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Resilient Distributed Optimization for

Multi-Agent Cyberphysical Systems
Michal Yemini, Angelia Nedić, Andrea J. Goldsmith, Stephanie Gil

Abstract—Enhancing resilience in distributed networks in the
face of malicious agents is an important problem for which
many key theoretical results and applications require further
development and characterization. This work focuses on the
problem of distributed optimization in multi-agent cyberphysical
systems, where a legitimate agent’s dynamic is influenced both
by the values it receives from potentially malicious neighboring
agents, and by its own self-serving target function. We develop a
new algorithmic and analytical framework to achieve resilience
for the class of problems where stochastic values of trust between
agents exist and can be exploited. In this case we show that
convergence to the true global optimal point can be recovered,

both in mean and almost surely, even in the presence of malicious
agents. Furthermore, we provide expected convergence rate
guarantees in the form of upper bounds on the expected squared
distance to the optimal value. Finally, we present numerical
results that validate the analytical convergence guarantees we
present in this paper even when the malicious agents compose
the majority of agents in the network.

Index Terms—Distributed optimization, resilience, malicious
agents, Byzantine agents, stochastic trust values, cyberphysical
systems.

I. INTRODUCTION

Distributed optimization is at the core of various multi-

agent tasks including distributed control and estimation, multi-

robot tasks such as mapping, and many learning tasks such

as Federated Learning [2]–[4]. Owing to a long history and

much attention in the research community, the theory for

distributed optimization has matured, leading to several im-

portant results provide rigorous performance guarantees in

the form of convergence and convergence rate for different

function types, underlying graph topologies, and noise [5]–[9].

However, in the presence of malicious activity many of these

known results are invalidated, requiring a new characterization

of performance and equivalent theory for the adversarial case.

With the growing prevalence of multi-agent and cyberphys-

ical systems, and their reliance on distributed optimization

methods for correct functioning in the real world, it becomes
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critical that the vulnerability of these methods is well un-

derstood. In particular, malicious agents can greatly interfere

with the result of a distributed optimization scheme, driving

the convergence to a non-optimal solution or preventing con-

vergence altogether. They can accomplish this by either not

sharing key information or by manipulating key information

such as the shared gradients, which are critical for the cor-

rect functioning of the distributed optimization scheme [10]–

[12]. Note that while well-established stochastic optimization

methods characterize the effect of noise in distributed multi-

agent systems [13], [14], malicious agents have the ability to

inject intentionally biased or manipulated information which

can lead to a greater potential damage for these systems. As

a result, recent works have increasingly turned attention to

the investigation of robust and resilient versions of distributed

optimization methods in the face of malicious intent and/or

severe (potentially biased) noise [10]–[12], [15], [16]. These

approaches can be coarsely divided into two categories, those

that use the transmitted data between nodes to infer the

presence of anomalies (for example see [11], [17]), and those

that exploit additional side information from the network or the

physicality of the underlying cyberphysical system to provide

additional channels of resilience [18]–[20].

We are interested in investigating the class of problems

where the physicality of the system plays an important role in

achieving new possibilities of resilience for these systems. In-

deed the physicality of cyberphysical systems has been shown

to provide many new channels of verification and establishing

inter-agent trust through watermarking [21], wireless signal

characteristics [20], [22], side information [23], and camera or

lidar data cross-validation [24]. By exploiting these physical-

based measurements, agents can extract additional information

about the trustworthiness of their neighbors.

We capitalize on this observation which motivates us to

focus on a class of problems where the existence of this

additional information in the system can be exploited to arrive

at much stronger performance results in the adversarial case –

what we refer to as resilience. We abstract this information as

a value αij that indicates the likelihood with which an agent

i can trust data received from another agent j. We show that

under mild assumptions, when this information is available,

several powerful results for distributed optimization can be

recovered such as 1) convergence to the true optimal point in

the case of minimizing the sum of strongly convex functions,

and 2) characterization of convergence rate that depends

on the network topology, the amount of trust observations

acquired, and the number of legitimate and malicious agents

in the system.

http://arxiv.org/abs/2212.02459v1


A. Related Work

In the absence of malicious agents, the legitimate agents can

construct iterates converging to an optimal point x⋆
L by using

either their gradients, or sub-gradients when their objective

functions are not differentiable. Each agent i updates its data

value by considering the data values of its neighbors, and its

self-serving gradient direction of its objective function fi or

the directions obtained from its neighbors. Convergence to an

optimal point x⋆
L can be achieved for constrained multi-agent

problems in [5], [7], [14], [25]–[30] and with limited gradient

information [31], [32]. Additionally, a zero-order method has

been proposed in [33]. Some works, such as [5], assume that

the weight matrices, which dictate how agents incorporate the

data they receive from their neighbors, are doubly-stochastic.

However, works such as [28] overcome this assumption by

performing additional weighted averaging steps. Finally, it

has been established that the convergence rate of distributed

gradient algorithms with diminishing step size is at best O( 1
T )

where T is the algorithm running time, see for example [30].

To harm the system, a malicious agent can send falsified

data to their legitimate neighbors. If the legitimate agents

are unaware of their malicious neighbors, then the malicious

agents will succeed in controlling the system [10], [11], [34]–

[37]. To combat the harmful effect of an attack, the approach

taken in [34]–[36] requires the pre-existence of a set of trusted

agents such that all other agents (legitimate or malicious)

are connected to at least one trusted agent. Nonetheless, this

approach is unrealistic when communication is sporadic such

as in robotic and ad-hoc networks. The approaches in [10],

[11], [37], [38] rely on the agent data values to detect and

discard malicious inputs and have an upper bound on the

number of tolerable malicious agents (with a star network

having the largest number - a half of the number of agents in

the network) [37]. When the number of malicious agents ex-

ceeds the tolerable number, the attack succeeds and malicious

agents evade detection. In contrast with the existing works, our

proposed method provides a significantly stronger resilience

to malicious activity by exploiting the physical aspect of the

problem, i.e., the wireless medium. Thus, each legitimate agent

can learn trustworthy neighbors while optimizing the system

objective. Our prior work [39] studies the implications of the

agents’ learning ability, with regards to the trustworthiness of

their neighbors, on distributed consensus systems. This work

considers the more general case of distributed optimization

systems where the agent’s goal is to minimize the sum of their

local objective function under limited information exchange.

Finally, this work also relates to stochastic optimization, see

for example [40]–[47]. However, unlike the typical assumption

that the stochastic gradients are unbiased and statistically

independent of the weights. In this work, the stochastic gradi-

ents are biased, where the bias occurs due to the adversarial

inputs of the malicious agents. Furthermore, learning of the

trustworthiness of neighboring agents and adjusting agents’

weight accordingly, lead to a correlation between the agents’

values and the weights that are assigned to them. To this end,

our analysis could not rely on previous results when analyzing

the rate of convergence of the agents’ dynamic.

B. Paper Organization

The rest of this paper is organized as follows: Section II

presents the system model and problem formulation. Section

III proposes our algorithm for resilient distributed optimiza-

tion. Section IV presents our learning mechanism for detecting

malicious agents and provides upper bounds on the probability

of misclassifying malicious and legitimate agents. Sections V

and VI, respectively, present asymptotic and finite time regime

convergence results. Finally, Section VII presents numerical

results that validate our analytical results, and Section VIII

concludes the paper.

II. PROBLEM FORMULATION

We consider a multi-agent system of n agents communi-

cating over a network, which is represented by an undirected

graph, G = (V,E). The node set V = {1, . . . , n} represents

the agents and the edge set E ⊂ V × V represents the set of

communication links, with {i, j} ∈ E indicating that agents i
and j are connected. We denote by Ni the set of neighbors of

agent i, that is Ni , {j : {i, j} ∈ E}.

We study the case where an unknown subset of the agents

is malicious and the trustworthy agents are learning which

neighbors they can trust. Thus, V = L∪M where L is the set

of legitimate agents that execute computational tasks and share

their data truthfully, while M denotes the set of agents that are

not truthful. The sets L and M are just modeling artifacts,

and none of the legitimate agents knows if it has malicious

neighbors or not, at any time. Throughout the paper, we will

use the subscripts L and M to denote the various quantities

related to legitimate and malicious agents, respectively.

We are interested in a general distributed optimization

problem, where the legitimate agents aim at optimizing a

common objective whereas the malicious agents try to impair

the legitimate agents by malicious injections of harmful data.

The aim of the legitimate agents is to minimize distributively

the sum of their objective functions over a constraint set

X ⊂ Rd, i.e.,

x⋆
L = argmin

x∈X
fL(x), with fL(x) =

1

|L|
∑

i∈L

fi(x). (1)

By choosing a local update rule and exchanging some informa-

tion with their neighbors, the legitimate agents want to deter-

mine the optimal solution x⋆
L in (1). In contrast, the malicious

agents aim to either lead the legitimate agents to a common

non-optimal value x ∈ X such that fL(x) > fL(x
⋆), or

prevent the convergence of an optimization method employed

by the legitimate agents.

A. Notation

We let xT denote the transpose of x, where x ∈ Rd. We

denote by ‖x‖ ,
√
xTx the ℓ2 vector norm. We let ΠX (x) be

the projection of x onto the set X , i.e.,

ΠX (x) = argminy∈X‖y − x‖.
Finally, we denote by E[·] the expectation operator.
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B. Trust values

We employ a probabilistic framework of trustworthiness

where we assume the availability of stochastic observations

of trust between communicating agents. This information is

abstracted in the form of a random variable αij defined below.

Definition II.1 (αij). For every i ∈ L and j ∈ Ni, the random

variable αij ∈ [0, 1] represents the probability that agent j is

a trustworthy neighbor of agent i. We assume the availability

of such observations αij(t) at every instant of time t ≥ 0
throughout the paper.

This model of inter-agent trust observations has been used in

prior works [22], [39]. The focus of the current work is not on

the derivation of the values αij themselves, but rather on the

derivation of a theoretical framework for achieving resilient

distributed optimization using this model. Indeed, we show

that much stronger results of convergence are achievable by

properly exploiting this information in the network. We refer

to [22] for an example of such a value αij . Intuitively, a ran-

dom realization αij(t) of αij contains useful trust information

regarding the legitimacy of a transmission. We assume that a

value of αij(t) > 0.5 indicates a legitimate transmission and

αij(t) < 0.5 indicates a malicious transmission in a stochastic

sense (misclassifications are possible). Note that αij(t) = 0.5
means that the observation is completely ambiguous and

contains no useful trust information for the transmission at

time t.
We use the following assumptions throughout the paper:

Assumption 1. (i) [Sufficiently connected graph] The sub-

graph GL induced by the legitimate agents is connected.

(ii) [Homogeneity of trust variables] There are scalars EL > 0
and EM < 0 such that

EL , E[αij(t)] − 0.5, for all i ∈ L, j ∈ Ni ∩ L,
EM , E[αij(t)]− 0.5, for all i ∈ L, j ∈ Ni ∩M.

(iii) [Independence of trust observations] The observations

αij(t) are independent for all t and all pairs of agents i and

j, with i ∈ L, j ∈ Ni. Moreover, for any i ∈ L and j ∈ Ni,

the observation sequence {αij(t)} is identically distributed.

We note that these are standard assumptions when using the

probabilistic trust framework employed here [22], [39].

C. The update rule of agents

We propose distributed methods with significantly stronger

resilience compared to [11]. This is enabled by each legitimate

agent learning which neighbors it can trust while optimizing

a system objective.
a) The update rule of legitimate agents: Each legitimate

agent i updates xi(t) by considering the values xj(t) of its

neighbors and the gradient of its own objective function fi
similarly to the iterates described in [5]1. This method takes

the following form for every legitimate agent i ∈ L,

ci(t) = wii(t)xi(t) +
∑

j∈Ni

wij(t)xj(t),

1Note, however, that [5] does not include a projection on the set X .

yi(t) = ci(t)− γ(t)∇fi(ci(t)),

xi(t+ 1) = ΠX (yi(t)) , (2)

where γ(t) ≥ 0 is a stepsize that is common to all agents

i ∈ L at each time t, and Ni is the set of neighbors of agent i
in the communication graph. The set Ni is composed of both

legitimate and malicious neighbors of agent i ∈ L, while the

weights wij(t), j ∈ Ni ∪ {i}, are nonnegative and sum to 1.

For each i ∈ L, j ∈ L ∪M, the choice of wij(t) depends on

the history of the random trust observations (αij(τ))0≤τ≤t.

As a result, the weights wij(t) and the data points xi(t) are

random, for every i ∈ L, j ∈ L ∪M and time instant t > 0.

To reduce the convergence rate, we allow γ(t) and wij(t) to

depend on a parameter T0 ≥ 0 which dictates how many trust

observations a legitimate agent collects before it decided to

trust one of its neighbors. We specify γ(t) and wij(t), i ∈ L,

j ∈ Ni ∪ {i}, precisely later on in Section III.

b) The update rule for the malicious agents: Malicious

agents i ∈ M choose values arbitrarily in the set X . We

assume that their actions are not known, and thus we do not

model them. For simplicity of exposition, the dynamic (2)

captures malicious inputs, where an adversarial agent i ∈ M
sends all its legitimate neighbors identical copies of its chosen

input xi(t) at time t. Let us denote by xij(t) the input of

a malicious agent i to a legitimate agent j at time t, then

xij1 (t) = xij2 (t) for every j1, j2 ∈ L. Nonetheless, our

analytical results also hold for byzantine inputs where an

adversarial agent i ∈ M can send its legitimate neighbors

different inputs at time t. In this case xij1 (t) need not be

equal to xij2 (t) for every j1, j2 ∈ L.

D. Assumptions on the objective functions and initial points

Assumption 2. We assume that X ⊂ Rd is compact and

convex and that there exists a known value η > 0 such that

‖x‖ ≤ η, ∀x ∈ X . (3)

The η value in Assumption 2 is arbitrary, and its role is to

bound the malicious agents’ inputs away from infinity.

Assumption 3. For all legitimate agents i ∈ L, the function fi
is µ-strongly convex and has L-Lipschitz continuous gradients,

i.e., ‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rd.

Note that under Assumption 2 and the strong convexity of

Assumption 3, the problem (1) has a unique solution x∗
L ∈ X .

Assumption 4. Let the stepsize sequence {γ(t)} be nonnega-

tive, monotonically nonincreasing, and such that
∑∞

t=0 γ(t) =
∞ and

∑∞
t=0 γ

2(t) < ∞.

E. Objectives

The objective of this work is to arrive at strong convergence

results for the distributed optimization problem in (1) in the

presence of malicious agents M. We wish to achieve this by

carefully exploiting the availability of stochastic trust values

αij(t) in the network. Specifically, we aim to achieve the

following:
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Objective 1: We wish to construct weight sequences

{wij(t)}, i ∈ L, j ∈ Ni in the method (2) to weight the

influence of neighboring nodes in each legitimate agent’s

update. Specifically, we wish to construct these sequences

such that they converge over time to some nominal weights

wij , i ∈ L, j ∈ Ni, almost surely (a.s.), where wij = 0 for

all malicious neighbors j ∈ Ni ∩M of agent i ∈ L.

Objective 2: Utilizing the proposed weights {wij(t)}, we aim

to show that the iterates given by (2) converge (in some sense)

to the true optimal point x⋆
L ∈ X under Assumptions 1-4.

Objective 3: We aim to establish an upper bound on the

expected value of ‖xi(t)− x⋆
L‖2, for all i ∈ L, as a function

of the time t, for the iterates xi(t) produced by the method.

III. THE ALGORITHM

Next, we present an algorithm that incorporates the le-

gitimate agents’ learning of inter-agent trust values into the

dynamic (2) through the choice of the time-dependent weights

wij(t). These weights depend on a parameter T0 that captures

the number of trust measurements a legitimate agent collects

before deciding if to trust one of its neighbors. We utilize

the parameter T0 to enable faster convergence rates of the

algorithm Nonetheless, as we show in Section V, the algorithm

converges to the optimal point x⋆
L for any choice of nonneg-

ative integer T0, including the special case where T0 = 0. In

this case, legitimate agents have no prior trust observations to

rely on when they first decide whether to trust their neighbors.

A. The weight matrix sequence

Consider the sum over a history of αij(t) values that we

denote by βij(t):

βij(t) =

t−1∑

k=0

(αij(k)− 0.5) for t ≥ 1, i ∈ L, j ∈ Ni, (4)

and define βij(0) = 0. We note that we explore the proba-

bilistic characteristics of βij(t) in Section IV.

We define a time dependent trusted neighborhood for agent

i ∈ L as:

Ni(t) , {j ∈ Ni : βij(t) ≥ 0}. (5)

This is the subset of neighbors that legitimate agent i classifies

as its legitimate neighbors at time t. For all t ≥ 0, let

di(t) , |Ni(t)|+ 1 ≥ 1 for all i ∈ L.
At each time t, every agent i sends the value di(t) to its

neighbors j ∈ Ni in addition to the value xi(t). Alternatively,

we can assume that agent i sends di(t) to its neighbors only

when the value di(t) changes.

Legitimate agents are the most susceptible to making classi-

fication errors regarding the trustworthiness of their neighbors

when they have a small sample size of trust value observations.

Thus, we delay the updating of legitimate agents’ values until

time T0 ≥ 0. Up to time T0, the legitimate agents only collect

observations of trust values.

Let 1{A} denote the indicator function; it is equal to one if

the event A is true and zero otherwise. We define the weight

Algorithm 1 The protocol of agent i ∈ L.

Inputs: T , T0, Ni, xi(0), ∇fi(·), γ(·).
Outputs: xi(T ).
Set βij(t) = 0 for all j ∈ Ni;

for t = 0, . . . , T − 1 do

Set Ni(t) = {j ∈ Ni : βij(t) ≥ 0};

Set di(t) = |Ni(t)| + 1;

Send xi(t) and di(t) to neighbors;

for j ∈ Ni do

Receive xj(t) and dj(t);
Extract αij(t);
Set βij(t+ 1) =

∑t
k=0 (αij(k)− 0.5);

Set the weight wij(t) based on the values of T0,

Ni(t), di(t), and dj(t) as follows:

wij(t) =
1{t≥T0}1{j∈Ni(t)}
2max{di(t), dj(t)}

;

end for

Set wii(t) = 1−∑
m∈Ni

wim(t);
Set xi(t+ 1) according to the dynamic (7);

end for

matrix W (t) by choosing its entries wij(t) as follows: for

every i ∈ L, j ∈ Ni,

wij(t) =






1{t≥T0}

2·max{di(t),dj(t)}
if j ∈ Ni(t),

0 if j /∈ Ni(t) ∪ {i},
1−

∑

m∈Ni

wim(t) if j = i.
(6)

Using the weights (6) and letting the stepsize γ(k) = 0, ∀k <
0, the dynamic in (2) is equivalent to the following dynamic

where agents only consider the data values received from their

trusted neighbors at time t, i.e., Ni(t), when computing their

own value updates: for all i ∈ L and all t ≥ 0,

ci(t) = wii(t)xi(t) +
∑

j∈Ni(t)∩L

wij(t)xj(t) +
∑

j∈Ni(t)∩M

wij(t)xj(t),

yi(t) = ci(t)− γ(t− T0)∇fi(ci(t)),

xi(t+ 1) = ΠX (yi(t)) . (7)

We note that though the choice of the parameter T0 affects the

weights wij(t), i ∈ L, j ∈ L∪M and the terms ci(t), yi(t) and

xi(t), i ∈ L, we omit this dependence from these notations

for the sake of clarity of exposition.

Furthermore, the dependence of the weights wij(t) on the

trust observation history βij(t) comes in through the choice

of time-dependent and random trusted neighborhood Ni(t)
(see (5)). Consequently, some entries of the matrix W (t) are

also random, as seen from (6). The gradients ∇fi(ci(t)) are

stochastic due to the randomness of ci(t), however, they are

not unbiased as typically assumed in stochastic approximation

methods, including [48]. Thus, we cannot readily rely on

prior analysis for stochastic approximation methods. However,

as we show in our subsequent analysis, the variance of

‖∇fi(ci(t))‖ decays sufficiently fast and allows convergence

to the optimal point even in the presence of malicious agents.
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IV. LEARNING THE SETS OF TRUSTED NEIGHBORS

This section establishes key characteristics of the stochastic

observations αij(t) that result from the model described in

Section II-B and that we will subsequently use in our analysis

of the convergence of the iterates produced by Algo. 1.

Recall that we consider the sum βij(t), defined in (4), over a

history of αij(t) values. Intuitively, following the discussion

on αij ’s immediately after Definition II.1, the values βij(t)
will tend towards positive values for legitimate agent transmis-

sions i ∈ L and j ∈ Ni ∩ L, and will tend towards negative

values for malicious agent transmissions where i ∈ L and

j ∈ Ni ∩ M. We restate an important result shown in [39]

regarding the exponential decay rate of misclassifications given

a sum over the history of stochastic observation values that we

will use extensively in the forthcoming analysis.

Lemma 1 (Lemma 2 [39]). Consider the random variables

βij(t) as defined in Eq. (4). Then, for every t ≥ 0 and every

i ∈ L, j ∈ Ni ∩ L,
Pr (βij(t) < 0) ≤ max{exp(−2tE2

L),1{EL<0}},
while for every t ≥ 0 and every i ∈ L, j ∈ Ni ∩M,

Pr (βij(t) ≥ 0) ≤ max{exp(−2tE2
M),1{EM>0}}.

In other words, the probability of misclassifying malicious

agents as legitimate, or vice versa, decays exponentially in the

accrued number t of observations.

We can now conclude that there is a random but finite time

Tf such that there exists a legitimate agent i which misclassi-

fies the trustworthiness of at least one of its neighbors at time

Tf−1, and all the legitimate agents classify the trustworthiness

of their neighbors correctly at each time t ≥ Tf . We refer to

the time Tf as the “correct classification time”.

Corollary 1. There exists a random finite time Tf such that

βij(t) ≥ 0 for all t ≥ Tf and all i ∈ L, j ∈ Ni ∩ L,
βij(t) < 0 for all t ≥ Tf and all i ∈ L, j ∈ Ni ∩M, (8)

and there exists i ∈ L such that

βij(Tf − 1) < 0 for some j ∈ Ni ∩ L, or,

βij(Tf − 1) ≥ 0 for some j ∈ Ni ∩M. (9)

Proof: It follows directly from [39, Proposition 1].

Let |Ni∩L| be the number of legitimate neighbors of agent

i, and |Ni∩M| be the number of malicious neighbors of agent

i. We define by DL the total number of legitimate neighbors,

similarly we define by DM the total number of malicious

neighbors, with respect to the legitimate agents. That is,

DL ,
∑

i∈L

|Ni ∩ L| and DM ,
∑

i∈L

|Ni ∩M|.

Additionally, we define the following upper bound on the

probability that at least one legitimate agent misclassifies one

of its legitimate neighbors as malicious or one of its malicious

neighbors as legitimate, when observing k trust values for each

of its neighbors

pc(k) , 1{k≥0}

[
DLe

−2kE2

L +DMe−2kE2

M

]
.

Furthermore, we define the following upper bound on the

probability that a legitimate agent misclassifies one of its

legitimate or malicious neighbors, in one of the times after

observing k trust values for each of its neighbors:

pe(k) , DL
exp(−2kE2

L)

1− exp(−2E2
L)

+DM
exp(−2kE2

M)

1− exp(−2E2
M)

.

Using these quantities, we obtain some useful bounds on the

probabilities of the events (Tf = k) and (Tf > k− 1) for any

k ≥ 0, as follows.

Lemma 2. For every k ≥ 0

Pr(Tf = k) ≤ min{pc(k − 1), 1}, and, (10)

Pr(Tf > k − 1) ≤ min{pe(k − 1), 1}. (11)

We present the proof of Lemma 2 in Appendix A. Note,

that (10) and (11) are well defined for k < 0, since pc(k) = 0
and pc(k) > 1 for all k < 0. Thus min{pc(k), 1} = 0 and

min{pe(k), 1} = 1.

V. ASYMPTOTIC CONVERGENCE TO THE OPTIMAL POINT

This section analyzes the convergence characteristics of

Algo. 1 by utilizing the almost surely finite correct classifi-

cation time Tf and the upper bounds we derive in Lemma 2.

Assumptions 2 and 3 lead to the following conclusion.

Corollary 2. When X is compact, Assumption 3 implies that

there is a scalar G such that ‖∇fi(x)‖ ≤ G, ∀x ∈ X , i ∈ L.

The following lemma is a direct consequence of [25, Lemma

8]. Nonetheless, for completeness of presentation we provide

the proof.

Lemma 3. Denote φi(t) , ΠX (yi(t))− ci(t). For every i ∈
L, T0 ≥ 0, and t ≥ T0 we have that

‖φi(t)‖ ≤ γ(t− T0)G,

where G > 0 is from Corrolary 2.

Proof: Since xi(t) ∈ X for i ∈ L ∪ M and t ≥ 0, and

[wij(t)]i∈L,j∈L∪M is a row stochastic matrix, by the convexity

of the set X , we have that ci(t) ∈ X for all i ∈ L and

t ≥ 0. Now, by the standard non-expansiveness property of

the projection operator it follows that

‖φi(t)‖ = ‖ΠX (yi(t))−ΠX (ci(t)) ‖
≤ ‖yi(t)− ci(t)‖
= ‖ci(t)− γ(t− T0)∇fi(ci(t))− ci(t)‖
≤ γ(t− T0)‖∇fi(ci(t))‖ ≤ γ(t− T0)G.

Let us denote di,L , |Ni ∩ L| + 1. Next, we define the

doubly stochastic matrix WL ∈ [0, 1]|L|×|L| with the entries
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[WL]i,j , for every i, j ∈ L:

[WL]i,j =





1
2·max{di,L,dj,L} if j ∈ Ni,

0 if j /∈ Ni ∪ {i},
1−

∑

m∈Ni∩L

wim if j = i.
(12)

Note that WL is the nominal weight matrix, i.e., the value

the weight matrix would take in the absence of malicious

agents. Let σ2(A) be the second largest singular value of A,

and denote ρL = maxk≥1 σ2(W
k

L). Since GL is connected

and WL is doubly stochastic, the value ρL < 1 is equal to

the second largest eigenvalue modulus of WL. Additionally,

our analysis holds for the lazy Metropolis weight as well for

which by [49, Lemma 2.2], the value ρL can be upper bounded

by (1− 1/(71|L|2)), while [50] improves the constant of this

bound to 4.

Next, define for t ≥ 0 the following deterministic dynamic

that excludes malicious agents,

ri(t) = wiizi(t) +
∑

j∈Ni∩L

wijzj(t)

zi(t+ 1) = ΠX (ri(t)− γ(t)∇fi(ri(t))) . (13)

Denote for T ≥ 1,

h(T ) ,
G2T

µ
+

2G2T

µ(1− ρL)
+

8(µ+ L)G2

µ2(1 − ρL)2
ln

(
T + 2

2

)

+
2ηG

1− ρL
+

2(µ+ L)(µη + 2G)2

µ2(1− ρL)2

+
2G2 + 4Gη(µ+ L)

µ(1 − ρL)3
+

G2(µ+ L)

µ2(1− ρL)4
, (14)

The function h̄(T ) grows linearly in T . Additionally, it com-

prises two terms: 1) the first term which captures the error rate

for the centralized gradient descent optimization (see [51])

without malicious agents, and 2) the following terms that

include ρL which capture the contribution from distributing the

optimization over a decentralized network (without malicious

agents) that is characterized by the second largest eigenvalue

modulus of WL.

Theorem 1. The dynamic (13) converges to the optimal point

for every initial point zi(0) ∈ X , i ∈ L, that is,

lim
t→∞

‖zi(t)− x⋆
L‖ = 0, ∀ i ∈ L,

whenever
∑∞

t=0 γ(t) = ∞ and
∑∞

t=0 γ
2(t) < ∞.

Moreover, if γ(t) = 2
µ(t+1) , then

1

|L|
∑

i∈L

‖zi(T )− x⋆
L‖2 ≤ min

{
4η2,

4h(T )

µT (T + 1)

}
, (15)

for any initial points zi(0) ∈ X , i ∈ L, and any T ≥ 1.

The proof of this theorem is conventional. Nonetheless, for

the sake of the completeness of the presentation, we prove

Theorem 1 in the supplementary material.

A. Convergence to optimal value almost surely

Denote by xL(t, Tf = k) the data values (xi(t))i∈L of the

dynamic (7), assuming that Tf = k. Subsequently, for every

t ≥ max{Tf , T0} all the legitimate agents participate in the

dynamic (7) and all the malicious agents are excluded from it.

Thus from time max{Tf , T0} the dynamic (7) can be captured

by a dynamic of the form (13), where t is is replaced with

t−max{Tf , T0}.

Theorem 2 (Convergence a.s. to the optimal point). The

sequence {xi(t)} converges a.s. to x⋆
L for every i ∈ L and

T0 ≥ 0.

Proof: From Corollary 1 there exists a finite time Tf

such that every legitimate agent i classifies correctly all of its

legitimate and malicious neighbors at all times t ≥ Tf a.s.

Thus, the dynamic (7) is equivalent to the dynamic (13) with

the initial inputs zi(0) = xi(max{Tf , T0}) where i ∈ L.

By Theorem 1 the dynamic (13) converges to x⋆
L. Addition-

ally, by Assumption 2, xL(Tf ) is finite for every finite Tf .

Applying Corollary 1 with the a.s. finiteness of Tf concludes

the proof.

B. Convergence in mean

Next, we establish the convergence in mean of each se-

quence xi(t) to x⋆
L, where i ∈ L.

Theorem 3 (Convergence in mean to the optimal point). For

every T0 ≥ 0, the sequence {xi(t)} converges in the r-th mean

to x⋆
L for every i ∈ L and r ≥ 1, i.e.,

lim
t→∞

E [‖xi(t)− x⋆
L‖r] = 0, for all r ≥ 1.

We present two types of proofs for this theorem, the first

relies on the almost sure convergence of Theorem 2 and

Assumption 2. For the sake of completeness of presentation,

we additionally establish convergence in mean by definition

in Appendix B.

Proof via Dominated Convergence Theorem: First, by

Assumption 2, we have ‖x‖ ≤ η. It follows by the triangle

inequality that ‖x − y‖r ≤ (2η)r < ∞ for every x, y ∈ X .

Recalling Theorem 2 we can apply the Dominated Conver-

gence Theorem (see [52, Theorem 1.6.7]) to each sequence

{‖xi(t)− x⋆
L‖r}, i ∈ L, to conclude the result.

VI. FINITE TIME ANALYSIS:

EXPECTED CONVERGENCE RATE

This section derives analytical guarantees for the finite time

regime in the form of the expected convergence rate. We

present two upper bounds on the convergence rate. The first

upper bound, stated in Theorem 4, relies on Lemma 2 to

provide probabilistic bounds on the correct classification time,

and on the convergence rate of the nominal dynamic (13)

which ignores the inputs of malicious agents. We tighten this

bound in Theorem 5 by analyzing the dynamic (7) directly

utilizing the bounds on the error probabilities presented in

Lemma 1.
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1

|L|
∑

i∈L

E[‖xi(t)− x⋆‖2] ≤ min

{
4η2,

4h (t− T0)

µ(t− T0)(t− T0 + 1)

}
+ 4η2pe (T0) , (16)

1

|L|
∑

i∈L

E[‖xi(t)− x⋆‖2] ≤ min

{
4η2,

16h
(
t−T0

2

)

µ(t− T0)(t− T0 + 2)

}
+ 4η2pe

(
t+ T0

2
− 1

)
, (17)

1

|L|
∑

i∈L

E[‖xi(t)− x⋆‖2] ≤ min



4η2,

4h
(
t− ⌈ ln(t)

2min{E2

L,E2

M}
⌉
)

µ
(
t− ⌈ ln(t)

2min{E2

L,E2

M}
⌉
)(

t− ⌈ ln(t)
2min{E2

L,E2

M}
⌉+ 1

)



+ 4η2 · DL +DM

T
. (18)

A. The Expected Convergence Rate via the Correct Classifi-

cation Time

Utilizing the upper bounds and Theorem 1 we can upper

bound the expected suboptimality gap as follows.

Theorem 4. For every t ≥ T0

1

|L|
∑

i∈L

E[‖xi(t)− x⋆‖2] ≤

min
m∈[T0:t−1]

{
min

{
4η2,

4h (t−m)

µ(t−m)(t−m+ 1)

}
+ 4η2pe(m)

}
.

Before proving this theorem we observe that since
h(t)

t(t+1)

and pe(t) are monotonically decreasing for t ≥ 1, choosing the

values, m = T0, m = (t+ T0)/2, and m = ⌈ ln(t)
2min{E2

L,E2

M}
⌉,

leads to the following corollary.

Corollary 3. For every t ≥ max{T0, 1} the expected con-

vergence rate of 1
|L|

∑
i∈L E[‖xi(t)−x⋆‖2] is upper bounded

as given in (16) and (17). Furthermore, for every t such that

T0 ≤ ⌈ ln(t)
2min{E2

L,E2

M}
⌉ ≤ t− 1, the expected convergence rate

of 1
|L|

∑
i∈L E[‖xi(t)− x⋆‖2] is upper bounded by in (18).

Now, we proceed to prove Theorem 4.

Proof of Theorem 4: First, note that
h(t)

t(t+1) and pc(t)

are nonincreasing functions of t for t ≥ 1. Denote Mk ,

max{k, T0}. For every t − 1 ≥ T0 and m ∈ [T0 : t − 1] we

have that

1

|L|
∑

i∈L

E
[
‖xi(t)− x⋆

L‖2
]

(a)
=

1

|L|
t−1∑

k=0

Pr(Tf = k)
∑

i∈L

E
[
‖xi(t)− x⋆

L‖2
∣∣Tf = k

]

+ Pr(Tf > t− 1)
1

|L|
∑

i∈L

E
[
‖xi(t)− x⋆

L‖2
∣∣Tf > t− 1

]

(b)

≤ 1

|L|
t−1∑

k=0

∑

i∈L

Pr(Tf = k)E
[
‖zi(t−Mk)− x⋆

L‖2
∣∣Tf = k

]

+ 4η2 Pr(Tf > t− 1)

(c)

≤
t−1∑

k=0

Pr(Tf = k)min

{
4η2,

4h(t−Mk)

µ(t−Mk)(t−Mk + 1)

}

+ 4η2 Pr(Tf > t− 1)

≤
t−1∑

k=0

Pr(Tf = k)min

{
4η2,

4h(t−Mk)

µ(t−Mk)(t−Mk + 1)

}

+ 4η2pe(t− 1)

≤
m∑

k=0

Pr(Tf = k)min

{
4η2,

4h(t−Mk)

µ(t−Mk)(t−Mk + 1)

}

+

t−1∑

k=m+1

pc(k − 1)min

{
4η2,

4h(t−Mk)

µ(t−Mk)(t−Mk + 1)

}

+ 4η2pe(t− 1)

≤ min

{
4η2,

4h (t−m)

µ(t−m)(t−m+ 1)

} m∑

k=0

Pr(Tf = k)

+ 4η2
t−1∑

k=m+1

pc(k − 1) + 4η2pe(t− 1)

≤ min

{
4η2,

4h (t−m)

µ(t−m)(t−m+ 1)

}

+ 4η2 (pe(m)− pe(t− 1)) + 4η2pe(t− 1)

= min

{
4η2,

4h (t−m)

µ(t−m)(t−m+ 1)

}
+ 4η2pe(m),

where (a) follows from the law of total expectation, (b)
follows from the definition of Tf and Assumption 2, (c)
follows from Theorem 1, and the remaining steps follow from

Lemma 2.

B. Convergence Results via Trustworthiness Misclassification

Error Probabilities

This section aims to tighten the bound on the convergence

rate presented in Theorem 4 and Corollary 3. To this end, we

develop an alternative analytical approach that evaluates more

carefully how our choice of weights wij(t), stepsize γ(t), and

T0, together with the quality of trust values, captured by the

constants EL and EM, affects the dynamic (7).

Lemma 4. Let r ∈ {1, 2}, i ∈ L, and t ≥ 0. Then,

E






∑

j∈Ni∩L

|wij(k)− wij |




r 
 ≤ pc(k),

E






∑

j∈Ni∩M

wij(k)




r 
 ≤ pc(k)

2r
,

E [|wii(k)− wii|r] ≤
pc(k)

2r
.
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Proof: First, note that, wii(t) ≥ 0.5 for every i ∈ L, thus

|wii(t)− wii| ≤ 0.5, and
∑

j∈Ni∩M

wij(k) ≤ 0.5.

Additionally, the event
∑

j∈Ni∩L |wij(k)−wij | > 0 can occur

only if WL(t) 6= WL. It follows by the triangle inequality that
∑

j∈Ni∩L

|wij(k)− wij | ≤
∑

j∈Ni∩L

[wij(k) + wij ] ≤ 1.

Now, for all i and j ∈ Ni ∩ L, we have

E








∑

j∈Ni∩L

|wij(k)− wij |




r 

 ≤ E

[
1 · 1{WL(t) 6=WL}

]

≤ pc(k).

The rest of the proof follows similarly.

Next, we present an auxiliary proposition that we utilize

in upper bounding the expected distance between an agent’s

value and the average agents’ values at time t. Here we extend

[53, Lemma 11] to the case of d-dimensional vectors with

random perturbations. Note that a naı̈ve implementation of

[53, Lemma 11] for each of the dimensions 1, . . . , d scales

the resulting upper bound by
√
d. The upper bound we next

derive eliminates this scaling.

Let A ∈ Rd×|L| and denote by [A]j the jth column of A.

The Frobenius norm of the matrix A is defined as

‖A‖F ,

√√√√
d∑

i=1

∑

j∈L

|aij |2 =

√∑

j∈L

‖[A]j‖2 =

√√√√
d∑

i=1

‖[AT ]i‖2,

where AT denotes the transpose matrix of the matrix A.

Additionally, we denote by 1 the all-ones column vector with

|L| entries.

Proposition 1. Let X ⊂ Rd be a compact and convex set.

Additionally, let W (t) , (wij(t))i,j∈L be deterministic doubly

stochastic matrices such that σ2(W (t)) ≤ ρ for all t ≥ 0.

Furthermore, let ∆i(t) ∈ Rd×1 be random vectors, and let

X(t) ∈ Rd×|L| be defined by the following dynamic

X(t+ 1) = X(t)WT (t) + ∆(t), (19)

where ∆(t) = (∆1(t), . . . ,∆|L|(t)) for all t ≥ 0. Assume that

there exists a non-increasing sequence δ(t) such that

E[‖∆i(t)‖2] ≤ δ2(t), ∀ i ∈ L,
and let

X(t) ,
X(t)1

|L| 1
T =

1

|L|
∑

i∈L

[X(t)]i1
T .

Then,
∑

j∈L E[‖[X(t)]j −X(t)‖]
|L| ≤ 2ηρt +

δ(0)ρt/2

1− ρ
+

δ(t/2)

1− ρ
,

∑
j∈L E[‖[X(t)]j −X(t)‖2]

|L| ≤
[
2ηρt +

δ(0)ρt/2

1− ρ
+

δ(t/2)

1− ρ

]2
.

We present the proof for Proposition 1 in Appendix C. We

apply this proposition in establishing the upper bounds in the

forthcoming lemma. Toward providing the lemma, define

xL(t) ,
1

|L|
∑

i∈L

xi(t),

δM(t, T0) , 2ηρt−T0

L +
(2η

√
pc(T0) +Gγ(0))ρ

(t−T0)/2
L

1− ρL

+
2(η

√
pc((t+ T0)/2) +Gγ((t− T0)/2))

1− ρL
,

(20)

where t/2 , ⌊ t
2⌋.

Lemma 5. For every t ≥ 0

1

|L|
∑

i∈L

E[‖xi(t)− xL(t)‖] ≤ δM(t, T0), and

1

|L|
∑

i∈L

E[‖xi(t)− xL(t)‖2] ≤ δ2M(t, T0).

Proof: Recall that φi(t) , ΠX [yi(t)] − ci(t). The ma-

trices WL(t) , (wij(t))i,j∈L are random, vary with time,

and can be sub-stochastic. Thus we cannot naı̈vely apply

Proposition 1 for ∆i(t) = φi(t). Instead, we substitute

∆i(t) = ci(t)− ci(t) + φi(t),

where ci(t) , wiixi(t) +
∑

j∈Ni∩L wijxj(t). It follows that

xi(t+ 1) = wiixi(t) +
∑

j∈Ni∩L

wijxj(t) + ∆i(t).

By the Cauchy–Schwarz inequality for the ℓ2 inner product,

and by the Cauchy–Schwarz inequality for expectations

E
[
‖∆i(t)‖2

]
= E

[
‖ci(t)− ci(t) + φ(t)‖2

]

≤ E
[
‖ci(t)− ci(t)‖2

]
+E

[
‖φi(t)‖2

]

+ 2
√
E [‖ci(t)− ci(t)‖2]

√
E [‖φi(t)‖2].

By Lemma 4 and Assumption 2, we further have

E

[
‖ci(t)− ci(t)‖2

]
= E

[
‖[wii(t)− wii]xi(t)

+
∑

j∈Ni∩L

[wij(t)− wij ]xj(t) +
∑

j∈Ni∩M

wij(t)xj(t)‖2
]

≤ 4η2pc(t).

Additionally, by Assumption 3 and the non-expansiveness

property of the projection, since ci(t) ∈ X for all i and all t, it

follows that ‖φi(t)‖ ≤ ‖yi(t)− ci(t)‖ ≤ Gγ(t− T0). Hence,

E
[
‖∆i(t)‖2

]
= E

[
‖ci(t)− ci(t) + φi(t)‖2

]

≤ 4η2pc(t) +G2γ2(t− T0) + 4Gη
√
pc(t) γ(t− T0)

=
(
2η

√
pc(t) +Gγ(t− T0)

)2

. (21)

We conclude the proof by substituting δ(t) = δ̃(t + T0) =
2η

√
pc(t+ T0) + Gγ(t), W (t) = WL, and ρ = ρL in

Proposition 1 and using the transformation t → t− T0.

Now, we are ready to present our tightened convergence rate

guarantees for Algo. 1.
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Theorem 5. Algo. 1 converges to the optimal point x∗
L in the

mean-squared sense for every collection xi(0) ∈ X , i ∈ L, of

initial points i.e.,

lim
t→∞

E
[
‖xi(t)− x⋆

L‖2
]
= 0, ∀ i ∈ L, (22)

whenever
∑∞

t=0 γ(t) = ∞ and
∑∞

t=0 γ
2(t) < ∞.

Moreover, let γ(t) = 2
µ(t+2) . Then, for every T0 ≥ 0

and T ≥ T0 there exists a function CM(T0) that decreases

exponentially with T0 and is independent of T such that for

any collection xi(0) ∈ X , i ∈ L, and for all T ≥ T0,

1

|L|
∑

i∈L

E
[
‖xi(T )− x⋆

L‖2
]

≤ min

{
4η2,

4h(T − T0) + CM(T0)

µ(T − T0)(T − T0 + 1)

}
, (23)

where h(·) is defined in (14).

For the sake of simplicity of exposition, we only charac-

terize the function CM(T0) with respect to its exponential

decrease in T0. Nonetheless, we define the function CM(T0)
in (30) as part of the proof of Theorem 5. Intuitively, the

CM(T0) term above represents the error term contributed by

the presence of malicious agents in the distributed network. It

can be seen that for large enough T the entire term on the right

of the inequality (23) decays on the order of O
(
1
T

)
. Finally,

we can observe that Theorem 5 tightens the results presented

in Theorem 4 and Corollary 3 for the regime T ≫ 1.

Before proceeding to prove this theorem, we point out

that unlike the analysis for stochastic gradient models such

as [48], in our model wij(t) and xj(t) are correlated. This

follows by the statistical dependence of wij(t) and wij(t−1).
Thus, we cannot use the standard analysis which requires that

E[wij(t)xj(t)] = E[wij(t)]E[xj(t)]. Finally, we observe that

the nonnegativity of the variance of random variables (22) and

the sandwich theorem imply that limt→∞ E[‖xi(t) − x⋆
L‖] =

0, ∀ i ∈ L. This result also holds since convergence in expec-

tation in the rth moment implies convergence in expectation

in the sth moment whenever 0 < s < r.

Proof: By the non-expansiveness property of the projec-

tion, for every t ≥ T0 and i ∈ L,

‖xi(t+ 1)− x⋆
L‖2 = ‖ΠX (yi(t)) − x⋆

L‖2 ≤ ‖yi(t)− x⋆
L‖2.

Denote

ci(t) , wiixi(t) +
∑

j∈Ni∩L

wijxj(t), and

gi(t) , ci(t)− γ(t− T0)∇fi(ci(t))− x⋆
L.

Recall that yi(t) = ci(t) − γ(t − T0)∇fi(ci(t)), then by the

Cauchy-Schwarz inequality for the inner product on ℓ2, the

triangle inequality, and the linearity of the expectation

1

|L|
∑

i∈L

E
[
‖xi(t+ 1)− x⋆

L‖2
]

=
1

|L|
∑

i∈L

E

[
‖ci(t)− γ(t− T0)∇fi(ci(t)) − x⋆

L

+ ci(t)− ci(t) + γ(t− T0)[∇fi(ci(t))−∇fi(ci(t))]‖2
]

≤ 1

|L|
∑

i∈L

E

[
‖gi(t)‖2

]

︸ ︷︷ ︸
(I)

+
1

|L|
∑

i∈L

E

[
‖ci(t)− ci(t)‖2

]

︸ ︷︷ ︸
(II)

+
γ2(t− T0)

|L|
∑

i∈L

E

[
‖∇fi(ci(t))−∇fi(ci(t))‖2

]

︸ ︷︷ ︸
(III)

+
2

|L|
∑

i∈L

E

[
‖gi(t)‖ · ‖ci(t)− ci(t)‖

]

︸ ︷︷ ︸
(IV)

+
2γ(t− T0)

|L|
∑

i∈L

E

[
‖gi(t)‖ · ‖∇fi(ci(t))−∇fi(ci(t))‖

]

︸ ︷︷ ︸
(V)

+
2γ(t− T0)

|L|
∑

i∈L

E

[
‖ci(t)− ci(t)‖

·‖∇fi(ci(t)) −∇fi(ci(t))‖
]

︸ ︷︷ ︸
(VI)

.

By (3), Lemma 4, and the Cauchy-Schwarz inequality,

(II) = E

[
‖[wii(t)− wii]xi(t) +

∑

j∈Ni∩L

[wij(t)− wij ]xj(t)

+
∑

j∈Ni∩M

wij(t)xj(t)‖2
]

≤ 4η2pc(t). (24)

Since ∇fi are L-Lipschitz continuous

(III) ≤ L2
E

[
‖ci(t)− ci(t)‖2

]
≤ 4L2η2pc(t). (25)

Now, by Lemma 4,E

[
‖ci(t)− ci(t)‖

]
≤ 2ηpc(t). Thus,

(IV) ≤ (2η + γ(t− T0)G)E

[
‖ ci(t)− ci(t)‖

]

≤ 2η (2η + γ(t− T0)G) pc(t), (26)

and by the L-Lipschitz continuity of ∇fi

(V) ≤ 2Lη (2η + γ(t− T0)G) pc(t),

(VI) ≤ LE

[
‖ci(t)− ci(t)‖2

]
≤ 4Lη2pc(t). (27)

Define hM(t, T0) as

4η2pc(t)

[
2(L+ 1) + γ2(t− T0)L

2 +
γ(t− T0)G(L + 1)

2η

]
,

and recall that xL(t) ,
1
|L|

∑
i∈L xi(t). Therefore,

1

|L|
∑

i∈L

E
[
‖xi(t+ 1)− x⋆

L‖2
]
≤ (I) + hM(t, T0)

≤ hM(t, T0) +
(1− µγ(t− T0))

|L|
∑

i∈L

E
[
‖xi(t)− x⋆

L‖2
]

9



+ γ2(t− T0)G
2 +

2γ(t− T0)

|L|
∑

i∈L

[
GE [‖xi(t)− xL(t)‖]

+
µ+ L

2
E
[
‖xi(t)− xL(t)‖2

]
]
,

where the last inequality follows from Assumption 3, the

convexity of ‖ · ‖2 and the double stochasticity of WL.

Recall (20) and denote

h̃M(t, T0) , γ(t−T0)G
2+2GδM(t, T0)+(µ+L)δ2M(t, T0).

Here, the term h̃M(t, T0) is affected by the distributed nature

of our optimization process and the presence of malicious

agents. We utilize Lemma 5 to conclude that

1

|L|
∑

i∈L

E
[
‖xi(t+ 1)− x⋆

L‖2
]
≤ γ(t− T0)h̃M(t, T0)

+ hM(t, T0) +
(1− µγ(t− T0))

|L|
∑

i∈L

E
[
‖xi(t)− x⋆

L‖2
]
.

Thus, since |L| < ∞
lim
t→∞

E
[
‖xi(t)− x⋆

L‖2
]
= 0, ∀ i ∈ L, (28)

whenever
∑∞

t=0 γ(t) = ∞ and
∑∞

t=0 γ
2(t) < ∞.

To prove the second part of the theorem, we let γ(t) =
2

µ(t+2) as proposed in [51]. It follows that

1

|L|
∑

i∈L

E
[
‖xi(t+ 1)− x⋆

L‖2
]
≤ 2h̃M(t, T0)

µ(t− T0 + 2)

+ hM(t, T0) +
t

t− T0 + 2
· 1

|L|
∑

i∈L

E
[
‖xi(t)− x⋆

L‖2
]
.

Multiplying both sides by (t−T0+1)(t−T0+2) and summing

over the set t ∈ {T0, T0+1, . . . , T −1} yield the upper bound

1

|L|
∑

i∈L

E[‖xi(T )− x⋆
L‖2] ≤

2
∑T−1

t=T0
(t− T0 + 1)h̃M(t, T0)

µ(T − T0)(T − T0 + 1)

+

∑T−1
t=T0

(t− T0 + 1)(t− T0 + 2)hM(t, T0)

(T − T0)(T − T0 + 1)
.

Using the identity
√
a+ b ≤ √

a+
√
b, we deduce that

√
pc(t) ≤

√
DLe

−tE2

L +
√
DMe−tE2

M . (29)

In addition, we utilize the identities for |v| ∈ (0, 1)

∞∑

t=0

tvt =
v

(1− v)2
and

∞∑

t=0

t2vt =
2v

(1− v)3
.

Denote

C̃1(T0, E,D) ,
16ηe−T0E

2
√
D

1− ρL

[
G

(1− e−E2)2
+

G+ (η + 4
µ )(µ+ L)

(1− ρL)2
+

(µ+ L)(G+ 2µ
√
De−T0E

2

)

µ(1− ρL)3

]
,

and C1(T0) , C̃1(T0, EL, DL) + C̃1(T0, EM, DM).

Further algebra yields that

T−1∑

t=T0

(t− T0 + 1)h̃M(t, T0) ≤ 2h(t− T0) + C1(T0),

here, the added term C1(T0) captures the influence of the

malicious agents on the term (I). Additionally, denote

C̃2(T0, E,D) ,
4η(L+ 1)De−2T0E

2

(
1− e−2E2

)

·
[

4ηe−2E2

(
1− e−2E2

)2 +
(6η + G

µ )e
−2E2

1− e−2E2
+ 4η +

4ηL

µ2
+

G

µ

]
,

and

C2(T0) , C̃2(T0, EL, DL) + C̃2(T0, EM, DM).

Then,

T−1∑

t=T0

(t− T0 + 1)(t− T0 + 2)hM(t, T0)

= 8η2(L+ 1)

T−T0−1∑

t=0

(t+ 1)(t+ 2)pc(t+ T0)

+ 4η2L2
T−T0−1∑

t=0

(t+ 1)(t+ 2)γ2(t)pc(t+ T0)

+ 2ηG(L+ 1)

T−T0−1∑

t=0

(t+ 1)(t+ 2)γ(t)pc(t+ T0) ≤ C2(T0).

We conclude the proof by letting

CM(T0) = 2C1(T0) + µC2(T0). (30)

Thus, we have shown that indeed we are able to recover

convergence to the optimal value of the original distributed

optimization problem, given in (1) even in the presence of

malicious agents. Further, we have established an upper bound

on the expected value of ‖xi(t) − x⋆
L‖2, for all i ∈ L, as a

function of the time t as given by (23) in Theorem 5.

VII. NUMERICAL RESULTS

This section presents numerical results that validate the

convergence results we derived for Algo. 1. As a benchmark,

we compare the performance of our proposed Algo. 1 to that

of [11] which adapts the W-MSR consensus algorithm [54]

to the case of distributed optimization. This W-MSR based

algorithm is applicable only for the one-dimensional case, i.e.

d = 1. To this end, we compare our results to [55] which

extends [11] to multi-dimensional data values. Following the

notations in [11], we denote by F the maximal number of

highest values and lowest values that each legitimate agent

discards, overall a legitimate agent may ignore no more than

2F values for d = 1.

We consider a distributed network with |L| = 15 legitimate

agents and |M| ∈ {15, 30} malicious agents. To maximize the

malicious agents’ impact every malicious agent is connected

to all the legitimate agents. The legitimate agent’s connectivity

is captured by Fig. 1.
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Figure 1. Undirected graph G. Two agents are neighbors if they are
connected by an edge. Legitimate and malicious agents are depicted
by blue and red nodes, respectively. Edges between legitimate agents
are depicted by black solid lines. Edges between legitimate and
malicious agents are depicted by red dashed lines.

The trust values are generated as follows. Let E[αij ] = 0.55
if j ∈ Ni ∩ L, and E[αij ] = 0.45 if j ∈ Ni ∩ M. The

random variable αij is uniformly distributed on the interval[
E[αij ]− ℓ

2 ,E[αij ] +
ℓ
2

]
, for every i ∈ L and j ∈ L ∪ M.

We consider the values ℓ: 0.6, 0.8, in both scenarios |EL| =
|EM| = 0.05, however, the variance of the trust values when

ℓ = 0.8 are higher. We remark that the legitimate agents

are ignorant regarding the values E[αij ] and ℓ. Due to the

stochasticity of the trust values, we average the numerical

results across 100 system realizations.

We use the following stepsize

γ(t) =
1

t+ 2
· 1{t≥0}.

Denote for every client i, ai ∈ Rd, bi ∈ R. Additionally,

denote λ ≥ 0, and define for every agent i ∈ L the following

strongly convex loss with ℓ2 regularizer:

fi(x) =
1

2
(aTi x− bi)

2 +
λ

2
‖x‖2.

We constrain the legitimate agents’ values to lie in the d-

dimensional box [−η, η]d, i.e., X = [−η, η]d, where η = 50.

It follows that the global optimization problem the legiti-

mate agents aim to solve distributively is

min
x∈[−η,η]d

{
1

|L|
∑

i∈L

1

2
(aTi x− bi)

2 +
λ

2
‖x‖2

}
. (31)

Furthermore, denote by x⋆UC the optimal point of the

unconstrained counterpart of (31), that is

x⋆UC =

(
λI +

1

|L|
∑

i∈L

aia
T
i

)−1 (
1

|L|
∑

i∈L

aibi

)
.

Then, the optimal point of (31) is,

[x⋆]i = [x⋆UC]i1{[x⋆UC]i∈X} + sign([x⋆UC]i)η1{[x⋆UC]i /∈X}.

Let [y]i refer to the ith entry of the vector y. In this setup

∇fi(x) = ai(a
T
i x− bi) + λx.

Additionally, for every i ∈ {1, . . . , d} and y ∈ Rd let

[ΠX (y)]i = [y]i1{[y]i∈[−η,η]} + sign([y]i)η1{[y]i /∈[−η,η]}.

Hereafter, we utilize the following choice (b̃i)
15
i=1 =

(115.7, 163.3,−81.7, 127.2,−63.7, 58.4,−3.1, 62.9, 54.5,

144.9,−121.1, 9.3,−2.6,−124.5, 131). Note that setting

d = 1, ai = 1, and λ = 0 results in a one-dimensional

constrained consensus problem. Next, we consider this special

case and then a multi-dimensional setup.

To evaluate the performance of Algo. 1 we denote the

average error at time t by

e(t) ,
1

|L|
∑

i∈L

‖xi(t)− x⋆
L‖.

A. Consensus with Constraints

Here, we consider the following consensus problem with

constraints. The legitimate agents aim to minimize the function

min
x∈[−50,50]

1

|L|
∑

i∈L

fi(x), where fi =
1

2
(x− bi)

2,

where bi = b̃i for all i ∈ L. The optimal nominal value is

x⋆
L = x⋆UC

L ≈ 31.367 for our choice of (bi)
15
i=1, where we

round the solution to the second digit after the decimal point.

Consequently, the dynamic (7) can be written as follows

ci(t) =
∑

j∈Ni(t)∪{i}

wij(t)xj(t)

yi(t) = ci(t)−
1{t−T0≥0}

t− T0 + 2
· (ci(t)− bi),

xi(t+ 1) = 1{yi(t)∈X}yi(t) + sign(yi(t))η1{yi(t)/∈X}. (32)

The initial values of the legitimate agents are chosen randomly

and uniformly in the interval [−η, η]. Note that in this setup

the optimal point lies in the constraint set X . Nonetheless, the

set X affects the update rule (32) and limits the data values

at all times to be in the set X .

To maximize the harmful impact of malicious agents on

our analytical results, we choose the malicious agents’ values

to be equal to −50, i.e., −η, at all times. We choose this

easy-to-spot malicious attack since it maximizes the deviation

of the malicious inputs from the optimal nominal solution.

Nonetheless, our algorithm can tolerate arbitrary malicious

node inputs including the time-varying case or small deviation

case that is usually much harder to detect.

Figs. 2 and 3 capture the average value of the distance of

each legitimate agent from the optimal point x⋆
L normalized

by the average of this initial distance, i.e., the average value of
e(t)
e(0) , for each time t. We can see that the W-MSR algorithm

fails to converge to the optimal solution. This occurs due to the

high number of malicious agents, which is higher in this case

than the tolerance threshold2 in [11]. Additionally, the W-MSR

algorithm is not guaranteed to converge to the optimal value

x⋆
L but to a value in the convex hull of Π[−η,η](bi), i ∈ L.

In our case this convex hull is exactly the interval [−η, η],
thus the W-MSR algorithm cannot guarantee the reduction of

the distance to the optimal value with respect to the interval

[−η, η]. In contrast, Algo. 1 provides resilience to malicious

activity and can tolerate even 30 = 2|L| malicious agents,

as evident in Figs. 2 and 3. Furthermore, we can see from

2We can upper bound the tolerance threshold for this setup by 2 following
our argument in [39].
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Figure 2. Average
e(t)
e(0)

of as a function of t for |M| = 15 and the

noise in the stochastic trust value is chosen as ℓ = 0.8.
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Figure 3. Average
e(t)
e(0)

as a function of t for |M| = 30, and the

noise in the stochastic trust value is chosen as ℓ = 0.6.

Figs. 2 and 3 that Algo. 1 is robust to small values of |EL|
and |EM|. Finally, Figs. 2 and 3 show that the variance of the

trust values has more impact on T0 values that are smaller than

100. This occurs since the higher variance of the trust values

increases the misclassification errors. Since the probability of

these errors decreases with T0, they are less impactful when

T0 is 100 or higher. Note that regardless of the value of the

observation window T0, our algorithm eventually recovers the

global optimum as predicted by theory. Thus the value of T0

mostly dictates the rate of recovery of the global optimum.

B. Strongly Convex Loss with ℓ2 Regularizer

Here, we examine a multi-dimensional setup where both the

optimal solution and the updates are affected by the constraint

set X . Since the W-MSR algorithm is only valid for one-

dimensional data values, we compare our results to the multi-

dimensional extension of the W-MSR algorithm proposed

in [55]. We note that in this case the number of tolerated

malicious agents for the W-MSR algorithm is reduced by a

factor of d, i.e., the dimension of the data values.

We examine the case where d = 5 and λ = 1. Additionally,

we set bi = 2b̃i for all i ∈ L, and

[

(ai)
15
i=1

]T

=















































−0.87 −1.05 −2.81 −0.4 −1.76
−0.88 −0.34 0.34 −2.46 0.44
−0.25 0.47 −0.09 −0.99 −2.33
−0.27 −0.61 −2.5 −0.79 0.46
−0.23 1.83 0.89 −0.83 −0.67
−1.6 0.27 −0.81 −2.77 −0.21
−1.42 −1.11 −1.63 −0.66 −1.54
−1.19 −0.3 −1.97 −1.42 −1.21
−1.43 −1.64 0.17 −2.11 −2.11
−0.73 0.46 −0.42 −1.75 0.22
−0.97 −0.12 −2.35 −2.51 −1.63
−1.18 −1.42 −0.13 −1.66 0.36
−0.63 −2.19 −1.15 −1.65 −2.02
0.59 −2.08 0.26 −0.74 −2.66
−3.05 −0.7 0.2 −1.94 −1.4















































. (33)

Thus, the optimal points, rounded to the second digit after

the decimal point, are

x⋆UC
L ≈ (−61.67,−16.54,−21.19,−19.64, 60.4)T , and

x⋆
L ≈ (−50,−16.54,−21.19,−19.64, 50)T.

Additionally, the inputs of the malicious agents at all times

are (50, 50, 50, 50,−50)T .

Figs. 4 and 5 capture the average value of the distance of

each legitimate agent from the optimal point x⋆
L normalized

by the average of this initial distance, i.e., the average value

of
e(t)
e(0) , for each time t. The plots included in Figs. 4 and

5 for our higher dimensional setup are consistent with the

one-dimensional setup which is captured in Figs. 2 and 3.

Moreover, we can see that Algo. 1 continues to perform well

and mitigate the harmful effect of malicious inputs even in

higher dimensions. This is in contrast to the multi-dimensional

W-MSR algorithm [55] which is more vulnerable to malicious

attacks as the dimension of the data values, i.e., d, increases.

VIII. CONCLUSIONS

This work studies the problem of resilient distributed

optimization in the presence of malicious activity with an

emphasis on cyberphysical systems. We consider the case

where additional information in the form of stochastic inter-

agent trust values is available. Under this model, we propose

a mechanism for exploiting these trust values where legiti-

mate agents learn to distinguish between their legitimate and

malicious neighbors. We incorporate this mechanism to arrive

at resilient distributed optimization where strong performance

guarantees can be recovered. Specifically, we prove that our

algorithm converges to the optimal solution of the nominal

distributed optimization system with no malicious agents, both

in expectation and almost surely. Additionally, we present two

mechanisms to derive upper bounds on the expected distance

of the agents’ iterates from the optimal solution. The first

is based on the correct classification of all malicious and

legitimate agents. The second approach utilizes the dynamic

of the attacked system to carefully tighten the upper bound on

the expected convergence rate. Finally, we present numerical

results that demonstrate the performance of our proposed

distributed optimization framework.
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Figure 4. Average
e(t)
e(0)

of as a function of t for |M| = 15, ℓ = 0.8.
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Figure 5. Average of
e(t)
e(0)

as a function of t for |M| = 30, ℓ = 0.6.

The use of stochastic trust values allows us to recover

convergence to the global optimum in distributed optimiza-

tion problems even when more than half of the network

is malicious. This represents a very challenging case where

not many strong performance results are currently available,

particularly in the case of distributed optimization problems.

Thus the results of this paper strengthen our characterization of

achievable performance and provide novel tools for, resilient

trust-centered optimization in mutli-agent systems.

APPENDIX A

PROOF OF LEMMA 2

First, since we initialize βij = 0, at time t = 0 all the

agents are classified as legitimate by their neighbors. Thus,

by the decision rule at time t we are guaranteed to make a

classification mistake at time 0 whenever there are malicious

agents in the system.

Denote

E(k) ,
⋃

i∈L,
j∈Ni∩L

{βij(k) < 0}
⋃

i∈L,
j∈Ni∩M

{βij(k) ≥ 0}.

By Lemma 1, for all t ≥ 1 we have that

Pr(Tf = k)

(a)

≤ Pr

(
E(k − 1)

)

(b)

≤
∑

i∈L,
j∈Ni∩L

Pr(βij(k − 1) < 0) +
∑

i∈L,
j∈Ni∩M

Pr(βij(k − 1) ≥ 0)

(c)

≤
∑

i∈L

|Ni ∩ L| exp(−2(k − 1)+E2
L)

+
∑

i∈L

|Ni ∩M| exp(−2(k − 1)+E2
M), (34)

where (a) follows from the definition of Tf in Corollary 1

which implies that if Tf = k there must be a misclassification

error in the legitimacy of agents at time k − 1, (b) follows

from the union bound, and (c) follows from Lemma 1.

From the definition of Tf in Corollary 1 Pr(Tf > k−1) = 0
for k = 0. Additionally, for all k ≥ 1

Pr(Tf > k − 1) = Pr



⋃

t≥k

E(t)


 ≤

∞∑

t=k

Pr (E(t))

≤
∞∑

t=k

∑

i∈L

|Ni ∩ L| exp(−2(t− 1)+E2
L)

+

∞∑

t=k

∑

i∈L

|Ni ∩M| exp(−2(t− 1)+E2
M)

= DL
exp(−2(k − 1)E2

L)

1− exp(−2E2
L)

+DM
exp(−2(k − 1)E2

M)

1− exp(−2E2
M)

.

(35)

Note that Pr(Tf > k − 1) vanishes as t tends to infinity. �

APPENDIX B

PROOF BY DEFINITION OF THEOREM 3

Let us assume that t ≥ 2T0. Denote Mk , max{k, T0} and

t/2 , ⌊ t
2⌋. Next, we utilize the law of total expectation as

follows:

E [‖xi(t)− x⋆
L‖r] = E [E[‖xi(t)− x⋆

L‖r | Tf ]]

=

t−1∑

k=0

Pr(Tf = k)E
[
‖xi(t)− x⋆

L‖r
∣∣ Tf = k

]

+ Pr(Tf > t− 1)E
[
‖xi(t)− x⋆

L‖r
∣∣ Tf > t− 1

]

=

t−1∑

k=0

Pr(Tf = k)E
[
‖xL(t, Tf = k)− x⋆

L‖r
∣∣ Tf = k

]

+ Pr(Tf > t− 1)E
(
‖xi(t)− x⋆

L‖r
∣∣ Tf > t− 1

)

≤
t−1∑

k=0

Pr(Tf = k)E
[
‖zi(t−Mk)− x⋆

L‖r
∣∣ Tf = k

]

+ Pr(Tf > t− 1) (2η)
r
.

Next, we upper bound the term
∑t−1

k=0 Pr(Tf =
k)E

[
‖zi(t−Mk)− x⋆

L‖r
∣∣ Tf = k

]
utilizing the upper
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bounds (10) and (15) which hold for every initial point

zi(0) ∈ X :

t−1∑

k=0

Pr(Tf = k)E
[
‖zi(t−Mk)− x⋆

L‖r
∣∣ Tf = k

]

=

t/2∑

k=0

Pr(Tf = k)

[
4h(t−Mk)|L|

µ(t−Mk)(t−Mk + 1)

] r
2

+

t−1∑

k=t/2+1

Pr(Tf = k)

[
4h(t−Mk)|L|

µ(t−Mk)(t−Mk + 1)

] r
2

.

Now,

t/2∑

k=0

Pr(Tf = k)

[
4h(t−Mk)|L|

µ(t−Mk)(t−Mk + 1)

] r
2

(a)

≤
[

4h(t/2)|L|
µ(t/2)(t/2 + 1)

] r
2

t/2∑

k=1

Pr(Tf = k)

≤
[

4h(t/2)|L|
µ(t/2)(t/2 + 1)

] r
2

,

where (a) follows since t ≥ 2T0. Furthermore,

t−1∑

k=t/2+1

Pr(Tf = k)

[
4h(t−Mk)|L|

µ(t−Mk)(t−Mk + 1)

] r
2

≤
t−1∑

k=t/2+1

DL exp(−2(k − 1)E2
L)

[
4h(t/2)|L|

µ(t/2)(t/2 + 1)

] r
2

≤
[

4h(t/2)|L|
µ(t/2)(t/2 + 1)

] r
2

DL
exp(−2(t/2)E2

L)

1− |Ni ∩ L| exp(−2E2
L)

.

Additionally by (11)

Pr(Tf > t− 1) [2η]
r ≤

[2η]
r

(
DL

exp(−2(t− 1)E2
L)

1− exp(−2E2
L)

+DM
exp(−2(t− 1)E2

M)

1− exp(−2E2
M)

)
.

Consequently, limt→∞ E [‖xi(t)− x⋆
L‖r] = 0, ∀ r ≥ 1. �

APPENDIX C

Proof of Proposition 1: First, we utilize the identity
∑

j∈L

‖[A]j‖2 = ‖A‖2F, (36)

and the upper bound 1
2 (‖[A]i‖2 + ‖[A]j‖2) ≥ ‖[A]i‖ · ‖[A]j‖

to deduce that
∑

j∈L

‖[A]j‖ ≤
√
|L| · ‖A‖F. (37)

Thus, in what follows, we focus our efforts on upper bounding

the Frobenius norms ‖X(t)−X(t)‖F and ‖X(t)−X(t)‖2F.

Observe that

∥∥∥∥∆(t)− ∆(t)1

|L| 1
T

∥∥∥∥
F

=

√√√√∑

j∈L

∥∥∥∥∥[∆(t)]j −
1

|L|
∑

k∈L

[∆(t)]k

∥∥∥∥∥

2

≤
√∑

j∈L

‖[∆(t)]j‖2 = ‖∆(t)‖F . (38)

Additionally,
∥∥∥∥
(
X(t)− X(t)1

|L| 1
T

)
WT (t)

∥∥∥∥
F

=

∥∥∥∥∥W (t)

(
X(t)− X(t)1

|L| 1
T

)T
∥∥∥∥∥

F

≤

√√√√
d∑

i=1

∥∥∥∥W (t)

(
[XT (t)]i − 1

1
T [XT (t)]i

|L|

)∥∥∥∥
2

≤

√√√√
d∑

i=1

ρ2
∥∥∥∥
(
[XT (t)]i − 1

1
T [XT (t)]i

|L|

)∥∥∥∥
2

= ρ

∥∥∥∥X(t)− X(t)1

|L| 1
T

∥∥∥∥
F

. (39)

It follows that

‖X(t+ 1)−X(t+ 1)‖F

=

∥∥∥∥X(t+ 1)− X(t+ 1)1

|L| 1
T

∥∥∥∥
F

=

∥∥∥∥X(t)WT (t) + ∆(t)− [X(t) + ∆(t)]1

|L| 1
T

∥∥∥∥
F

(a)

≤
∥∥∥∥X(t)WT (t)− X(t)1

|L| 1
T

∥∥∥∥
F

+

∥∥∥∥∆(t)− ∆(t)1

|L| 1
T

∥∥∥∥
F

(b)

≤
∥∥∥∥X(t)WT (t)− X(t)1

|L| 1
T

∥∥∥∥
F

+ ‖∆(t)‖F

(c)
=

∥∥∥∥
(
X(t)− X(t)1

|L| 1
T

)
WT (t)

∥∥∥∥
F

+ ‖∆(t)‖F

(d)

≤ ρ

∥∥∥∥X(t)− X(t)1

|L| 1
T

∥∥∥∥
F

+ ‖∆(t)‖F , (40)

where (a) follows from the triangle inequality, (b) follows

from (38), (c) follows from the double stochasticity of W (t),
and (d) follows from (39).

Thus,

‖X(t)−X(t)‖ ≤ ρt
∥∥∥∥X(0)− X(0)1

|L| 1
T

∥∥∥∥+
t−1∑

k=0

ρt−1−k ‖∆(k)‖ .

Now, since E[‖∆i(t)‖2] ≤ δ2(t) for all i ∈ L, and by the

non-negativity of the variance of ‖∆(k)‖F

E[‖∆(k)‖F] ≤
√
E

[
‖∆(k)‖2F

]
=

√∑

j∈L

E [‖∆j(k)‖2]

≤
√
|L|δ2(k) =

√
|L|δ(k). (41)

then E[‖∆i(t)‖] ≤ δ(t) for all i ∈ L.

It follows from (3)
∥∥∥∥X(0)− X(0)1

|L| 1
T

∥∥∥∥
F

=

√√√√∑

j∈L

∥∥∥∥∥

[
X(0)− X(0)1

|L| 1
T

]

j

∥∥∥∥∥

2

≤

√√√√∑

j∈L

(
‖[X(0)]j‖+

∥∥∥∥∥

[
X(0)1

|L| 1
T

]

j

∥∥∥∥∥

)2
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≤
√∑

j∈L

(2η)
2
= 2η

√
|L|. (42)

It follows that

E[‖X(t)−X(t)‖F]

|L|

≤ 2η√
|L|

ρt +
1√
|L|

t−1∑

k=0

ρt−1−kδ(k)

≤ 2η√
|L|

ρt +
δ(0)√
|L|

· ρt/2

1− ρ
+

δ(t/2)√
|L|(1 − ρ)

. (43)

Similarly,

‖X(t)−X(t)‖2F

≤ ρ2t
∥∥∥∥X(0)− X(0)1

|L| 1
T

∥∥∥∥
2

+ 2ρt
∥∥∥∥X(0)− X(0)1

|L| 1
T

∥∥∥∥
t−1∑

k=0

ρt−1−k ‖∆(k)‖F

+
t−1∑

k1=0

t−1∑

k2=0

ρt−1−k1ρt−1−k2 ‖∆(k1)‖F · ‖∆(k2)‖F

≤ ρ2t4η2|L|+ 4ρtη
√
|L|

t−1∑

k=1

ρt−1−k ‖∆(k)‖F

+

t−1∑

k1=0

t−1∑

k2=0

ρt−1−k1ρt−1−k2 ‖∆(k1)‖F · ‖∆(k2)‖F . (44)

By the Cauchy–Schwarz inequality for expectations

E [‖∆(k1)‖F · ‖∆(k2)‖F] ≤
√
E

[
‖∆(k1)‖2F

]
E

[
‖∆(k2)‖2F

]

≤ |L|δ(k1)δ(k2). (45)

Therefore,

E
[
‖X(t)−X(t)‖2F

]

|L|

≤ 4η2ρ2t + 4ρtη

[
δ(0)ρt/2

1− ρ
+

δ(t/2)

(1 − ρ)

]

+

[
δ(0)ρt/2

1− ρ
+

δ(t/2)

(1− ρ)

]2

=

[
2ηρt +

δ(0)ρt/2

1− ρ
+

δ(t/2)

(1 − ρ)

]2
. (46)

We conclude the proof by using the upper bounds (36), (37).
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[31] S. Magnússon, C. Enyioha, N. Li, C. Fischione, and V. Tarokh, “Con-
vergence of limited communication gradient methods,” IEEE Trans.
Automat. Contr., vol. 63, no. 5, pp. 1356–1371, 2018.

[32] R. Saha, S. Rini, M. Rao, and A. J. Goldsmith, “Decentralized opti-
mization over noisy, rate-constrained networks: Achieving consensus by
communicating differences,” IEEE J. Sel. Areas Commun., vol. 40, no. 2,
pp. 449–467, 2022.

[33] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for
nonconvex multiagent optimization,” IEEE Trans. Control Netw. Syst.,
vol. 8, no. 1, pp. 269–281, 2021.

[34] W. Abbas, Y. Vorobeychik, and X. Koutsoukos, “Resilient consensus
protocol in the presence of trusted nodes,” in International Symposium

on Resilient Control Systems (ISRCS), 2014, pp. 1–7.
[35] J. S. Baras and X. Liu, “Trust is the cure to distributed consensus with

adversaries,” in 2019 27th Mediterranean Conference on Control and

Automation (MED), 2019, pp. 195–202.
[36] C. Zhao, J. He, and Q.-G. Wang, “Resilient distributed optimization

algorithm against adversarial attacks,” IEEE Trans. Automat. Contr.,
vol. 65, no. 10, pp. 4308–4315, 2020.

[37] B. Turan, C. A. Uribe, H.-T. Wai, and M. Alizadeh, “Resilient primal-
dual optimization algorithms for distributed resource allocation,” IEEE

Trans. Control Netw. Syst., vol. 8, no. 1, pp. 282–294, 2021.
[38] T. Ding, Q. Xu, S. Zhu, and X. Guan, “A convergence-preserving data

integrity attack on distributed optimization using local information,” in
IEEE Conf. Decision Control (CDC), 2020, pp. 3598–3603.
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I. PROOF OF THEOREM 1

Here, we aim to explore the dynamic (2) when T0 = 0, M = ∅ and the legitimate agents are aware that all the agents are

legitimate. In this scenario the dynamic (2) is equivalent to

ri(t) = wiizi(t) +
∑

j∈Ni∩L

wijzj(t)

yi(t) = ri(t)− γ(t)∇fi(ri(t)),

φi(t) = ΠX (yi(t))− ri(t),

zi(t+ 1) = ri(t) + φi(t) = ΠX (yi(t)) . (1)

Denote Z(t) , (z1(t), . . . , z|L|(t)) and Φ(t) , (φ1(t), . . . , φ|L|(t)), then

Z(t+ 1) = WLZ(t) + Φ(t),

where by Lemma 3, ‖φi(t)‖ ≤ γ(t)G. Thus we can utilize Proposition 1 to upper bound the distance of an agent value from

that of the average. Denote

z(t) ,
1

|L|

∑

i∈L

zi(t),

and

g(t) , min

{

2η, ρtL2η +
ρ
t/2
L Gγ(0)

1− ρL
+

Gγ(t/2)

1− ρL

}

. (2)

Observe that by the double stochasticity of WL we have that z(t) = 1
|L|

∑

i∈L ri(t).

Corollary (Supplementary) 1. For every t ∈ |L|

1

|L|

∑

i∈L

‖zi(t)− z(t)‖ ≤ g(t), and

1

|L|

∑

i∈L

‖zi(t)− z(t)‖2 ≤ g2(t). (3)

Proof: This is a direct result of (3) and of Proposition 1 (in the main manuscript), for deterministic ∆(t) where

[∆(t)]i = φi(t),

and

δ(t) = γ(t)G.

We are now ready to prove Theorem 1.

http://arxiv.org/abs/2212.02459v1


Proof of Theorem 1: Under the dynamic (1), for every i ∈ L and t ∈ |L|

1

|L|

∑

i∈L

‖zi(t+ 1)− x⋆
L‖

2

=
1

|L|

∑

i∈L

‖ΠX (yi(t))− x⋆
L‖

2

=
1

|L|

∑

i∈L

‖ΠX (yi(t))−ΠX (x⋆
L)‖

2

≤
1

|L|

∑

i∈L

‖yi(t)− x⋆
L‖

2

=
1

|L|

∑

i∈L

‖ri(t)− γ(t)∇fi(ri(t)) − x⋆
L‖

2

=
1

|L|

∑

i∈L

‖ri(t)− x⋆
L‖

2 +
1

|L|
γ2(t)

∑

i∈L

‖∇fi(ri(t))‖
2 −

2

|L|
γ(t)

∑

i∈L

[∇fi(ri(t))]
T (ri(t)− x⋆

L).

The convexity of ‖ · ‖2 and the double stochasticity of WL yields that

1

|L|

∑

i∈L

‖ri(t)− x⋆
L‖

2 ≤
1

|L|

∑

i∈L

‖zi(t)− x⋆
L‖,

and

‖z(t)− x⋆
L‖

2 =

∥

∥

∥

∥

∥

1

|L|

∑

i∈L

ri(t)− x⋆
L

∥

∥

∥

∥

∥

2

≤
1

|L|

∑

i∈L

‖ri(t)− x⋆
L‖

2.

Additionally, we can conclude from Corollary 2 that

1

|L|
γ2(t)

∑

i∈L

‖∇fi(ri(t))‖
2 ≤ γ2(t)G2.

Thus, by the µ-strong convexity of fi, ∀ i ∈ L

− 2
γ(t)

|L|

∑

i∈L

[∇fi(ri(t))]
T (ri(t)− x⋆

L)

=
2γ(t)

|L|

∑

i∈L

[∇fi(ri(t))]
T (x⋆

L − ri(t))

≤
2γ(t)

|L|

∑

i∈L

[

fi(x
⋆
L)− fi(ri(t))−

µ

2
‖ri(t)− x⋆

L‖
2
]

≤
2γ(t)

|L|

∑

i∈L

[fi(x
⋆
L)− fi(ri(t))]−

2γ(t)µ

2
‖z(t)− x⋆

L‖
2

=
2γ(t)

|L|

∑

i∈L

[

fi(x
⋆
L)− fi(z(t))−

µ

2
‖zi(t)− x⋆

L‖
2
]

+
2γ(t)

|L|

∑

i∈L

[fi(z(t)) − fi(ri(t))] +
γ(t)µ

|L|

∑

i∈L

‖zi(t)− z(t)‖2.

Next, we upper bound the terms in the last line by utilizing the L Lipschitz continuity of ∇fi:

2γ(t)

|L|

∑

i∈L

[fi(z(t)) − fi(ri(t))]

≤
2γ(t)

|L|

∑

i∈L

[

(∇fi(ri(t)))
T (z(t)− ri(t)) +

L

2
‖zi(t)− z(t)‖2

]

≤
2γ(t)

|L|

∑

i∈L

[

G‖ri(t)− z(t)‖+
L

2
‖zi(t)− z(t)‖2

]

≤
2γ(t)

|L|

∑

i∈L

[

G‖zi(t)− z(t)‖ +
L

2
‖zi(t)− z(t)‖2

]

.

2



It follows that,

1

|L|

∑

i∈L

‖zi(t+ 1)− x⋆
L‖

2

≤
1

|L|

∑

i∈L

‖zi(t)− x⋆
L‖

2 + γ2(t)G2 +
2γ(t)

|L|

∑

i∈L

[

G‖zi(t)− z(t)‖+
µ+ L

2
‖zi(t)− z(t)‖2

]

.

Denote,

h(t) = G2γ(t) + 2Gg(t) + (µ+ L)g2(t).

We use Corollary (Supplementary) 1 to deduce that

1

|L|

∑

i∈L

‖zi(t+ 1)− x⋆
L‖

2 ≤ (1− µγ(t))
1

|L|

∑

i∈L

‖zi(t)− x⋆
L‖

2 + γ(t)h(t). (4)

Consequently,

lim
t→∞

‖zi(t)− x⋆
L‖ = 0, ∀ i ∈ L, (5)

whenever
∑∞

t=0 γ(t) = ∞ and
∑∞

t=0 γ
2(t) < ∞.

Motivated by [51] we let γ(t) = 2
µ(t+2) . It follows that

1

|L|

∑

i∈L

‖zi(t+ 1)− x⋆
L‖

2 ≤
t

t+ 2
·
1

|L|

∑

i∈L

‖zi(t)− x⋆
L‖

2 +
2h(t)

µ(t+ 2)
. (6)

Multiplying both sides by (t+ 1)(t+ 2) yields the following upper bound

(t+ 1)(t+ 2)
1

|L|

∑

i∈L

‖zi(t+ 1)− x⋆
L‖

2

≤ t(t+ 1) ·
1

|L|

∑

i∈L

‖zi(t)− x⋆
L‖

2 +
2(t+ 1)h(t)

µ
. (7)

Summing both sides over the set t = 0, 1, . . . , T − 1 yields the upper bound:

1

|L|

∑

i∈L

‖zi(T )− x⋆
L‖

2 ≤
2
∑T−1

t=0 (t+ 1)h(t)

µT (T + 1)
. (8)

To conclude the proof we upper bound the term
∑T−1

t=0 (t+ 1)h(t). To this end, we utilize the identity

∞
∑

t=0

(t+ 1)xt = (1− x)−2,

for all |x| ∈ (0, 1) as follows

T−1
∑

t=0

(t+ 1)h(t) =

T−1
∑

t=0

(t+ 1)
(

G2γ(t) + 2Gg(t) + (µ+ L)g2(t)
)

. (9)

Now,

T−1
∑

t=0

(t+ 1)G2γ(t) =
T−1
∑

t=0

(t+ 1)G2 2

µ(t+ 2)
≤

2G2T

µ
. (10)
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Additionally,

T−1
∑

t=0

(t+ 1)2Gg(t)

≤ 2G

T−1
∑

t=0

(t+ 1)

[

ρtL2η +
ρ
t/2
L Gγ(0)

1− ρL
+

Gγ(t/2)

1− ρL

]

≤ 4ηG

T−1
∑

t=0

(t+ 1)ρtL +
2G2γ(0)

1− ρL

T−1
∑

t=0

(t+ 1)ρ
t/2
L +

4G2T

µ(1 − ρL)

≤
4ηG

1− ρL
+

4G2γ(0)

1− ρL

T−1
∑

t=0

(t+ 1)ρtL +
4G2T

µ(1− ρL)

=
4ηG

1− ρL
+

4G2

µ(1− ρL)3
+

4G2T

µ(1 − ρL)
, (11)

where the last inequality follows since

T−1
∑

t=0

(t+ 1)ρ
t/2
L ≤

T−1
∑

t=0

(2t+ 1)ρtL +

T−1
∑

t=0

(2t)ρtL ≤ 2

T−1
∑

t=0

(t+ 1)ρtL. (12)

Finally, since |ρL| < 1 then (1− ρxL)
−1 ≤ (1 − ρL)

−1 for all x ≥ 1. It follows that

(µ+ L)
T−1
∑

t=0

(t+ 1)g2(t)

≤ (µ+ L)

T−1
∑

t=0

(t+ 1)

[

ρtL2η +
ρ
t/2
L Gγ(0)

1− ρL
+

Gγ(t/2)

1− ρL

]2

≤
4η2(µ+ L)

(1 − ρL)2
+

2G2(µ+ L)

µ2(1− ρL)4
+

16(µ+ L)G2 ln
(

T+2
2

)

µ2(1 − ρL)2
+

8Gη(µ+ L)

µ(1 − ρL)3
+

16Gη(µ+ L)

µ(1− ρL)2
+

16G2(µ+ L)

µ2(1− ρL)2

=
4(µ+ L)(µη + 2G)2

µ2(1 − ρL)2
+

2G2(µ+ L)

µ2(1− ρL)4
+

8Gη(µ+ L)

µ(1− ρL)3
+

16(µ+ L)G2

µ2(1− ρL)2
ln

(

T + 2

2

)

. (13)

Finally, by utilizing the notation (14) we can conclude that

T−1
∑

t=0

(t+ 1)h(t) ≤ 2h(T ).
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