
STRAIN-LEVEL IDENTIFICATION AND ANALYSIS OF AVIAN CORONAVIRUS USING
RAMAN SPECTROSCOPY AND INTERPRETABLE MACHINE LEARNING

Peng Jin1 Yin-Ting Yeh2 Jiarong Ye1 Ziyang Wang3 Yuan Xue4 Na Zhang2 Shengxi Huang3

Elodie Ghedin5 Huaguang Lu6 Anthony Schmitt6 Sharon X. Huang1 Mauricio Terrones2

1College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA
2Department of Physics, The Pennsylvania State University, University Park, PA, USA

3Department of Electrical and Computer Engineering, Rice University, TX, USA
4Department of Electrical and Computer Engineering, Johns Hopkins University, MD, USA

5Systems Genomics Section, National Institute of Allergy and Infectious Diseases, NIH, MD, USA
6Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA

ABSTRACT

Strain-level identification of viruses is important for decision
making in public health management. Recently, Raman spec-
troscopy has attained great attention in virus identification
since it enables rapid and label-free analysis. In this paper, we
present an interpretable machine learning approach for strain-
level identification of avian coronaviruses based on Raman
spectra. Specifically, we design a spectral transformer to clas-
sify the Raman spectra of 32 avian coronavirus strains. After
training, relevance maps can be generated through gradient
and relevance propagation to further understand the contribu-
tion of each wavenumber to the identification. Experimen-
tal results show that the proposed method outperforms sev-
eral machine learning and deep learning baseline models, and
achieves 72.72% accuracy in the 32-class identification prob-
lem. The relevance maps generated reveal some wavenumber
ranges that are important for the identification of almost all
strains, and these ranges correlate with Raman peak ranges
for lipids, nucleic acids, and proteins.

Index Terms— Virus Identification, Raman Spectroscopy,
Interpretable Machine Learning

1. INTRODUCTION

Viruses can evolve and spread rapidly, thus periodically caus-
ing disease outbreaks and threatening public health, such as
the Ebola outbreaks [1], the ongoing COVID-19 pandemic [2]
and the recent Monkeypox outbreak [3]. Different strains of
a virus can lead to different levels of severity in illness. For
instance, the Monkeypox strain currently circulating outside
of Africa is less severe than the one circulating in the Congo
basin [3]. Hence, strain-level virus identification is important
for the deployment of a proper public health response [4].

Raman spectroscopy is a non-destructive, label-free tech-
nique which provides information about chemical composi-
tion and structure in samples. Its potential has been demon-
strated in various applications, such as biomarker detec-

tion [5], bacterial pathogens identification [6] and cancer
diagnosis [7]. By incorporating machine learning techniques,
Raman spectroscopy is also applied for virus identification.
However, most of the prior work focuses on the detection of
single virus strains [8, 9] or the identification of two to four
virus species [10, 11, 12]. More recently, one study explored
the identification of nine respiratory virus species, where each
contains up to two strains [13]. Another similar study also
classified nine respiratory virus species and enteroviruses, and
up to two strains are included for each species [14]. However,
it is still unclear to what extent Raman spectroscopy together
with machine learning can be used for the identification of
multiple virus strains within a species.

In this paper, we present a study to classify 32 strains
of avian coronavirus1, which is commonly named infectious
bronchitis virus (IBV) in avian diseases, using interpretable
machine learning and Raman spectroscopy. In particular,
we collected 96,802 Raman spectra and developed a spec-
tral transformer for classification as illustrated in Fig. 1.
Compared to several conventional machine learning methods
and a 1D convolutional neural network (CNN) based deep
learning baseline [15], the proposed spectral transformer
yielded the best performance in terms of all evaluation met-
rics and achieved an accuracy of 72.72%. In addition, we em-
ploy an improved Layer-wise Relevance Propagation (LRP)
method [16] for the interpretation of the spectral transformer.
A weighted attention relevance map is generated for each
IBV strain. We find there are some Raman wavenumber
ranges that are important for the identification of almost all
the strains, and those ranges correlate well with Raman peak
ranges of important biomolecules existing in viruses.

2. METHODS

In this section, we first describe the network architecture of
our spectral transformer and then discuss the details of how

1Details of the 32 IBV strains are available at https://github.
com/PengJin95/Raman_IBV
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Fig. 1. (A) Schematic illustration of Raman spectra acquisition from virus samples. Raman spectra are obtained from
virus samples enriched in gold-nanostructure-coated carbon nanotubes. (B) Example optical images of virus samples. Each
image contains one of the IBV strains. (C) Overall architecture of our interpretable spectral transformer. After training,
relevance maps can be generated by propagating the gradients of attention maps and relevance with respect to the target strain.

interpretation works.

2.1. Network Architecture

The overall network architecture is shown in Fig. 1. Inspired
by Vision Transformer [17], we first divide a 1D spectrum
x ∈ RL into a series of spectrum slices x ∈ RN×S , where
L and S are the number of wavenumbers covered in a spec-
trum and in a spectrum slice respectively, and N = ⌈L/S⌉ is
the number of slices. To ensure the spectrum is evenly sepa-
rated, we use replication padding at the end of the spectrum
when necessary. This sequence of spectrum slices is then fed
into the linear projection layer to generate slice tokens with
D dimensions. After projection, a learnable [CLASS] to-
ken is prepended to aggregate the information from all other
tokens. The order of each spectrum slice is preserved by
adding additional position embeddings to the slice embed-
dings. The resulting vectors are then fed into the conven-
tional Transformer encoder [18] which consists of multi-head
self-attention (MSA) blocks, multi-layer perceptron (MLP)
blocks, LayerNorm (LN) [19], residual connections [20] and
GELU as the activation function. At the end of the network,
an MLP head and a softmax activation is appended to the first
output vector of the transformer encoder to predict the class
label, which, in our case, corresponds to a specific IBV strain.

2.2. Interpretation with Relevance and Gradients

In computer vision, 2D heatmaps are commonly visualized to
intuitively interpret the predictions of a classifier. Similarly,
we aim to generate 1D heatmaps for spectra to highlight the

important wavenumbers that are relevant to the identification
of certain IBV strains, as shown in Fig. 1. For our spectral
transformer, one straightforward approach is to directly uti-
lize the attention maps to indicate the relevance scores. How-
ever, since our transformer contains multiple MSA blocks,
simply extracting the attention maps of a certain block can
lead to missing contribution of other blocks. Therefore,
we employ an improved Layer-wise Relevance Propagation
(LRP) method [16] which integrates the weighted attention
relevance for each MSA block.

Given a target class t, we compute the element-wise mul-
tiplication between the output of the network and the one-
hot encoding vector 1t which indicates the target class. We
can then calculate the gradients of each attention map A(b) ∈
RH×N ′×N ′

in the network with respect to the target class,
where H is the number of heads in an MSA block b, and N ′

is the number of tokens including the [CLASS] token.
For relevance propagation, we use R

(n)
j to denote the rel-

evance of the jth input tensor X
(n)
j to the layer n, where

n ∈ [1 . . .M ], and layer M represents the first layer. Ac-
cording to [16], the relevance rule can be described as

R
(n)
j =

∑
i

X
(n)
j · ∂X

(n−1)
i

∂X
(n)
j

· R
(n−1)
i

X
(n−1)
i

. (1)

R(0) is set to be the aforementioned one-hot encoding vector
1t to initialize the relevance propagation. In this way, we
can calculate the relevance of the input tensor to the softmax
layer in the MSA block b which shares the same dimension
with attention maps. We use R(nb) to denote this relevance.



By aggregating both gradients and relevance, the rele-
vance maps of the input tokens C are given by

Ā(b) = I + E(∇A(b) ⊙R(nb))+, (2)

C = Ā(1) · Ā(2) · . . . · Ā(B), (3)

where ⊙ is the element-wise product, B is the total number
of MSA blocks, E(·)+ is the average operation across MSA
heads which includes positive values only. To generate the
final relevance map that covers the same wavenumber range
as the spectrum, we take the relevance map of the [CLASS]
token and use linear interpolation for upsampling.

3. EXPERIMENTAL RESULTS

In this section, we first describe our dataset including virus
sample preparation, the spectra data acquisition process and
data preprocessing. We then present the experiment results of
our identification and interpretation.

3.1. Dataset Description

Virus sample preparation: Each IBV strain was propagated
in specific-pathogen-free (SPF) embryonating chicken eggs
(ECE). A stock reference IBV strain or field isolate was pre-
pared at a 1:5 dilution with viral transport medium (VTM)
and then was inoculated into 9-to-11-day-old ECE via the
chorioallantoic cavity route, 0.2 ml per egg, 3-5 eggs per sam-
ple. Chorioallantoic fluid (CAF) was harvested after a 48-72
hrs incubation in a 37 °C egg incubator. The CAF was tested
for the presence of IBV by RT-PCR test.
Spectra data acquisition: Raman spectra were recorded
by Raman microscopy (Horiba XploRA Plus Raman mi-
croscopy) using 532 nm lasers for 30 seconds under 50X
magnification with 10 µW laser power. A total of 96,802
Raman spectra across 32 IBV strains were collected in our
dataset. The wavenumber of each spectrum ranges from 600
cm−1 to 1600 cm−1.
Data preprocessing: We first applied a median filter with
window size 9 to remove the spike noise in the spectra. We
then adopted asymmetric least squares (ALS) smoothing for
baseline correction. Machine learning models may leverage
the baseline bias from fluorescence and other sources for virus
identification, which is not the expected behavior. Therefore,
we used ALS to estimate a polynomial baseline and remove
it from the spectra. After baseline correction, the intensity of
each spectrum was normalized to [0, 1].

3.2. Implementation Details

Training Details: We selected 80% of the spectra for training
and 20% for testing. Stratified sampling was used for split-
ting so that the percentage of the spectra in each strain was
preserved for both the training set and the test set. We ap-
plied 5-fold cross validation for hyperparameter tuning. We

Model Accuracy AUC Sensitivity Specificity
Logistic

Regression
63.37 96.95 61.19 98.80

Random
Forest

63.81 97.24 59.80 98.81

XGBoost 63.33 97.49 60.17 98.79
1D-CNN [15] 70.45 98.56 68.64 99.04

Spectral
Transformer

72.72 98.83 72.34 99.11

Table 1. Classification performance averaged across the
32 IBV strains (except the overall accuracy). Our proposed
spectral transformer outperforms the conventional machine
learning methods in terms of all metrics.

eventually selected the model with 6 layers of MSA blocks,
and each block consists of 6 headers with 64 hidden size and
1024 MLP size. Each spectrum slice size is 5. To train our
spectral transformer, we employed the Adam [21] optimizer
with momentum parameters β1 = 0.9, β2 = 0.999 and a
weight decay of 1 × 10−4. The initial learning rate was set
to 0.001, and the learning rate was decayed by a factor of 0.2
every time the validation loss stops decreasing after 3 epochs.
The minimum learning rate was set to 1×10−6. The size of a
mini-batch was set to 512. The spectral transformer was im-
plemented in Pytorch and trained on a single NVIDIA RTX
3090 GPU, and the parameters were randomly initialized.
Evaluation Metrics: We considered four metrics to measure
the virus identification performance of each model, including
top-1 accuracy, area under the receiver operating character-
istic curve (AUC), sensitivity and specificity. For AUC, we
used the one-vs-rest configuration. All the metrics were aver-
aged across each strain except for the accuracy which is com-
puted as the ratio between the total number of correct predic-
tions and the total number of samples.
Comparison: We compared our spectral transformer to con-
ventional machine learning algorithms including logistic re-
gression, random forest and XGBoost [22]. We also imple-
mented a six-layer 1D CNN as the deep learning baseline,
following prior work [15].

3.3. Strain-level Virus Identification

Table 1 shows the identification performance of different
methods on all of the 32 IBV strains. Compared to the
conventional machine learning algorithms, our spectral trans-
former yielded the best results in terms of all four metrics. We
further found that for some of the strains, there exist relatively
large gaps between the performance of different models.

As illustrated in Fig. 2, the spectral transformer yielded
much higher accuracy than the conventional methods on some
strains. For instance, for both IBV1 and IBV3, the accuracy
scores given by the conventional models were all below 50%,
and the accuracy given by the 1D-CNN is also below 60%
for IBV1, while the spectral transformer yielded 75.73% ac-
curacy for IBV1 and 62.24% accuracy for IBV3. Even for



Fig. 2. Classification accuracy of six selected IBV strains
given by different models. For some strains (e.g. IBV1), the
spectral transformer yields much higher accuracy.

strains such as IBV21 and IBV23 where conventional meth-
ods achieved higher accuracy, the spectral transformer still
outperformed the baselines with 91.23% accuracy for IBV21
and 91.33% accuracy for IBV23. Overall, the spectral trans-
former yielded the highest accuracy on 26 of 32 IBV strains.
We also include the accuracy of IBV15 and IBV32 in the fig-
ure as examples of several strains where the baseline methods
performed slightly better.

3.4. Interpretation

To further understand which wavenumber the spectral trans-
former considers more important for classification, we com-
puted the relevance map for each spectra in the training set
with respect to the predicted class and generated a mean rele-
vance map for each of the 32 IBV strains as shown in Fig. 3.
We observed that there are some wavenumber ranges which
have high relevance for almost all the strains, including 650
cm−1 to 750 cm−1, 1200 cm−1 to 1300 cm−1 and 1550 cm−1

to 1600 cm−1. These wavenumber ranges have been shown
in the literature [23, 24] to correlate with Raman peak ranges
of lipids, nucleic acids, and proteins. Differences in these
biomolecules are associated to differences in virus surface
proteins and lipid bilayers.

We further compared the relevance map of the spectral
transformer with the feature importance map of XGBoost
generated using SHAP [25]. Fig 4 shows an example of
comparison on IBV1. We observed that both methods yield
relatively high importance around 1200 cm−1, 1300 cm−1

and 1600 cm−1. However, for XGBoost, the feature impor-
tance is much higher around 1600 cm−1m, while it almost
ignores the wavenumbers below 1100 cm−1. By contrast,
the spectral transformer captures some low wavenumber
ranges, especially around 700 cm−1. This may explain why
it achieved higher accuracy for IBV1 as shown in Fig. 2.

Fig. 3. Mean relevance map for each IBV strain. There are
some wavenumber ranges that are important for the identifi-
cation of almost all the strains (highlighted in blue square).

Fig. 4. Comparison between the feature importance of
XGBoost and the spectral transformer on IBV1.

4. DISCUSSION AND CONCLUSION

In this study, we introduced a spectral transformer to clas-
sify the Raman spectra of 32 IBV strains. The relevance
maps generated through gradient and relevance propagation
were used to facilitate the interpretation of the proposed spec-
tral transformer. We demonstrated through experiments that
the spectral transformer outperformed the baseline methods
and achieved 72.72% accuracy. We further highlighted the
wavenumber ranges picked by the spectral transformer that
were more important for the identification of IBV strains.

Despite the success of our proposed spectral transformer
in strain-level virus identification, there are two major limi-
tations to our study. First, for each IBV strain in our dataset,
the Raman spectra were collected from the same virus sample.
Although the spectral transformer yielded relatively accurate
classification results on our dataset, it remains unclear if it can
achieve similar performance on the Raman spectra collected
from other virus samples of the same strain. Future research
may include more samples to verify if the model is robust to
sample-specific noise. Another limitation is that the current
method is not designed to identify the virus strains that are not
included in our training set which can be a scenario in virus
identification. Therefore, transferring the current method to
the zero-shot scenario can also be a future research direction.
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