
ESRU: Extremely Low-Bit and Hardware-Efficient

Stochastic Rounding Unit Design for Low-Bit DNN Training

Sung-En Chang1∗, Geng Yuan1∗, Alec Lu2∗, Mengshu Sun1, Yanyu Li1, Xiaolong Ma1, Zhengang Li1,

Yanyue Xie1, Minghai Qin, Xue Lin1, Zhenman Fang2 and Yanzhi Wang1

1Northeastern University, 2Simon Fraser University

Boston, USA, Burnaby, Canada

{chang.sun, yuan.geng, sun.meng, li.yanyu, ma.xiaol, li.zhen, xie.yany, xue.lin, yanz.wang}@notheastern.edu

{alec lu,zhenman}@sfu.ca

AbstractÐStochastic rounding is crucial in the low-bit (e.g., 8-
bit) training of deep neural networks (DNNs) to achieve high
accuracy. One of the drawbacks of prior studies is that they
require a large number of high-precision stochastic rounding
units (SRUs) to guarantee low-bit DNN accuracy, which involves
considerable hardware overhead. In this paper, we use extremely
low-bit SRUs (ESRUs) to save a large number of hardware
resources during low-bit DNN training. However, a naively de-
signed ESRU introduces a biased distribution of random numbers,
causing accuracy degradation. To address this issue, we further
propose an ESRU design with a plateau-shape distribution. The
plateau-shape distribution in our ESRU design is implemented
with the combination of an LFSR (linear-feedback shift register)
and an inverted LFSR, which avoids LFSR packing and turns an
inherent LFSR drawback into an advantage in our efficient ESRU
design. Experimental results using state-of-the-art DNN models
demonstrate that, compared to the prior 24-bit SRU with 24-bit
pseudo-random number generators (PRNG), our 8-bit ESRU with
3-bit PRNG reduces the SRU hardware resource usage by 9.75×

while achieving slightly higher accuracy.

Index TermsÐDNNs, low-bit training, stochastic rounding

I. INTRODUCTION

DNNs have achieved extraordinary performance in various

application domains, such as computer vision, speech recogni-

tion, and natural language processing. However, training DNNs

needs a large number of computational resources, training time,

and power consumption, which is challenging their extensive

applications in the industry. To reduce the training cost for

DNNs, recent studies [6], [20], [22]±[25] have tried to use

low bit-width representation during DNN training, which is

known as low-bit training. Low-bit training needs to quantize

the weights, activations, and gradients to the low-bit fixed-point

representations for both the forward and backward propagation

passes during the training. Specifically, for the most challenging

gradient quantization, all of these aforementioned studies have

asserted that it is necessary to use stochastic rounding instead

of nearest rounding during training to maintain accuracy. How-

ever, these prior studies require a large number of high bit-

width random number generators in the stochastic rounding

units (SRUs), which involves considerable hardware overhead.

For example, as will be presented in Section V-C, even if the

24-bit SRU with the lightweight 24-bit LFSR-based PRNG is

∗Equal contribution.

used during training, it would add an extra 23.5% LUTs usage

compared to the training accelerator itself [12].

To reduce such high hardware resource overhead, we pro-

pose to use extremely low-bit (e.g., 3-bit) random numbers

to approximate those high-precision random numbers in our

ESRU. The intuition is that stochastic rounding in DNN training

itself is a form of statistical approximation and does not

necessarily need precise random numbers. However, there are

two major challenges. First, naively mapping the high-precision

random numbers onto the extremely low-bit ones would cause

a biased distribution and thus degrade the DNN accuracy

(Section III-B). While such mapping bias is hard to notice with

the 8-bit approximation, it gets more significant when there are

fewer bits to represent the random number in the SRU. This

phenomenon is often overlooked by prior studies, as none of

them has considered using extremely low-bit representations in

the SRUs. Second, to efficiently generate those extremely low-

bit random numbers in the ESRU on hardware, we consider

using the lightweight linear feedback shift register (LFSR) [10],

which is widely used as a hardware-friendly PRNG. However,

using vanilla low-bit LFSR would lead to accuracy degradation

because low-bit LFSR would generate the random numbers

with a biased distribution (cannot generate number zero) [10].

To address these challenges, we propose an accurate and effi-

cient ESRU design alternative with the plateau-shaped random

number distribution. In the plateau-shape design, we combine

an LFSR and an inverted LFSR to generate a plateau-shape

distribution; the inverted LFSR is efficiently implemented by

adding an inverted signal to the original LFSR instead of

adding another LFSR. The such design turns the inherent LFSR

limitation into an advantage in our efficient ESRU design. The

detailed explanation is in Section IV.

Experimental results using state-of-the-art DNN models in

image classification, super-resolution, image segmentation, and

natural language processing, demonstrate that our 8-bit ESRU

design with 3-bit PRNG can achieve a negligible accuracy

drop in the DNN training compared to the floating-point based

models. Compared to prior SRU designs with 8-bit, 16-bit,

and 24-bit LFSR-based PRNG, our designs reduce the SRU

hardware resource usage by 3.75× to 9.75×, while achieving

a slightly higher model accuracy.

In summary, this paper makes the following contributions:

1) The first work explores the extremely low-bit (i.e., 3-bit)

representation in the SRUs for the low-bit (i.e., 8-bit)

DNN training.

2) An in-depth analysis of limitations in existing SRU

designs.

3) An accurate and hardware-efficient ESRU design for low-

bit DNN training, which approximates high-precision

random numbers using extremely low-bit (3-bit) random

numbers in the plateau-shape distribution.

4) Experiments to demonstrate the significant hardware re-

source savings (3.75× to 9.75×) and superior accuracy

of our 8-bit training with ESRU over state-of-the-art low-

bit training frameworks.

II. BACKGROUND AND RELATED WORK

A. Nearest Rounding vs. Stochastic Rounding

Nearest rounding [9] is the most common rounding scheme

for quantization in low-bit training. Take a fixed-pointed quan-

tization (FQ) as an example, the equation of the FQ is:

FQ(x,m) = 21−m × roundingn(x/2
1−m), (1)

where x is the floating-point input, m is the quantization bit-

width, and 21−m is the distance between each quantization

level. The nearest rounding scheme roundingn[.] would always

round the floating-point input to the nearest quantization level.

Another scheme is stochastic rounding [8], [6]. Rather than

always rounding the floating-point input to the nearest quanti-

zation level, stochastic rounding rounds the input as follows:

roundings(x) =

{

⌊x⌋, w.p. 1− (x− ⌊x⌋)

⌈x⌉, w.p. x− ⌊x⌋
, (2)

where ªw.p.º stands for ªwith probabilityº.

B. Implementation of Stochastic Rounding

In order to apply the stochastic rounding during the low-bit

training, DoReFa-Net [24] proposed that an efficient way is to

add a random number r ∈ Uniform(−0.5, 0.5) to the inputs

x before each rounding step, i.e.,

roundings(x) = roundingn(x+ r),

r ∈ Uniform(−0.5, 0.5).
(3)

However, in Equation (3), the control logic is still needed

to compare the fraction value with 0.5 in the rounding step

(e.g., X.49 will be rounded to X because 0.49 < 0.5), which

introduces extra overhead. To eliminate this control logic, [13]

found that the stochastic rounding can be implemented by

adding x with a random number r ∈ Uniform(0, 1) and

then dropping the fraction bits. As a result, the carry-over to

the integer bits automatically completes the rounding. Figure 1

shows an example to implement stochastic rounding (from 16-

bit to 8-bit) in this more efficient way.

1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1.

Integer bits Fraction bits

x (16 bits)

1 1 0 1 1 0 1 0

+

Carry over?

Yes: auto round up
Remove the

fraction part

r (8 bits) ∈ (0,1)

xs (8 bits)

No: auto round down

Fig. 1. The implementation of stochastic rounding. x: the gradient, r: random
number, xs: the gradient after the stochastic rounding process.

C. Stochastic Rounding in Low-Bit Training

In low-bit DNN training, there are three main components

that need to be quantized: weight, activation, and gradient. For

the weight and the activation quantization, applying nearest

rounding works very well. However, for the gradient quan-

tization, HÈohfeld and Fahlman [8] found that most of the

gradients would be rounded to zero if they simply used the

nearest rounding scheme, because the magnitudes of most of

the gradients are relatively small.

Thus, using stochastic rounding for gradient quantization in

low-bit training has been explored in the past few years. First,

Gupta et al. [6] introduced stochastic rounding on the gradient

quantization of the DNNs in low-bit training. Further, DoReFa-

Net [24] applied the stochastic rounding on the low preci-

sion gradient with the large-scale dataset (ImageNet). Then,

WAGE [20] and WAGEUBN [22] used stochastic rounding

to quantize the gradient to an 8-bit integer. However, both

WAGE and WAGEUBN suffer from non-negligible accuracy

degradation. Recently, FP8 [18], Uint8 [25], and ADint8 [23]

quantized the gradient to an 8-bit integer with stochastic round-

ing and achieved comparable accuracy to the 32-bit floating-

point training.

All of these works only mention that they used stochastic

rounding during the low-bit training process. However, they

overlooked that the stochastic rounding needs to use a large

amount of high-precision random numbers (r in Equation (3)),

which introduces considerable hardware resource overhead in

the low-bit DNN training.

D. Low-Bit Training on Hardware Accelerators

While 32-bit floating-point precision is desirable during

DNN training to achieve high prediction accuracy, it leads to

high resource usage in hardware accelerator designs. Previous

studies have explored various approaches to lower the resource

demand in order to bring higher computation parallelism for

training speedups while maintaining a similar accuracy as the

32-bit floating-point models [3], [6], [14], [15], [18]. Initially,

in [3], a hardware accelerator for DNN training was imple-

mented with 32-bit fixed-point to bring significant resource

saving. Later on, more works were able to effectively reduce

the bit-width of the training data without a significant accuracy

loss, so long as stochastic rounding was applied. For example,

an ASIC implementation of low-bit RNN training with 24-bit

fixed-point numbers was proposed in [14], which employed

a 48-bit input SRU design with a 24-bit LFSR to realize

stochastic rounding. In [6], low-bit training with 16-bit fixed-

point numbers was implemented while achieving a similar

accuracy as the 32-bit floating-point training. Their design used

a 48-bit input SRU with a 16-bit LFSR PRNG. Some recent

studies even explored 12-bit and 8-bit floating-point numbers

with stochastic rounding in their hardware training accelerators

and have achieved decent accuracy [16], [18].

However, in these previous designs, the resource utilization

of the stochastic rounding units with their random number

generator designs typically scales with the precision of the

training data. We overcome this resource scaling constraint in

our proposed ESRU design to bring further resource saving by

exploring a hardware-efficient low-bit random number genera-

tor during stochastic rounding.

III. LIMITATIONS OF EXISTING SRU DESIGNS

A. Issue with Default High Bit-Width SRUs

In order to apply stochastic rounding in low-bit DNN train-

ing, DoReFa-Net [24] and [13] proposed that an efficient way

is to add the random numbers on the gradients before each

rounding step. However, the number of gradients is relatively

large in state-of-the-art DNN models. For example, there are

around 107 weights in the widely used ResNet-50. So in the

backpropagation process, there are around 107 gradients to

update the corresponding weights. In each iteration, it needs to

use around 103 high bit-width SRUs (assuming there are 103

parallel computations in the hardware), which introduce a large

amount of extra resource usage for the hardware accelerators.

B. Distribution Bias with Extremely Low Bit-Width SRUs

To reduce the extra resource usage during the DNNs training,

an intuitive way is to use low-bit representations for the random

numbers in the SRUs. Suppose we have a 32-bit floating-point

random number r and we need to map it to the m-bit random

number r′, where m is extremely small (e.g., m = 3). The basic

idea is to divide all the 32-bit random number distributions

into n = 2m levels and use nearest rounding to round those

numbers into each level li, the m-bit representation of the i-th
level random number.

In a straightforward mapping, one may set a uniform distance

between every two consecutive levels (i.e., ϵ = li+1−li = 1/n)

and set l0 = 0. As a result, the floating-point random number

r is approximated as a m-bit r′ using the following equation:

r′ =



















l0 if r ∈ [l0, l0 +
ϵ

2
)

l1 if r ∈ [l1 −
ϵ

2
, l1 +

ϵ

2
)

...

ln−1 if r ∈ [ln−1 −
ϵ

2
, ln−1 +

ϵ

2
)

(4)

Unfortunately, such a naive mapping leads to a biased

distribution of the random numbers. To better demonstrate this,

we have mapped the 32-bit random numbers onto 8 levels using

3-bit representations based on Equation (4) and visualized such

random number distribution in Figure 3. The x-axis shows the

values of l0 to l7 and their corresponding binary representation

in the fraction part; the y-axis shows the number of 32-

bit random numbers distributed in each range. As shown in

Figure 3, the range of the first level (i.e., the green part) is

only half of the other levels. Moreover, the last range (i.e., the

orange part) does not belong to any levels.

Moreover, Figure 2 visualizes such bias when mapping to

8-bit, 4-bit, and 3-bit representations. While it is hard to notice

such bias using 8-bit representations in the SRUs, the bias is

much more significant when we use fewer bits (e.g., 3-bit)

to represent the random numbers in the SRUs. As will be

presented in Section V-B1, such a biased distribution would

lead to about 2% DNN accuracy loss when the random numbers

are approximated with 3-bit representations. This bias is often

overlooked in the existing studies, as none of them has used

extremely low-bit representations in the SRUs.

C. Lightweight LFSR and Its Limitations

A lightweight SRU alternative is to use the linear feedback

shift register (LFSR) [10], which is widely used as pseudo-

random number generators (PRNG), due to its small logic

resource footprint and low latency design [1], [10].

For every iteration, an LFSR updates its random sequence by

propagating the shift register values and feeding the XOR’ed

value from certain shift registers of the LFSR based on a pre-

defined mask to its first shift register. As such, a m-bit LFSR-

based PRNG will generate all 2m−1 patterns (without zero) in

a random sequence before repeating the same random sequence.

However, simply using vanilla LFSRs to generate the random

numbers in the lightweight SRUs comes up with a shortcoming:

Roth et al. [10] found that a vanilla LFSR cannot have 0 as

its seed (starting point) and cannot generate 0 in its output.

Thus, its output distribution is biased and would cause accuracy

degradation in low-bit DNN training.

IV. OUR PROPOSED ESRU DESIGN

To design an accurate and hardware-efficient SRU for low-

bit DNN training, we consider using extremely low-bit repre-

sentations (e.g., 3-bit) for the random numbers in the SRU and

generate such random numbers using our optimized lightweight

LFSR variants. To address the issue of biased distribution and

LFSR limitations presented in Section III, we propose an ESRU

design with the plateau-shape distribution.

A. Idea of Plateau-shape Distribution

The key idea to solve the biased distribution from the naive

mapping is to keep l0 = 0 and adjust ϵ = li+1 − li = 1/(n −
1) = 1/(2m − 1), where li is the m-bit representation of the

i-th level random number and ϵ is the distance between every

two consecutive levels. As a result, we can cover the whole

distribution from 0 to 1 without missing any value.

Figure 4(b) shows an example with 3-bit representation (i.e.,

m = 3), by slightly increasing ϵ from 1/8 (in the naive

mapping, shown in Figure 4(a)) to 1/7 to cover the whole

distribution from 0 to 1. This mapping will lead to a non-

uniform plateau-shape distribution as will be explained below.

8bit 4bit 3bit

32-bit

8-bit

32-bit

4-bit

32-bit

3-bit

Gradient (fraction part)

bias
biasbias

0 0.2 0.4 0.6 0.8 1

Gradient (fraction part) Gradient (fraction part)

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1P

ro
b

a
b

il
it

y
 o

f
ro

u
n

d
 u

p

Fig. 2. Biased distribution of the naive mapping from floating-point random numbers to low-bit ones in the SRU. The blue lines are the low-bit SRU design
and the blue lines are always ºbelowº the green line (32-bit baseline), which introduce the bias.

000 001 010 011 100 101 110 111

0

50

100

150

200

250

#
 R

a
n

d
o

m
 n

u
m

b
er

s

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8

Map 32-bit random numbers to 3-bit (8 levels)

ε/2 ε/2εεεεεεε

Fig. 3. The naive mapping from 32-bit random numbers onto 3-bit ones with
the biased distribution.

Specifically, in this mapping where l0 = 0 and ϵ = 1/(2m−
1), the 32-bit floating point random number r can be mapped to

the m-bit (e.g., m = 3) number r′ using the following equation:

r′ =



















l0 if r ∈ [l0, l0 +
ϵ

2
)

l1 if r ∈ [l1 −
ϵ

2
, l1 +

ϵ

2
)

...

ln−1 if r ∈ [ln−1 −
ϵ

2
, ln−1)

(5)

Based on Equation (5), we can have the mapping range in

the first level l0 and the last level ln−1 as ϵ

2
, which is only

half of the range in the middle levels l1, l2..., ln−1. Take

a 3-bit (i.e., m = 3) representation of the low-bit random

numbers as an example, we need to map the 32-bit random

numbers to 23 = 8 levels. Figure 4(b) shows that when we

divide the 32-bit random number distributions Uniform(0, 1)
into 8 levels, the mapping range in the first and the last

levels (i.e. the green part) is only half of that for the middle

levels. Therefore, the plateau-shape distribution of 3-bit random

numbers is observed in Figure 4(c), which requires special

consideration when designing its hardware architecture.

B. Hardware Design of Plateau-shape based ESRU

We propose a hardware-aware technique to generate the

random numbers in the SRU by considering both the limi-

tations of LFSR and matching the plateau-shape distribution.

Figure 5(a) shows the overall design architecture of our ESRU.

It applies stochastic rounding to an intermediate MAC (multi-

ply±accumulate) data from backpropagation calculation by first

adding a random number, generated by an LFSR-based PRNG,

to the fraction bits. Then it crops the addition result to derive

the final gradient result. For a training model with error data

and model parameters, both represented in 8-bit fixed-point,

the intermediate MAC data during gradient calculation is then

represented in 16-bit fixed-point representation, for such, we

show a 16-bit adder used in our ESRU design.

Optimization 1: lookup table-based mapping vs. shift-based

mapping. Although random number generation logic is rather

simple, we find that implementing a resource-efficient design is

nontrivial and could lead to a 3.75x resource (in terms of LUTs

on an FPGA) usage difference as we observe between two

LFSR design alternatives. Both design variants include a 3-bit

LFSR as shown in figure 5(a), which will populate 23 − 1 = 7
patterns (without zero) in a random sequence before repeating

the same sequence as explained in Section III-C. However, for

mapping our low-bit LFSR number to a higher bit-width, the

first design variant uses a look-up table, implemented with

LUTs, to keep a record of the corresponding high bit-width

mapping value (i.e., li in Equation (5)) of our 3-bit random

number. Our optimized approach, shown in figure 5(b) uses

a simple shift operator to align the 3-bit random number with

the most significant bit in the fraction bits of the high bit-width

number to proportionally scale the random number.

Optimization2: LFSR + inverted LFSR to generate the

plateau distribution. To generate the plateau distribution of

random numbers in low-bit representations described in Sec-

tion IV-A, we also add an inverted signal to select the bit-wise

inverted random number. This feature effectively addresses two

key issues. First, it allows our PRNG to populate zero during

its sequence generation by setting the invert signal to high

when the LFSR generates the random number with all ones.

Second, when sequentially used with the non-inverted PRNG

sequence (i.e., random sequence repeats after enumerating all

non-inverted and inverted sequences), this produces random

numbers in the correct random number distribution as shown

in Figure 5(c). By using this technique, we successfully take

advantage of the characteristic of the LFSR variant in ESRU

to generate the plateau-shape distribution.

V. EXPERIMENT RESULTS

A. Experiments Setup

We evaluate the low-bit DNN training with 8-bit integers for

activations/weights/gradients and our hardware-efficient ESRU

design for a wide range of applications, including image clas-

sification, super resolution, segmentation, and natural language

0

50

100

150

200

250

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8

Naive Uniform (Biased) Plateau

0 1/7 2/7 3/7 4/7 5/7 6/7 1

Value Value

1/8 1/7
ε/2 ε/2 ε/2ε/2ε ε ε ε ε ε ε ε ε ε ε ε ε

L0 L1 L2 L3 L4 L5 L6 L7

1500

1250

1000

750

500

250

0

Level

Plateau 3-bit(a) (b) (c)

Fig. 4. Comparison between the naive mapping and our Plateau-shape distribution.

(a)

(c)

Basic LFSR Inverted LFSR

Basic LFSR

Our LFSR Design

Invert or not?

0 7

0 7

16-bit

Adder
Intermediate

MAC Data 8

8

16

3-bit

LFSR

Efficient Stochastic Rounding Unit

(ESRU)

Rounded

Gradient Data

0

1

1

Invert

Signal

No
0 7

Yes

(b)

Fig. 5. Hardware architecture of our plateau-shape based ESRU.

processing (NLP). We describe the detailed setup of each

application in Section V-B. All the models with the baseline

32-bit floating-point training and the 8-bit training with our

ESRU design are conducted on NVIDIA TITAN RTX GPUs,

with CUDA 11.2 and PyTorch 1.8 frameworks running on the

Ubuntu 18.04 OS. The 8-bit training with our ESRU design

utilizes the same data augmentation techniques as those used

in the baseline 32-bit floating-point training.

B. Accuracy Results

1) Accuracy Results for Image Classification: For image

classification tasks, the evaluated models include ResNet-18

and ResNet-50 [7] on ImageNet [11] dataset.

2) Accuracy Results for Image Segmentation: For im-

age segmentation tasks, we evaluate the DeeplabV3 and

DeeplabV3plus [2] models on the Pascal VOC2012 dataset [5].

The initial learning is 0.1 and the models are trained for 100
epochs. Our plateau-shape based ESRU has similar accuracy

(i.e., −0.0070 ∼ +0.0021 mIoU) to the floating point training.

3) Accuracy Results for NLP: For NLP tasks with the

BERT [4] model, we evaluate on a variety of datasets from

the General Language Understanding Evaluation (GLUE) [17]

benchmark. The pre-trained BERT models are from Hugging-

Face Transformer [19]. Quantization and finetuning are simulta-

neously performed for 3 epochs with the initial learning rate of

TABLE I
ACCURACY COMPARISON WITH EXISTING WORKS USING RESNET-18 AND

RESNET-50 MODELS ON IMAGENET. W: WEIGHT, A: ACTIVATION, G:
GRADIENT.

Model Method
Precision Low-bit

Accuracy
(W/A/G) LFSR?

ResNet-18

FP 32bit - 71.10
WAGEUBN [22] 8bit × 67.40

FP8 [18] 8bit × 67.34
Uint8 [25] 8bit × 69.67

ADint8 [23] 8bit × 70.21
Naive Mapping 8bit ✓ 69.07
Ours(Plateau) 8bit ✓ 70.91

ResNet-50

FP 32bit - 77.59
WAGEUBN [22] 8bit × 69.07

FP8 [18] 8bit × 76.20
Uint8 [25] 8bit × 76.34

ADint8 [23] 8bit × 76.59
Naive Mapping 8bit ✓ 76.03
Ours(Plateau) 8bit ✓ 77.56

TABLE II
COMPARISON OF OUR LOW-BIT TRAINING WITH ESRUS AND

FLOATING-POINT TRAINING FOR IMAGE SEGMENTATION ON THE VOC2012
DATASET. MIOU: MEAN INTERSECTION OVER UNION, THE HIGHER IS

BETTER.

Model Backbone Method
precision

mIoU
(W/A/G/R)

DeepLabV3
ResNet-50

FP 32/32/32/- 0.7604
Ours(Plateau) 8/8/8/3 0.7619

DeepLabV3Plus
MobileNetV2

FP 32/32/32/- 0.7110
Ours(Plateau) 8/8/8/3 0.7040

DeepLabV3Plus
ResNet-50

FP 32/32/32/- 0.7649
Ours(Plateau) 8/8/8/3 0.7670

2×10−5. Table III shows that our 8-bit training with plateau-

shape based ESRU only has 0.38 average point degradation

across different evaluation metrics on the corresponding tasks.

C. Hardware Results

To gain a better perspective of the hardware resource and

latency impact from the SRUs, we use the FPGA training

accelerator design (called DarkFPGA) proposed in [12] as

a reference design. In DarkFPGA, batch-level parallelism of

TB = 32 and an image-level parallelism of TI = 128 are

employed and it computes 4096 parallel gradients on a single

Xilinx Ultrascale+ VU9P FPGA. Thus, to enable stochastic

rounding in DarkFPGA, we instantiate 4096 stochastic round-

ing units and compare the resource usage when using our ESRU

designs with 3-bit and 8-bit plateau-shape distribution-based

LFSRs, as well as previous state-of-the-art SRU designs that

use the basic 24-bit, 16-bit, and 8-bit LFSRs. We use Xilinx

TABLE III
COMPARISON OF OUR LOW-BIT TRAINING AND FLOATING-POINT TRAINING FOR NATURAL LANGUAGE PROCESSING WITH BERT. THE EVALUATION

METRICS INCLUDE F1, PEARSON, ACCURACY, AND MATTHEWS CORRELATION, THE HIGHER VALUE IS BETTER.

Method Precision(W/A/G/R) MRPC STS-B RTE COLA MNLI QQP SST2 QNLI Avg.

FP 32/32/32/- 89.66 89.19 66.43 57.27 84.37 91.18 92.66 91.40 82.77
Ours(Plateau) 8/8/8/3 88.81 88.80 65.70 57.04 84.35 90.66 92.65 91.14 82.39

TABLE IV
COMPARISON OF RESOURCE UTILIZATION FOR DIFFERENT LFSR DESIGNS IN OUR ESRU ON XILINX VU9P FPGA AND DARKFPGA [12] DESIGN.

DARKFPGA [12] DESIGN IS THE 8-BIT FPGA TRAINING FRAMEWORK. BASIC: THE CONVENTIONAL LFSR DESIGN.

Method
LFSR ESRU ESRU Total LUTs ESRU LUTs LUTs Usage ESRU LUTs /

Bit-width LUTs FF in VU9P / VU9P LUTs in DarkFPGA [12] DarkFPGA [12] LUTs

Naive Mapping 32bit 217,088 270,336 1,182,240 18.4% 678,716 32.0%
Naive Mapping 24bit 159,744 204,800 1,182,240 13.5% 678,716 23.5%
Naive Mapping 16bit 110,592 139,264 1,182,240 9.4% 678,716 16.3%
Naive Mapping 8bit 61,440 73,728 1,182,240 5.2% 678,716 9.0%
Ours(Plateau) 8bit 61,440 73,728 1,182,240 5.2% 678,716 9.0%

Ours(Plateau) 3bit 16,384 32,768 1,182,240 1.4% 678,716 2.4%

Vitis 2020.1 [21] to evaluate the post place-and-route resource

utilization, frequency, and latency of the designs. Note that

LFSR only consumes LUT and FF resources on an FPGA.

As shown in Table IV, in terms of resource usage for SRU

designs, compared with SRU designs with 24-bit, 16-bit, and

8-bit LFSRs, our ERSU design with 3-bit LFSR brings 9.7×,

6.75×, and 3.75× LUT savings. With respect to the entire

hardware training accelerator in [12], our ERSU with 3-bit

LFSR only needs 2.4% extra LUT usage, while a naive design

may introduce up to 32.0% LUT overhead.

VI. CONCLUSION

In this paper, we are the first to investigate hardware-efficient

stochastic rounding unit (ESRU) designs by using extremely

low-bit (i.e., 3-bit) random number generation for low-bit

(i.e., 8-bit) DNN training. We observed that naively using

low-bit representations to approximate high-precision random

numbers leads to a biased distribution, causing accuracy degra-

dation. Thus, we proposed a new method to approximate the

random numbers using low-bit representation in a plateau-

shape distribution. Based on the plateau-shape distributions, we

designed a hardware-efficient ESRU with the optimized LFSR

variants to generate these low-bit (i.e., 3-bit) random numbers.

Experimental results using a wide range of DNN applications

demonstrated that our 8-bit DNN training with the optimized

ESRU achieved superior accuracy than state-of-the-art 8-bit

training frameworks, with a negligible accuracy drop compared

to the floating-point baseline training. Moreover, compared to

the prior 24-bit SRU with 24-bit PRNG and 16-bit SRU with

16-bit PRNG, our 8-bit ESRU with 3-bit PRNG reduced the

SRU resource usage by 9.75× and 6.75×, respectively.

ACKNOWLEDGMENT

This work was partly supported by NSF CCF-1901378,

NSF CCF-1919117 and CCF-1937500; NSERC Discov-

ery Grant RGPIN-2019-04613, DGECR-2019-00120, Alliance

Grant ALLRP-552042-2020; CFI John R. Evans Leaders Fund.

REFERENCES

[1] FrancËois Arnault et al. Revisiting lfsrs for cryptographic applications.
IEEE Transactions on Information Theory, 57(12):8095±8113, 2011.

[2] Liang-Chieh Chen et al. Encoder-decoder with atrous separable convolu-
tion for semantic image segmentation. In ECCV, pages 801±818, 2018.

[3] Yunji Chen et al. Dadiannao: A machine-learning supercomputer. In 2014

IEEE/ACM Int’l. Symp. on Microarchitecture, pages 609±622, 2014.
[4] Jacob Devlin et al. BERT: Pre-training of deep bidirectional transformers

for language understanding. In NAACL, pages 4171±4186, June 2019.
[5] M. Everingham et al. The pascal visual object classes (voc) challenge.

International Journal of Computer Vision, 88(2):303±338, June 2010.
[6] Suyog Gupta et al. Deep learning with limited numerical precision. In

Int’l. conf. on machine learning, pages 1737±1746. PMLR, 2015.
[7] Kaiming He et al. Deep residual learning for image recognition. In

Proceedings of CVPR, pages 770±778, 2016.
[8] Markus HÈohfeld et al. Probabilistic rounding in neural network learning

with limited precision. Neurocomputing, 4(6):291±299, 1992.
[9] IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2019

(Revision of IEEE 754-2008), pages 1±84, 2019.
[10] Roth Jr et al. Digital systems design using VHDL. Cengage Learning,

2016.
[11] Alex Krizhevsky et al. Imagenet classification with deep convolutional

neural networks. NIPS, 25, 2012.
[12] Cheng Luo et al. Towards efficient deep neural network training by fpga-

based batch-level parallelism. Journal of Semiconductors, 41(2):022403,
2020.

[13] Mantas Mikaitis. Stochastic rounding: Algorithms and hardware acceler-
ator. In IJCNN, pages 1±6. IEEE, 2021.

[14] Taesik Na et al. On-chip training of recurrent neural networks with limited
numerical precision. In IJCNN, pages 3716±3723. IEEE, 2017.

[15] Marc Ortiz et al. Low-precision floating-point schemes for neural network
training. arXiv preprint arXiv:1804.05267, 2018.

[16] Marc Ortiz et al. Low-precision floating-point schemes for neural network
training. CoRR, abs/1804.05267, 2018.

[17] Alex Wang et al. Glue: A multi-task benchmark and analysis platform
for natural language understanding. In EMNLP Workshop, 2018.

[18] Naigang Wang et al. Training deep neural networks with 8-bit floating
point numbers. NIPS, 31, 2018.

[19] Thomas Wolf et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771, 2019.

[20] Shuang Wu et al. Training and inference with integers in deep neural
networks. arXiv preprint arXiv:1802.04680, 2018.

[21] Xilinx. Vitis unified software platform. https://docs.xilinx.com/v/u/2020.
1-English/ug1393-vitis-application-acceleration, 2021. Last accessed
November 17, 2021.

[22] Yukuan Yang et al. Training high-performance and large-scale deep neural
networks with full 8-bit integers. Neural Networks, 125:70±82, 2020.

[23] Kang Zhao et al. Distribution adaptive int8 quantization for training cnns.
In Proceedings of AAAI, 2021.

[24] Shuchang Zhou et al. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. arXiv preprint

arXiv:1606.06160, 2016.
[25] Feng Zhu et al. Towards unified int8 training for convolutional neural

network. In Proceedings of CVPR, pages 1969±1979, 2020.

