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Abstract—Hybrid storage systems are prevalent in most large-
scale enterprise storage systems since they balance storage
performance, storage capacity and cost. The goal of such systems
is to serve the majority of the I/O requests from high-performance
devices and store less frequently used data in low-performance
devices. A large data migration volume between tiers can cause
a huge overhead in practical hybrid storage systems. Therefore,
how to balance the trade-off between the migration cost and
potential performance gain is a challenging and critical issue
in hybrid storage systems. In this paper, we focused on the
data migration problem of hybrid storage systems with two
classes of storage devices. A machine learning-based migration
algorithm called K-Means assisted Support Vector Machine
(K-SVM) migration algorithm is proposed. This algorithm is
capable of more precisely classifying and efficiently migrating
data between performance and capacity tiers. Moreover, this K-
SVM migration algorithm involves a K-Means clustering algo-
rithm to dynamically select a proper training dataset such that
the proposed algorithm can significantly reduce the volume of
migrating data. Finally, the real implementation results indicate
that the ML-based algorithm reduces the migration data volume
by about 40% and achieves 70% lower latency than other
algorithms.

I. INTRODUCTION

Unprecedented and ever-increasing 3 V’s (Volume, Velocity
and Variety) of data continues to put pressure on storage
systems to find cost-effective solutions capable of delivering
peak performance for all possible workloads [1]. Recently,
different types of emerging storage devices come out [2]–[5],
which have different density and performance. For example,
flash-based Solid State Drives (SSDs) can achieve much faster
random access performance with low latency compared to
traditional Hard Disk Drives (HDDs) while HDDs are much
cheaper than SSDs. Therefore, it is not cost-effective to build a
petabyte byte (PB) storage system using only fast devices [6].
Compared with different types of emerging devices, they
can have a 100x latency difference and more than 5x price
difference. These differences have motivated storage vendors
to build two-level hybrid storage systems with different types
of storage devices.

A key characteristic of data that remains unchanged is that
data has an access life cycle (i.e., not all data are accessed at
all times by applications). The desired outcome for a hybrid
storage system is to deliver almost all the IO operations from
a high-performance tier (e.g., SSDs). To achieve this desired
outcome, data have to be moved between tiers depending on

the frequency of IO accesses (a process is referred to as data
migration). Although data migration between tiers introduces
overheads, given a 100x $/IOPS difference between SSDs and
HDDs, this also presents an opportunity to design and develop
a migration algorithm which can be cost-effective and can also
deliver peak performance as demanded by applications. Some
previous studies have investigated hybrid storage systems [7]–
[11]. They formulated the characteristics of workloads and the
properties of devices based on statistical analysis. However,
migration optimization has the complexity of NP-hard [7].
To avoid the difficulty of solving the NP-hard problem, those
researchers simplified the problem and proposed polynomial
time bound heuristic solutions. However, the simplified for-
mulas are not able to precisely express the behaviors of
workloads. As a result, the misexpression may result in a large
migration volume and decreasing the performance gain in a
hybrid storage system. Machine learning (ML) as a classifier
has been successfully used in many applications [12], [13]. It
can be a good candidate to solve the data migration problem
with less migration volume and higher performance gain. This
is because the data migration in hybrid storage systems can
be regarded as a classification issue to determine/classify data
to which storage tier they should reside.

In this paper, we focus on a hybrid storage system con-
taining two types of storage devices (e.g., SSD and HDD)
and propose a K-Means assisted Support Vector Machine
(K-SVM) migration algorithm. In this algorithm, time is
partitioned into periodical duration. In each period, the request
access patterns are collected. At the end of the current period,
a K-SVM classifier is used based on the request access patterns
of this period. Then, a classifier is used to determine which
data should be migrated to a different tier in the following
period. To increase the precision of the classifier, the K-
Means clustering algorithm is introduced to dynamically select
a proper training dataset such that the overall migration size
can be reduced. Furthermore, we investigate the influence of
different capacity ratio between two types of storage on the
performance of the migration algorithm. Finally, we conduct
the implementation of a large-scale system. We investigate the
influence of different system parameters on the performance
of the migration algorithm including the time of periodical
duration, slice size, the capacity ratio between two types of
storage and available back-end bandwidth.

The structure of the paper is as follows. Section II gives
a description of a basic SVM migration algorithm and the
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TABLE I: Terms and notations used in this paper
PT performance tier (i.e., fast device)
CT capacity tier (i.e., slow device)
C the capacity of the whole system

Slice the granularity of the unit
for data migration

Ss
indicates the slice size

(the default value is 200MB)

T
the time intervals to measure

request density

Access density the total number of IO accesses of
one slice during the period T

Ns
total number of slices in the system

(Ns = C/Ss)
NPT , numbers of slices in
NCT PT and CT, respectively

MPT , MCT

The sets of migration candidates.
MPT : the set of candidates of PT → CT ;

MCT : the set of CT → PT
Training training dataset ratio is calculated

dataset ratio by the size of training dataset divided by Ns.

rPT
the ratio between PT capacity and the

total capacity. (rPT = NPT /Ns)
PT hit the number of requests in PT divided
ratio by the total number of requests.

BW
available back-end bandwidth and is indicated

by the number of slices migrated
in one period (# of slices/T )

other baseline algorithms. The preliminary comparison results
and the issues of the basic SVM migration algorithm are
provided in Section III. Section IV proposes an K-SVM
migration algorithm. Section V shows the experimental result
comparison between K-SVM and baseline algorithms. The
results of a real large-scale implementation on a large cloud
system are provided in Section VI. Finally, the conclusion and
future work are described in Section VII.

II. BASIC SVM MIGRATION ALGORITHM

In this section, we introduce a basic support vector machine
(SVM) migration algorithm and also describe the basic steps
of classification and migration of this algorithm. After that,
some baseline algorithms are introduced as well. The terms
and notations used in this paper are defined in Table I.

A. Algorithm Description

SVM first proposed by Vapnik et al. [14] is a widely used
supervised machine learning technique. SVM became popular
because of its success in the handwritten digit recognition use
case. SVM is a two-class classifier based on the two vectors
from the training dataset. It can provide a hyperplane that
maximizes the distance between two closest vectors in each of
two classes [15]. For the hybrid storage system, the maximum
distance between two clusters built by SVM can provide
more precise classification/prediction and thus improve the
performance and reduce the migration overhead.

In this work, we use SVM to categorize storage slices (slices
are units of migration in hybrid storage systems) into two
groups based on the historical workload access patterns. After
classification, the slices will be migrated to a new location if
its current location is mismatched with the SVM classification.
The proposed SVM algorithm introduced in this section for

Algorithm 1 Basic SVM Migration Algorithm: training
Input: C, Ss, T
Output: Hyperplane-Z

1: procedure TRAINING PROCEDURE
2: Ns ← C/Ss

3: Collecting access density of Ns slices in one T period
4: Sorting NPT and NCT slices based on the access density for

PT and CT, respectively
5: Training dataset (X,Y) ← top x% ×Ns/2 slices in PT +

the least active x%×Ns/2 non-zero slices based on the sorted
access density. (default x% = 10%, so the size of training dataset
is x%×Ns)

6: Training linear SVM based on training dataset (X,Y) to
obtain a hyperplane-Z: Z = AX +B

storage migration is called a basic SVM migration algorithm
(basic-SVM) in order to distinguish from the later introduced
K-SVM migration algorithm (K-SVM).

There are two major steps in the basic SVM migration
algorithm (training the basic SVM classifier and classifying
and migrating). During each period T , the system records the
access density (the number of times being accessed) of each
slice. At the end of the period T , based on Algorithm 1 the
training dataset is selected. The training dataset is used for
building a new SVM classifier (new hyperplane). The classifier
is used for classifying all slices based on the information
collected last period. Finally, all migration candidates (storage
slices) are determined. The migrating process happens in the
next period T + 1.
Step I – Training: Algorithm 1 indicates the procedure of
training. Assume a training dataset (X,Y ) consisting of n
points in the form of (X1, Y1) to (Xn, Yn), where Xi is the ith

slice in the training dataset and Yi is the label of the ith slice
and can be either 1 (Performance Tier (PT)) or -1 (Capacity
Tier (CT)) indicating the class which the ith slice belongs to.

For the training dataset, x% total slices are selected. For
the basic SVM migration algorithm, x% = 10% is set as
the default value. For the later defined K-SVM algorithm,
x will be adaptively changed. As indicated in Algorithm 1,
the training dataset of the basic SVM is selected from the
most active and the least active non-zero slices (slices with
activities) of the performance and capacity tiers, respectively.
In this way, it uses the most represented data to train the SVM.

After training, an SVM (Hyperplane-Z) is built, and then the
Hyperplane-Z will be used for the classification process (test-
ing). The output Hyperplane-Z in Algorithm 1 is a classifier
that distinguishes which storage type the input slices should
belong to as seen in Eq. 1.{

ith slice← PT, if Hyperplane-Z(i) == 1
ith slice← CT, otherwise

(1)

where Hyperplane-Z() function is obtained from Algorithm 1.
i is the input slice number. PT means the performance tier.
CT indicates the capacity tier. Therefore, if the output of
Hyperplane-Z function with input i is 1, that means the ith
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Algorithm 2 Basic SVM Migration Algorithm

1: procedure CLASSIFYING PROCEDURE
2: while Xi ∈ PT slices do
3: if Hyperplane-Z(i) 6= Yi then
4: MPT ←MPT +Xi

5: i← i+ 1

6: while Xi ∈ CT slices do
7: if Hyperplane-Z(i) 6= Yi then
8: MCT ←MCT +Xi

9: i← i+ 1

10: end
11: procedure MIGRATING PROCEDURE
12: # of migration slices = min(len(MPT ), len(MCT ))
13: Ascending sorting MPT

14: Descending sorting MCT

15: for i ≤ # of migration slices do
16: Exchange slices of MPT (i) and MCT (i)
17: Updating the labels of slices of MPT (i) and

MCT (i)

18: end

slice should be located in PT. Otherwise, the ith slice should
be located in CT.

Step II – Classifying and Migrating: After getting
the Hyperplane-Z function from Algorithm 1, we start to
identify the migration candidates and do the migration in the
next period T + 1. Algorithm 2 indicates the procedures of
classifying and migrating. First, based on the Hyperplane-
Z function, for all slices in PT or CT, if the classification
result of the ith slice is not equal to its original label Yi,
then the ith slice is added into its corresponding migration
candidate set (MPT or MCT ). During the migrating process,
we first determine the number of migration slices by using
the minimum number between the sizes of MPT and MCT .
This is because some slices cannot be migrated/exchanged if
the numbers of slices in MPT and MCT are not the same. By
ascending sorting MPT and descending sorting MCT (Lines
13-17 in Algorithm 2), it promises that the most active slices
in CT and the least active slices in PT are migrated first. The
final step is to update the labels of migrated slices and those
labels will be used for the next iteration period.

Figure 1 provides an example of the basic SVM migrating
algorithm. According to Algorithm 1, the hyperplane-Z is
trained based on the x% most and least active non-zero slices
in CT and PT, respectively. In Figure 1, after determining the
hyperplane-Z, the migration candidates are classified as shown
in shaded red regions. Finally, those candidate slices will be
scheduled to be migrated to the region that they are supposed
to reside.

According to the above description, the basic-SVM algo-
rithm helps classify the migration slices which have similar
or different features as the training dataset. The goals of the
proposed migration algorithm are to improve the performance
(higher PT region hit ratio (e.g., SSD hit ratio)) or to reduce

Fig. 1: The basic SVM migration algorithm.

total migration overhead (lower amount of migration data).

B. Baseline Algorithms

In this section, we introduce four baseline algorithms used
for comparison in this paper. One is the popularity-based
algorithm, which is very popular with solutions from storage
vendors. Some previous studies [16] [17] can be simplified to
the popularity algorithm. The basic idea is that the algorithm
first collects the access density of each storage slice at each pe-
riod T . Then, according to the access densities, the popularity-
based algorithm is to exchange the slice of the highest access
density in the CT region with the slice of the lowest access
density in the PT region if the lowest value in the PT region
is smaller than the highest value in CT region. The migration
process will continue until the access densities of slices in
the PT region are no longer smaller than the densities of any
slices in the CT region. The HAT algorithm [18] is a migration
algorithm considering both frequency and recency. The basic
idea of HAT in a hybrid storage system (two types of disks)
is that there is an LRU queue to record the recency of the
historical data. The LRU queue size is the number of slices in
the PT region (NPT ). The slice at its first-time access will be
put into one LRU queue (LRU Q). If the slice is reaccessed
and located in LRU Q, the slice will be put in PT LRUQ.
At the end of the algorithm, since the PT region only has the
size of (NPT ), the first NPT slices in PT LRUQ should be
put into the PT region. By comparing the locations of current
slices, the migration slices will be put into MCT and MPT .

Another baseline algorithm is the Least Recently Used
algorithm (LRU), which is a popular policy used in the eviction
algorithm of memory cache. The LRU algorithm keeps the
least recently accessed slices in an LRU queue for the PT
region and keeps the most recently accessed slices in the MRU
(most recently used) queue for the CT region. After period T ,
the algorithm exchanges the slices in the LRU queue with
the slices in the MRU queue. The migration size of the LRU
algorithm for each period is proportional to the sizes of MRU
and LRU queues. By default, we set the LRU and MRU queue
size to Ns ∗ 10%.

ChewAnalyzer algorithm [19] is another migration scheme
for hybrid storage systems. The scheme is based on a hi-
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TABLE II: Trace characteristics

# of requests Total request Trace Maximum
size (GB) length (h) offset (GB)

MSR Cambridge traces [21]
prn 1 1.04E+07 212.1 168 385.0
proj 1 1.47E+07 775.9 168 820.0
usr 1 3.63E+07 2135.4 168 820.0
usr 2 1.02E+07 441.8 168 530.0
src1 0 3.00E+07 1538.3 168 273.0
web 2 4.25E+06 263.6 168 169.0
stg 1 2.13E+06 85.5 168 101.7
mds 1 1.54E+06 88.7 168 474.0
proj 3 2.09E+06 20.9 168 220.0

Systor’17 traces [22]
LUN0 6.38E+07 1607.8 36 4737.2
LUN1 6.27E+07 1794.9 36 4418.6
LUN3 6.54E+07 1638.6 36 4016.5

FIU traces [23]
home3 9.18E+05 3.6 504 18.6
online 5.70E+06 21.7 720 7.9

webuser 7.73E+06 30.9 672 7.9
webmail 7.80E+06 29.7 720 18.2

erarchical classifier [20] to classify the access patterns of
workloads. They used different storage I/O workload char-
acterization dimensions and the classifier analyze the access
patterns step by step. To make a fair comparison, we simplify
the ChewAnalyzer to a two-tier storage system. The first
step is to classify the I/O density. Then, the second step is
to distinguish the read and write performance. Finally, the
sequence/randomness of workloads is classified. The high I/O
intensive, write-intensive, and random workloads are assigned
to PT (i.e., fast) devices and others are scheduled to CT (i.e.,
slow) devices.

III. PERFORMANCE OF BASIC-SVM ALGORITHM

A. Trace Characteristics and System Configuration

In the performance comparison, we use two types of traces,
MSR Cambridge traces [21] and Systor’17 traces [22] to
evaluate the performance of a hybrid system and migration
overhead of all these algorithms. The trace characteristics are
summarized in Table 2. Two metrics are used to indicate the
performance of migration algorithms, PT hit ratio and total
migration size. The PT hit ratio is defined as the number of
requests satisfied by the slices in the PT region (i.e., fast
device) divided by the total number of requests. The total
migration size indicates how much data have been migrated
between the two tiers. Therefore, a migration algorithm with a
higher PT hit ratio and a smaller migration size will be better
than others.

At the beginning of running traces, we preconditioned the
storage system by writing all the slices that responded to the
first portion of the requests to the PT region until the PT region
is full. Then, the rest of the storage slices are written to the
CT region (i.e., slow device). This precondition is practically
used by industries to simply initialize a hybrid storage system.
This preconditioning process is applied to all algorithms and
is used in all simulations and experiments in this paper.

Fig. 2: PT hit ratio comparison between basic-SVM algorithm, popularity-
based, HAT and LRU algorithms.

Fig. 3: Migration size comparison between basic SVM, Popularity-based, HAT
and LRU migration algorithms. ”0” indicates there are no migration data.

B. Performance Comparisons

In this section, the performance comparisons between the
basic-SVM algorithm, Popularity-based, HAT and LRU are
made. In the experiments, the system capacity is set to 500GB,
which contains 100GB SSD and 400GB HDD. The default
slice size (Ss) is set to 200MB. Thus, there are a total of
2500 slices, 500 slices in SSD and 2000 in HDD. For those
traces having larger maximum offsets than 500GB (like LUN0,
LUN1 and LUN3), the offset is scaled into the range of 0-
500GB, which is directly divided by a constant value. For
example, for those traces from Systor’17, the offsets of traces
are divided by 10. The configuration with scaling is equivalent
to the configuration of 5TB total capacity and 2GB slice
size without scaling. For the convenience of comparisons, the
scaling is able to put the results of all traces in the same
figures. For the basic-SVM algorithm, the training dataset is
set to 10%. The size of the LRU queue is also set to 10%. The
migration time interval (T ) is 14 hours for MSR Cambridge
traces and 1 hour for Systor’17 traces. By doing that, the total
number of requests per T in each type of trace keeps similar.

As shown in Figures 2 and 3, the LRU algorithm has
the worst overall PT hit ratio. The reason is that the LRU
algorithm always migrates the least recently used slices and
cannot reflect the characteristics of workloads. Therefore, it
causes a much low PT hit ratio. The migration only happens
for each period. So, the LRU policy is capable of improving
the cache hit ratio by immediately replacing the most recent
accessed data but is not good at in the storage migration
scheme. For the other four algorithms, the overall PT hit
ratio for most of the traces is similar, while the basic SVM
algorithm achieves a much smaller overall migration size.
This is because ChewAnalyzer, HAT and Popularity based
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Fig. 4: Relationship between overall migration size and overall PT hit ratio
for the SVM migration algorithm.

schemes use the constant schemes to determine the access
patterns. Therefore, they cannot dynamically follow the change
of workloads and they achieve either a lower PT ratio or higher
migration overhead than the basic SVM scheme. However,
there are three exceptions. For the traces mds 1 and proj 3, the
basic SVM migration algorithm only gets about 8% and 31%
overall PT hit ratio, respectively. They are much smaller than
the PT hit ratios of the popularity-based and HAT algorithm
(18% and 17% for mds 1, and 57% and 60% for proj 3).
For trace src1 0, although the basic-SVM, popularity-based
and HAT algorithms achieve similar PT hit ratio, the basic-
SVM needs to transfer 5x and 3x larger migration size than
the popularity-based and HAT algorithms. According to these
three exceptions, the issues of the basic SVM migration
algorithm are investigated and discussed in the following
subsection. After that, a new K-SVM migration algorithm is
proposed for solving those issues in Section IV.

C. Issues of Basic-SVM Migration Algorithm

After investigating the three traces that the basic-SVM
algorithm has worse performance than that of popularity-
based algorithm, we found that the issue is selecting improper
training datasets. As discussed in Section III-B, the basic-SVM
migration algorithm ended up with a larger migration size for
trace src1 0. The migration size is determined by the SVM
hyperplane which is trained by a selected training dataset.
Thus, we first investigate the relationship between the overall
migration size and training dataset ratio under the system as
configured and discussed in Section III-B.

To find the relationship between migration size and PT hit
ratio, we vary the training dataset ratio to obtain different
migration sizes for the basic-SVM migration algorithm. As
shown in Figure 4, the PT hit ratio is increased with the raising
migration size at the beginning and then the overall PT hit
ratios become saturated. The goal of migrating data in a hybrid
system is to achieve a higher PT hit ratio while maintaining
a small migration size. So, those so-called balanced points
in Figure 4 have good trade-offs between the migration size
and the PT hit ratio. As for the issue of large migration sizes

Algorithm 3 K-SVM Migration Algorithm: training
Input: C, Ss, T
Output: Hyperplane-Z

1: procedure TRAINING PROCEDURE
2: Ns ← C/Ss

3: Collecting access density of Ns slices in one T period
4: Sorting all slices in PT
5: Remove top 0.2% slices
6: Do K-Means clustering for PT region (K=2).
7: Adding the removed top 0.2% slices to the cluster at the top

position.
8: Do K-Means clustering for CT region (K=2).
9: Training dataset (X,Y)← all slices at the top cluster of PT

+ all slices at the bottom cluster of CT
10: Training linear SVM based on training dataset (X,Y) to

obtain a hyperplane-Z: Z = B

for the basic SVM migration algorithm in Section III-B, it
is because the result of the basic-SVM algorithm locates far
away from the balanced point of src1 0 (at the right side)
in Figure 4. The reason for having a large migration size is
caused by an improper training dataset due to the constant
training dataset ratio. For different traces, the request access
patterns are different and the same training dataset ratio is
not a good choice. Moreover, even for the same trace, the
request access patterns are changed and different at different
iterations. Therefore, the training dataset ratio directly affects
the performance of a migration algorithm (the PT hit ratio and
total migration size). A proper training dataset ratio is useful
for solving the issue of large migration sizes (investigated in
Section V).

IV. K-SVM MIGRATION ALGORITHM

In this section, a modified SVM migration algorithm called
K-SVM migration algorithm (K-SVM) is introduced to rem-
edy the two issues of the basic SVM algorithm as discussed
in Section III-C.

The proposed K-SVM migration algorithm is shown in
Algorithm 3. Compared to the basic-SVM algorithm in Algo-
rithm 1, the main differences are the training dataset selecting
(Lines 4-8 in Algorithm 3). The proposed K-SVM has two
advantages compared to other schemes. One is to accurately
predict the workloads and then can achieve a better hit
ratio. Moreover, the precise classification can help reduce the
migration overhead since those incoming requests are put in
the ’right’ location based on the classification and there is
no need to migrate those slices. As a result, the migration
cost will be reduced. In this paper, the maximum migration is
limited by the available bandwidth. In the following results,
we assume that the system has adequate bandwidth to migrate
slices between two tiers.

To remedy the improper training dataset issue, the basic
idea is to include the most representative slices as many
as possible into the training dataset for SVM. For example,
we want to include most of the relatively highly accessed
slices in the training dataset of the PT region. By doing that,
those relatively high accessed slices can effectively represent
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the feature of the PT region. Additionally, those slices in
the training dataset will not be migrated due to the feature
of SVM and thus it potentially reduces the migration size.
Similarly, the training datasets should also exclude the slices
which cannot represent the feature of the region. Therefore,
by replacing a constant training dataset ratio, we use the K-
Means clustering algorithm [24] to group the similar slices in
PT and CT regions, respectively (K=2 used in this paper). The
K-Means clustering algorithm is used for PT and CT regions,
respectively, with one dimension input (access density).

In some cases, one or two slices located in the PT region
have really high access frequencies than others. However, we
do not want to only use one or two points to represent the
PT region. Therefore, to overcome those outliers, we force
the top cluster containing at least 0.2% slices as shown in
Lines 4-7 in Algorithm 3. Therefore, by using the modified K-
Means clustering algorithm, the training dataset is adaptively
selected by the algorithm itself. As a result, compared to other
algorithms the K-SVM algorithm achieves smaller migration
sizes and higher PT hit ratios in Section V.

V. EXPERIMENTAL RESULT

To find how well the K-SVM algorithm is applied to
the data migration problem of hybrid storage systems, we
compare the performance of the K-SVM algorithm with that
of basic SVM, popularity-based, HAT and the performance of
balanced points (discussed in Section III-B). A new type of
traces (FIU trace [23] as shown in Table II) is added in this
experiment. The system configurations are set to the same as
the configuration in Section III-B.

A. Overall Performance Comparison

The performance and overhead comparisons are shown in
Figure 5 and Figure 6 respectively. Among all algorithms,
the LRU algorithm has the worst overall PT hit ratio. This is
because the LRU algorithm always migrates the least recently
used slices and cannot reflect the characteristics of workloads.
Therefore, it causes a much low PT hit ratio. The migration
only happens for each period. So, the LRU policy is capable
of improving the cache hit ratio by immediately replacing the
most recent accessed data but is not good at in the storage mi-
gration scheme. In the future experiment comparisons, we do
not compare the LRU algorithm by varying system parameters.
The K-SVM achieves similar or a little lower PT hit ratios
as the balanced points. For the migration size, the balanced
point results always have the lowest values among most traces.
For traces proj 1 and usr 1, the balanced point has larger
migration sizes but higher PT hit ratios than the proposed
K-SVM algorithm. For the rest of the traces, the newly
proposed K-SVM algorithm achieves close migration sizes to
the balanced points and obtains much smaller migration sizes
compared to the basic-SVM, popularity-based, LRU, HAT and
ChewAnalyzer algorithms.

In summary, although for some traces, the K-SVM algo-
rithm has slightly larger migration sizes compared with the
results of balanced points, it remedies the issues described

in Section III-C. Moreover, reducing the migration size is
significant for all traces (2x - 8x on average). Therefore, the K-
SVM migration algorithm effectively selects a proper training
dataset for the SVM classifier and gains very close solutions
to the balanced points which have the smallest migration size
and the highest PT hit ratio.

B. K-SVM Overhead Discussion

The overhead of the K-SVM scheme mainly comes from
two aspects. One is the metadata overhead of recording
collected trace information. The second one is the computation
overhead of machine learning algorithms. Assume the total
capacity of PT and CT tiers are 500 GB (PT: 100GB and CT:
400GB). The slice size is 200MB. The metadata information
only has about 16KB. Compared to the total 500GB capacity,
the metadata overhead will have little influence on the systems.
For the other overhead, we investigate the execution time of
the training process. As seen in Table III, the training time
is varied from 3.06ms to 211.79ms as varying the slice size.
Compared to the period T (hours), the training time of the
K-SVM scheme is acceptable.

TABLE III: Training time of the K-SVM scheme with varying slice size
slice size (MB) 50 100 200 500 1000

Training time (ms) 211.79 56.76 16.98 5.45 3.06

C. Effect of Space Capacity Ratio between PT and CT

In this subsection, we investigate the effect of different
device capacity ratios. We keep the configuration the same
as the previous subsection with the slice size as 200MB.

As seen in Figures 7 and 8, the PT hit ratios are increased
with the increased PT capacity (SSD capacity). The K-SVM,
popularity-based, HAT and ChewAnalyzer algorithms achieve
similar PT hit ratios. For the migration size, our proposed
K-SVM migration algorithm achieves about on average 32X
smaller migration size when compared to the popularity-based,
HAT and ChewAnalyzer algorithms.

Moreover, we investigate the influence of the PT capac-
ity ratio on the migration size for each algorithm. For the
popularity-based, HAT and ChewAnalyzer algorithms, they
achieve a similar trend of migration size, which is that the
migration size first goes up and reaches the peak values when
rPT is about 0.35 for Popularity based and about 0.4 for HAT
and ChewAnalyzer. Then, the migration size decreases with
the increased SSD (PT region) capacity. This is because at the
around middle points, the numbers of migration candidates for
PT and CT slices become similar and thus the migration size
reaches the peak values. Before or after the middle points,
either the number of PT candidates or the number of CT
candidates is reduced. The mismatched number of candidates
results in a smaller migration size. With increased PT capacity,
the K-SVM algorithm migrates less amount of data. This
is because a larger PT space can store more data and thus
the number of migration candidates becomes less. The K-
SVM algorithm efficiently selects the migration candidates and
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Fig. 5: The PT hit ratio comparisons between K-SVM and other algorithms.

Fig. 6: The migration size comparisons between K-SVM and other algorithms.

(a) K-SVM (b) Popularity-based

(c) HAT (d) ChewAnalyzer

Fig. 7: The PT hit ratio with varying SSD (PT region) capacity.

keeps the migration size small while maintaining similar PT
hit ratios as other algorithms.

TABLE IV: List of applications used on the single hybrid storage system test
bed

Tenant Application
A Oracle, SAP, VMware
B Home Directory
C High Performance Computing
D Virtual Desktop (VDI), Hyper V
E SharePoint, Web Farm

(a) K-SVM (b) Popularity-based

(c) HAT (d) ChewAnalyzer

Fig. 8: The migration size with varying SSD (PT region) capacity.

VI. LARGE-SCALE SYSTEM IMPLEMENTATION

The prototype of our proposed SVM and popularity-based
algorithms are applied to a real enterprise hybrid system. We
compared popularity-based and SVM algorithms since based
on all previous discussions the popularity-based algorithm
performs much similar to the HAT algorithm. The experiments
were conducted first on the traces gathered from a live system
with multi-tenant 26 different applications running at an en-
terprise lab system for 31 days. The application list is shown
in Table IV. The total storage capacity in the test environment
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Fig. 9: Performance improvement and migration sizes with various storage
capacities for SVM and popularity-based. (the sizes of bubbles indicate the
migration size)

for Hybrid Storage System used was 1 PB with 100TB in SSD
and 900TB in HDD.

The tests were performed with 47% storage consumed and
at the end of the 15 days period and the total capacity used by
the system was 49%. We examined the impact of the storage
capacity on both popularity-based and SVM algorithms. As
shown in Figure 9, the SVM algorithm achieves a higher per-
formance improvement at all different available capacities than
the popularity-based algorithm. Meanwhile, the SVM achieves
less migration size than the popularity-based algorithm as well.

VII. CONCLUSION

By applying known machine learning approaches to the
storage domain, an entire new set of tools can be applied
to solve data tiering problems. In this paper, we propose a
migration algorithm based on Support Vector Machine (SVM)
and demonstrate the effectiveness of this algorithm to solve
an optimization problem in the enterprise storage domain.
Moreover, the proposed K-SVM migration algorithm involves
K-Means clustering to dynamically select a proper training
dataset. The proposed algorithm can tremendously reduce
the size of the migration data. Finally, the results of a real
implementation indicate that the ML-based algorithm reduces
the volume of migration data by about 40% and achieves 70%
lower latency compared to other algorithms.
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