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Abstract—Enhancing resilience in distributed networks in the
face of malicious agents is an important problem for which
many key theoretical results and applications require further
development and characterization. This work focuses on the
problem of distributed optimization in multi-agent cyberphysical
systems, where a legitimate agent’s dynamic is influenced both
by the values it receives from potentially malicious neighboring
agents, and by its own self-serving target function. We develop a
new algorithmic and analytical framework to achieve resilience
for the class of problems where stochastic values of trust between
agents exist and can be exploited. In this case we show that
convergence to the true global optimal point can be recovered,
both in mean and almost surely, even in the presence of malicious
agents. Furthermore, we provide expected convergence rate
guarantees in the form of upper bounds on the expected squared
distance to the optimal value. Finally, we present numerical
results that validate the analytical convergence guarantees we
present in this paper even when the malicious agents compose
the majority of agents in the network.

Index Terms—Distributed optimization, resilience, malicious
agents, Byzantine agents, stochastic trust values, cyberphysical
systems.

I. INTRODUCTION

Distributed optimization is at the core of various multi-
agent tasks including distributed control and estimation, multi-
robot tasks such as mapping, and many learning tasks such
as Federated Learning [2]-[4]. Owing to a long history and
much attention in the research community, the theory for
distributed optimization has matured, leading to several im-
portant results provide rigorous performance guarantees in
the form of convergence and convergence rate for different
function types, underlying graph topologies, and noise [5]-[9].
However, in the presence of malicious activity many of these
known results are invalidated, requiring a new characterization
of performance and equivalent theory for the adversarial case.

With the growing prevalence of multi-agent and cyberphys-
ical systems, and their reliance on distributed optimization
methods for correct functioning in the real world, it becomes
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critical that the vulnerability of these methods is well un-
derstood. In particular, malicious agents can greatly interfere
with the result of a distributed optimization scheme, driving
the convergence to a non-optimal solution or preventing con-
vergence altogether. They can accomplish this by either not
sharing key information or by manipulating key information
such as the shared gradients, which are critical for the cor-
rect functioning of the distributed optimization scheme [10]-
[12]. Note that while well-established stochastic optimization
methods characterize the effect of noise in distributed multi-
agent systems [13], [14], malicious agents have the ability to
inject intentionally biased or manipulated information which
can lead to a greater potential damage for these systems. As
a result, recent works have increasingly turned attention to
the investigation of robust and resilient versions of distributed
optimization methods in the face of malicious intent and/or
severe (potentially biased) noise [10]-[12], [15], [16]. These
approaches can be coarsely divided into two categories, those
that use the transmitted data between nodes to infer the
presence of anomalies (for example see [11], [17]), and those
that exploit additional side information from the network or the
physicality of the underlying cyberphysical system to provide
additional channels of resilience [18]-[20].

We are interested in investigating the class of problems
where the physicality of the system plays an important role in
achieving new possibilities of resilience for these systems. In-
deed the physicality of cyberphysical systems has been shown
to provide many new channels of verification and establishing
inter-agent trust through watermarking [21], wireless signal
characteristics [20], [22], side information [23], and camera or
lidar data cross-validation [24]. By exploiting these physical-
based measurements, agents can extract additional information
about the trustworthiness of their neighbors.

We capitalize on this observation which motivates us to
focus on a class of problems where the existence of this
additional information in the system can be exploited to arrive
at much stronger performance results in the adversarial case —
what we refer to as resilience. We abstract this information as
a value o;; that indicates the likelihood with which an agent
1 can trust data received from another agent j. We show that
under mild assumptions, when this information is available,
several powerful results for distributed optimization can be
recovered such as 1) convergence to the true optimal point in
the case of minimizing the sum of strongly convex functions,
and 2) characterization of convergence rate that depends
on the network topology, the amount of trust observations
acquired, and the number of legitimate and malicious agents
in the system.
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A. Related Work

In the absence of malicious agents, the legitimate agents can
construct iterates converging to an optimal point x by using
either their gradients, or sub-gradients when their objective
functions are not differentiable. Each agent ¢ updates its data
value by considering the data values of its neighbors, and its
self-serving gradient direction of its objective function f; or
the directions obtained from its neighbors. Convergence to an
optimal point 27 can be achieved for constrained multi-agent
problems in [5], [7], [14], [25]-[30] and with limited gradient
information [31], [32]. Additionally, a zero-order method has
been proposed in [33]. Some works, such as [5], assume that
the weight matrices, which dictate how agents incorporate the
data they receive from their neighbors, are doubly-stochastic.
However, works such as [28] overcome this assumption by
performing additional weighted averaging steps. Finally, it
has been established that the convergence rate of distributed
gradient algorithms with diminishing step size is at best O(%)
where T is the algorithm running time, see for example [30].

To harm the system, a malicious agent can send falsified
data to their legitimate neighbors. If the legitimate agents
are unaware of their malicious neighbors, then the malicious
agents will succeed in controlling the system [10], [11], [34]-
[37]. To combat the harmful effect of an attack, the approach
taken in [34]-[36] requires the pre-existence of a set of trusted
agents such that all other agents (legitimate or malicious)
are connected to at least one trusted agent. Nonetheless, this
approach is unrealistic when communication is sporadic such
as in robotic and ad-hoc networks. The approaches in [10],
[11], [37], [38] rely on the agent data values to detect and
discard malicious inputs and have an upper bound on the
number of tolerable malicious agents (with a star network
having the largest number - a half of the number of agents in
the network) [37]. When the number of malicious agents ex-
ceeds the tolerable number, the attack succeeds and malicious
agents evade detection. In contrast with the existing works, our
proposed method provides a significantly stronger resilience
to malicious activity by exploiting the physical aspect of the
problem, i.e., the wireless medium. Thus, each legitimate agent
can learn trustworthy neighbors while optimizing the system
objective. Our prior work [39] studies the implications of the
agents’ learning ability, with regards to the trustworthiness of
their neighbors, on distributed consensus systems. This work
considers the more general case of distributed optimization
systems where the agent’s goal is to minimize the sum of their
local objective function under limited information exchange.

Finally, this work also relates to stochastic optimization, see
for example [40]-[47]. However, unlike the typical assumption
that the stochastic gradients are unbiased and statistically
independent of the weights. In this work, the stochastic gradi-
ents are biased, where the bias occurs due to the adversarial
inputs of the malicious agents. Furthermore, learning of the
trustworthiness of neighboring agents and adjusting agents’
weight accordingly, lead to a correlation between the agents’
values and the weights that are assigned to them. To this end,
our analysis could not rely on previous results when analyzing
the rate of convergence of the agents’ dynamic.

B. Paper Organization

The rest of this paper is organized as follows: Section II
presents the system model and problem formulation. Section
IIT proposes our algorithm for resilient distributed optimiza-
tion. Section IV presents our learning mechanism for detecting
malicious agents and provides upper bounds on the probability
of misclassifying malicious and legitimate agents. Sections V
and VI, respectively, present asymptotic and finite time regime
convergence results. Finally, Section VII presents numerical
results that validate our analytical results, and Section VIII
concludes the paper.

II. PROBLEM FORMULATION

We consider a multi-agent system of n agents communi-
cating over a network, which is represented by an undirected
graph, G = (V,E). The node set V = {1,...,n} represents
the agents and the edge set E C V x V represents the set of
communication links, with {7, j} € E indicating that agents 4
and j are connected. We denote by N; the set of neighbors of
agent i, that is N; = {j : {i,j} € E}.

We study the case where an unknown subset of the agents
is malicious and the trustworthy agents are learning which
neighbors they can trust. Thus, V = LUM where L is the set
of legitimate agents that execute computational tasks and share
their data truthfully, while M denotes the set of agents that are
not truthful. The sets £ and M are just modeling artifacts,
and none of the legitimate agents knows if it has malicious
neighbors or not, at any time. Throughout the paper, we will
use the subscripts £ and M to denote the various quantities
related to legitimate and malicious agents, respectively.

We are interested in a general distributed optimization
problem, where the legitimate agents aim at optimizing a
common objective whereas the malicious agents try to impair
the legitimate agents by malicious injections of harmful data.
The aim of the legitimate agents is to minimize distributively
the sum of their objective functions over a constraint set
X CRY e,

xp = argmin fr(z), with fe(x) = 1 Zfz(:zr) @)
rcX |£| ier

By choosing a local update rule and exchanging some informa-
tion with their neighbors, the legitimate agents want to deter-
mine the optimal solution z7 in (1). In contrast, the malicious
agents aim to either lead the legitimate agents to a common
non-optimal value z € X such that f(x) > fe(z*), or
prevent the convergence of an optimization method employed
by the legitimate agents.

A. Notation

We let 7 denote the transpose of x, where = € R4, We
denote by ||z|| £ VaTx the £5 vector norm. We let Iy () be
the projection of = onto the set X, i.e.,

Hx(z) = argmin, ¢ v [ly — |-

Finally, we denote by E[-] the expectation operator.



B. Trust values

We employ a probabilistic framework of trustworthiness
where we assume the availability of stochastic observations
of trust between communicating agents. This information is
abstracted in the form of a random variable «;; defined below.

Definition IL1 (c;;). Forevery i € £ and j € NV, the random
variable «;; € [0, 1] represents the probability that agent j is
a trustworthy neighbor of agent . We assume the availability
of such observations «;;(t) at every instant of time ¢ > 0
throughout the paper.

This model of inter-agent trust observations has been used in
prior works [22], [39]. The focus of the current work is not on
the derivation of the values «;; themselves, but rather on the
derivation of a theoretical framework for achieving resilient
distributed optimization using this model. Indeed, we show
that much stronger results of convergence are achievable by
properly exploiting this information in the network. We refer
to [22] for an example of such a value «;;. Intuitively, a ran-
dom realization cv;;(t) of a;; contains useful trust information
regarding the legitimacy of a transmission. We assume that a
value of a;(t) > 0.5 indicates a legitimate transmission and
a;;(t) < 0.5 indicates a malicious transmission in a stochastic
sense (misclassifications are possible). Note that c;;(¢) = 0.5
means that the observation is completely ambiguous and
contains no useful trust information for the transmission at
time ¢.

We use the following assumptions throughout the paper:

Assumption 1. (i) [Sufficiently connected graph] The sub-
graph G induced by the legitimate agents is connected.

(ii) [Homogeneity of trust variables] There are scalars E; > 0
and Epnq < 0 such that

E¢ £ Ela;;(1)] - 0.5,
E £ E[Oéij(t)] — 0.5,

forallie L, jeN;NL,
forallie L, j € NiN M.

(iii) [Independence of trust observations] The observations
a;;(t) are independent for all t and all pairs of agents i and
g, with i € L, j € Nj. Moreover, for any i € L and j € N;,
the observation sequence {c;;(t)} is identically distributed.

We note that these are standard assumptions when using the
probabilistic trust framework employed here [22], [39].

C. The update rule of agents

We propose distributed methods with significantly stronger
resilience compared to [11]. This is enabled by each legitimate
agent learning which neighbors it can trust while optimizing
a system objective.

a) The update rule of legitimate agents: Each legitimate
agent ¢ updates z;(t) by considering the values z;(t) of its
neighbors and the gradient of its own objective function f;
similarly to the iterates described in [5]'. This method takes
the following form for every legitimate agent i € L,

ci(t) = wy (t)x; (t) + Z Wi (t)xj (t),

JEN;

'Note, however, that [5] does not include a projection on the set X.

yi(t) = ci(t) = () V filei(t),
zi(t+1) = I (i(t)) , ()

where v(t) > 0 is a stepsize that is common to all agents
i € L at each time ¢, and N; is the set of neighbors of agent 4
in the communication graph. The set N; is composed of both
legitimate and malicious neighbors of agent ¢ € £, while the
weights w;;(t),j € N; U {i}, are nonnegative and sum to 1.
For each i € £,j € LU M, the choice of w;;(t) depends on
the history of the random trust observations (a;;(7))o<r<t.
As a result, the weights w;;(t) and the data points z;(t) are
random, for every ¢ € £,j € LU M and time instant ¢ > 0.

To reduce the convergence rate, we allow y(t) and w;;(t) to
depend on a parameter T, > 0 which dictates how many trust
observations a legitimate agent collects before it decided to
trust one of its neighbors. We specify v(¢) and w;;(t), i € L,
j € N; U{i}, precisely later on in Section IIL

b) The update rule for the malicious agents: Malicious

agents ¢ € M choose values arbitrarily in the set X. We
assume that their actions are not known, and thus we do not
model them. For simplicity of exposition, the dynamic (2)
captures malicious inputs, where an adversarial agent i € M
sends all its legitimate neighbors identical copies of its chosen
input x;(t) at time ¢. Let us denote by z;;(¢) the input of
a malicious agent ¢ to a legitimate agent j at time ¢, then
x5, (t) = x;5,(t) for every ji,jo € L. Nonetheless, our
analytical results also hold for byzantine inputs where an
adversarial agent ¢ € M can send its legitimate neighbors
different inputs at time ¢. In this case z;;, () need not be
equal to x;;, (t) for every ji,j2 € L.

D. Assumptions on the objective functions and initial points

Assumption 2. We assume that X C R? is compact and
convex and that there exists a known value 1 > 0 such that

lzl <n, VzedX. ©)

The 7 value in Assumption 2 is arbitrary, and its role is to
bound the malicious agents’ inputs away from infinity.

Assumption 3. For all legitimate agents i € L, the function f;
is p-strongly convex and has L-Lipschitz continuous gradients,

ie, |Vfi(x) = Vfi(y)| < Lljx -yl for all z,y € R

Note that under Assumption 2 and the strong convexity of
Assumption 3, the problem (1) has a unique solution 7 € X.

Assumption 4. Let the stepsize sequence {~y(t)} be nonnega-
tive, monotonically nonincreasing, and such that y < y(t) =
00 and o2 2 (t) < oco.

E. Objectives

The objective of this work is to arrive at strong convergence
results for the distributed optimization problem in (1) in the
presence of malicious agents M. We wish to achieve this by
carefully exploiting the availability of stochastic trust values
a;;(t) in the network. Specifically, we aim to achieve the
following:



Objective 1: We wish to construct weight sequences
{wi;()}, i € L, j € N; in the method (2) to weight the
influence of neighboring nodes in each legitimate agent’s
update. Specifically, we wish to construct these sequences
such that they converge over time to some nominal weights
wi;,1 € L, j € N;, almost surely (a.s.), where w;; = 0 for
all malicious neighbors j € N; N M of agent i € L.
Objective 2: Utilizing the proposed weights {w;;(¢)}, we aim
to show that the iterates given by (2) converge (in some sense)
to the true optimal point 27, € X’ under Assumptions 1-4.
Objective 3: We aim to establish an upper bound on the
expected value of ||z;(t) — x%||?, for all i € L, as a function
of the time ¢, for the iterates x;(t) produced by the method.

III. THE ALGORITHM

Next, we present an algorithm that incorporates the le-
gitimate agents’ learning of inter-agent trust values into the
dynamic (2) through the choice of the time-dependent weights
w;;(t). These weights depend on a parameter Ty that captures
the number of trust measurements a legitimate agent collects
before deciding if to trust one of its neighbors. We utilize
the parameter T to enable faster convergence rates of the
algorithm Nonetheless, as we show in Section V, the algorithm
converges to the optimal point =7 for any choice of nonneg-
ative integer Ty, including the special case where Ty = 0. In
this case, legitimate agents have no prior trust observations to
rely on when they first decide whether to trust their neighbors.

A. The weight matrix sequence

Consider the sum over a history of «;(t) values that we
denote by (;;():
t—1
Bii(t) =) (aij(k) —0.5) fort > 1i€ Lj € Ni, (&)
k=0
and define 3;;(0) = 0. We note that we explore the proba-
bilistic characteristics of 3;;(¢) in Section IV.
We define a time dependent trusted neighborhood for agent
i€ L as:

Ni(t) £ {j € N;: Bij(t) > 0} (5)

This is the subset of neighbors that legitimate agent 7 classifies
as its legitimate neighbors at time ¢. For all £ > 0, let

di(t) £ N;(t)|+1>1  forallie L.

At each time ¢, every agent i sends the value d;(t) to its
neighbors j € N; in addition to the value z;(t). Alternatively,
we can assume that agent ¢ sends d;(t) to its neighbors only
when the value d;(t) changes.

Legitimate agents are the most susceptible to making classi-
fication errors regarding the trustworthiness of their neighbors
when they have a small sample size of trust value observations.
Thus, we delay the updating of legitimate agents’ values until
time Ty > 0. Up to time T, the legitimate agents only collect
observations of trust values.

Let 14y denote the indicator function; it is equal to one if
the event A is true and zero otherwise. We define the weight

Algorithm 1 The protocol of agent ¢ € L.
Inputs: T, Ty, N;, 2;(0), Vfi(-), v().
Outputs: z;(T).

Set 3;;(t) = 0 for all j € N;
fort=0,...,T—1do
Set Ni(t) = {j € Ni: Bi;(t) > 0}
Set d;(t) = |N;(t)] + 1;
Send z;(t) and d;(t) to neighbors;
for j € N; do
Receive z;(t) and d;(t);
Extract o;;(t);
Set B (t+1) = Yh_, (aij(k) — 0.5);
Set the weight w;;(t) based on the values of Tp,
Ni(t), d;(t), and d;(t) as follows:

_ Vemylgeno)
2 Inax{dl- (t), dj (t)} ’

wij(t)

end for

Set wii(t) =1- ZmGNi wim(t);

Set x;(t + 1) according to the dynamic (7);
end for

matrix W (¢) by choosing its entries w;;(t) as follows: for
everyi € L, j €N,

Le>1yy

smad ooy € Nib),
wii(t) =4 0 if j g Nit) Ui}, (g
1= ) wim(t) ifj=i.
meN;

Using the weights (6) and letting the stepsize v(k) = 0, Vk <
0, the dynamic in (2) is equivalent to the following dynamic
where agents only consider the data values received from their
trusted neighbors at time t, i.e., N;(t), when computing their
own value updates: for all ¢ € £ and all ¢ > 0,

ci(t) = wig(Dwi (1) + > wi (D (8) + > wi(B)a; (1),
JEN; (t)NL JEN; (H)NM
Yyi(t) = ci(t) —v(t — To)V fi(ci(t)),
,Ti(t—f—l) =1l (yz(t)) (7)

We note that though the choice of the parameter T} affects the
weights w;; (t), i € L,j € LUM and the terms ¢;(t), y;(t) and
x;(t), @ € L, we omit this dependence from these notations
for the sake of clarity of exposition.

Furthermore, the dependence of the weights w;;(¢) on the
trust observation history (;;(t) comes in through the choice
of time-dependent and random trusted neighborhood N;(t)
(see (5)). Consequently, some entries of the matrix W (t) are
also random, as seen from (6). The gradients V f;(c;(t)) are
stochastic due to the randomness of ¢;(t), however, they are
not unbiased as typically assumed in stochastic approximation
methods, including [48]. Thus, we cannot readily rely on
prior analysis for stochastic approximation methods. However,
as we show in our subsequent analysis, the variance of
IV fi(ci(t))]| decays sufficiently fast and allows convergence
to the optimal point even in the presence of malicious agents.



IV. LEARNING THE SETS OF TRUSTED NEIGHBORS

This section establishes key characteristics of the stochastic
observations «;;(t) that result from the model described in
Section II-B and that we will subsequently use in our analysis
of the convergence of the iterates produced by Algo. 1.

Recall that we consider the sum (3;;(t), defined in (4), over a
history of «y;(t) values. Intuitively, following the discussion
on «;;’s immediately after Definition II.1, the values 53;;(¢)
will tend towards positive values for legitimate agent transmis-
sions ¢ € £ and j € N; N L, and will tend towards negative
values for malicious agent transmissions where ¢ € £ and
j € N; N M. We restate an important result shown in [39]
regarding the exponential decay rate of misclassifications given
a sum over the history of stochastic observation values that we
will use extensively in the forthcoming analysis.

Lemma 1 (Lemma 2 [39]). Consider the random variables
Bij(t) as defined in Eq. (4). Then, for every t > 0 and every
1e€L, jeEN;NL,

Pr (8;(t) < 0) < max{exp(=2tEZ), 1{g, <0} },
while for every t > 0 and every i € L,j € N; N M,
Pr (B;(t) > 0) < max{exp(—2tE3,), Ligy>o0r )

In other words, the probability of misclassifying malicious
agents as legitimate, or vice versa, decays exponentially in the
accrued number ¢ of observations.

We can now conclude that there is a random but finite time
T such that there exists a legitimate agent ¢ which misclassi-
fies the trustworthiness of at least one of its neighbors at time
Tr—1, and all the legitimate agents classify the trustworthiness
of their neighbors correctly at each time ¢ > T'y. We refer to
the time Ty as the “correct classification time”.

Corollary 1. There exists a random finite time Ty such that

Bij(t) > 0 forall t > Ty and all i € L,j € N; N L,
Bij(t) <O forallt>Trandalli€ L,j € N;NM, (8)

and there exists 1 € L such that

Bij(Ty — 1) < 0 for some j € N; N L, or,
Bij(Ty — 1) > 0 for some j € N; N M. )

Proof: 1t follows directly from [39, Proposition 1]. H

Let |NV; N L| be the number of legitimate neighbors of agent
i, and |[N;NM| be the number of malicious neighbors of agent
1. We define by D, the total number of legitimate neighbors,
similarly we define by D4 the total number of malicious
neighbors, with respect to the legitimate agents. That is,

DAY IN;NL| and Dy 2N, N M|
€L €L
Additionally, we define the following upper bound on the
probability that at least one legitimate agent misclassifies one
of its legitimate neighbors as malicious or one of its malicious
neighbors as legitimate, when observing k trust values for each

of its neighbors
pc(k}) £ ﬂ{kZO} DgeizkEi + DMeizkE/Q‘/’ .

Furthermore, we define the following upper bound on the
probability that a legitimate agent misclassifies one of its
legitimate or malicious neighbors, in one of the times after
observing k trust values for each of its neighbors:

exp(—2kE2%) exp(—2kE3,)
“1 — exp(—2E%) M —exp(—2E3,)’
Using these quantities, we obtain some useful bounds on the

probabilities of the events (T = k) and (T > k—1) for any
k > 0, as follows.

pe(k) £ D

Lemma 2. For every k > 0

Pr(Ty = k) < min{p.(k —1),1}, and,
Pr(Ty >k —1) < min{pe(k — 1), 1}.

(10)
(11

We present the proof of Lemma 2 in Appendix A. Note,
that (10) and (11) are well defined for k < 0, since p.(k) =0
and p.(k) > 1 for all & < 0. Thus min{p.(k),1} = 0 and
min{p.(k),1} = 1.

V. ASYMPTOTIC CONVERGENCE TO THE OPTIMAL POINT

This section analyzes the convergence characteristics of
Algo. 1 by utilizing the almost surely finite correct classifi-
cation time 7'y and the upper bounds we derive in Lemma 2.

Assumptions 2 and 3 lead to the following conclusion.

Corollary 2. When X is compact, Assumption 3 implies that
there is a scalar G such that |V f;(z)|| < G, Yz € X,i € L.

The following lemma is a direct consequence of [25, Lemma
8]. Nonetheless, for completeness of presentation we provide
the proof.

Lemma 3. Denote ¢;(t) = Iy (yi(t)) — ci(t). For every i €
L, Ty >0, and t > Ty we have that

i) <~(t —To)G,
where G > 0 is from Corrolary 2.

Proof: Since x;(t) € X fori € LUM and t > 0, and
[wij (t)]ies,jecum is a row stochastic matrix, by the convexity
of the set X, we have that ¢;(t) € X for all i € £ and
t > 0. Now, by the standard non-expansiveness property of
the projection operator it follows that

@i ()] = [Tx (yi(t)) — M (ci(2)) ||
< lyi(t) — (D)l
= [lei(t) = v(t = To)V fi(ci(t)) — i@
<t = To)IVSilei(@®)] <~(t = To)G.
n

Let us denote d; £ |_M N L] + 1. Next, we define the
doubly stochastic matrix W € [0, 1]/#1¥I£] with the entries



(W li,j, for every i,j € L:

1 . .
2 moxx{d7 c,djc} lfj € M’
(Wi = it7 N UL} (1)
1-— Z Wim 1fj =1.
meN;NL
Note that W is the nominal weight matrix, i.e., the value

the weight matrix would take in the absence of malicious
agents. Let 02(A) be the second largest singular value of A,
and denote py = maxy>1 O'Q(W]Z). Since G, is connected
and W, is doubly stochastic, the value p, < 1 is equal to
the second largest eigenvalue modulus of W .. Additionally,
our analysis holds for the lazy Metropolis weight as well for
which by [49, Lemma 2.2], the value p. can be upper bounded
by (1 —1/(71|£|?)), while [50] improves the constant of this
bound to 4.

Next, define for ¢ > 0 the following deterministic dynamic
that excludes malicious agents,
> Wiiz(t)

JEN;NL

VOV fi(ri(1))) -

i (t) = W;iZi (t) =+

zi(t+1) =
Denote for T" > 1,

Iy (ri(t) = (13)

2 2 2
E(T)éGT 2G2T sger)GQ . <T+2>
po w(L=pg) (1= pc) 2
G 2(p+ L)(pun + 2G)?
+ 2 2
1—pr p*(1 = pc)
2G? +4Gn(u+L)  G*(u+ L)
3 5 1 (14)
u(l—pr) p2(1—pc)

The function h(T') grows linearly in 7. Additionally, it com-
prises two terms: 1) the first term which captures the error rate
for the centralized gradient descent optimization (see [51])
without malicious agents, and 2) the following terms that
include p, which capture the contribution from distributing the
optimization over a decentralized network (without malicious
agents) that is characterized by the second largest eigenvalue
modulus of W .

Theorem 1. The dynamic (13) converges to the optimal point
for every initial point z;(0) € X, i € L, that is,

tli)ngo l|zi(t) —z7|| =0, Vie L,
whenever Y ;2 y(t) = 0o and Y, v*(t) < oo.

Moreover; if y(t) = then

7 5 )

€L

2
p(t+1)’
4h(T)

£ < mi 42,7}, 15
~ gl < min {ar?, —2 D as)

for any initial points z;(0) € X, i € L, and any T > 1.

The proof of this theorem is conventional. Nonetheless, for
the sake of the completeness of the presentation, we prove
Theorem 1 in the supplementary material.

A. Convergence to optimal value almost surely

Denote by x.(t,Ty = k) the data values (x;(t));c of the
dynamic (7), assuming that 7y = k. Subsequently, for every
t > max{Ty,To} all the legitimate agents participate in the
dynamic (7) and all the malicious agents are excluded from it.
Thus from time max{T, Ty} the dynamic (7) can be captured
by a dynamic of the form (13), where ¢ is is replaced with
t —max{Ty,Tp}.

Theorem 2 (Convergence a.s. to the optimal point). The
sequence {x;(t)} converges a.s. to 7} for every i € L and
To > 0.

Proof: From Corollary 1 there exists a finite time 7'
such that every legitimate agent ¢ classifies correctly all of its
legitimate and malicious neighbors at all times ¢ > T a.s.
Thus, the dynamic (7) is equivalent to the dynamic (13) with
the initial inputs 2;(0) = x;(max{Ty,Tp}) where i € L.

By Theorem 1 the dynamic (13) converges to z7.. Addition-
ally, by Assumption 2, z.(T) is finite for every finite 7.
Applying Corollary 1 with the a.s. finiteness of Ty concludes
the proof.

|

B. Convergence in mean

Next, we establish the convergence in mean of each se-
quence x;(t) to z7., where ¢ € L.

Theorem 3 (Convergence in mean to the optimal point). For
every Ty > 0, the sequence {x;(t)} converges in the r-th mean
to x} for every i € L and r > 1, ie.,

tlim E|[||lz:(t) —2:||"] =0, for all r > 1.

We present two types of proofs for this theorem, the first
relies on the almost sure convergence of Theorem 2 and
Assumption 2. For the sake of completeness of presentation,
we additionally establish convergence in mean by definition
in Appendix B.

Proof via Dominated Convergence Theorem: First, by
Assumption 2, we have ||z| < 5. It follows by the triangle
inequality that ||z — y||” < (2n)" < oo for every z,y € X.
Recalling Theorem 2 we can apply the Dominated Conver-
gence Theorem (see [52, Theorem 1.6.7]) to each sequence
{l|i(t) — 2%||"}, ¢ € L, to conclude the result. [ |

VI. FINITE TIME ANALYSIS:
EXPECTED CONVERGENCE RATE

This section derives analytical guarantees for the finite time
regime in the form of the expected convergence rate. We
present two upper bounds on the convergence rate. The first
upper bound, stated in Theorem 4, relies on Lemma 2 to
provide probabilistic bounds on the correct classification time,
and on the convergence rate of the nominal dynamic (13)
which ignores the inputs of malicious agents. We tighten this
bound in Theorem 5 by analyzing the dynamic (7) directly
utilizing the bounds on the error probabilities presented in
Lemma 1.
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A. The Expected Convergence Rate via the Correct Classifi-
cation Time

Utilizing the upper bounds and Theorem 1 we can upper
bound the expected suboptimality gap as follows.

Theorem 4. For every t > Tj

7 S Ellai(t) — ") <

€L
min min < 472, 4h(t —m)
me[To:t—1] u(t —
h(t)

Before proving this theorem we observe that since D
and p.(t) are monotonically decreasing for ¢ > 1, choosing the
values, m = Ty, m = (¢t + Tp)/2, and m = |
leads to the following corollary.

In(t)
2min{EZ,E3, }‘|

Corollary 3. For every t > max{Ty, 1} the expected con-
vergence rate of ‘—é‘ > icc Elll@i(t) — 2*||?] is upper bounded
as given in (16) and (17). Furthermore, for every t such that

Ty < [%] <t — 1, the expected convergence rate
LM
of ﬁ >icc Elllzi(t) — «*||?] is upper bounded by in (18).
Now, we proceed to prove Theorem 4.
Proof of Theorem 4: First, note that (tﬁl) and p.(t )

are nonincreasing functions of ¢ for ¢ > 1. Denote M, &

max{k,Tp}. For every t — 1 > Ty and m € [Ty : t — 1] we
have that
ZE [EAGEE A
[£]
i€l
@ 1 =
] > Pr(Ty = k)Y E[lai(t) - 22l|Ty = k]
k=0 1€£
+Pr(Ty >t — |E| ZE @i(t) — af || Ty >t — 1]
i€l

Tzl ZZPI" Ty = k)E [||zi(t — M) — z%|? | Ty = k]

k=01ieLl
+ 4 Pr(Ty >t — 1)

(0 L4 4h(t — My,)
< NPTy =k 4
%r’ )“%”’@fmw—m+n}
+ 4 Pr(Ty >t — 1)
t—1

— 1) min 2 4E(t — Mk)
S,; Pr(Ty =) {4n "t — My)(t — My, + 1) }

m)(t —m+ 1)} + 4772pe(m)} :

+ 4772p8(t -1)

m B . 4h(t — My)
SZ Pr(Ty = k) min {4772a pult = My)(t — My + 1)}

k=0
4h(t — My) }

t—1
+ «(k — 1) min {4 2
k;ﬂ’) (k=1) Tt = M)t — My + 1)

+ 4772p8(t -1)

< min {4772,

4h (t —
wu(t — )(t—m+1

}ZPr

t—1
+ 4n? Z pe(k — 1) +4n*pe(t — 1)

k=m+1
) 5 4h (t —m)
<min {40 L)
+40? (pe(m) — pe(t — 1)) + 4n°pe(t — 1)
. 4h (t —m)

where (a) follows from the law of total expectation, (b)
follows from the definition of Ty and Assumption 2, (c)
follows from Theorem 1, and the remaining steps follow from
Lemma 2. [ ]

B. Convergence Results via Trustworthiness Misclassification
Error Probabilities

This section aims to tighten the bound on the convergence
rate presented in Theorem 4 and Corollary 3. To this end, we
develop an alternative analytical approach that evaluates more
carefully how our choice of weights w;; (¢), stepsize ~(t), and
To, together with the quality of trust values, captured by the
constants E, and E 4, affects the dynamic (7).

Lemma 4. Let r € {1,2}, i € L, and t > 0. Then,

E > fwis(k)

— Wy; | < pe(k),
JENNL

E Z ’LUU(k) S pc(k)7

jeNiﬁM 1 2T
i pe(k)
E [lwii(k) —wu|"] < =57



Proof: First, note that, w;;(t) > 0.5 for every i € L, thus

|wii(t) Z w;; (k) <0.5.

JEN;NM

_Eiil < 0.5, and

Additionally, the event . v~ |wi; (k) —w;;| > 0 can occur
only if W, (t) # W . It follows by the triangle inequality that
D fwig (k) =i < fwig (k) + 5] < 1.

JEN:NL JENINL
Now, for all 7 and j € N; N L, we have

T

E || D lwyk) =yl <E [1 ' H{Wg(t)#WL}}
je./\/»;ﬂl:
< pe(k).
The rest of the proof follows similarly. ]

Next, we present an auxiliary proposition that we utilize
in upper bounding the expected distance between an agent’s
value and the average agents’ values at time ¢. Here we extend
[53, Lemma 11] to the case of d-dimensional vectors with
random perturbations. Note that a naive implementation of
[53, Lemma 11] for each of the dimensions 1,...,d scales
the resulting upper bound by v/d. The upper bound we next
derive eliminates this scaling.

Let A € R¥I%l and denote by [A]; the jth column of A.
The Frobenius norm of the matrix A is defined as

d d
DD lagl= [ IALIZ = 4| D A7),
JjEL =1

i=1jeL
where A7 denotes the transpose matrix of the matrix A.
Additionally, we denote by 1 the all-ones column vector with
|£]| entries.

(1>

Al

Proposition 1. Let X C R? be a compact and convex set.
Additionally, let W (t) = (w;; (t))i jer be deterministic doubly
stochastic matrices such that oo(W(t)) < p for all t > 0.
Furthermore, let A;(t) € R be random vectors, and let
X (t) € R¥™I£l be defined by the following dynamic

X(t+1)=XOWT(t)+ A1), (19)

where A(t) = (A1(t), ..., Az(t)) for all t > 0. Assume that
there exists a non-increasing sequence §(t) such that

E[|Ai(1)]*) < 8%(t), Yie L,

and let
RTUN X()1 1

Then,

Y ec BlIX @) - X)) . 6(0)pt2  6(t)2)
Izl <2np" + = 1=,

e EllX®)]; — X017 . 802 s(t/2)1°
] < o+ R4 02

We present the proof for Proposition 1 in Appendix C. We
apply this proposition in establishing the upper bounds in the

forthcoming lemma. Toward providing the lemma, define

fg é |£|le

i€L
- (2nv/pe(To) + G(0)) "0V
(1, To) £ g ™0 4 LD E OO
pe((t +T0)/2) + G((t = To)/2))
1 —pr ’
20)

where ¢/2 £ | L].
Lemma 5. For everyt > 0

i 2Bl

€L

€L

T[] < om(t, To), and

T ()] < 034 (¢, To).-

Proof: Recall that ¢;(t) £ Ty [y;(t)] — ci(t). The ma-
trices We(t) = (w;;(t))ijec are random, vary with time,
and can be sub-stochastic. Thus we cannot naively apply
Proposition 1 for A;(t) = ¢;(t). Instead, we substitute

Ai(t) = ci(t) —e(t) + ¢i(t),

Wiiwi(t) + 2 jenrne Wi (t). Tt follows that

> Wijwi(t) + Alt).

JEN;NL

where ¢;(t) £

By the Cauchy—Schwarz inequality for the /5 inner product,
and by the Cauchy—Schwarz inequality for expectations

E [[|A@)°] = E [llei(t) —2(t) + o(1)]?]
<E [lei(t) —a)?] + E [lle:(0)]?]
+2VE [[lei(t) — @) [P]VE [ 6:(t)]]?

By Lemma 4 and Assumption 2, we further have
Bl - & (01| = B llu(t) - wilt)
+ Y () —wyla )+ > wi(tay (f)ﬂ

JENINL JENINM
< 4n?pe(t).
Additionally, by Assumption 3 and the non-expansiveness

property of the projection, since ¢;(t) € X for all ¢ and all ¢, it
follows that ||¢;(¢)]] < [ly:(t) — ci(¥)|| < Gy(t — Tp). Hence,

E [|A:0)1°] = E [llei(t) — (t) + ¢i(t)[|]
< Anpe(t) + G2y (t — To) + 4G/ pe(t) 7 (t — Tp)

= (2n\/pc(t) +G(t— TO))2 @n

We conclude the proof by substituting 5(t) = &(t + Tp) =
20\/pe(t +To) + G(t), W(t) = W, and p = pg in
Proposition 1 and using the transformation ¢ — ¢ — Tj. [ ]

Now, we are ready to present our tightened convergence rate
guarantees for Algo. 1.

_Ei(



Theorem 5. Algo. I converges to the optimal point x7. in the
mean-squared sense for every collection x;(0) € X, i € L, of
initial points i.e.,

lim E [||lz;(t) — 2[*] =0, Vi€ L,

t—
whenever Y ;2 y(t) = oo and Y ;2 7 (t) < .

Moreover, let v(t) = ﬁ Then, for every Ty > 0
and T > Ty there exists a function Cp(To) that decreases
exponentially with Ty and is independent of T such that for
any collection x;(0) € X, i € L, and for all T > Ty,

(22)

€L
. 9 4h(T To) + Ca(To)
=min {4” (T — To)(T — To+1)} @9

where h(-) is defined in (14).

For the sake of simplicity of exposition, we only charac-
terize the function Cxq(Tp) with respect to its exponential
decrease in Tj. Nonetheless, we define the function Caq (7o)
in (30) as part of the proof of Theorem 5. Intuitively, the
Cam(Tp) term above represents the error term contributed by
the presence of malicious agents in the distributed network. It
can be seen that for large enough 7" the entire term on the right
of the inequality (23) decays on the order of O (%) Finally,
we can observe that Theorem 5 tightens the results presented
in Theorem 4 and Corollary 3 for the regime 7" > 1.

Before proceeding to prove this theorem, we point out
that unlike the analysis for stochastic gradient models such
as [48], in our model w;;(t) and x;(¢) are correlated. This
follows by the statistical dependence of w;;(t) and w;; (t—1).
Thus, we cannot use the standard analysis which requires that
E[w;;(t)x;(t)] = Elw;;(t)]E[x;(t)]. Finally, we observe that
the nonnegativity of the variance of random variables (22) and
the sandwich theorem imply that lim; . E[||z;(t) — z%||] =
0, V¢ € L. This result also holds since convergence in expec-
tation in the rth moment implies convergence in expectation
in the sth moment whenever 0 < s < 7.

Proof: By the non-expansiveness property of the projec-
tion, for every ¢t > Ty and i € L,

i (t +1) = 27| = [T (ys(8)) — 2Z[1* < llya(t) — 2%
Denote
Ez(t) 2 wuarl(t) + Z Eijxj (t)’ and

JENNL
9:(t) = ¢i(t) = (t = To)Vfi(@(t)) — 2%
Recall that y;(t) = ¢;(t) —

’y(f — To)Vfi(Ci(t)), then by the
Cauchy-Schwarz inequality for the inner product on /o, the
triangle inequality, and the linearity of the expectation

7 ZE |zt + 1) — 2% ||]

€L

|£|ZE{Q

(1>

y(t —=To)V fi(@i(t)) — IZ

+ai(t) —e(t) +(t = To)[VSi@(t) - Vfi(ci(t))]|2]

< i1 L B[Im 0| 415 LBl - w0)?]

€L €L

a (1)

+ % > E {IVfl i) — Vfi(ci(t))||2]

€L
(III)
+ 2 LBl ) - w0l
€L
av)

L 2l =To) |£| — 1) ZE{“gl IV fi(@i(t)) — vfi(ci(t))”}

€L

V)

2y 7o)
+ 2D S B ) - w0

iceL
IV AGEn) - Vfi<ci<t>>|] |

(VD

By (3), Lemma 4, and the Cauchy-Schwarz inequality,

D fwi (1) = igla; (1)

je./\/»;ﬂl:

Y wt)a <t>||2]

I =E [H[w”(t) — Eu]xl(t) +

JEN;NM
< dPpe(t). 24)
Since V f; are L-Lipschitz continuous
(I < L°E [m(t) - q(t)llz] <ALp’p(t).  (25)
Now, by Lemma 4, E [ch(t) -G (t)|] < 2np.(t). Thus,
V) < (20 +(t - TGIE || ) - e (0]
< 2n(2n +(t — To)G) pe(t), (26)
and by the L-Lipschitz continuity of V f;
(V) < 2Ly (2n +~(t — To)G) pe(t),
(VD) < LE {m(t) - Ei(t)|2] <ALn’p.(t). @7

Define hay(t, Tp) as

V(t—To)G(L +1)
2n

and recall that Tz (t) £ 177 2, o 2i(t). Therefore,

3

4n?pe(t) {2(1} + 1)+ 2 (t — To)L* +

ZE it + 1) — £ ]] < @+ ha(t, To)
€L

[£]

T
ShM(t,To) HTOZE \xl —xLH }

€L



where the last inequality follows from Assumption 3, the

convexity of || - ||? and the double stochasticity of W .
Recall (20) and denote

hpa(t, To) & 7 (t—To)G? +2Gopm(t, To) + (n+ L) (£, To).-

Here, the term ha(t, Tp) is affected by the distributed nature
of our optimization process and the presence of malicious
agents. We utilize Lemma 5 to conclude that

ZE i (t+ 1) — 2]|%] <At = To)haa(t, To)

|£| i€L
(1 Ty))
+hM(th0)+TZE lwi(t) — 2217 -
€L
Thus, since |£]| < oo
: . _x 12 — :
Jim B [[loi(t) — 27]]°] =0, Vi€ L, (28)

whenever >;° y(t) = co and Y~ ¥*(t) < oo.

To prove the second part of the theorem, we let v(t) =

ﬁ as proposed in [51]. It follows that
QEM(t,TQ)
E :Ez (t+1)—ay —_—
t
+ hm(t, To) +

- - . . — %2
e

Multiplying both sides by (t—Tp+1)(t—Tp+2) and summing
over the set t € {Tp, To+1,...,T —1} yield the upper bound

2215 TO( — To + 1) ha(t, Tp)
B ZﬁE (T W(T —To) (T — Ty + 1)

. th;TO (t =Ty + 1)(t — To + 2)hpq(t, To)
(T —To)(T —Tp + 1) '

Using the identity va + b < v/a + \/1_7, we deduce that

Vpe(t) < v/Dre™Pz 4 \/Dge

In addition, we utilize the identities for |v| € (0,1)

> v > 2v
tol = and 2ot = .
; (1-v)? ; (1-wv)3

Denote

vz’ <

(29)

16776_T0E VD G
1—pc (1—eF%)

(11 + L)(G + 2uy/DeToE")
u(l = pc)? ’

2 C\(To, Ez, D) + Ci(To, Eamt, D).

Cy(Ty, E, D) 2 i

G+(n+3)(u+1L)
(1—pc)?

and Ol (To)

Further algebra yields that

T-1

Z (t — Ty + 1)hM(t To)
t=To

h(t — To) + (To),

here, the added term C4(T}) captures the influence of the
malicious agents on the term (I). Additionally, denote

An(L + 1)De=2ToE*

~ A
CQ(TO7E7D)_ (1—672E2)
4ne—2F (6n + %)672}3 L G
— +An+ — + —
(1- 6—2E2)2 1—e2E w2 1
and
C3(Ty) £ Co(To, Bz, D) + Ca(To, Ear, D).
Then,
T-1
Dt =Ty +1)(t — To+ 2)hm(t, Tv)
t=Ty
T—Ty—1
=82 (L+1) Y (t+1)(t+2)pe(t+Tp)
t=0
T—Ty—1
+APL? Y ()4 277 (Opelt + To)
t= o
—To—

+29G(L + 1) Z t+1 (t 4 2)7(D)pe(t + To) < Co(Tp).
t=0

We conclude the proof by letting

Cm(To) = 2C1(To) + pCa(To). (30

|

Thus, we have shown that indeed we are able to recover

convergence fo the optimal value of the original distributed

optimization problem, given in (1) even in the presence of

malicious agents. Further, we have established an upper bound

on the expected value of ||z;(t) — 2% ||% for all i € L, as a
function of the time ¢ as given by (23) in Theorem 5.

VIIL.

This section presents numerical results that validate the
convergence results we derived for Algo. 1. As a benchmark,
we compare the performance of our proposed Algo. 1 to that
of [11] which adapts the W-MSR consensus algorithm [54]
to the case of distributed optimization. This W-MSR based
algorithm is applicable only for the one-dimensional case, i.e.
d = 1. To this end, we compare our results to [55] which
extends [11] to multi-dimensional data values. Following the
notations in [11], we denote by F' the maximal number of
highest values and lowest values that each legitimate agent
discards, overall a legitimate agent may ignore no more than
2F values for d = 1.

We consider a distributed network with |£| = 15 legitimate
agents and | M| € {15, 30} malicious agents. To maximize the
malicious agents’ impact every malicious agent is connected
to all the legitimate agents. The legitimate agent’s connectivity
is captured by Fig. 1.

NUMERICAL RESULTS
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M, ...,

Undirected graph G. Two agents are neighbors if they are
connected by an edge. Legitimate and malicious agents are depicted
by blue and red nodes, respectively. Edges between legitimate agents
are depicted by black solid lines. Edges between legitimate and
malicious agents are depicted by red dashed lines.

Mim
Figure 1.

The trust values are generated as follows. Let E[a;;] = 0.55
if j € N;NL, and E[oy;;] = 0.45 if j € N; N M. The
random variable cy;; is uniformly distributed on the interval
[Eloy;] — £, Elay;] + £], for every i € £ and j € LU M.
We consider the values ¢: 0.6,0.8, in both scenarios |Ez| =
|Eaq| = 0.05, however, the variance of the trust values when
¢ = 0.8 are higher. We remark that the legitimate agents
are ignorant regarding the values E[a;;] and ¢. Due to the
stochasticity of the trust values, we average the numerical
results across 100 system realizations.

We use the following stepsize

1
t+2

Denote for every client i, a; € Rd,bi € R. Additionally,
denote A > 0, and define for every agent i € £ the following
strongly convex loss with /5 regularizer:

fila) = 5

We constrain the legitimate agents’ values to lie in the d-
dimensional box [—7,7]%, i.e., X = [-n, n]?, where n = 50.
It follows that the global optimization problem the legiti-
mate agents aim to solve distributively is
/\ 2
= . 31
+ 5 llll } 31

n n]d { |£| Z
the optimal point of the

Furthermore, denote by =z
unconstrained counterpart of (31), that is

1
2V = [N+ — aiaiT ab; | .
( P P2

il
Then, the optimal point of (31) is,
('] = [
Let [y]; refer to the ith entry of the vector y. In this setup
Vfi(z) = a;j(alz — b)) + Az
d} and y € R? let

y(t) = “Lgi>0y-

A
a;?F:v — bi)z + 5”&6”2

+UC

C]iﬂ{[x*UC]iGX} + sign([x*UC]i)nll{[x*uc]iggx}.

Additionally, for every i € {1,...,

M (y)]; =
15 _

Hereafter, we utilize the following choice (b;)!%, =
(115.7,163.3, —81.7,127.2, —63.7, 58.4, —3.1, 62.9, 54.5,

Wil {ty)iei—nny + sign([yl)nh ), ¢—nmy-

144.9,-121.1,9.3, —2.6,—124.5,131). Note that setting
d =1, a;, = 1, and A = 0 results in a one-dimensional
constrained consensus problem. Next, we consider this special
case and then a multi-dimensional setup.

To evaluate the performance of Algo. 1 we denote the
average error at time ¢ by

é |£| Zsz

€L

—azl.

A. Consensus with Constraints

Here, we consider the following consensus problem with
constraints. The legitimate agents aim to minimize the function

1 1
I AT E i(z), wh i == (= b)?,
ze[rilég,so] |£] ieﬁf (x), where f 2(30 )

where b; = b; for all i € L. The optimal nominal value is
zp = 239¢ ~ 31.367 for our choice of (b;)!5,, where we
round the solution to the second digit after the decimal point.
Consequently, the dynamic (7) can be written as follows

a(t) = Y wi(t)z;(t)
JEN; (H)U{i}

_ Ly-1 >0
yi(t) = ci(t) t—Tp+2 (ci(t) = bi),

wi(t+ 1) = Ly, yexyyi(t) + sign(y: (0)nl gy, (gxy. (32)

The initial values of the legitimate agents are chosen randomly
and uniformly in the interval [—7, n]. Note that in this setup
the optimal point lies in the constraint set X'. Nonetheless, the
set X affects the update rule (32) and limits the data values
at all times to be in the set X.

To maximize the harmful impact of malicious agents on
our analytical results, we choose the malicious agents’ values
to be equal to —50, i.e., —n, at all times. We choose this
easy-to-spot malicious attack since it maximizes the deviation
of the malicious inputs from the optimal nominal solution.
Nonetheless, our algorithm can tolerate arbitrary malicious
node inputs including the time-varying case or small deviation
case that is usually much harder to detect.

Figs. 2 and 3 capture the average value of the distance of
each legitimate agent from the optimal point x7. normalized
by the average of this initial distance, i.e., the average value of
%, for each time ¢. We can see that the W-MSR algorithm
fails to converge to the optimal solution. This occurs due to the
high number of malicious agents, which is higher in this case
than the tolerance threshold? in [11]. Additionally, the W-MSR
algorithm is not guaranteed to converge to the optimal value
o}, but to a value in the convex hull of II;_, .1(b;), i € L.
In our case this convex hull is exactly the interval [—n, 7],
thus the W-MSR algorithm cannot guarantee the reduction of
the distance to the optimal value with respect to the interval
[-7,n]. In contrast, Algo. 1 provides resilience to malicious
activity and can tolerate even 30 = 2|£| malicious agents,
as evident in Figs. 2 and 3. Furthermore, we can see from

2We can upper bound the tolerance threshold for this setup by 2 following
our argument in [39].
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Figs. 2 and 3 that Algo. 1 is robust to small values of |E]
and | Eq|. Finally, Figs. 2 and 3 show that the variance of the
trust values has more impact on Ty values that are smaller than
100. This occurs since the higher variance of the trust values
increases the misclassification errors. Since the probability of
these errors decreases with T}, they are less impactful when
Ty is 100 or higher. Note that regardless of the value of the
observation window Tp, our algorithm eventually recovers the
global optimum as predicted by theory. Thus the value of T}
mostly dictates the rate of recovery of the global optimum.

B. Strongly Convex Loss with {o Regularizer

Here, we examine a multi-dimensional setup where both the
optimal solution and the updates are affected by the constraint
set X. Since the W-MSR algorithm is only valid for one-
dimensional data values, we compare our results to the multi-
dimensional extension of the W-MSR algorithm proposed
in [55]. We note that in this case the number of tolerated
malicious agents for the W-MSR algorithm is reduced by a
factor of d, i.e., the dimension of the data values.

We examine the case where d = 5 and A = 1. Additionally,
we set b; = 2b; for all 7 € L, and

-0.87 —1.05 —281 —04 —1.76

—0.88 —0.34 0.34 —246 0.44

—0.25 047 —0.09 —0.99 —2.33

—0.27 —0.61 —25 —0.79 0.46

—0.23 183 089 —0.83 —0.67

-1.6 027 —081 —277 —0.21

. —1.42 —1.11 -1.63 —0.66 —1.54
[(@)i2] =]-119 —03 —1.97 —142 -—1.21]. (33)

—143 —1.64 017 —211 -211

—0.73 046 —042 —1.75 0.22

-0.97 —0.12 -235 —251 —1.63

-1.18 —1.42 —-0.13 —1.66 0.36

—0.63 —219 —1.15 —1.65 —2.02

059 —2.08 026 —0.74 —2.66

-3.05 —-07 02 —194 —14

Thus, the optimal points, rounded to the second digit after
the decimal point, are

239C ~ (—61.67, —16.54, —21.19, —19.64,60.4)”, and
ah ~ (=50, —16.54, —21.19, —19.64, 50)7"

Additionally, the inputs of the malicious agents at all times
are (50,50, 50,50, —50)7.

Figs. 4 and 5 capture the average value of the distance of
each legitimate agent from the optimal point x7 normalized
by the average of this initial distance, i.e., the average value
of g((é)), for each time ¢. The plots included in Figs. 4 and
5 for our higher dimensional setup are consistent with the
one-dimensional setup which is captured in Figs. 2 and 3.
Moreover, we can see that Algo. 1 continues to perform well
and mitigate the harmful effect of malicious inputs even in
higher dimensions. This is in contrast to the multi-dimensional
W-MSR algorithm [55] which is more vulnerable to malicious
attacks as the dimension of the data values, i.e., d, increases.

VIII. CONCLUSIONS

This work studies the problem of resilient distributed
optimization in the presence of malicious activity with an
emphasis on cyberphysical systems. We consider the case
where additional information in the form of stochastic inter-
agent trust values is available. Under this model, we propose
a mechanism for exploiting these trust values where legiti-
mate agents learn to distinguish between their legitimate and
malicious neighbors. We incorporate this mechanism to arrive
at resilient distributed optimization where strong performance
guarantees can be recovered. Specifically, we prove that our
algorithm converges to the optimal solution of the nominal
distributed optimization system with no malicious agents, both
in expectation and almost surely. Additionally, we present two
mechanisms to derive upper bounds on the expected distance
of the agents’ iterates from the optimal solution. The first
is based on the correct classification of all malicious and
legitimate agents. The second approach utilizes the dynamic
of the attacked system to carefully tighten the upper bound on
the expected convergence rate. Finally, we present numerical
results that demonstrate the performance of our proposed
distributed optimization framework.
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The use of stochastic trust values allows us to recover
convergence to the global optimum in distributed optimiza-
tion problems even when more than half of the network
is malicious. This represents a very challenging case where
not many strong performance results are currently available,
particularly in the case of distributed optimization problems.
Thus the results of this paper strengthen our characterization of
achievable performance and provide novel tools for, resilient
trust-centered optimization in mutli-agent systems.

APPENDIX A
PROOF OF LEMMA 2

First, since we initialize 8;; = 0, at time ¢t = 0 all the
agents are classified as legitimate by their neighbors. Thus,
by the decision rule at time ¢ we are guaranteed to make a
classification mistake at time 0 whenever there are malicious
agents in the system.

Denote
U Buk) <0y |J {8i(k) >0}
ieL, ieL,
JEN;NL FEN;NM

13

By Lemma 1, for all £ > 1 we have that
Pr(Ty = k)

<, <£(k - 1))

®)
< > Pr(Byk—1)<0)+ > Pr(Bi;(k—1)>0)
€L, €L,
JENNL JENiNM
©)
< Y NN Llexp(—2(k — 1)TEZ)
€L
+ 3 IV N M]exp(—2(k — 1)TER), (34)
€L

where (a) follows from the definition of 7 in Corollary 1
which implies that if Ty = k there must be a misclassification
error in the legitimacy of agents at time k — 1, (b) follows
from the union bound, and (c) follows from Lemma 1.

From the definition of 7' in Corollary 1 Pr(Ty > k—1)
for k = 0. Additionally, for all £ > 1

r Jew)

t>k

< ZZ|M N L|exp(—

t=k i€l

+ZZ |NV; N M| exp(—

t=k i€L
exp(—2(k —1)E3)
1 —exp(—2FE%)

=0

A
M8
o

Pr(Ty > k—1) =
t=k

2(t — 1)t E%)

2(t —1)TER))

exp(—2(k — 1)E%))
1 —exp(—2FE3%,)
(35)

Note that Pr(Ty > k — 1) vanishes as ¢ tends to infinity. W

:DL

APPENDIX B
PROOF BY DEFINITION OF THEOREM 3

Let us assume that ¢ > 27p. Denote M}, = max{k, Ty} and
t/2 £ | L]. Next, we utilize the law of total expectation as
follows:

E[[[zi(t) —aZ|"] = E[E(||2i(t) —«Z|" [ T¢]]

- iPr(Tf = k)E [[lzi(t) — | | Ty = k]
k

=0
+Pr(Ty >t — DE [||a;(t) — af||" | Ty > t — 1]
t—1

=> Pr(Ty = k)E
k=0

+Pr(Ty >t — DE (|lai(t) —aZ|" | Ty >t —1)
t—1

< S Pr(Ty = K)E [zt — Mi) — a2 |" | Ty = K]
k=0
+Pr(Ty >t —1)(2n)".

ac(t, Ty = k) = azl|" | Ty = k]

upper

t—1
Next, we upper bound the term » , — Pr(Ty
K)E [||zi(t — My) — 2% ||" | Ty = k] utilizing the



bounds (10) and (15) which hold for every initial point Additionally,
21(0) e X: X(t)].
|(xer- Zgtar)wren
F

- HW(t) (X(t) - X(t)llT)T

ZPr (Ty = BB [l2i(t = M) =2 ||" | Ty = K]

B ” - 4Rt - Myl ) 1£1 F
=2 Pl =k [w—Mk)(t—Mk T 1>} : XTI |
_ . < |2 |we (xron -1 L0k
T S e e el = a
k=t/2+1 ! plt = Mi)(t = M+ )] d < 17 (X7 (1)] ) 2
< ||| (T -
Now, =1 IL|
];)Pr(Tf =k [u(t “ M)t — My + 1)} 7 HX@ o &
oy It follows that
@ [ 4h(t/2)|c] 12 L2
= [ (t/2) t/2—|—1] ZP X (¢t +1) = X+ 1)l
_ [ He/\C] ]; :‘X(Hl)_%p
= ut/2)t/2+1)] "
where (a) foﬁows since t > 2T;. Furthermore, = ‘ X(t)WT(t) +AQR) - A0 |—;|A(ﬁ)]1 i
— ARt - Myl 1° Dxwwre - X017 |lag - 2017
S n =8 e ) < Jxmri - 2] + oo - S|
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- 2 4h(t/2)|L] 1° = VS F
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i 9 (xw- =5 )WT(t) FIAD
< [melel 17 p, ooty o I xon i
= @2+ D] DTN AL exp(—2E) <o xo - Z0h7| +iaol. 0)
F

Additionally by (11)
where (a) follows from the triangle inequality, (b) follows

Pr(Ty >t—1)[29]" < from (38), (c) follows from the double stochasticity of W (t),
- exp(—2(t — 1)E2 exp(—2(t — 1)E? and (d) follows from (39).
1 —exp(—2FE7) 1 —exp(—2E3,) us,
Consequently, lim;_,oc E[||z;(t) —z%||"]=0,Vr>1. N - X(0)1 =,
7 ‘ X () = X(@)] < p"||X(0) - ] 1+ A
APPENDIX C k=0
Proof of Proposition 1: First, we utilize the identity Now, since E[||A;(t)]|?] < 62(t) for all i € L, and by the

non-negativity of the variance of ||A(k)||g

> AL = 1A%, (36)

ﬁ‘ E[||A(K)||¢] <\/E Ak n = NCE[a; k)]
and the upper bound £ (||[A];]|> + [[[A];[2) = [|[AL]| - [I[Al;]

JjEL
to deduce that < IZ070h) = \/|f5 ' @)
2L I < VLT 4. BT then BI|A:(1)[] < 5(¢) for all i € L.
jeL It follows from (3)
Thus, in what follows, we focuﬁ)ur efforts on upper ll)unding X(0)1
the Frobenius norms || X (¢t) — X (¢)||r and || X (¢) — X(t)||§ Hx(o) _ T 17
Observe that F

2 x©o1.,] |
CAML || _ = Z X(0) — 17
HA(t) L] ! F J; s |£|]§ jEL { £ L
2
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< > en)* =2mvL]. (42)
jeL
It follows that
E[|X(t) - X0l
|
2n —
S J—
vw| v E%
2 5(0) p/ 5(t/2)
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Iﬂ
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3 AR A g A
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By the Cauchy—Schwarz inequality for expectations

E[[|AG) - A (k)] < ¢E [N R=A[INCH

< [L[6(k1)6 (k2). (45)
Therefore,
Y 2
E [|X(1) - X(1)II]
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5(0)pt/2 (/2
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2
52 5(t/2)
- +
l—p  (1-p)
2
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— [on 4 8022 102 )
l—=p  (1-p)
We conclude the proof by using the upper bounds (36), (37).
|
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I. PROOF OF THEOREM 1

Here, we aim to explore the dynamic (2) when Ty = 0, M = () and the legitimate agents are aware that all the agents are
legitimate. In this scenario the dynamic (2) is equivalent to

ri(t) =Wizi(t) + Y Wijz(t)
JENNL
yi(t) = ri(t) =1 (O)V fi(ri(1)),
¢i(t) =T (yi(t)) —7ri(?),
zi(t + 1) = ri(t) + ¢i(t) = Ix (5i(1)) - )]
Denote Z(t) £ (z1(t), ..., zz|(t)) and ®(t) £ ($1(t), ..., ¢z/(t)), then

Zt+1)=W,Z(t)+ (),

where by Lemma 3, ||¢;(t)|| < v(¢)G. Thus we can utilize Proposition 1 to upper bound the distance of an agent value from

that of the average. Denote
a1
z(t) = ] > alt),

€L
and
! 2G 0)  Gy(t/2
g(t) £ min { 27, p£2n+ 10 + 7(4/2) : )
—pc I—pc
Observe that by the double stochasticity of W we have that Z(t) = ‘—2‘ Y ice Ti(t).
Corollary (Supplementary) 1. For every t € |£|
|£| Z ||Zl - || < g( )7 and
€L
|£|Z|\zz 0] < g*(®). 3
€L
Proof: This is a direct result of (3) and of Proposition 1 (in the main manuscript), for deterministic A(t) where
[A()]s = ¢4(t),
and
5(t) =~(t)G
|

We are now ready to prove Theorem 1.


http://arxiv.org/abs/2212.02459v1

Proof of Theorem 1: Under the dynamic (1), for every ¢ € £ and t € |L|
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The convexity of || - ||? and the double stochastic1ty of W, yields that
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and
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1] 7 2l

€L
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Additionally, we can conclude from Corollary 2 that

|Z| 0 S IV A )2 <2162

€L
Thus, by the p-strong convexity of f;, Vi € L
- 2% SOV O () — )
€L
DSV AC N @ = ri(0)
ieL
2’7(0 * 1 * (|2
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€L
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Next, we upper bound the terms in the last line by utilizing the L Lipschitz continuity of V f;:
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It follows that,
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MHE:W% — a7 |? + ()G + |£|§:{GWAU—Z@I+ 5 1i(t) — Z(8)]|>

€L €L

Denote,
h(t) = G*(t) +2Gyg(t) + (u+ L)g°(t).

We use Corollary (Supplementary) 1 to deduce that

g o+ 1) = a2 < (1= () 77 3 lt) = a2 2 + (0.

€L €L

Consequently,

lim ||z;(t) — 27| =0,VieL,

t—

whenever »_,° v(t) = oo and Efoo”y (t) < oo.
Motivated by [51] we let v(t) = =) +2) It follows that

2h(t)
z t 1 _ 2 7, * 12 .

€L

Multiplying both sides by (¢ + 1)(¢ 4+ 2) yields the followmg upper bound
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|£| €L
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Summing both sides over the set ¢ =0,1,...,7 — 1 yields the upper bound:

. 25Tt + Dt
|£| Z ”Zz —$£||2 < Zt_O ( ) ( )

= uT (T +1)

To conclude the proof we upper bound the term ZtT:Bl (t + 1)h(t). To this end, we utilize the identity

S+ )t = (1- )7,
t=0
for all |z| € (0,1) as follows
T-1 T-1
S+ Dh(t) = > (t+1) (G*y(t) +2Gg(t) + (n+ L)g*(1)) -
t=0 t=0
Now,
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Additionally,

T-1
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where the last inequality follows since
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Finally, since |pz| < 1 then (1 —p%)~! < (1 —pr)
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—1 for all x > 1. It follows that
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Finally, by utilizing the notation (14) we can conclude that
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