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Abstract

Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely-
used frameworks for solving imaging inverse problems by computing fixed-points
of operators combining physical measurement models and learned image priors.
While traditional PnP/RED formulations have focused on priors specified using
image denoisers, there is a growing interest in learning PnP/RED priors that are
end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has
enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly
differentiating through the fixed-point equations without storing intermediate acti-
vation values. However, the dependence of the computational/memory complexity
of the measurement models in PnP/RED on the total number of measurements
leaves DEQ impractical for many imaging applications. We propose ODER as
a new strategy for improving the efficiency of DEQ through stochastic approx-
imations of the measurement models. We theoretically analyze ODER giving
insights into its ability to approximate the traditional DEQ approach for solving
inverse problems. Our numerical results suggest the potential improvements in
training/testing complexity due to ODER on three distinct imaging applications.

1 Introduction

There has been considerable recent interest in using deep learning (DL) in the context of imaging
inverse problems [1–8]. Instead of explicitly defining a regularizer, the traditional DL approach is
based on training a convolutional neural network (CNN) architecture, such as U-Net [9], to invert the
measurement operator by exploiting the natural redundancies in the imaging data [10–14]. Plug-and-
Play Priors (PnP) [15] and Regularization by Denoising (RED) [16] are two well-known alternative
approaches to the traditional DL that enable the integration of pre-trained CNN denoisers, such as
DnCNN [17] or DRUNet [18], as image priors within iterative algorithms. When equipped with
advanced CNN denoisers, PnP/RED provide excellent performance by exploiting both the implicit
prior, characterized by a denoiser, and the measurement model [19–27]. Deep Unfolding (DU) is a
related approach that interprets the iterations of an image recovery algorithm as layers of a neural
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network and trains it end-to-end in a supervised fashion. Unlike in PnP/RED, the CNN in DU is
trained jointly with the measurement model, leading to an image prior optimized for a given inverse
problem [28–34]. DU architectures, however, are usually limited to a small number of unfolded
iterations due to the high computational and memory complexity of training.

Recent work on Neural ODEs [35–37] and Deep Equilibrium Models (DEQ) [38–43] has shown
the potential benefits of implicit neural networks in a number of DL tasks. For example, DEQ was
recently used to train CNN priors within PnP/RED iterations by differentiating through the fixed
points of the corresponding iterations [40]. Training PnP/RED using DEQ is equivalent to training
an infinite depth feedforward network integrating a physical measurement model and CNN prior.
However, the training of such networks can still be a significant computational and memory challenge
in applications that require processing of a large number of sensor measurements. Specifically, the
data-consistency layers in [40] are based on batch processing, which means that the entire set of
measurements is processed at each layer. While this type of batch data processing is known to be
suboptimal in traditional large-scale optimization [44–48], the issue has never been considered in the
context of training of implicit networks such as those specified via PnP/RED iterations.

This paper addresses this issue by proposing Online Deep Equilibrium RED (ODER) as the first
DEQ framework for inverse problems that adopts stochastic processing of measurements within
an implicit neural network. We argue that the proposed online approach can improve training
and testing efficiency compared to its batch counterpart in a number of applications where the
number of measurements is large. ODER can be implemented using the fixed-point iterations of
RED by introducing stochastic approximations to the corresponding forward and backward DEQ
passes. The CNN prior within ODER is trained end-to-end to remove artifacts due to the imaging
system and stochastic processing. Our theoretical analysis provides explicit error bounds on the
training accuracy of implicit online neural networks used in ODER under a set of clearly specified
assumptions. We show the practical relevance of ODER by solving inverse problems in intensity
diffraction tomography (IDT) [26, 49], sparse-view computed tomography (CT) [50] and accelerated
parallel magnetic resonance imaging (MRI) [51,52]. Our numerical results show the ability of ODER
to match the imaging quality of the batch DEQ learning at a fraction of complexity. Our work thus
addresses an important gap in the current literature on PnP/RED, DU, and DEQ by providing an
efficient framework applicable to a wide variety of imaging inverse problems.

All proofs and some technical details that have been omitted for space appear in the appendix, which
also provides more background and simulations. The code for our numerical evaluation is available
at: https://github.com/wustl-cig/ODER.

2 Background

Inverse problems. Many imaging problems—such as IDT, CT, and MRI—can be formulated as an
inverse problem involving the recovery of an image x⇤ 2 Rn from noisy measurements y = Ax⇤+e,
where A 2 Rm⇥n is the measurement operator and e 2 Rm is the noise. A common approach to
estimate x⇤ is to solve an optimization problem

bx = argmin
x2Rn

{g(x) + h(x)} , (1)

where g is a data-fidelity term that quantifies consistency with the observed data y and h is a
regularizer that encodes prior knowledge on x. A widely-used data-fidelity term and regularizer in
inverse problems are g(x) = 1

2ky �Axk2
2 and the total variation (TV) function h(x) = ⌧kDxk1,

where D is the gradient operator and ⌧ > 0 is the regularization parameter [53–55].

PnP, RED, and DU. PnP [15, 20] and RED [16] are two related classes of iterative algorithms that
use additive white Gaussian noise (AWGN) denoisers, such as BM3D [56] or DnCNN [17], as priors
for inverse problems (see the recent review [57]). Since for general denoisers PnP/RED do not solve
an optimization problem [23], it is common to interpret PnP/RED as fixed-point iterations of some
high-dimensional operators. For example, given a denoiser D✓ : Rn ! Rn parameterized by a CNN
with weights ✓, the steepest descent variant of RED (SD-RED) [16] can be written as

xk = T✓(x
k�1) = xk�1 � �G✓(x

k�1) with G✓(x) := rg(x) + ⌧(x� D✓(x)) , (2)
where g is the data-fidelity term, and �, ⌧ > 0 are the step size and the regularization parameters,
respectively. SD-RED thus seeks to compute a fixed-point x 2 Rn of the operator T

x 2 Fix(T✓) := {x 2 Rn : T✓(x) = x} , G✓(x) = rg(x) + ⌧(x� D✓(x)) = 0 , (3)
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The solutions of (3) balance the requirements to be both data-consistent (via rg) and noise-free
(via (I� D✓)), which can be intuitively interpreted as finding an equilibrium between the physical
measurement model and learned prior model. Remarkably, this heuristic of using denoisers not
necessarily associated with any h within an iterative algorithm exhibited great empirical success [25,
27, 58–66] and spurred a great deal of theoretical work on PnP/RED [19, 22–24, 67–74]. It is worth
mentioning that there has been considerable effort in reducing the test-time computational/memory
complexity of PnP/RED by designing online and stochastic PnP/RED algorithms [26, 68, 72, 75].

DU (also known as algorithm unrolling) is a DL paradigm that has gained popularity due to its ability
to systematically connect iterative algorithms and deep neural network architectures (see reviews
in [3, 76]). Many PnP/RED algorithms have been turned into DU architectures by parameterizing
the operator D✓ as a CNN with weights ✓, truncating the PnP/RED algorithm to a fixed number of
iterations, and training the corresponding architecture end-to-end in a supervised fashion. Recent
work has explored strategies for reducing the memory and computational complexity of training DU
architectures [77, 78], However, a key bottleneck in DU training is the necessity to store the interme-
diate activation values required for computing the backpropagation updates, which fundamentally
limits the number of unfolding layers one can practically use in large-scale applications.

DEQ. DEQ [38] is a recent method for training infinite-depth, weight-tied feedforward networks by
analytically backpropagating through the fixed points using implicit differentiation. The DEQ output
is specified implicitly as a fixed point of an operator T✓ parameterized by weights ✓

x = T✓(x) . (4)

The DEQ forward pass estimates x in (4) by either running a fixed-point iteration or using an
optimization algorithm. The DEQ backward pass produces gradients with respect to ✓ by implicitly
differentiating through the fixed points without the knowledge of how they are estimated

`(✓) =
1

2
kx(✓)� x⇤k2

2 ) r`(✓) = (r✓T✓(x))
T (I�rxT✓(x))

�T (x� x⇤), (5)

where ` is the loss function, x⇤ is the training label, and I is the identity mapping. The vector product
with the inverse-Jacobian in (5) can be approximated by solving the following fixed-point equation

b := (I�rxT✓(x))
�T (x� x⇤) ) b = (rxT✓(x))

T b+ (x� x⇤) . (6)

Recent work has also explored Jacobian-free DEQ by replacing the inverse-Jacobian with an identity
mapping I, leading to a faster training [42].

The comparison of equations (2), (3), and (4) highlights an elegant connection between PnP/RED and
DEQ. This connection was explored in the recent work [40] by using DEQ for learning the weights
of the CNN prior D✓ end-to-end within PnP/RED iterations. Within the framework of [40], PnP/RED
is used for the forward pass and a backward pass is obtained by using (6) on the PnP/RED operators.
Specifically, the CNN prior in SD-RED can be trained by running the backward pass using T✓ in (2)

bk = F(bk�1) = (rxT✓(x))
T bk�1 + (x� x⇤). (7)

This work makes several new contributions to the existing literature on PnP/RED, DU, and DEQ.
The focus is on efficient training of implicit networks by approximating T✓ in (4) with a “simpler”
operator bT✓ . Following [40], we focus on inverse problems by using PnP/RED operators of form (2)
that integrate the physical measurement models and learned CNN priors. We give algorithmic,
theoretical, and numerical results that ODER leads to significant memory/computational gains, while
preserving the performance of the original DEQ approach [40]. It is worth noting that the results here
have the potential to generalize to many other implicit networks beyond those specified via PnP/RED.

3 Online Deep Equilibrium Method

We consider inverse problems where the data-fidelity term g can be expressed as

g(x) =
1

b

bX

i=1

gi(x), (8)

where each gi depends only on the subset yi 2 Rmi of the full measurements y 2 Rm as

Rm = Rm1 ⇥ Rm2 ⇥ · · ·⇥ Rmb with m = m1 +m2 + · · ·+mb .
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We are primarily interested in scenarios where the memory/computational complexity of the gradient
rg is proportional to b. Thus, when b ! 1, the memory and computational complexity of traditional
DEQ to train the CNN prior within the batch PnP/RED algorithms becomes impractical.

To decouple the computational/memory complexity of DEQ from b, we adopt online processing of
measurements, where g is approximated using a minibatch of w ⌧ b measurements

bg(x) = 1

w

wX

s=1

gis(x) ) rbg(x) = 1

w

wX

s=1

rgis(x) ) Hbg(x) = 1

w

wX

s=1

Hgis(x) , (9)

where {i1, . . . , iw} are i.i.d random variables selected uniformly from the set {1, . . . , b}. Note
that (9) directly implies the unbiasedness of the online gradient E [rbg(x)] = rg(x) and Hessian
E [Hbg(x)] = Hg(x) with the expectations taken over the random indices {i1, . . . , iw}.

3.1 ODER Learning

ODER seeks to minimize the MSE loss over p � 1 training samples

`(✓) =
1

p

pX

j=1

`j(✓) with `j(✓) =
1

2
kxj(✓)� x⇤

jk2
2 , (10)

using approximate gradients rˆ̀
j(✓) computed via the online forward and backward passes that are

independent of b (see Sections 3.2 and 3.3). Here, ✓ denotes the weights of the CNN prior, x⇤
j is

the jth training label, and xj(✓) is the fixed-point of the full-batch SD-RED algorithm (3). ODER
can be trained using any gradient-based optimizer, such as the stochastic gradient descent (SGD).
At training iteration t � 1 we generate two sets of independent random variables. First, the index
jt is selected uniformly at random from {1, . . . , p}, then online forward and backward passes are
computed using the measurement models in (9). We can thus express the SGD update rule for ODER
as follows

✓t+1 = ✓t � �rˆ̀
jt(✓

t) with rˆ̀
jt(✓

t) =
h
r✓

bT✓t(xK
jt )

iT
bKjt , (11)

where � > 0 is the SGD learning rate, xK
jt and bKjt are the final iterates of the ODER online forward

and backward passes at the training index jt after K � 1 iterations.

3.2 Online Forward Pass

The forward-pass of ODER is performed as follows

xk = bT✓(x
k�1) = xk�1 � �(rbg(xk�1) + ⌧R✓(x

k�1)), k = 1, 2, . . . ,K, (12)

where R✓ = I � D✓ is the residual of the CNN prior D✓. The residual R✓ takes artifact-corrupted
images at the input and produces the corresponding artifacts at the output. Note how the ODER
forward-pass is independent of b since it uses a minibatch approximation rbg in (9).

It is worth mentioning that when considered separately from ODER, the forward pass corresponds to
the existing online RED algorithm [26,79]. The contribution of this work is thus not the forward pass,
but its integration into the training of an implicit online neural network, resulting in a more scalable
and flexible DEQ framework for inverse problems.

3.3 Online Backward Pass

The backward pass of ODER for the MSE loss is performed as follows

bk = bF(bk�1) =
h
rx

bT✓

�
xK

�iT
bk�1 + (xK � x⇤), k = 1, 2, . . . ,K, (13)

starting from b0 = 0, where xK is the final iterate of the forward pass (12) at iteration K � 1.
In both traditional and online backward passes, conventional auto-differentiation tools enable the
computation of the Jacobian-vector products in (7) and (13). However, the key difference is that the
computational complexity of ODER does not depend on the total number of measurements b.
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4 Theoretical Analysis

Our main theoretical result in this section relies on a set of explicit assumptions and two propositions
analyzing the online forward and backward passes. All the proofs will be provided in the supplement.
Assumption 1. Each gi is twice continuously differentiable and convex. There exists � > 0 such that
each gradient rgi and Hessian Hgi are �-Lipschitz continuous.

The fact that g is twice continuously differentiable is needed for the backward pass. The assumption
that all the Lipschitz constants are the same is only needed to streamline mathematical exposition.
Assumption 2. D✓(x) is continuously differentiable with respect to ✓ and x. There exists ↵ > 0 such
that D✓(x), rxD✓(x), and r✓D✓(x) are ↵-Lipschitz continuous with respect to ✓ and x. Finally,
we also assume that D✓ is a contraction, which means that there exists  < 1 such that

kD✓(z)� D✓(y)k2  kz � yk2, 8z,y 2 Rn.

Since D✓ is a CNN, its differentiability is a standard assumption. The contractive D✓ and convex g,
ensure that T✓ is a contraction, enabling provable convergence of the forward and backward passes.
The design of contractive T✓ is a common PnP/RED strategy to ensure convergence [24, 40, 72].

Assumption 3. There exists R > 0 such that for all x 2 Fix(T) and b 2 Fix(F), we have
kxk � xk2  R and kbk � bk2  R for all k 2 {1, . . . ,K}.

The existence of the bound R is reasonable, as many images have bounded pixel values. Similarly,
the bound on bk is also reasonable for ensuring bounded DEQ gradients.
Assumption 4. There exists ⌫ > 0 such that for all x 2 Rn, we have

E
⇥
krg(x)�rbg(x)k2

2

⇤
 ⌫2

w
and E

⇥
kHg(x)� Hbg(x)k2

2

⇤
 ⌫2

w
,

where the expectations are taken over {i1, . . . , iw}.

The variance bounds are standard in stochastic algorithms. The variance bounds on the gradient and
Hessian approximations are thus reasonable in this context. The decrease of the bounds for higher
values of w is natural since bg is an unbiased estimator of g obtained averaging w independent terms.
Proposition 1. Run the forward pass of ODER for k � 1 iterations under Assumptions 1-4 using the
step size 0 < � < 1/(�+ ⌧). Then, the sequence of forward pass iterates satisfies

E
⇥
kxk � xk2

⇤
 ⌘kR+

�⌫

(1� ⌘)
p
w
, (14)

for some constant 0 < ⌘ < 1 where x 2 Fix(T).

Proposition 1 is a variation on the convergence results for online RED/PnP [26, 68, 72, 75], showing
that the forward pass converges to x 2 Fix(T) up to an error term that can be controlled via � and w.
Proposition 2. Run the backward pass of ODER for k � 1 iterations under Assumptions 1-4 from
b0 = 0 using the step-size 0 < � < 1/(�+ ⌧). Then, the sequence of backward pass iterates satisfies

E
⇥
kbk � bk2

⇤
 B1⌘

k +
B2p
w
, (15)

where 0 < ⌘ < 1, B1 > 0 and B2 > 0 are constants independent of k and w, and b 2 Fix(F).

Proposition 2 shows that the online backward pass in expectation converges to b up to an error term
that can be controlled via w. The complete expressions for constants B1 and B2 are in the proof.
Assumption 5. Function ` has a global minimizer ✓⇤ and has a L-Lipschitz continuous gradient,
which means that for all ✓,�, we have kr`(✓)�r`(�)k2  Lk✓ � �k2.
Assumption 6. The loss function in (10) and indices {jt} in (11) are such that

E [r`jt(✓)] = r`(✓) and E
⇥
kr`jt(✓)�r`(✓)k2

2

⇤
 �2,

where the expectations are taken with respect to the random index uniformly as jt 2 {1, . . . , p}.
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The existence of a minimizer and the Lipschitz continuity of the loss gradient are standard assumptions
in the literature [47,80,81]. Note that we do not assume that the training loss ` is convex. Assumption 6
is the standard assumption used in the analysis of SGD. We are now ready to state the main result.
Main Theorem. Train ODER using SGD for T � 1 iterations under Assumptions 1-6 using the
step-size parameters 0 < �  1/L and the minibatch size w � 1. Select a large enough number of
forward and backward pass iterations K � 1 to satisfy 0 < ⌘K  1/

p
w. Then, we have that

1

T

T�1X

t=0

E
⇥
kr`(✓t)k2

2

⇤
 2(`(✓0)� `(✓⇤))

�T
+

C1p
w

+ �C2 .

where C1 > 0 and C2 > 0 are constants independent of T and w.

The expressions for constants C1 and C2 are in the proof. The theorem provides an explicit error
bound on the iterates generated using (11) to approximate the stationary points of the desired loss (10).
The error terms in the bound depend on the training step-size � and the minibatch size w, both of
which can be controlled during training. It is worth mentioning that our theoretical analysis of ODER
is the first result in the literature that provides explicit bounds on learning implicit online networks.

5 Numerical Evaluation

We numerically validate ODER in the context of three computational imaging modalities: IDT,
sparse-view CT, and parallel MRI. Our goal is to both (a) empirically evaluate the performance of
ODER and (b) highlight its effectiveness for processing a large number of measurements. We adopt
`2-norm loss g(x) = 1

2ky �Axk2
2 as the data-fidelity term for all three imaging modalities.

ODER is compatible with any CNN architecture used to implement D✓ . We use a tiny U-Net architec-
ture [78] for ODER and the traditional RED (DEQ) [40]. We have added spectral normalization [82]
to all the layers of CNN for stability (see the supplement for the numerical evaluation of the contrac-
tiveness of T✓ on all three modalities). Similar to [40], the CNN prior of ODER and RED (DEQ) are
initialized using pre-trained denoisers. During the training of both ODER and RED (DEQ), we use
the Nesterov acceleration [80] for the forward pass and Anderson acceleration [83] for the backward
pass. We also adopt the stopping criterion from [40,84] by setting residual tolerance to 10�3 for both
forward and backward iterations (see supplement for additional details).

For reference we include several other well-known baseline methods, including TV [53], U-Net [9]
and ISTA-Net+ [28]. We also include the unfolded RED (Unfold) [78] and the traditional RED
(Denoising) [16] to illustrate the improvements due to DEQ. TV is an iterative method that does
not require training, while other methods are all DL-based with publicly available implementations.
We use the U-Net architecture in [9] as the AWGN denoiser for RED, while we use the same tiny
U-Net for RED (Unfold) as in RED (DEQ). For each imaging modality, we trained the denoiser in
RED (Denoising) for AWGN removal at five noise levels corresponding to � 2{2, 5, 7, 10, 15}. For
each experiment, we select the denoiser achieving the highest SNR. In all the experiments, we train
ODER and RED (DEQ) using the same training strategy and parameter initialization settings. We use
fminbound in the scipy.optimize toolbox to identify the optimal regularization parameters for
TV, RED (Denoising), ODER and RED (DEQ) at the inference time.

5.1 Image Reconstruction in IDT

IDT [49] is a data intensive computational imaging modality that seeks to recover the spatial
distribution of the complex-valued permittivity contrast of an object given a set of its intensity-only
measurements. Specifically, A consists of a set of b complex measurement operators [A1, . . . ,Ab]T,
where each Ai is a convolution corresponding to the ith measurement yi. In the simulation, we
randomly extracted and cropped 400 slices of 416⇥416 images for training, 28 images for validation
and 56 images for testing from Brecahad database [85]. Following the setup in [26, 49], we generated
b = 500 intensity measurements under AWGN corresponding to {15, 20, 25} dB of input SNR.
ODER and RED (DEQ) were trained at the noise level corresponding to 20 dB input SNR. In our
comparisons, we also included the recent SGD-Net [78] method that corresponds to RED (Unfold),
but uses stochastic data-consistency layers similar to ODER. SGD-Net allows for more unfolded
iteration blocks by improving the usage of limited GPU memory. Both ODER and RED (DEQ) were
trained using SGD, while all other methods were trained using Adam [86].
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Figure 1: Quantitative evaluation of ODER on IDT for two minibatch sizes w 2 {100, 250} used at
each step of the network against RED (DEQ) using the full batch of b = 500 measurements. The left
figure plots the loss against time in hours for different values of w evaluated on the training set. The
middle and right figures plot the corresponding SNR against time and the amount of time required to
reach a certain epoch for different values of w. By using minibatches 1  w  b, ODER can achieve
nearly 2.5⇥ improvement in training time over RED (DEQ) for a similar final imaging quality.
Table 1: IDT image recovery for different input SNR (dB) values on images from [85]. We also
present model size and per-iteration memory usage for the measurements, and average test-times.

Method
Input SNR (dB) Size Time

15 20 25 Model Meas. CPU GPU

TV 38.34 38.77 38.85 —– 3.56 GB 215.3s 32.24s
U-Net 38.35 38.89 39.02 118.2 MB —– 2.811s 0.089s
ISTA-Net+ 38.37 38.94 39.27 1.21 MB 3.56 GB 7.081s 0.216s
SGD-Net (100) 39.62 40.26 40.47 29.7 MB 0.71GB 6.697s 0.207s
RED (Denoising) 39.52 40.04 40.41 118.2 MB 3.56 GB 285.5s 7.528s
ODER (100) 40.28 41.42 41.94 29.7 MB 0.71 GB 63.31s 2.051s
ODER (250) 40.57 41.50 41.96 29.7 MB 1.76 GB 118.7s 3.628s
RED (DEQ) 40.54 41.51 41.95 29.7 MB 3.56 GB 202.3s 6.362s

Fig. 1 compares the average loss and SNR achieved by RED (DEQ) with (b = 500) and ODER with
w 2 {100, 250} during training. It took 67.49 hours to train RED (DEQ) for 180 epochs. It took
24.76 and 39.23 hours to train ODER with (w = 100) and (w = 250), respectively, for the same
number epochs. Table 1 provides the final SNR achieved by ODER and several baseline methods on
the test data. The runtime in the table corresponds to the average inference time that excludes the
model loading. ODER with (w = 100) is around 3⇥ faster than RED (DEQ) on both GPU and CPU.
Fig. 2 (left) highlights the faster convergence of ODER compared to RED (DEQ) to the similar SNR.

ODER is memory efficient due to its online processing of measurements. The memory considerations
in IDT include the size of all the variables related to the desired image x, the measured data yi, and
the variables related to the measurement operator {Ai}. ODER addresses the problem of storing and
processing the measurements and the measurement operators on the GPU during end-to-end training.
Table 1 shows the total memory (GB) used by ODER and RED (DEQ) for reconstructing a 416⇥ 416
pixel permittivity image. While RED (DEQ) requires 3.56 GB of GPU memory in every iteration,
ODER with w = 100 requires only 0.71 GB, which is about 20% of the full volume.

5.2 Image Reconstruction in Sparse-View CT

We consider simulated data obtained from the clinically realistic CT images provided by Mayo
Clinic for the low dose CT grand challenge [87]. Specifically, 2070 2D slices of size 512 ⇥ 512
corresponding to 7 patients were used to train the models. The test images correspond to 55 slices
randomly selected from another patient. We implement the measurement operator A and its adjoint
AT with PyTorch implementation of Radon and IRadon 2 transform. We assume that the CT machine
is designed to project from nominal angles with b 2 {90, 120, 180} projection views that are evenly-
distributed on a half circle and 724 detector pixels. We add Gaussian noise to the sinograms to
make the input SNR equal to 50 dB. We empirically found that using Adam [86] is around 2⇥ faster
than applying SGD when training both ODER and RED (DEQ). We thus trained all learning-based

2The code is publicly available at https://github.com/phernst/pytorch_radon
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Figure 2: Illustration of the convergence speed of ODER, RED (DEQ) and RED (Denoising) for
three imaging applications. Left: IDT with the full batch of b = 500 measurements under 25 dB
input SNR. Middle: Sparse-view CT with b = 180 projection views. Right: Parallel MRI at 20%
sampling with b = 96 simulated coil sensitivity maps. ODER achieves 1.4⇥ ⇠ 3⇥ speedup over
RED (DEQ) at inference time without significant degradation in accuracy across three problems.

Table 2: Sparse-view CT image recovery in terms of SNR (dB) and SSIM on test images from [87].
The last two columns provide the average test-times for a 512⇥ 512 image using 180 views.

Method
Projection Views Time

90 120 180 CPU GPU

TV 29.44 0.9688 30.27 0.9731 31.33 0.9771 768.1s 15.61s
U-Net 33.05 0.9741 34.02 0.9790 35.11 0.9815 4.014s 0.056s
ISTA-Net+ 32.15 0.9706 33.38 0.9755 34.83 0.9812 37.38s 0.344s
RED (Unfold) 33.97 0.9753 35.01 0.9824 35.78 0.9835 29.93s 0.256s
RED (Denoising) 32.64 0.9708 33.60 0.9789 34.83 0.9807 498.5s 5.549s
ODER 34.40 0.9824 35.12 0.9841 35.91 0.9859 334.1s 3.113s
RED (DEQ) 34.61 0.9826 35.26 0.9845 35.95 0.9861 616.1s 5.466s

methods using Adam. Table 2 reports the average SNR and SSIM results for ODER with (w/b) of
{30/90, 40/120, 50/180} and all baselines. Fig. 2 (middle) reports the convergence speed of ODER
with (w = 50) for sparse-view CT with full batch (b = 180) views. The visual comparisons are in
Fig. 3 (bottom). Note how ODER matches the performance of RED (DEQ) and outperforms RED
(Denoising) and RED (Unfold) across different projection views.

5.3 Image Reconstruction in Accelerated Parallel MRI

We simulated a multi-coil CS-MRI setup using radial Fourier sampling [88, 89]. The measurement
operator A thus consists of a set of b complex measurement operators depending on a set of receiver
coils {Si} [90]. For each coil, we have Ai = PFSi, where P is the diagonal sampling matrix, F
is the Fourier transform, and Si is the diagonal matrix of sensitivity maps. ODER is evaluated on
two brain MRI datasets. The first dataset [28] provides 800 slices of 256⇥ 256 images for training
and 50 slices for testing. The second dataset [91] contains a randomly selected 400 volumes of
320⇥ 320⇥ 10 images for training, and 32 volumes for testing. We synthesized the total number of
(b = 96) 2D/3D coil sensitivity maps using the SigPy [92] for each dataset, respectively. Since all
the CNNs in our numerical study are 2D, we apply them slice-by-slice when forming 3D volumes
(all slices are passed in parallel using batch processing). We trained all learning-based methods using
Adam. Fig. 2 (right) reports the convergence speed of ODER for CS-MRI at 20% sampling. Table 3
reports the average SNR and SSIM values for ODER with (w = 48) and all baseline methods. The
visual comparison can be found in Fig. 3 (top) at 10% sampling.

6 Conclusion and Future Work

This work proposes ODER as a new online DEQ learning method for RED, analyzes its theoretical
properties in terms of convergence and accuracy, and applies it to three widely-used imaging inverse
problems. ODER extends the recent DEQ approach in [40] by introducing randomized processing of
measurements. Our extensive theoretical and numerical results corroborate the potential of ODER
to reduce the computational/memory complexity of training and testing, while achieving similar
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Visual

29.81 32.08 33.10 34.11 34.31

Ground truth TV RED (Denoising) ODER (48/96) RED (DEQ)RED (Unfold)
20.88 22.91 23.19 23.81 23.8323.81 23.83
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Ground truth Back propagation SGD-Net (100/500) ODER (100/500) RED (DEQ)

Ground truth TV RED (Denoising) ODER (250/500) RED (DEQ)

0

0.07

0

0.07

38.67/0.975838.67/0.9758 39.23/0.985639.23/0.9856 40.61/0.988040.61/0.9880 40.63/0.988140.63/0.9881

15.32/0.773915.32/0.7739 38.93/0.975438.93/0.9754 40.14/0.982140.14/0.9821 40.42/0.983340.42/0.9833

Figure 3: Visual evaluation of several well-known methods on two imaging problems: (top) Re-
construction of a brain image from its radial Fourier measurements at 10% sampling with b = 96
simulated coil sensitivity maps; (bottom) Reconstruction of a body CT image from b = 90 projection
views. Note the similar performance of ODER and RED (DEQ), and the improvement over RED
(Denoising) /RED (Unfold) due to the usage of DEQ learning. Best viewed by zooming in the display.

Table 3: Average SNR (dB), SSIM, and running times for several methods on MRI images. The last
two columns provide the average test-times for a 320⇥ 320 image using 96 simulated coils.

Method
MRI Set1 [28] MRI Set2 [91] Time

10% 20% 10% CPU GPU

TV 20.88 0.9059 24.87 0.9445 24.84 0.9674 122.2s 7.591s
U-Net 23.07 0.9329 26.42 0.9562 26.04 0.9712 0.683s 0.011s
ISTA-Net+ 22.95 0.9298 26.31 0.9546 25.82 0.9693 8.993s 0.264s
RED (Unfold) 23.37 0.9363 26.81 0.9591 26.37 0.9744 8.744s 0.231s
RED (Denoising) 23.29 0.9352 26.85 0.9598 26.42 0.9748 272.4s 7.511s
ODER 24.08 0.9442 27.22 0.9649 27.03 0.9783 120.0s 3.005s
RED (DEQ) 24.10 0.9451 27.41 0.9660 27.10 0.9789 166.9s 4.577s

imaging quality as RED (DEQ). The future work can explore to further improve our analysis and
design distributed variants of ODER to enhance its performance on parallel computing architectures.

7 Broader Impact

This work is expected to impact the area of imaging inverse problems with potential applications
to computational microscopy, medical imaging, and image restoration. There is a growing need
in imaging to deal with noisy and incomplete measurements by integrating multiple information
sources, including physical sensor models and learned priors characterizing the properties of the
desired image. The ability to accurately solve inverse problems might lead to new imaging tools for
diagnosing health conditions, understanding biological processes, or inferring properties of complex
materials. Learning based methods, including PnP/RED and ODER, have the potential to enable new
technological capabilities; yet, they also come with a downside of being more complex, requiring
high-levels of technical sophistication from potential users. While we aim to use our method to enable
positive contributions to humanity, one can also imagine nonethical usage of imaging technology.
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