supergroup (Figure 2; Foose et al., 1961). Precambrian rocks in the 
Beartooth Mountains are divided into four main structural blocks distinguished by differing tectonic histories and 
lithologies: (a) the main Beartooth block, dominantly orthogneisses comprising the principal structural compo-
nent of the range, including the study area; (b) the Stillwater mafic layered intrusive complex, exposed along the 
northeastern margin of the range; and (c) the North Snowy and (d) South Snowy blocks, consisting of rocks of the 
Montana metasedimentary terrane exposed in northwestern and southwestern portions of the range, respectively 
(Figure 2; Foose et al., 1961; Mogk et al., 1988, 1992). The eastern Beartooth Mountains form a broad plateau 
surface (i.e., the Beartooth Plateau)—with an average elevation of >3,000 m (Figure 2).

2.2.  Precambrian Tectonic History of the Beartooth Mountains and Surrounding Regions

The Beartooth Mountains are volumetrically dominated by latest Mesoarchean–Neoarchean (∼2.9–2.8  Ga) 
granitoids and gneisses (Figure  2; Wooden et  al.,  1988). These and similar rocks comprise the Archean 
Beartooth-Bighorn magmatic province (BBMP), a major sub-province of the Wyoming craton (Figure 1; Mogk 
et al., 1992; Mueller et al., 2008). Paleo–Mesoarchean (3.5–3.0 Ga) gneissic rocks of dominantly tonalitic to 
granodioritic to trondhjemitic composition (TTG suite) are preserved throughout the range as meter-scale xeno-
liths to km-scale pendants within the 2.9–2.8 Ga suite (Mueller et al., 2008, 2010; Wooden et al., 1988). The 
Archean metamorphic history experienced by these rocks has been subject to extensive study and is summarized 
by Wooden et al. (1988) and Mueller et al. (2008).

During Paleoproterozoic time, ∼1.86–1.72 Ga thermotectonism associated with the amalgamation of Laurentia 
impacted basement rocks of the Great Falls tectonic zone and Montana metasedimentary province––north and 
west of the study area, respectively (Figure 1; e.g., Condit et al., 2015; Gifford et al., 2014, 2020; Giletti, 1966; 
Harms, Brady, et  al.,  2004; Mueller et  al.,  2002). However, existing evidence for this event in the Beartooth 
Mountains is generally limited to the North and South Snowy blocks on the western margin of the range, where 
sparse 1.6–1.8  Ga  40K/ 39Ar and Rb-Sr ages have been linked to Paleoproterozoic reheating (Montgomery & 
Lytwyn, 1984; Reid et al., 1975). Gast et al. (1958) reported older Rb-Sr (2.53–2.8 Ga) and K-Ar (2.29–2.52 Ga) 
ages from near the Beartooth Highway, interpreting that late Paleoproterozoic thermotectonism did not signifi-
cantly affect the main Beartooth block.

During Mesoproterozoic time, the Belt Supergroup was deposited in parts of eastern Idaho, western Montana, 
southeastern British Columbia, and southwestern Alberta (Figure 1; e.g., Winston, 1986). Lower Belt Supergroup 
rocks deposited within the eastern arm of the Belt Basin, known as the Helena Embayment, are recognized in the 
subsurface ∼50 km northwest of the study area (Figure 1; Vuke et al., 2007). Sedimentary thicknesses of ≥15 km 
are recognized in western portions of the Belt Basin, where the deposition of middle–upper portions of this 
succession (Ravalli through Missoula groups) is constrained to ∼1.49–1.37 Ga (e.g., Anderson & Davis, 1995; 
Evans et al., 2000; Hirtz et al., 2022; Lonn et al., 2020; Ross & Villeneuve, 2003; Winston, 1986). By contrast, 
measured thicknesses total ≤3 km within the Helena Embayment and the depositional timing of these rocks is 
more poorly constrained, bracketed between ∼1.71 and ∼1.42 Ga by detrital zircon maximum depositional ages 
from the LaHood and Helena formations, respectively comprising the lowermost and uppermost units recog-
nized in the Helena Embayment (Hirtz et al., 2022; Mueller et al., 2016). Deposition of the Belt Supergroup 
slightly preceded the intrusion of a suite of ∼1,300 Ma mafic dikes, recognized in the Beartooth Mountains 
(e.g., Baadsgaard & Mueller,  1973). Both events have been linked to Mesoproterozoic rifting of the western 
Laurentian margin, possibly related to the breakup of supercontinent Nuna (e.g., Ross & Villeneuve, 2003; Sears 
& Price, 1978, 2000), also referred to as Columbia (e.g., Rogers & Santosh, 2002). The thermal effects of Meso-
proterozoic rifting and sedimentation in the study area are poorly understood.
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During middle–late Neoproterozoic time (∼780–600 Ma), the western Montana/Eastern Idaho region was located 
on the rifting western margin of Laurentia (e.g., Brennan et al., 2020), which developed into the Paleozoic west-
ern Laurentian passive margin (Yonkee et al., 2014). Regionally, evidence for the inception of this rifting event 
includes a suite of ∼780–708 Ma mafic dikes—preserved in the Beartooth Mountains and elsewhere along the 
western margin of Laurentia (Figure 2; Baadsgaard & Mueller, 1973; Harlan et al., 2003). Later rifting is recorded 
by ∼665–650 Ma alkalic plutonism and ∼667–601 Ma deposition of syn-rift sedimentary units—likely correl-
ative to the Windermere Supergroup—in east-central Idaho, ∼300 km SW of the study area (Figure 1; Brennan 
et al., 2020; Link et al., 2017; Lund et al., 2010). Normal faulting associated with this rifting event has been 
proposed as a driver of regional erosional exhumation in southwest Montana, based on modeled Neoproterozoic 

Figure 2.  Generalized geology of the southeastern Beartooth Mountains. The range is comprised dominantly of Archean gneiss thrust over Paleozoic–Paleogene 
sedimentary rocks. Low-temperature thermochronology samples of this study and select previous studies are shown, colored by their corresponding transect 
used in time-temperature inversions. Geologic units and faults are generalized from Foose et al. (1961), Berg et al. (1999, 2000), Lopez (2001), and Wise (2000), 
with supplemental original mapping conducted during sample collection. Only Precambrian dikes longer than 2 km are shown. Note that the map is rotated ∼30° 
counterclockwise from north.
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cooling of basement rock therein (Kaempfer et al., 2021). Notably, Neoproterozoic rifting of western Laurentia 
temporally overlapped with widespread Cryogenian low-latitude glaciations, including the Sturtian (717–659 Ma) 
and Marinoan (641–635 Ma) “snowball Earth” events (Hoffman & Schrag, 2002; Hoffman et al., 1998, 2017; 
Kirschvink, 1992; Prave et al., 2016; Rooney et al., 2015; Walker et al., 1981), and the more enigmatic Gaskiers 
(∼582 Ma; Bowring et al., 2003) and Fauquier (∼571 Ma; Hebert et al., 2010) glaciations of the Ediacaran Period. 
Diamictites associated with Cryogenian glaciation are present in central and eastern Idaho, including within the 
previously mentioned syn-rift succession, but have not been recognized in Montana (e.g., Brennan et al., 2020; 
Lund et al., 2003, 2010; Yonkee et al., 2014). Snowball Earth glaciations have similarly been suggested as a driver 
of km-scale continental erosion based on results of thermochronology (McDannell et al., 2022) and analysis of 
the global geochemical, sedimentary, and terrestrial bolide impact records (Keller et al., 2019). However, there 
is no existing geologic or thermochronologic evidence for erosion related to late Neoproterozoic rifting or glaci-
ation in the Beartooth Mountains.

2.3.  Phanerozoic Burial and Tectonic History

At Beartooth Butte in the southeastern Beartooth Mountains, Phanerozoic sedimentary rocks nonconformably 
overlie Archean orthogneiss, representing a ∼2.3 Gyr “gap” in the rock record (Figure 2; Thomas, 2008). This 
nonconformity coincides with similar global observations of a major unconformity at or near the base of the 
Phanerozoic section (e.g., Peters & Gaines, 2012; Walcott, 1914), frequently comprising a nonconformity devel-
oped atop Precambrian basement rocks (e.g., Flowers et al., 2020; Karlstrom & Timmons, 2012). The temporal 
correlation of these unconformities of late Precambrian age is referred to as the “Great Unconformity” (Defini-
tion 3 of McDannell et al., 2022; see discussion of variable usage of this term therein). In the region of the study 
area, the Flathead Sandstone—overlying the Great Unconformity surface—has been variably dated as upper 
Ediacaran, lower Cambrian, or middle Cambrian via Rb-Sr geochronology, paleopedology, and biostratigraphy, 
respectively (Chaudhuri & Brookins, 1969; Deiss, 1938; Norris & Price, 1966; Retallack, 2013; Thomas, 2007). 
Subsequent Paleozoic passive margin-style sedimentation is recorded by onlapping successions of sandstone, 
limestone, and shale, with intervening unconformities associated with periods of non-deposition and erosion 
(Mallory, 1972; Maughan, 1993). Regionally, deposition was punctuated by localized uplift during Devonian 
to Early Mississippian and Late Mississippian to Permian time, likely associated with the Antler and Ancestral 
Rockies orogenic events, respectively (Dorobek et al., 1991; Maughan, 1990). Along the northeastern Beartooth 
front, a maximum thickness of ∼1 km of Paleozoic stratigraphy is preserved (Lopez, 2001; Maughan, 1993).

During Middle Triassic to Late Jurassic time, the western margin of North America evolved into a tectonically 
consolidated margin associated with east-dipping subduction of the Farallon oceanic plate beneath the North 
American continent (e.g., Colpron et al., 2007; Dickinson, 2004). This evolution culminated in the establishment 
of the North American Cordillera, a retroarc orogenic system extending more than 6,000  km from southern 
Mexico to Alaska, USA (DeCelles, 2004; Yonkee & Weil, 2015). A complex and extensive foreland basin system 
developed eastward of the retroarc fold-thrust belt (Figure 1; DeCelles, 2004; Kauffman & Caldwell, 1992). In 
areas near the Beartooth Mountains, stratigraphy deposited in this foreland basin constitute Jurassic through Pale-
ogene rocks with a maximum thickness of ∼4.5 km (Lopez, 2001; Mallory, 1972; Maughan, 1993).

The Beartooth Mountains comprise one of the northernmost features in an elongate series of intraforeland uplifts 
cored by Precambrian basement rock spanning from New Mexico to southwestern Montana that partitioned the 
Cordilleran foreland basin during a mountain building event classically referred to as the Laramide orogeny 
(Figure 1; e.g., Armstrong, 1968; Coney & Reynolds, 1977; Dickinson & Snyder, 1978). The timing of initiation 
of this event has been subject to recent debate (see Orme, 2020 for a review). Stratigraphic and sedimentologic 
evidence has been interpreted to suggest segmentation of the foreland basin by incipient intraforeland highs 
by late Early Cretaceous time (DeCelles, 1986; Parcell & Williams, 2005; Schwartz & Decelles, 1988), while 
more recent detrital zircon studies suggest partitioning of the southwest Montana foreland basin may have been 
delayed until ∼88  Ma (Garber et  al.,  2020; Rosenblume et  al.,  2021). The synorogenic Beartooth Conglom-
erate member of the Paleogene Fort Union Formation, deposited on the east-northeast flank of the Beartooth 
Mountains, preserves thrust-related growth strata and an unroofing sequence recording exhumation of the uplift 
(Ayers,  1986; DeCelles, Gray, Ridgway, Cole, Srivastava, et  al.,  1991; Gingerich, 1983). Clasts of metamor-
phic basement occur high in the section, providing unequivocal evidence that basement rocks of the Beartooth 
Mountains were actively eroding by the deposition of this unit at ∼57–55 Ma (DeCelles, Gray, Ridgway, Cole, 
Srivastava, et al., 1991; Flueckinger, 1970; Jobling, 1974; Koenig, 2015).
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3.  Methodology
3.1.  Sample Collection and Mineral Separation

Samples were collected from exposed quartzofeldspathic gneiss along three pseudo-vertical transects in the 
Beartooth Mountains (Figure 2). Reconnaissance mapping was conducted to ensure samples were collected an 
adequate distance from intrusions (Figure 2). Five samples were collected along the East Rosebud “Beaten Path” 
trail; 4 samples were collected on the approach to and summit of Granite Peak; and 5 samples were collected on 
the approach to and summit of Chalice Peak (Figure 2). Sample elevations ranged from 1,742 to 3,909 m. Biotite, 
zircon, and apatite grains were extracted by crushing, grinding, and sieving with a 100-mesh screen, followed by 
separation with water, a Frantz magnetic separator, and heavy liquids.

3.2.  Zircon U-Pb Geochronology

U-Pb geochronology was conducted on zircons (n  =  50) from sample GP-01, collected from the summit of 
Granite Peak (Figure 2). Though extensive U-Pb geochronology has been conducted on basement rocks from the 
Beartooth Mountains, these data are concentrated in locations near the Beartooth Highway and relatively few data 
exist for the central portions of the range (Figure 2; e.g., Carrapa et al., 2019; Mueller et al., 2008, 2010; Wooden 
et al., 1988). The high Tc of the U-Pb system means that zircon U-Pb ages generally reflect crystallization of 
the phase and provide robust starting constraints for thermal history models (e.g., Gehrels et al., 2008). Zircon 
grains were hand selected from the heavy fraction of mineral separates, prepared for analysis, and imaged with 
cathodoluminescence (CL) at the Arizona LaserChron Center (ALC; Tucson, Arizona, USA). CL images were 
used to select analysis spots targeting unzoned cores and rims of zircon grains. U-Pb geochronology of zircons 
was conducted by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) 
at the ALC. Detailed description of methods is provided in Text S1 in Supporting Information S1 and analytical 
settings are provided in Data Set S1.

3.3.  Biotite  40Ar/ 39Ar Medium-Temperature Thermochronology

 40Ar/ 39Ar thermochronology was conducted on biotite from the highest and lowest elevation samples from each 
transect (N = 6). This thermochronometer provides information about the medium-temperature (∼300°C) ther-
mal history of our samples (Grove & Harrison, 1996). Existing Ar dating in the Beartooth Mountains predomi-
nantly utilizes the K-Ar method and is concentrated on dating of intrusive dikes, which don't provide direct infor-
mation about the thermal history of the gneissic basement rocks we sampled (e.g., Baadsgaard & Mueller, 1973; 
Condie et  al.,  1969). Visually unaltered, inclusion-free flakes of biotite were selected from the light fraction 
of separates and co-irradiated at the Oregon State TRIGA Reactor. Single-grain aliquots were analyzed using 
single- and multi-step heating experiments on a VG5400 and an Isotopx NGX mass spectrometer at the Argon 
Geochronology for the Earth Sciences Laboratory at the Lamont-Doherty Earth Observatory, Columbia Univer-
sity (Palisades, New York, USA). We conducted bulk age analyses (the samples were fused and analyzed in a 
single step) and two sets of step-heating experiments—the first with 9 heating steps to determine the Ar release 
characteristic of the samples, and the second with 12 heating steps. We calculated plateau biotite  40Ar/ 39Ar ages 
from the results of the second step-heating experiment. A natural plateau was defined following accepted criteria 
(2σ overlap of each step, ≥50%  39Ar, ≥three subsequent steps). Where natural plateaus were not achieved, we 
calculated forced plateau ages and then weighed the apparent standard error of the mean (SEM) uncertainties by 
the square root of the mean square weighted deviation (𝐴𝐴

√

MSWD  ) to account for the additional spread beyond 
analytical uncertainties in the heating steps forced onto the plateau (Powell et al., 2020). Analytical uncertainties 
for each heating step are reported as 1σ SEM (see Data Set S2). See Text S2 in Supporting Information S1 for a 
detailed description of biotite  40Ar/ 39Ar analytical methods.

3.4.  Apatite and Zircon [U-Th(-Sm)]/He Low-Temperature Thermochronology

Apatite and zircon [U-Th(-Sm)/He] thermochronology leverage the time-dependent production and 
temperature-dependent diffusion of radiogenic  4He through the crystal lattice. Trace U, Th, and Sm decay to  4He 
at a rate controlled by the half-life of these radioactive parent isotopes; radiogenic  4He escapes from the crystal 
lattice at higher temperatures, while it is retained at lower temperatures (e.g., Reiners et al., 2004). We use these 
thermochronometers to provide constraints on the <200°C thermal history of the Beartooth Mountains.
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Recent advancements in the understanding of the influence of radiation damage and annealing on helium diffu-
sivity in apatite and zircon show that these factors exert a strong control on the closure temperature of the systems 
(e.g., Flowers et al., 2009; Ginster et al., 2019; Guenthner, 2021; Guenthner et al., 2013; Johnson et al., 2017). 
Damage to the crystal lattice accumulates as uranium undergoes alpha decay, while heating of the crystal can 
anneal accumulated radiation damage; the level of net radiation damage consequently affects He retentivity 
(Flowers et al., 2009; Guenthner et al., 2013). Owing to these effects, each crystal of a given level of accumu-
lated radiation damage develops a unique “effective” partial retention zone (PRZ) temperature and consequently 
commonly records a unique cooling date (Flowers et al., 2009; Guenthner et al., 2013). For samples with a t-T 
history characterized by long duration at temperatures permitting accumulation of radiation damage followed 
by moderate reheating and/or slow cooling, date dispersion commonly manifests as a relationship (also referred 
to as correlation or trend; e.g., Guenthner et al., 2013; Orme et al., 2016) between single-grain date and parent 
isotope concentration (or effective uranium; eU; a proxy for radiation damage, formally derived by Cooperdock 
et al., 2019; eU = [U] + 0.28[Th] + 0.0012[Sm]). In apatite, radiation damage generally decreases the diffusivity 
of the crystal, resulting in a positive relationship between date and eU (Flowers et al., 2009). Zircon exhibits 
similar behavior at low levels of radiation damage, while moderate to high levels increase diffusivity, resulting in 
a negative relationship between date and eU (Guenthner et al., 2013). The specific t-T history of a sample controls 
the shape of the resultant date-eU relationship, such that key aspects of the former can be recovered from the 
latter (Flowers et al., 2009; Guenthner, 2021; Guenthner et al., 2013). For these reasons, thermal modeling efforts 
incorporating a radiation damage and annealing model are particularly salient in reconstructing complex deep-
time thermal histories (e.g., DeLucia et al., 2018; Flowers et al., 2020; McDannell et al., 2019; Orme et al., 2016; 
Reade et al., 2020).

Between 1 and 7 zircons grains were hand-picked from the heavy fraction of mineral separates from each sample 
for a total of 84 single zircon grain aliquots (N = 14; n = 84). Grains were selected for maximum intrasample 
eU variability. We used the visual metamictization of grains as a proxy for accumulated radiation damage (and 
eU concentration) such that clear grains reflect low levels of radiation damage and opaque grains reflect high 
levels of radiation damage (Ault et al., 2018). Euhedral grains of similar half-widths (∼60 μm) free from fluid 
or mineral inclusions were preferentially selected, when possible. The presence of broken crystal terminations 
or internal imperfections was noted when observed (see Data Set S3). Grain photos are available in Data Set S4, 
https://doi.org/10.5281/zenodo.7443913. Selected grains were photographed, measured to determine surface area 
to volume ratios for alpha ejection correction (Farley et al., 1996; Hourigan et al., 2005; Ketcham et al., 2011), 
and packed into Nb foil tubes to ensure even heating of the grain and prevent volatilization of parent nuclides 
during He extraction. Isotopic analysis was conducted at the Helium Analysis Laboratory (HAL) at the University 
of Illinois, Urbana–Champaign (Urbana, Illinois, USA). Uncertainties on individual ZHe dates, reflecting the 
combination of measurement and systematic error, are reported at the 2σ level. Detailed analytical methods for 
ZHe thermochronology are provided in Text S3 in Supporting Information S1.

AHe thermochronology was conducted on apatites from the highest and lowest elevation samples from each 
transect. Three apatite grains were hand-picked from the medium-density fraction of mineral separate for each 
selected sample for a total of 18 single grain aliquots (N = 6, n = 18; see Data Set S5). Grains were photographed, 
measured, and packed into Nb foil tubes in the same manner as described above for ZHe analyses. He extrac-
tion and measurement, as well as isotopic dissolution for U-Th-Sm content, was conducted at the University of 
Colorado (U-Th)/He thermochronology laboratory (Boulder, CO, USA). Analytical uncertainties reflecting the 
combination of measurement and systematic error are reported at the 2σ level. Detailed analytical methods for 
AHe thermochronology are provided in Text S4 in Supporting Information S1.

3.5.  Bayesian Time-Temperature Inversions

To explore plausible time-temperature histories of the Beartooth Mountains, we performed Bayesian inverse 
thermal history modeling of newly reported biotite  40Ar/ 39Ar, ZHe, and AHe data and previously published AFT 
and AHe data from the Beartooth Mountains using the QTQt v. 5.8.0 software package (Gallagher, 2012). This 
approach facilitates the testing of many (10 6) potential thermal histories using a transdimensional reversible jump 
Markov chain Monte Carlo (rjMCMC) approach. QTQt infers the complexity of the thermal history solution from 
the data directly and will generally favor simpler thermal histories unless the model fit is significantly improved 
by additional complexity (i.e., additional t-T points).
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The helium model in QTQt takes parent isotope concentrations, grain radii, measured dates, and date uncertain-
ties as input. The radiation damage and annealing models of Flowers et al. (2009) and Guenthner et al. (2013) 
were implemented for modeling of AHe and ZHe data, respectively. To expand uncertainty accounting, we imple-
mented Hierarchical Bayesian resampling of [U-Th(-Sm)]/He date uncertainty. Analytical uncertainties were 
input into QTQt and, during inverse modeling, were randomly rescaled by a value of 1–5 (Gallagher,  2012; 
Malinverno & Briggs, 2004). Thereby, the variance of the date uncertainties is estimated from their most probable 
value, given the data. This approach helps account for the discrepancy between typically small calculated analyt-
ical uncertainties (typically ≤5%) and the much larger uncertainty indicated by studies analyzing large numbers 
of replicate analyses of natural aliquots and continuous ramped heating experiments (≥15%; e.g., McDannell 
et al., 2018, 2022).

To invert biotite  40Ar/ 39Ar data, we used the helium model in QTQt modified by inputting diffusion parameters 
for  40Ar* diffusion in biotite calculated by Grove and Harrison  (1996) for an infinite cylinder geometry. We 
assumed a 150 μm grain size. Although we did not measure individual biotite grains, this assumption is reason-
able because we selected the largest biotite flakes which passed through a 100-mesh screen (∼150 μm), and 
previous studies have suggested a ∼150 μm effective radius of diffusion (Harrison et al., 1985). Biotite  40Ar/ 39Ar 
plateau ages and corresponding uncertainties, described in Section 3.3, were input into QTQt. This allowed us to 
screen spurious heating steps, potentially affected by processes not accounted for by the model (e.g., McDougall 
& Harrison, 1999). Additional details on our approach to modeling biotite  40Ar/ 39Ar data in QTQT are available 
in Text S2 in Supporting Information S1.

The AFT multi-kinetic model of Ketcham et al. (2007) was implemented for modeling of AFT data previously 
published by Carrapa et al. (2019) and Omar et al. (1994). All relevant AFT count and length data from Carrapa 
et al. (2019) were input into the AFT model directly. The full data set of Omar et al. (1994) was not available, 
so the values of ρd and Nd were resampled using the reported date, date uncertainty, and Ns/Ni for each sample; 
the Dpar value was resampled from a distribution of 2.0 ± 2.0, and the QTQt default values of 340 and 5 were 
accepted for ζ and ∂ζ, respectively. Although portions of these data sets were modeled by their original authors, 
we remodel them herein using the same software and parameters as our newly reported models to facilitate direct 
comparison of results. Additionally, our approach allows for the integration of multiple samples in a vertical 
profile, which was not used in previous studies.

All thermal history inversions employed a general prior of 2,812–0 Ma and 0–400°C. This broad prior allows models 
to explore time space from the present to the older limit of observed concordant zircon U-Pb ages and temperature 
space spanning surface temperatures to those above the closure temperature of the highest-temperature thermo-
chronometer modeled. We note that modeled thermal history complexity is generally inversely propor tional to 
the size of the general prior in QTQt because more data are required to resolve the model across a greater range 
of time and temperature space. We justify our broad general prior because we input a large and diverse suite of 
thermochronology data recording dates spanning ∼2.5 Gyr and sensitive to a broad range of temperatures. In the 
Bayesian context of QTQt, our unconstrained models therefore comprise a lower limit on the complexity of the 
thermal history required to fit the observed data (Gallagher, 2021).

A subset of models included three constraints, using robust geologic and geochronologic information to guide 
the inversions: (a) 2,812–2,799 Ma and 390°C–400°C—the crystallization age of the main orthogneiss suite in 
the Beartooth Mountains (e.g., Carrapa et al., 2019; Wooden et al., 1988; Mueller et al., 2008; this study); (b) 
550–520  Ma and 0°C–100°C—the timing of deposition of the Cambrian Flathead Sandstone atop the Great 
Unconformity surface (e.g., Chaudhuri & Brookins, 1969; Retallack, 2013; Thomas, 2008), constraining basement 
rocks near the unconformity to near-surface temperatures; and (c) 60–50 Ma and 0°C–100°C—the depositional 
timing of the syn-orogenic Beartooth Conglomerate, which includes clasts of basement rock eroded at the surface 
(DeCelles, Gray, Ridgway, Cole, Srivastava, et al., 1991). The relatively broad temperature constraints (≤100°C) 
for (b) and (c) reflect the uncertainty regarding the thickness of basement rock eroded from the Beartooth Moun-
tains (e.g., Omar et al., 1994; Simons & Armbrustmacher, 1976).

To promote thorough exploration of modeled time-temperature space, more complex models were accepted for 
equivalent likelihood and proposal jumps were resampled if the proposal fell outside of the general prior. Models 
were run for 1,500,000 total iterations, consisting of 750,000 burn-in iterations that were discarded and an addi-
tional 750,000 post-burn-in iterations retained to estimate the posterior probability of the model parameters. The 
sampling distribution reached stationary—with no structure in the likelihood or posterior chains—by the end of 
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the burn-in period, signifying model convergence. Model input and output 
files, detailed information on model setup, and justification for constraints 
are available in Data Set S6, https://doi.org/10.5281/zenodo.7443913, Tables 
S1 and S2 in Supporting Information S1, respectively.

4.  Analytical Results
4.1.  Zircon U-Pb Results

Eleven zircon U-Pb analyses meeting concordance cutoffs were obtained 
(<20% discordance, <5% reverse discordance). Ages meeting concord-
ance cutoffs are Neo–Mesoarchean—ranging from 2,689.0  ±  12.9 to 
3,124.0  ±  38.4  Ma (Figure S1 in Supporting Information  S1). Four anal-
yses have error ellipses intersecting concordia, giving a concordia age 
of 2,805.6  ±  6.4  Ma (mean square weighted deviation [MSWD]  =  0.79; 
p(χ 2)  =  0.37; calculated using IsoplotR; Vermeesch,  2018; see Figures 
S2a and S2b in Supporting Information  S1). The probability distribution 
of U-Pb ages is defined by a peak at ∼2,803.5 Ma with a second, bimodal 
peak centered at ∼2,957 Ma and a tail at lower probability to ∼3,200 Ma 
(Figure S1c in Supporting Information S1). These results are consistent with 
previous zircon U-Pb geochronology results from the Beartooth Mountains 
(Mueller et al., 2008; Wooden et al., 1988). Analyses with ages ≥2,791.4 Ma, 
comprising 10/11 concordant analyses, had Th/U values > 0.2 (see Figure 
S1d in Supporting Information S1), suggesting these ages record magmatic 
growth of zircon (e.g., Pystina & Pystin, 2019). A lower Th/U value of 0.04 
was obtained for a single analysis with an age of 2,688.97  ±  12.90  Ma, 
consistent with minor Neoarchean metamorphic growth of zircon. The bulk 
of ages coincide with the volumetrically dominant ∼2.8–2.9 Ga magmatic 
suite in the range, while older ages may reflect inherited zircons from the 
Mesoarchean TTG suite (Mueller et  al.,  2008). Detailed analytical data is 
available in Data Set S1.

4.2.  Biotite  40Ar/ 39Ar Results

Apart from GP-01, age spectra from biotite  40Ar/ 39Ar step-heating diffu-
sion experiments for all samples rise from younger values to a plateau-like 
sequence of steps within the first 5%–20% of  39Ar release (Figure 3). Sample 
GP-01 exhibits a saddle-like spectrum, with older values exhibited during 
the first and last ∼5% of  39Ar release (Figure 3b). Older values within the last 
several steps are also present in the spectrum of sample CP-05 (Figure 3c). 
Young step ages during initial increments of  39Ar release may suggest minor 
episodic  40Ar loss, slow cooling through the PRZ, or degassing of (sub)
microscopic inclusions within biotites (Onstott & Peacock,  1987; Ross & 
Sharp,  1988). The saddle-shaped spectrum of sample GP-01 may indicate 
the presence of minor excess Ar in this sample (Figure 3b; e.g., Lanphere & 
Brent Dalrymple, 1976). However, all age spectra are generally flat for the 
central ≥80% of  39Ar release and yield a clear visual sequence of plateau-
like steps, suggesting these potential sources of discordance are of relatively 
minor importance (Figure 3).

A natural plateau was obtained only for sample BP-05. For other samples, we 
report forced plateau ages and uncertainties using the methods described in 
Section 3.3. Using this approach, biotite samples yielded  40Ar/ 39Ar plateau 

ages ranging from 1,622 ± 121 to 2,402 ± 2 Ma (Figure 3). We additionally report bulk ages from single-step 
heating experiments for separate aliquots of each sample (Figure 3). These bulk ages range from 1,663 ± 2 to 

Figure 3.  Biotite  40Ar/ 39Ar gas release spectra for samples from (a) Beaten 
Path, (b) Granite Peak, and (c) Chalice Peak transects in the Beartooth 
Mountains. Steps used for plateau determination are highlighted by bold 
brackets. Bulk ages are indicated by dotted lines. For samples not meeting the 
accepted criteria for a plateau, a plateau calculation using steps comprising a 
visual plateau was forced, and uncertainty was calculated using the product 
of the SEM uncertainty and the square root of the mean square weighted 
deviation (as defined in the text).
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2,472 ± 3 Ma and demonstrate general agreement with the plateau ages (Figure 3). Biotite  40Ar/ 39Ar plateau ages 
comprise two distinct groups with internal overlap at 2σ uncertainty: (a) samples from the westernmost transect 
(CP) yield ages between 1,662 ± 121.22 and 1,775 ± 27.08 Ma; (b) samples from the eastern two transects 
(Granite Peak and Beaten Path) yield ages between 2,263 ± 75 Ma and 2,402 ± 2 Ma (Figure 3). High elevation 
samples in each transect record older cooling dates than those from low elevation. See Data Set S2 for detailed 
isotopic results.

4.3.  Zircon (U-Th)/He Results

Corrected ZHe dates range from 686.4 ± 11.9 to 13.5 ± 0.3 Ma while eU concentrations span 113–3,565 ppm 
(Figure 4; detailed isotopic results available in Data Set S3). ZHe dates from the Beartooth Mountains are rela-
tively evenly distributed with few obvious date probability peaks (Figure 5b). Correlation between ZHe date and 
grain size is poor (Figure S2 in Supporting Information S1). By contrast, ZHe dates exhibit a coherent, negative 
relationship with eU, a proxy for radiation damage, which is expected given that we purposefully selected for 
grains with a wide range of observable damage (Figure 4). The trend is strongly negative for eU values less 
than ∼500 ppm, consistent with moderate to high levels of accumulated damage (>1.0 α/g × 10 17; Guenthner 
et al., 2013). For all transects, grains of >800 ppm eU form a pediment of ages of ∼10 Ma to ∼110 Ma before 
reaching dates <50 Ma at >1,200 ppm eU (Figure 4). Eastern transects (Beaten Path and Granite Peak) define a 
more gradual transition into this pediment, with an initial inflection to a lower-angle date-eU slope at ∼400 ppm 
and a second inflection to a nearly flat slope at ∼800 ppm eU (well-defined for only the Beaten Path transect; 
Figures 4a and 4b). By contrast, the Chalice Peak transect exhibits a steeper date-eU slope at low-eU concentra-
tions and a more abrupt inflection at ∼500 ppm eU (Figure 4c). Elevation has a second-order influence on ZHe 
date (Figure 4 insets). Although intrasample date dispersion is high—likely primarily owing to radiation damage 
effects—median ZHe dates of each sample (red Xs in Figure 4 insets) generally trend toward older values at 
higher elevations. Samples BP-05 and CP-03 noticeably deviate from this trend. However, this is likely due these 
analyses sampling only moderate–high eU grains (384–3,565 ppm). Consequently, radiation damage effects may 
mask the date-elevation relationship for these samples.

4.4.  Apatite (U-Th-Sm)/He Results

AHe dates span from 109.2 ± 23.9 to 43.6 ± 1.9 Ma and eU concentrations range from 3.3 to 35.4 ppm (Figure 5; 
see Data Set S5 https://doi.org/10.5281/zenodo.7443913 for detailed analytical data). AHe dates exhibit moderate 
intrasample dispersion (average intrasample σ = 11.87 Myr). Compared to previously reported AHe dates from 
the Beartooth Mountains, the present distribution of dates is flatter and lacks tails <40 and >110 Ma, but the 
dominant Paleocene date probability peak is consistent between new and previously reported data sets (Figure 5b; 
Bricker, 2016; Carrapa et al., 2019; Mueller et al., 2008; Peyton et al., 2012). Newly reported AHe dates are 
less dispersed than those of Mueller et al. (2008), Bricker (2016), and Carrapa et al. (2019), who reported dates 
ranging from ∼190 to ∼32 Ma from samples collected along the Beartooth Highway, East Rosebud Creek, and 
Stillwater River drainages (Figures 2 and 5).

Correlation between AHe date and grain size is poor (Figure S3a in Supporting Information S1). Aliquots from 
most newly reported samples span a relatively restricted array of eU concentrations (≤20 ppm), and AHe dates 
are not strongly correlated with eU (Figure S3b in Supporting Information  S1). The Beaten Path and Gran-
ite Peak transects display a positive date-elevation relationship, while this trend is less coherent in samples 
from the Chalice Peak transect (Figure 5a). The lack of a clear inflection point toward older AHe dates with 
increasing elevation suggests that a fossil AHe PRZ is not preserved in the eastern Beartooth Mountains, contrary 
to suggestions of Bricker (2016) and Mueller et al. (2008). Rather, previously reported, highly dispersed AHe 
dates at ∼1,300–3,200 m ASL may have been affected by other sources of AHe date overdispersion (e.g., Brown 
et al., 2013; Guo et al., 2021; Murray et al., 2014). For instance, Peyton et al. (2012) observed clear overdisper-
sion in a sample from an intrusive porphyry in the Beartooth Mountains with AHe dates of up to 138 ± 19 Ma 
and a zircon U-Pb date of 98.3 + 0.3/−1.0 Ma (gray Xs at 2,868 m ASL in Figure 5a).

4.5.  Time-Temperature Inversion Results

Results of Bayesian t-T inversions implemented in QTQt show the relative probability of thermal history solu-
tions for transects in the Beartooth Mountains (Figures 6 and 7). We report the results of models without geologic 
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constraints (“unconstrained models”; Figures 6a, 6c, and 6e) primarily as a sensitivity test, allowing us to better 
examine the resolution of the thermochronology data themselves and isolate possible artifacts of imposed bound-
ary conditions. These model results represent the simplest thermal history solutions consistent with the observed 
thermochronology data but do not necessarily honor geologic data. By contrast, models including geologic 
constraints (“constrained models”; Figures 6b, 6d, and 6f; Figure 7) represent the most probable thermal history 
solutions considering all available sources of information—both thermochronologic and geologic—and are 
therefore primarily used for geologic interpretation. The agreement between observed and predicted thermochro-
nometer dates is generally good for all models, with exceptions noted (Figure 8).

Figure 4.  Corrected ZHe dates are plotted against eU from three transects in the Beartooth Range: (a) Beaten Path trail; (b) 
Granite Peak; and (c) Chalice Peak. A negative relationship between ZHe date and eU concentration exists independently all 
transects. Note the change in x-axis scale at 1,500 ppm eU in panel (c). Insets show corrected ZHe date plotted against sample 
elevation. Red Xs denote median ZHe date for samples with multiple aliquots.
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The Precambrian portion of our thermal history models resolves several first-order thermal events previously 
unrecognized in the Beartooth Mountains, discussed here in detail (Figure 6). Model results are described for 
the highest elevation sample in each transect. Modeled thermal histories for lower elevation samples follow the 
same t-T paths, offset according to a geothermal gradient resampled during modeling. We discuss model results 
in terms of both relative path density, which is proportional to relative probability, and the expected model—a 
weighted mean model, where the weighing is provided by the posterior probability for each thermal history 
solution, and the preferred single model output in QTQt (Gallagher, 2012; Figure 6). The results of supplemental 
models, testing the effects of modifying the resampling parameters, are available in Figure S4 in Supporting 
Information S1.

4.5.1.  Modeled Precambrian Thermal History

Model results for the Beaten Path transect indicate at least three distinct Proterozoic cooling events (Figures 6a 
and 6b). The most probable solution for the constrained model, reflected by the highest path density, suggests 

Figure 5.  (a) Existing and newly reported AHe and apatite fission track (AFT) dates from the Beartooth Mountains as a 
function of elevation. Sample locations are shown in Figure 2. Data with colored symbols were used in time-temperature 
inversions, while gray symbols were not. Note that several outlier aliquots from the data set of Peyton et al. (2012), which 
the authors identified as being overdispersed, were excluded from our modeling. (b) Kernel density estimation (KDE) 
and histogram plots summarizing new and previously reported AHe, AFT, and ZHe dates from the Beartooth Mountains 
between 0 and 500 Ma; note that newly reported ZHe dates >500 Ma plot off the scale. KDE and histogram bin widths are 
5 and 10 Myr, respectively, and KDEs are normalized such that each plot contains the same area under the curve. Prominent 
date-probability peaks are indicated by vertical ticks and labeled. Scales at right correspond to the number of analyses in each 
histogram bin. Data sources: AHe—Bricker (2016), Carrapa et al. (2019), Mueller et al. (2008), Peyton et al. (2012), and this 
study; AFT––Carrapa et al. (2019), Cerveny (1990), and Omar et al. (1994), ZHe––Carrapa et al. (2019) and this study.
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Figure 6.  Results of QTQt t-T inversions of thermochronology data from (a, b) Beaten Path, (c, d) Granite Peak, and (e, f) Chalice Peak transects. Panels on the left 
(a, c, and e) show results of unconstrained models while panels on the right (b, d, and f) show results of constrained models. Post-burn-in t-T path density is shown for 
the highest elevation sample in each profile by colored gradient (blue, orange, and green). Path density is proportional to relative probability such that higher saturation 
indicates higher relative probability in t-T space. Expected model results and corresponding 95% credible intervals are shown by cyan (highest elevation sample in 
each profile) and red (lowest elevation sample in each profile) envelopes. “N” refers to the number of samples in each transect for the respective thermochronometer, 
while “n” refers to the total number of aliquots. Constraints imposed on thermal history models are shown as black boxes (described in methods section). Vertical bars 
show the approximate timing of geologic events potentially responsible for major aspects of the modeled t-T histories. The dashed line for the Belt Basin deposition 
event divides poorly-constrained deposition of Lower Belt Supergroup units of the Helena Embayment from better-constrained deposition of the Ravalli through 
Missoula groups in the main Belt Basin. Geologic event references: (1) Condit et al. (2015) and references therein; (2) Lonn et al. (2020) and references therein; Hirtz 
et al. (2022); (3) Brennan et al. (2020), Link et al. (2017), Lund et al. (2010), and Yonkee et al. (2014); (4) Hoffman et al. (1998, 2017), Hoffman and Schrag (2002), 
Kirschvink (1992), Prave et al. (2016), Rooney et al. (2015), and Walker et al. (1981).
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Figure 7.  QTQt t-T inversions of new and previously reported thermochronology data resolve Phanerozoic cooling and reheating events. The ≤800 Ma and ≤250°C 
portion of t-T inversions are shown for the (a) Beaten Path, (b) Granite Peak, (c) Chalice Peak, (d) Clark's Fork Canyon (Carrapa et al., 2019), and (e) Beartooth 
Highway/Amoco No. 1 borehole (Omar et al., 1994; Peyton et al., 2012) transects. All models enforced geologic constraints (black boxes). Stippled regions show 
time-temperature space poorly constrained by AFT/AHe-only models (panels d and e). Path densities and expected model results are symbolized as in Figure 6. (f) 
Results of decompacted sediment accumulation models: compacted (blue envelopes) and decompacted (red envelopes) sedimentary thicknesses are defined by the 
minimum (upper envelope bound) and maximum (lower envelope bound) thickness of preserved stratigraphy near the study area. Dashed lines indicate hiatuses 
in the stratigraphic record. Black lines show modeled reference maximum burial depths for samples originally 2 and 4 km below the sub-Cambrian unconformity 
surface (i.e., 2 or 4 km of basement overburden). Temperature scale assumes 20°C surface temperature and a 30°C/km geothermal gradient. Shaded vertical bars 
show the approximate timing of geologic events potentially impacting the thermal history of the region. Geologic event references: (1) Beranek et al. (2016), Blakey 
and Ranney (2018), and Dorobek et al. (1991); (2) Kluth and Coney (1981) and Maughan (1990); (3) DeCelles (2004), DeCelles and Burden (1992), and Fuentes 
et al. (2011); (4) DeCelles (1986) and Schwartz and Decelles (1988); (5) Coney and Reynolds (1977) and Copeland et al. (2017). Kk—Cretaceous Kootenai Formation; 
unc.—unconformity.
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Figure 8.  Observed and predicted ZHe dates for unconstrained and constrained models for the Beaten Path (a, b), Granite Peak (b, c), and Chalice Peak (e, f) transects 
(inversion results in Figures 6 and 7a–7c) are shown with respect to eU. Insets show predicted AHe dates and  40Ar/ 39Ar ages, grouped by sample. Observed and 
predicted AHe and apatite fission track (AFT) dates and AFT mean track lengths (MTL) for constrained models from the Beartooth Pass/Amoco No. 1 Borehole (g) and 
Clark's Fork Canyon (h) transects (inversion results in Figures 7d and 7e) are plotted with respect to elevation. Colored bars without ticks show reported uncertainty. 
Red bars with ticks show 95% credible range of dates sampled by post-burn-in models (i.e., predicted dates of the stationary distribution). For samples with AFT length 
data (g, h), orange bars with ticks show 95% credible range of AFT MTL sampled by post-burn-in models. For readability, AHe dates in (h) are shown as the mean of 
all sample aliquots. Observed AHe dates for individual aliquots are shown in Figure 5. Note that plotted [U-Th(-Sm)]/He dates are uncorrected for α-ejection. This is the 
default input and output of QTQt, which handles corrections during modeling. Observed ZHe and AHe dates corrected for α-ejection are provided in Figures 4 and 5, 
respectively.
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post-crystallization cooling to <150°C by ∼2.3 Ga followed by reheating to ∼250°C by ∼2.0 Ga. Subsequent 
cooling to <200°C by ∼1.8  Ga is followed by reheating to ≥200°C by ∼1.4  Ga (Figure  6b). Model resolu-
tion throughout the remainder of the Proterozoic is relatively poor, with subsets of paths indicating either a 
cooling-reheating-cooling trajectory or monotonic cooling until Cambrian time. The most probable solution 
suggests relatively slow cooling to ∼150°C ± 25°C between 1.45 ± 0.5 and 0.8 ± 0.2 Ga, followed by more 
rapid cooling to <100°C by Cambrian time (Figure 6b). The unconstrained model for the Beaten Path is less 
well resolved. In contrast to the constrained model, it indicates a reheating event at ∼2.4 Ga and does not resolve 
a  reheating-cooling inflection point at ∼1.4 Ga (Figure 6a). However, the unconstrained model similarly resolves 
Orosirian and Tonian through Cambrian cooling, suggesting these events are directly informed by the thermo-
chronologic data and not an artifact of imposed model boundary conditions.

The fit between observed and predicted thermochronometer dates is similar for unconstrained and constrained 
models for the Beaten Path transect, matching the observed date-eU relationship of the ZHe data well (Figures 7a 
and 7b). Both models achieve good fits to the biotite  40Ar/ 39Ar age of sample BP-05, but the unconstrained model 
produces a better fit for sample BP-01. This thermochronometer is partially reset by ∼2.0 Ga reheating in the 
constrained model, resulting in a predicted age ∼0.2 Ga younger than that observed (Figures 6b and 7b).

Both unconstrained and constrained models for the Granite Peak transect suggest reheating to >200°C at 
∼1.3–1.4 Ga (Figures 6c and 6d). This reheating event apparently obscures the earlier Precambrian history. Both 
models suggest temperatures of ≤200°C post-1.3 Ga with cooling to <150°C by early Paleozoic time. The trajec-
tory of this cooling is relatively poorly resolved, with a subset of paths in the unconstrained model suggesting 
latest Neoproterozoic–early Paleozoic cooling (Figure 6c). However, these paths are largely inconsistent with 
geologic evidence suggesting near-surface temperatures during deposition of the Cambrian Flathead Sandstone 
(e.g., Simons & Armbrustmacher, 1976). Enforcing this constraint results in poor resolution of late Precambrian 
cooling (Figure 6d). Predicted biotite  40Ar/ 39Ar ages overlap at uncertainty with those observed, and predicted 
ZHe dates generally reproduce the observed date-eU relationship (Figures 7c and 7d). However, predicted dates 
for the two lowest-eU grains, both from the lowest elevation sample, are ∼50–150 Myr younger than observed.

Temperatures of ∼300°C at ∼1.9 ± 0.1 Ga are indicated by both unconstrained and constrained models for the 
Chalice Peak transect (Figures 6e and 6f). These temperatures are required to reproduce observed Statherian 
biotite  40Ar/ 39Ar ages (Figures  7e and  7f). Notably, the unconstrained model better reproduces the  40Ar/ 39Ar 
age of sample CP-05 (Figure 7e). Subsequent cooling to <250°C by ∼1.75 Ga is indicated by both models. The 
unconstrained model is poorly resolved throughout the remainder of Proterozoic time (Figure  6e), while the 
constrained model indicates reheating to >200°C by 1.25 ± 0.5 Ga and subsequent, poorly constrained cool-
ing (Figure 6f). While ZHe predictions of both models reproduce the observed steeply negative date-eU rela-
tionship at <400 ppm eU, predicted dates are significantly younger than observed for a cluster of 5 zircons at 
∼500–800 ppm eU. Additionally, zero dates predicted for zircons of >2,000 ppm eU conflict with non-zero 
observed dates (Figures 7e and 7f).

4.5.2.  Modeled Phanerozoic Thermal History

Model results suggest that at least two distinct Phanerozoic reheating-cooling events best reproduce the observed 
thermochronologic data (Figures 7 and 8). Following early Paleozoic reheating, a subset of paths of the constrained 
Granite Peak and Chalice Peak models suggest an episode of Paleozoic cooling, initiating between 500 and 
300 Ma (Figures 7b and 7c). This cooling event is resolved by both unconstrained and constrained models for 
the Chalice Peak transect (Figures 6e, 6f, and 7c), indicating it is directly informed by the data. By contrast, the 
unconstrained model for the Granite Peak transect produces a good fit to the data without requiring Paleozoic 
initiation of cooling, suggesting rapid early Paleozoic reheating followed by cooling indicated by a subset of paths 
in the Granite Peak constrained model may be an artifact of imposed constraints (Figure 6c). The Beaten Path and 
Granite Peak transects indicate cooling during Jurassic time, initiating 200 ± 20 Ma (Figures 6a–6d, Figures 7a 
and 7b). All transects additionally resolve cooling during Late Cretaceous and/or Paleocene time (Figure 7). 
Following Late Cretaceous–Paleocene cooling, the Beaten Path and Granite Peak transects indicate slow cooling 
while the Chalice Peak transect suggests an episode of rapid reheating and cooling between ∼60 and ∼40 Ma 
(Figure 7c).

In addition to our newly reported transects, we modeled 3 AFT dates and one set of track lengths from the 
Clark's Fork Canyon transect of Carrapa et al. (2019; Figure 7d). Model results are similar to those of Carrapa 
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et al. (2019), who conducted a single-sample HeFTy model of their sample CF4. Their best-fit model solution 
suggested rapid cooling at ∼110 Ma followed by reheating to ∼80°C between 40 and 20 Ma followed by mono-
tonic cooling to surface temperatures at the present. Our results demonstrate this thermal history produces a good 
fit to observed AFT dates of the entire Clark's Fork transect modeled as a vertical profile (Figure 8g).

Finally, we modeled an extensive set of AFT dates and track lengths (N = 26, n = 2,438) and AHe dates (N = 23, 
n = 70) collected from the subsurface in the Amoco No. 1 Beartooth borehole and surface exposures near the 
Beartooth Highway by Omar et al. (1994) and Peyton et al. (2012; Figure 7e). Omar et al. (1994) modeled the 
post-80 Ma thermal history of samples from two end-member elevations using the Monte-Carlo approach of 
Lutz and Omar  (1991), which suggested rapid cooling between ∼60 and 55 Ma followed by either residence 
at or reburial to ≥50°C until ∼10 Ma, after which samples cooled to the surface. Peyton et al. (2012) inverted 
three aliquots from one sample in HeFTy, which indicated ≥30°C of cooling between 74 and 41 Ma and didn't 
require later reheating. Our inversion approach combines samples from both previous studies into a single verti-
cal profile. Our models indicate very rapid cooling between ∼62 and ∼50 Ma (Figure 7e), generally consistent 
with previous models (Omar et al., 1994; Peyton et al., 2012). However, our models apparently achieve greater 
sensitivity to the Cenozoic thermal history, favoring reburial to, rather than residence at, temperatures of ≥30°C 
by 6 Ma. Most significantly, our inversion resolves a major cooling event initiating in Devonian time, not recog-
nized by previous modeling efforts (Figure 7g). Paleozoic cooling is required to reproduce AFT dates of up to 
282 ± 16 Ma and short MTLs in samples above 3 km ASL, which define a nearly flat date-elevation relationship 
(Figure 8h; we note that Cerveny (1990) documented dates of up to 348 ± 31 Ma at similar elevation, but we 
were unable to model his data due to insufficient reporting). Although Omar et al. (1994) reported Paleozoic AFT 
ages, they began their models at 80 Ma and consequently did not resolve the Paleozoic cooling recorded by their 
samples. The full model results for these transects (i.e., 2,812–0 Ma) are available in Figure S4 in Supporting 
Information S1; however, Precambrian thermal events therein are unresolved.

To assess the compatibility of the results of t-T inversions with the Phanerozoic sedimentary record preserved in 
nearby areas, we constructed a set of decompacted sediment accumulation models (Figure 7f). Details on the setup 
of decompacted sediment accumulation models are available in Text S5 and Table S3 in Supporting Informa-
tion S1. Results show that the total decompacted thickness of all Phanerozoic sedimentary rocks is 4.13–5.47 km. 
Less than 0.57 km of sediment was deposited prior to Paleozoic cooling resolved by the Chalice Peak and Beartooth 
Highway/Amoco No. 1 borehole transects, which initiated during an Ordovician–Devonian depositional hiatus 
(∼444–384 Ma) and persisted throughout the regional deposition of 0.78–0.86 km of Devonian–Pennsylvanian 
sediment (Figure 7). Assuming a typical geothermal gradient, early Paleozoic reheating temperatures indicated 
by these models cannot be accounted for based on burial reheating consistent with preserved stratigraphy alone, 
requiring additional overburden of unpreserved sediments or eroded basement. Initiation of cooling of the Beaten 
Path and Granite Peak transects at ∼200 Ma occurred during a Triassic–late Jurassic deposition hiatus. Modeled 
Cretaceous reheating of the Beaten Path, Chalice Peak, and Beartooth Highway/Amoco No. 1 borehole transects 
is consistent with reburial by foreland basin deposits, which total 2.83–3.99 km of decompacted thickness. These 
results inform our interpretations of modeled Phanerozoic thermal events, discussed below.

5.  Discussion
5.1.  The Extent of Paleoproterozoic Thermotectonism in Southwest Montana

Biotite  40Ar/ 39Ar results from samples CP-01 and CP-05 comprise the easternmost instance of <1.8  Ga 
medium-temperature thermochronometer ages recognized in southwestern Montana and the first from the 
BBMP (Figures 1, 3, and 9; references in Figure 9 caption). These ages partially overlap with Paleoproterozoic 
(∼1.78–1.72 Ga) thermotectonism observed within the Montana metasedimentary province, west of the Bear-
tooth Mountains, where peak metamorphic conditions of ∼0.8–1.2 Gpa and >700°C have been documented 
(Figure 9; e.g., Ault et al., 2012; Condit et al., 2015; Harms, Brady, et al., 2004). This episode of thermotecto-
nism, known as the Big Sky orogeny, has been attributed to collision between the Wyoming and Medicine Hat 
cratons (i.e., part of the wider Great Falls orogeny; Mueller et al., 2002) and/or between the Wyoming craton and 
an arc terrane to the west (i.e., Selway terrane of Foster et al., 2006).

Previously documented evidence for thermal effects associated with the Big Sky orogeny is dominantly limited 
to basement exposures northwest of a northeast-trending transitional boundary, commonly referred to as “Giletti's 
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line” (Figure 9; Condit et al., 2015; Giletti, 1966). However, excess Ar was later identified in samples from key 
localities originally used to define this boundary (Giletti,  1971). Biotite  40Ar/ 39Ar ages of <1.8 Ga observed 
in samples CP-01 and CP-05 require late Paleoproterozoic residence of these samples at temperatures above 
the biotite  40Ar/ 39Ar closure temperature (>300°C; Grove & Harrison,  1996; Figures  2 and  9). Constrained 
time-temperature inversions of the Beaten Path transect resolve an inflection from cooling to reheating approx-
imately temporally coincident with the Big Sky orogeny (Figure  6b), suggesting this event may have also 
influenced the thermal history of eastern portions of the Beartooth Mountains. These results—in addition to 
previously documented partially reset K-Ar and Rb-Sr ages in the North and South Snowy blocks (Montgomery 
& Lytwyn, 1984; Reid et  al.,  1975)—suggest that reinterpretation of the position and nature of Giletti's line 
is warranted. Significant uncertainty remains regarding the extent and nature of late Paleoproterozoic tecto-
nism in Montana and associated spatial patterns in medium-temperature thermochronometer ages (e.g., Condit 
et al., 2015; Harms, Burger, et al., 2004; Mueller et al., 2004). Further detailed thermochronologic work in the 
region may help resolve this period of uncertainty, contributing to improved understanding of the evolution of 
ancient orogenic systems.

5.2.  Potential Triggers of Mesoproterozoic–Neoproterozoic Thermal Events

Constrained models for all newly reported transects resolve reheating to ≥200°C by early Ectasian time followed 
by cooling to <100°C between late Ectasian and early Paleozoic time (Figures 6b, 6d, and 6f). In the follow-
ing section, we discuss possible mechanisms driving inflections in this portion of the modeled thermal history. 
However, we note that unconstrained models do not ubiquitously resolve these inflections, suggesting they are not 
strictly required by the data. We focus discussion on the best resolved model aspects but emphasize interpretive 
caution given large model uncertainties.

Figure 9.  New and existing geochronologic and thermochronologic data constrain the extent of late Paleoproterozoic thermotectonism affecting basement rocks (gray 
polygons) in southwest Montana. Data from this study are outlined in red. Biotite  40Ar/ 39Ar data from this study are reported as plateau ages and associated uncertainty. 
Red dashed line denotes a schematic revised extent of Paleoproterozoic thermal overprinting suggested by our data. Data citations:  40K/ 39Ar—Giletti (1966, 1971) 
and Reid et al. (1975);  40Ar/ 39Ar—Erslev and Sutter (1990), Harlan et al. (1996), Roberts et al. (2002), Brady et al. (2004), Hames and Harms (2013), and this study; 
zircon U-Pb—Ault et al. (2012), Carrapa et al. (2019), Condit et al. (2015), and this study; monazite U-Th-Pb—Cheney et al. (2004), Alcock et al. (2013), and Condit 
et al. (2015); garnet Pb-Pb—Roberts et al. (2002), Cheney et al. (2004), Ault et al. (2012), and Condit et al. (2015); Rb-Sr—Reid et al. (1975) and Montgomery and 
Lytwyn (1984). WR—Whole Rock. Adapted from Condit et al. (2015).
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The Beaten Path and Granite Peak transect suggest peak reheating by ∼1.45 Ga, while that for the Chalice Peak 
transect occurs slightly later. The timing of this modeled reheating overlaps with deposition of Belt Supergroup 
units within the Helena Embayment (Figure  1), bracketed between 1.71  Ga and 1.42  Ga (e.g., Anderson & 
Davis,  1995; Hirtz et  al.,  2022; Mueller et  al.,  2016; Ross & Villeneuve,  2003). Preserved Mesoproterozoic 
sedimentary rocks in the Helena Embayment are structurally bound by the Perry line, a system of north-dipping 
Mesoproterozoic normal faults tracing ∼50 km north of the Beartooth Mountains (e.g., Hatcher et  al., 1987; 
McMannis, 1963; Ross & Villeneuve, 2003; Winston, 1986). Despite this, the occurrence of Mesoproterozoic 
talc deposits ∼46–80 km south of the Perry line—defining a WNW–ESE striking “corridor” ∼150 km southeast 
of the Beartooth Mountains—has been interpreted as evidence that the eastern Belt Basin originally extended 
south of this structural boundary (Anderson et al., 1990; Underwood et al., 2014). The detrital zircon record from 
the eastern Belt Supergroup is consistent with this interpretation. A paucity of ∼2.8 Ga zircons in eastern Belt 
Supergroup units suggests the BBMP was not an important sediment source to the basin (Fox, 2017; Mueller 
et al., 2016; Ronemus et al., 2020), consistent with a lack of erosion of BBMP basement during Belt Supergroup 
deposition. Coupled with these lines of evidence, modeled Mesoproterozoic reheating of rocks in the Bear-
tooth Mountains may support Mesoproterozoic deposition within the study area (Figure 6). In this context, the 
preserved extent of Belt Supergroup sediments may not reflect the original extent of the basin, but rather that of 
later erosional truncation. Later faulting along the Perry line may have contributed to erosional beveling of Meso-
proterozoic rocks deposited in the hanging-wall of the fault system. We note that the biotite  40Ar/ 39Ar ages of 
our samples were not reset in Mesoproterozoic time (Figure 3), and models indicate ≤125°C of Mesoproterozoic 
reheating (Figure 6). Therefore, any Mesoproterozoic sediments deposited at the location of the study area must 
have been substantially thinner than the ∼15 km of Mesoproterozoic stratigraphy preserved in western portions 
of the Belt Basin.

Following potential Mesoproterozoic reheating, constrained thermal history models indicate samples cooled 
from >200° C to <100°C between ∼1.45 Ga and early Paleozoic time (Figure 6). Meso–Neoproterozoic cooling 
events are best resolved by models for the Beaten Path transect, which suggest an initial phase of cooling initi-
ating ∼1.45 ± 0.5 Ga and a later inflection to more rapid cooling beginning ∼0.8 ± 0.2 Ga (Figure 6b). Only 
the former phase of cooling is well resolved by models for other transects (Figures 6d and 6f). This initial phase 
approximately coincides with the ∼1.4 Ga rifting of western Laurentia associated with breakup of supercontinent 
Nuna, inferred from a reported disappearance of non-Laurentian detrital zircons in the upper Belt Supergroup 
(e.g., Ross & Villeneuve, 2003; Stewart et al., 2010; see recent debate in Parker & Hendrix, 2022). Similarly, the 
modeled inflection to more rapid cooling in Neoproterozoic time overlaps with an additional ∼780 to ≤680 Ma 
phase of rifting of the western Laurentian margin associated with the breakup of supercontinent Rodina (e.g., 
Brennan et al., 2020; Li et al., 2013; Link et al., 2017; Lund et al., 2010; Merdith et al., 2019).

Collectively, the observation that both modeled Meso–Neoproterozoic cooling events coincide with the timing of 
hypothesized rifting of the western Laurentian margin is consistent with a causal relationship between marginal 
rifting and the exhumation of cratonward basement rock. Resolving ∼850–550 Ma cooling for the Madison and 
Ruby–Gravelly mountain ranges, 75–120 km west of the present study area, Kaempfer et al. (2021) suggested 
normal faulting associated with the rifting of western Laurentia caused erosional exhumation of horst blocks to the 
east. They hypothesized southwestern Montana was an eroding topographic high throughout late Neoproterozoic–
early Cambrian time. Deep-time thermal history models from the Grand Canyon have similarly been interpreted 
to suggest a linkage between Rodinia breakup and erosion of the footwall blocks of rift-related normal faults 
(Peak et al., 2021), although later work showed this phase of cooling may not be required to reproduce observed 
ZHe dates (Thurston et al., 2022). Similar rifting processes associated with Nuna breakup may have triggered 
erosional exhumation of southwest Montana basement rock in Mesoproterozoic time as well, although samples 
apparently experienced reheating during initial phases of Mesoproterozoic normal faulting. We note that inver-
sions of Kaempfer et al. (2021) did not resolve significant Mesoproterozoic reheating or cooling, but this may 
reflect that their model setup allowed only monotonic cooling during Proterozoic time. Additionally, their data set 
apparently lacked sensitivity to Mesoproterozoic thermal events, as demonstrated by forward models.

Notably, rifting related to supercontinent breakup is not the only process capable of explaining Neoproterozoic 
continental exhumation. The modeled cooling timing of basement rock in southwest Montana also temporally 
overlaps at model resolution with Cryogenian snowball Earth ice-sheet glaciation (∼720–635  Ma; Goddéris 
et  al.,  2003; Kaempfer et  al.,  2021; Li et  al.,  2013). Recent QTQt t-T inversions by McDannell et  al. (2022; 
remodeling data from DeLucia et al., 2018, Flowers et al., 2020, and McDannell & Flowers, 2020) highlighted 
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that late Neoproterozoic cooling was likely not isolated to regions near the western Laurentian margin. Rather, 
they resolved a similar timing of cooling for basement rock in interior regions of Laurentia, which would have 
been insulated from the thermal effects of rifting. Therefore, McDannell et al. (2022) argued that erosion associ-
ated with snowball Earth ice-sheet glaciation is more consistent with late Neoproterozoic exhumation across both 
marginal and interior regions of the continent.

In the absence of independent Neoproterozoic geologic constraints in the study area, the resolution of the present 
models is not sufficient to distinguish between the, notably temporally overlapping, potential cooling mecha-
nisms of Laurentian rifting and snowball Earth glaciations. While continental-scale syntheses may favor ice sheet 
glaciation as a primary driver in interior portions of Laurentia (i.e., McDannell et al., 2022), rifting and glaciation 
are not mutually exclusive agents of erosional exhumation. Glaciers most effectively erode regions with preexist-
ing topography, including topography generated by rift-related faulting (e.g., Walsh et al., 2019). Consequently, 
as most recently noted by McDannell et al. (2022), the “erosional synergy” between rift-related tectonism and 
ice sheet erosion remains a viable mechanism to explain rapid Neoproterozoic cooling and associated km-scale 
erosion in regions near the Laurentian margin, such as southwest Montana.

5.3.  The Paleozoic Beartooth Mountains

Time-temperature inversions for the Chalice Peak and Beartooth Highway/Amoco No. 1 borehole transects indi-
cate a phase of cooling initiating in early to middle Paleozoic time (Figures 7c and 7e). Modeled cooling tempo-
rally overlaps with the Devonian–Early Mississippian Antler orogeny and the Pennsylvanian–Permian ARM 
orogenic event (e.g., Beranek et al., 2016; Blakey & Ranney, 2018; Dorobek et al., 1991; Kluth & Coney, 1981; 
Maughan, 1990). Although the ARM event is widely credited as triggering intraforeland basement uplift from 
Oklahoma through Colorado (e.g., Kluth & Coney, 1981), its effects have been more sparsely documented further 
north (e.g., Maughan,  1990). Existing evidence includes southward thinning of Mississippian–Pennsylvanian 
units toward the Montana-Wyoming border, evident in isopach patterns (Maughan,  1993). Additionally, 
Maughan (1990) documented erosional unconformities and lithologic facies indicative of proximal terrigenous 
sediment sources in Pennsylvanian rocks near the Beartooth Mountains. This led him to suggest the existence of a 
subaerially exposed Pennsylvanian high approximately spatially coincident with the present study area, compris-
ing one of the northernmost ARM uplifts. Our thermal history results support this hypothesis, consistent with 
active erosional exhumation of this high (Figures 7c and 7e).

While a Paleozoic cooling event is clearly required to reproduce AFT data of the Beartooth Highway transect 
(Figures 7e and 8h), the record thereof has gone unrecognized despite previous modeling by Omar et al. (1994). 
Our construction of a sufficiently deep-time thermal history model incorporating both AFT and AHe samples in 
a vertical profile and enforcing geologic constraints facilitated resolution of this newly documented cooling event 
from these previously reported data (Omar et al., 1994; Peyton et al., 2012). Similar modern inversion techniques 
applied to data sets from other nearby basement-cored ranges (e.g., Cerveny, 1990; Cerveny & Steidtmann, 1993; 
Peyton et al., 2012) may help further constrain cryptic Paleozoic cooling in the northern US Rocky Mountains.

5.4.  Mesozoic–Cenozoic Growth of an Intraforeland Basement Uplift

Models for the Beaten Path and Granite Peak transects suggest the initiation of a cooling event near the Triassic–
Jurassic transition (Figures 7a and 7b). There is little evidence for the influence of active tectonism in the south-
ern Montana region during this time, with documented Early Jurassic shortening dominantly limited to the 
Luning-Fencemaker fold-and-thrust belt of northern Nevada and southeastern Idaho (e.g., Wyld, 2002). Instead, 
this cooling may be related to eustacy rather than tectonics; the Triassic–Jurassic transition coincides with the 
lowest global sea levels of Paleozoic–Mesozoic time (Marcilly et al., 2022). Low sea levels coupled with a lack of 
tectonic subsidence facilitated sub-aerial erosion of the continental margin, recorded by a widespread Permian or 
Triassic to Late Jurassic hiatus in the regional sedimentary record (e.g., Maughan, 1993). Alternatively, modeled 
Jurassic cooling may comprise a model artifact associated with underestimation of [U-Th(-Sm)]/He date uncer-
tainties; models with larger uncertainty rescaling parameters tend to suggest Paleozoic and/or Cretaceous, rather 
than Jurassic, cooling events for these transects (Figure S4 in Supporting Information S1).

All models resolve rapid cooling (∼1.2–20°C/Myr) initiating during Early Cretaceous to Paleocene time 
(Figure  7). The Clark's Fork Canyon transect indicates the earliest cooling, initiating ≥110  Ma (Figure  7d; 

 19449194, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022TC

007541 by D
evon O

rm
e - M

ontana State U
niversity Library , W

iley O
nline Library on [11/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Tectonics

RONEMUS ET AL.

10.1029/2022TC007541

22 of 34

Carrapa et al., 2019). This cooling significantly precedes that indicated by other transects and consequently may 
reflect localized exhumation which did not necessarily affect other portions of the range (Figure 10a). Structural 
analysis and mapping by Wise (1983) and DeCelles, Gray, Ridgway, Cole, Srivastava, et al. (1991) demonstrate 
that NW-SE striking faults—such as those defining the Cooke City sag zone near the southeastern margin of the 
range—were truncated by later slip along the main range-bounding fault system. The Clark's Fork canyon transect 
is located in the proximal hanging-wall of both fault systems. By contrast, the nearby Beartooth Highway/Amoco 
No. 1 borehole transect—recording cooling initiation ≥50 Myr later—resides in the proximal hanging-wall of 
only the main range-bounding fault system. Therefore, early cooling recorded by the Clark's Fork Canyon tran-
sect may be related to slip on the NW-SE striking system. These faults, oriented sub-parallel to the axis of the 
Bighorn Basin, may have slipped in response to flexure of the basin during incipient foredeep subsidence and/
or during passage of the flexural forebulge, recorded by a regional time-transgressive unconformity at the base 
of the Kootenai and Cloverly formations (e.g., DeCelles, 2004; DeCelles & Burden, 1992). Incipient Aptian–
Albian intra-foreland uplift is consistent with paleocurrent deflections around the periphery of several southwest 
Montana basement uplifts—including the Beartooth Mountains—observed in the Lower Cretaceous Kootenai 
Formation (DeCelles, 1986). However, this interpretation was recently disputed by detrital zircon provenance 
work >100 km west of the study area, which did not find evidence for basement exhumation or significant parti-
tioning of the foreland basin in southwestern-most Montana during Kootenai Formation deposition (Rosenblume 
et al., 2021).

Apart from the Clark's Fork Canyon transect, the timing of modeled cooling initiation generally decreases from 
west to east; the Chalice Peak and Granite Peak transects indicate an inflection to rapid cooling at ∼90 Ma, while 
the Beaten Path and Beartooth Highway transects don't resolve the initiation of this cooling event until ∼60 Ma 
(Figure 8). A decreasing age of cooling in the direction of fault growth and transport is compatible with models 
conceptualizing the growth of intraforeland basement arches through an overlapping sequence of detachment 
folding and layer-parallel shortening followed by fault-propagation and fault-bend folding (Figures 10b and 10c; 
e.g., Erslev et al., 2022; Weil & Yonkee, 2012).

Initial growth of the Beartooth uplift by the former processes may have localized initial uplift and exhumation 
in eastern portions of the range, consistent with ∼95 Ma cooling resolved by models for the Chalice Peak and 
Granite Peak transects (Figure 10b). Thinning of Coniacian–Early Campanian foreland basin deposits near the 
incipient Beartooth uplift, evident from isopach patterns, supports the development of positive relief by at least 
∼90 Ma (Eichler et al., 2020). However, there is no conclusive record of sediment eroding off the Beartooth 
Mountains until Paleocene time (DeCelles, Gray, Ridgway, Cole, Srivastava, et al., 1991). Earlier uplift of the 
Beartooth Mountains may have entailed recycling of mainly fine-grained deposits, which were bypassed to distal 
regions. Proximal accumulation likely did not occur until erosion had exhumed more resistant lithologies and/
or the uplift had reached sufficient size to trigger localized flexural subsidence on its periphery (DeCelles, Gray, 
Ridgway, Cole, Srivastava, et al., 1991; Dickinson et al., 1988).

During later growth of the main Beartooth Fault, NNE-directed thrusting and associated fault-propagation fold-
ing would have focused exhumation on the steep northeastern forelimb (Figure 10c). There, the Beaten Path and 
Beartooth Highway/Amoco No. 1 borehole transects record rapid cooling between ∼62 and ∼50 Ma, coeval 
with the timing of growth structure development in the Beartooth Conglomerate (DeCelles, Gray, Ridgway, 
Cole, Srivastava, et al., 1991; Figure 10c). The lack of major surface-breaking faulting until Paleocene time is 
further supported by cross-cutting of Turonian–Coniacian (Cody Shale; ≤96.5 Ma; May et al., 2013; Wise, 2000) 
and likely late Maastrichtian (Lance Formation; ≤67 Ma; Hicks et al., 2002; DeCelles, Gray, Ridgway, Cole, 
Srivastava, et al., 1991) rocks by the main range-bounding fault. This thrusting folded Phanerozoic strata into a 
recumbent and tectonically attenuated footwall syncline and generated complex structures at the northeast corner 
of the uplift (e.g., Wise, 2000), comprising a crescendo in the uplift of the Beartooth Mountains (Figure 10c).

5.5.  Implications for Models of Laramide Tectonism

In the previous sections, we suggested that Phanerozoic exhumation and associated cooling in the Beartooth 
Mountains was a result of protracted tectonism on the margins of Laurentia spanning >300 Myr and culminat-
ing in the development of the North American Cordillera. While the previously documented Late Cretaceous–
Paleocene phase of rapid cooling was the most significant of these events (e.g., DeCelles, Gray, Ridgway, Cole, 
Srivastava, et al., 1991; Omar et al., 1994; Peyton et al., 2012), it likely records only an inflection superimposed 
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Figure 10.  Schematic kinematic evolution of the Beartooth Mountains consistent with results of thermal history inversions. (a) Early Cretaceous deformation involved 
low-magnitude slip on thrust faults with a dominantly NW–SE trend. Samples in the Clark's Fork Canyon transect, located in the proximal hanging-wall of one such 
fault, experienced cooling. (b) Early fault-related folding, likely related to detachment folding and layer-parallel slip, uplifted and exhumed rocks in the southwestern 
portions of the range, recorded by the Chalice Peak and Granite Peak transects as cooling initiating ∼95 Ma. Exhumation was poorly preserved in the sedimentary 
record due to sediment bypassing (e.g., DeCelles, Gray, Ridgway, Cole, Srivastava, et al., 1991; Hoy & Ridgway, 1997). (c) Growth of the main Beartooth fault 
triggered fault-propagation and fault-bend folding. Transects in the northeastern portion of the range experienced rapid exhumation and cooling. Deformation was 
recorded by the development of growth structures in the Paleogene Beartooth Conglomerate (DeCelles, Gray, Ridgway, Cole, Srivastava, et al., 1991). Total structural 
relief of ≥8 km was achieved (Blackstone, 1986). (d) Shortening ceased by early Eocene time. Reburial by Eocene Absaroka volcanics and/or by Oligocene–Miocene 
sediments caused reheating of transects near the flanks of the range. The Beartooth Plateau paleo-surface may reflect beveling of high topography to the regional basin 
elevation during this time. (e) Evacuation of Cenozoic sediments from the foreland re-exhumed the range flanks, resulting in the acquisition of significant topographic 
relief. Scales at right reflect depth below regional basin elevation at each time step. The growth of the Beartooth uplift in (b) and (c) is based after two-stage model of 
Erslev et al. (2022). Depth to detachment is schematic.

 19449194, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022TC

007541 by D
evon O

rm
e - M

ontana State U
niversity Library , W

iley O
nline Library on [11/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Tectonics

RONEMUS ET AL.

10.1029/2022TC007541

24 of 34

on a longer and more complex Phanerozoic cooling history. Here, we discuss potential implications for the 
tectonic/geodynamic mechanism(s) of intraforeland basement uplift these results entail.

Original consensus on the timing of the “Laramide” intraforeland basement uplift sensu Armstrong (1968) and 
Dickinson and Snyder (1978) favored mid-Campanian (∼75 Ma) initiation. In this interpretation, the initiation 
of basement deformation was approximately coeval with the hypothesized timing of shallowing of the Farallon 
slab below North America, as recorded in part by shutdown and eastward migration of the Sierra Nevada arc and 
localized deep foreland subsidence (e.g., Coney & Reynolds, 1977; Cross & Pilger, 1978; Lipman et al., 1971). 
At the latitude of the study area, apparent northeastward magmatic migration between 80 and 55 Ma has similarly 
been interpreted to reflect slab flattening (Constenius et al., 2003; Copeland et al., 2017; Lageson et al., 2001; 
Lund et al., 2002). Due in part to the ostensible similarity in timing between intraforeland basement uplift and 
proxies for slab flattening, most leading geodynamic models attribute Laramide basement uplift to some variety 
of interaction between a shallowly subducting Farallon slab and the overriding North American plate, including 
basal traction from a flat Farallon slab (e.g., Bird, 1984, 1998; Copeland et al., 2017; Dickinson & Snyder, 1978; 
Heller & Liu, 2016; Lawton, 2019), oceanic plateau(s) thereon (e.g., Liu et al., 2010; Livaccari et al., 1981), or 
associated hydration and lithospheric weakening of the North American lithosphere (e.g., Humphreys et al., 2003; 
Saylor et al., 2020).

However, recent timing constraints from southwest Montana and northern Wyoming demonstrate basement uplift 
in the region likely initiated significantly prior to the inferred timing of regional insertion of a flat slab. Steidtmann 
and Middleton (1991) presented evidence for uplift in the Wind River Range as early as 110 Ma, which to them 
“suggest(ed) either a pre-Laramide event of unknown origin or that Laramide crustal shortening began nearly 
35 Myr earlier than commonly assumed.” In southwest Montana, sedimentologic and thermochronologic work 
has produced additional evidence for Aptian–Coniacian exhumation of several basement uplifts—including the 
Highland, Madison, Blacktail-Snowcrest, and Beartooth mountains (Carrapa et al., 2019; DeCelles, 1986; Garber 
et  al., 2020; Haley, 1985; Ronemus & Orme, 2022; summarized by Orme, 2020). Our results add additional 
thermochronologic evidence suggesting likely fault-related exhumation of the Beartooth Mountains by at least 
∼90  Ma. If 80–55  Ma eastward magmatic migration in southwest Montana accurately reflects the timing of 
regional flat slab subduction, this developing consensus implies initial basement uplift preceded the arrival of 
a flat slab by ≥10 Myr (e.g., Carrapa et al., 2019; Garber et al., 2020; this study). This observation presents an 
obstacle for the former theories.

Other models more consistent with ≥90 Ma basement uplift include the propagation of basement deformation 
ahead of the developing flat slab (e.g., Kulik & Schmidt, 1988), potentially as a result of plate margin end loading 
driving far-field compression (e.g., Axen et al., 2018; Behr & Smith, 2016; Erslev et al., 2022; Jackson et al., 2019; 
Livaccari & Perry, 1993; Thacker et al., 2022). Alternatively, early basement deformation in southwest Montana 
may be largely unrelated to flat-slab subduction. In this case, deformation may be linked to injection of ductile 
lower crust from the fold-thrust belt (e.g., McQuarrie & Chase, 2000), the transmission of hinterland stresses (e.g., 
Erslev, 1993; Livaccari, 1991), terrane accretion/translation (e.g., Maxson & Tikoff, 1996; Tikoff et al., 2016), 
and/or the interaction between the retroarc fold-thrust belt and preexisting stratigraphic (Parker & Pearson, 2021) 
and/or basement architecture (Tavani et  al.,  2021). Although these models make less specific and/or more 
compatible predictions for the timing of basement uplift in southwest Montana and northern Wyoming, they have 
difficulty accounting for observed eastward migrating magmatism, aspects of basement uplift strain distribution, 
and foreland subsidence patterns (Bird, 1984, 1998; Coney & Reynolds, 1977; Constenius et al., 2003; Erslev 
et al., 2022). Given the emerging geologic and thermochronologic evidence contesting the dominant Laramide 
flat-slab paradigm, future regional syntheses examining the timing of basement uplift in southwest Montana are 
uniquely poised to test these alternative geodynamic models.

5.6.  Evidence for Eocene–Miocene Reburial and Neogene Development of Relief

Model results indicate the termination of rapid cooling likely associated with basement uplift by ∼50  Ma 
(Figure 7), approximately coincident with a regional shift from compressional to extensional deformation (e.g., 
Foster & Mark Fanning, 1997; Foster et al., 2001, 2010; Howlett et al., 2021). This transition in tectonic regime is 
associated with a widespread phase of volcanism (i.e., ignimbrite flare-up; Best et al., 2016). Ignimbrite volcan-
ism is locally represented by the ∼53–43 Ma Absaroka Volcanic Supergroup, which is preserved in sections up 
to several kilometers thick overlying the southern portion of the modern Beartooth Mountains and the Absaroka 
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Mountains to the south (Figures 2 and 10d; e.g., Feeley, 2003; Feeley & Cosca, 2003; Hiza, 1999). Model results 
from the Chalice Peak, Clark's Fork Canyon, and Beartooth Highway/Amoco No. 1 borehole transects indi-
cate ∼20°C–45°C of reheating in Eocene to Miocene time (Figures 7c–7e). Although Eocene volcanics are not 
currently preserved outside the southern flanks of the Beartooth Mountains, this may suggest their original extent 
was more expansive, burying portions of the Beartooth Mountains further north (Figure 10d), as hypothesized by 
Carrapa et al. (2019). Reheating coeval with eruption of the Absaroka Volcanic Supergroup is best resolved by 
the Chalice Peak transect, which indicates temperatures of 110°C ± 30°C at 50 ± 5 Ma (Figure 7c) are required 
to reproduce a pediment of ZHe dates spanning ∼60–20 Ma at ∼400–1,200 ppm eU (Figure 8f).

Model results for the Clark's Fork Canyon and Beartooth Highway/Amoco No. 1 borehole transects indicate 
Cenozoic reheating continued until at least 20 Ma (Figure 7d) and possibly 6 Ma (Figure 7e), suggesting reheating 
was longer-lived than Eocene volcanism. Later stages of modeled reheating may be instead associated with burial 
by Oligocene–Miocene sedimentary rocks, as first proposed in the Beartooth Mountains by Omar et al. (1994). 
Erosional remnants of rocks of this age (South Pass, White River, and Arikaree formations) have been identified 
at high elevation (≥2.2 km ASL) in the Bighorn and Wind River mountains, WY (McKenna, 1980; McKenna & 
Love, 1972; Steidtmann & Middleton, 1991; Steidtmann et al., 1989). McKenna and Love (1972) argued that the 
Bighorn Mountains were buried to the present ∼2.7 km elevation by these sediments—an interpretation consist-
ent with recent thermochronologic work in the range (Caylor & Carrapa, 2021). Although similar deposits have 
not been recognized in the Beartooth Mountains, crude extrapolation of McKenna & Love's (1972) estimate of 
Tertiary basin elevation in the Bighorn Mountains (∼2.7 km ASL) to equivalent modern elevations in the pres-
ent study area yields total burial of the Clark's Fork Canyon transect (1.48–2.23 km ASL) and near-total burial 
of the Beartooth Highway/Amoco No. 1 borehole transect (−1.87–3.33 km ASL); other transects not resolving 
Oligocene–Miocene reheating remain largely or wholly above this hypothetical Tertiary basin elevation. There-
fore, it is consistent with regional geologic and thermochronologic evidence that at least the eastern flank of the 
Beartooth Mountains was reburied by Oligocene–Miocene intermontane sedimentary deposits. In this context, 
the Beartooth Plateau—with an average modern elevation of ∼3 km—may represent an Oligocene–Miocene 
paleo-surface, analogous to similar Cenozoic erosional surfaces recognized at high elevation in the Colorado 
Front Range (Epis & Chapin, 1975; McMillan, 2003 and references therein). In this case, the Oligocene–Miocene 
relief of the Beartooth Mountains was likely on the order of <1 km, with only peaks of >3 km modern elevation 
exposed above the basin floor.

The most recent phase of cooling recorded by the Clark's Fork Canyon and Beartooth Highway/Amoco No. 
1 borehole transects (Figures  7d and  7e) suggests that the erosion of Cenozoic sedimentary rocks initiated 
between ∼20 and 6 Ma. Exhumation likely occurred as these cover rocks were evacuated from the foreland along 
one or multiple continental-scale paleo-drainage systems (e.g., Corradino et al., 2021; Galloway et al., 2011; 
Sears, 2013). Considerable debate exists concerning the relative roles of extensional tectonism versus climate 
change in driving late Cenozoic large-scale drainage reorganization and basin evacuation (e.g., Galloway 
et al., 2011; McMillan, 2003; McMillan et al., 2006; Sears, 2013). Regardless of the mechanism, our results in 
addition to other recent thermochronologic data (Caylor & Carrapa, 2021) emphasize that, while the structural 
relief of ranges in the northern Laramide foreland was likely developed by Paleogene time, their modern topo-
graphic relief (≥2.5 km in the Beartooth Mountains) is a more recent, Neogene feature.

6.  Conclusions
We demonstrate the utility of a Bayesian approach constrained by multiple thermochronometers in reconstruct-
ing complex deep-time thermal histories involving multiple periods of reheating and cooling. An extensive 
geo/thermochronologic data set of samples from a range of elevations and positions—including dispersed but 
systematically correlated ZHe dates—facilitates the exploration of complex thermal events that are unresolvable 
by conventional geochronologic or thermochronologic techniques alone. Our results show evidence of previously 
unrecognized thermal events affecting rocks of the Beartooth Mountains and constrain the timing and magnitude 
of documented burial and exhumation episodes, including:

1.	 �Western regions of Beartooth Mountains experienced late Paleoproterozoic temperatures above the 
biotite  40Ar/ 39Ar closure window (>300°C), likely associated with the Big Sky orogeny (e.g., Condit 
et al., 2015; Harms, Brady, et al., 2004; Harms et al., 2006). These results suggest the thermal effects of this 
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Paleoproterozoic tectonism penetrated significantly (∼100 km) further east than previously recognized (e.g., 
Condit et al., 2015; Giletti, 1966).

2.	 �Early Mesoproterozoic reheating is indicated for all newly reported constrained models. This is consistent with 
previous hypotheses for deposition of Belt Supergroup sediments south of their preserved extent (Underwood 
et al., 2014).

3.	 �Model results suggest late Mesoproterozoic and potentially late Neoproterozoic cooling events. The timing of 
both events overlaps with separate rifting episodes on the western Laurentian margin, consistent with previ-
ous hypotheses for rifting-induced exhumation of cratonic basement in the region (Kaempfer et al., 2021). 
However, model uncertainty is large and Neoproterozoic cooling overlaps with the timing snowball Earth 
ice-sheet glaciation, another possible driver of continental erosion (e.g., McDannell et al., 2022).

4.	 �Models resolve reheating to maximum Phanerozoic temperatures by Devonian time, followed by an episode of 
later Paleozoic cooling. This cooling is contemporaneous with the Antler and ARM orogenic events, suggest-
ing an episode of tectonic exhumation broadly consistent with sedimentologic and stratigraphic observa-
tions (Dorobek et al., 1991; Maughan, 1990). Our data provide the first thermochronologic evidence that the 
Beartooth Mountains experienced thermal effects associated with Paleozoic tectonism and suggest associated 
deformation penetrated further into the foreland than formerly appreciated.

5.	 �A second phase of Phanerozoic cooling records complex, spatially variable Cretaceous–Paleogene exhuma-
tion. We suggest Early Cretaceous cooling reported by Carrapa et al. (2019) was localized, possibly due to 
minor slip of NW-SE striking faults accommodating flexural stresses in the evolving foreland basin. More 
widespread exhumation of the range likely initiated in Late Cretaceous time and progressed from west to east. 
Uplift of the Beartooth Mountains reached a crescendo in Paleocene time, when surface-breaking thrusting 
triggered very rapid exhumation concentrated near the northeastern range front. Fault-related basement uplift 
likely initiated ≥90 Ma and preceded the hypothesized arrival of a shallowly subducting slab, adding to a 
growing number of similar observations requiring reconsideration of canonical flat-slab models for intrafore-
land basement uplift in the North American Cordillera. Our results help to reconcile previous observations 
indicating Early Cretaceous uplift of the Beartooth Mountains (e.g., Carrapa et al., 2019; DeCelles, 1986; 
Schwartz & Decelles,  1988) with those only resolving Late Cretaceous–Paleocene phases of this cooling 
history (Cerveny, 1990; Omar et al., 1994; Peyton et al., 2012). We suggest the well-documented latter event 
may reflect only the late stage of a more complex cooling history associated with the development of the 
orogenic system.

6.	 �Data from transects near the margins of the main Beartooth block indicate Cenozoic reheating. This reheat-
ing was likely due to reburial by Eocene Absaroka volcanics (e.g., Carrapa et al., 2019) and/or Oligocene–
Miocene basin fill (e.g., McKenna & Love, 1972; Omar et al., 1994) and suggests much of the modern topo-
graphic relief of the Beartooth Mountains was acquired in Neogene time.

Data Availability Statement
Zircon U-Pb, biotite  40Ar/ 39Ar, ZHe, and AHe data sets, alongside supplementary text and figures referenced 
in the main text, are available in Supporting Information S1 for this paper. Large files supporting this work, 
comprising QTQt modeling files (Data Set S6) and grain photographs (Data Set S4), are available on Zenodo 
(https://doi.org/10.5281/zenodo.7443913). Analytical data sets may also be accessed using this DOI on Zenodo.
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