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Abstract—In the trace reconstruction problem, one seeks to
reconstruct a binary string s from a collection of traces, each
of which is obtained by passing s through a deletion channel.
It is known that exp(Õ(n1/5)) traces suffice to reconstruct any
length-n string with high probability. We consider a variant of
the trace reconstruction problem where the goal is to recover
a “density map” that indicates the locations of each length-k
substring throughout s. We show that ✏�2 ·poly(n) traces suffice
to recover the density map with error at most ✏. As a result, when
restricted to a set of source strings whose minimum “density map
distance” is at least 1/poly(n), the trace reconstruction problem
can be solved with polynomially many traces.

1. INTRODUCTION

In the trace reconstruction problem, there is an unknown
binary string s 2 {0, 1}n, which we wish to reconstruct
based on T subsequences (or traces) of s. Each trace is
generated independently by passing the source string s through
a deletion channel, which deletes each bit of s independently
with probability p. The main question of interest is how
many traces are needed to reconstruct s correctly. In the more
general problem, traces can be affected by both insertions and
deletions, but we restrict our discussion to the deletions case.

The problem of reconstructing a string from its subse-
quences and supersequences was first studied by Leven-
shtein [1–3], while the problem of reconstructing a string
from randomly generated traces as described above was first
studied by Batu et al. [4], motivated by problems in sequence
alignment, phylogeny, and computational biology [5]. Most
of the work on the trace reconstruction problem has focused
on characterizing the minimum number of traces needed for
reconstructing the source string s exactly. The most common
formulation of the problem, known as worst-case trace recon-
struction [6], requires the reconstruction algorithm to recover
s 2 {0, 1}n exactly with high probability as n ! 1 for
any string s 2 {0, 1}n. While this problem has received
considerable attention, there is still a significant gap between
upper and lower bounds on the number of traces needed.
Currently, the best lower bound is ⌦̃(n3/2), while the best
upper bound is exp(Õ(n1/5)), both due to Chase [7, 8].

The exponential gap between the best known lower and
upper bounds has motivated the formulation of several variants
of the trace reconstruction problem where tighter bounds can
hopefully be obtained. For example, in the average-case trace
reconstruction problem, s is assumed to be drawn uniformly
at random from all {0, 1}n strings. In this case, it is known
that only T = exp(O(log1/3(n))) traces are sufficient [9].
An approximate trace reconstruction problem, where a frac-
tion of the recovered bits is allowed to be incorrect, has

Fig. 1. (a) Example of a source binary string s and its k-subword deck (or k-
spectrum) Sk(s), for k = 4. (b) Given S4(s) in (a), one can build a de Bruijn
graph where the elements in S4(s) correspond to edges (with multiplicities)
and the nodes correspond to 3-mers. Notice that s corresponds to an Eulerian
path on the de Bruijn graph, but such a path is not unique; for example,
s0 = 000111000111000000000111 corresponds to another Eulerian path.

also been formulated [10], and the problem of finding the
maximum likelihood sequence s from a small number of
traces (possibly insufficient for exact reconstruction) has been
recently studied [11]. We can also consider a more modest
goal than the reconstruction of the source sequence s itself.
One example that is particularly relevant to our discussion is
the reconstruction of the k-subword deck of s [12, 13].

The k-subword deck of a binary sequence s 2 {0, 1}n is the
multiset of all length-k substrings, i.e., {s[i : i+ k � 1] : i =
1, . . . , n � k + 1}. Equivalently, the k-subword deck can be
defined by the counts Ns,x of the number of times x appears
in s as a substring:

Sk(s) = [Ns,x : x 2 {0, 1}k]. (1)

As shown in [13], for k = O(log n), the k-subword deck
Sk(s) can be recovered with poly(n) traces. The k-subword
deck of a sequence is an important object in bioinformatics,
with applications in error correction [14, 15], sequence as-
sembly [16, 17], and genomic complexity analysis [18, 19].
In these contexts, the k-subword deck Sk(s) is often referred
to as the k-spectrum, and each length-k substring is called a
k-mer. Intuitively, as long as k is large enough, the k-subword
deck can uniquely determine the source sequence s. In fact,
a classical result by Ukkonen [20] provides a necessary and
sufficient condition for Sk(s) to uniquely determine s based on
the length of the “interleaved repeats” in s [21]. In particular,
if there are no repeats of length k�1 in s, one can reconstruct
s from Sk(s) by simply merging k-mers with a prefix-suffix
match of length k � 1. More generally, given Sk(s), one can
build the de Bruijn graph, where nodes correspond to (k�1)-
mers and edges correspond to k-mers, and s is guaranteed to
be an Eulerian path in the graph [16, 22] (see Figure 1).

While the k-subword deck is a natural intermediate goal
towards the reconstruction of s (and can be recovered with
only poly(n) traces), it does not capture all the informa-



tion present in the traces. For example, the k-subword deck
Sk(s) in Figure 1 also admits the reconstruction s0 =
000111000111000000000111, even though s0 should be easy
to distinguish from s based on traces (by estimating the length
of the second and third runs of zeros). Motivated by this
shortcoming of the k-subword deck, we propose the idea of
a k-mer density map, as a kind of localized k-subword deck
where, in addition to knowing the number of times a given
k-mer appears in s, we have some information about where it
occurs.

For a k-mer x 2 {0, 1}k, let Is,x 2 {0, 1}n�k+1 be the
indicator vector of the occurrences of x in s; i.e., Is,x[j] =
{s[j : j + k � 1] = x}, as illustrated in Figure 2. Notice

that recovering the k-subword deck can be seen as recoveringP
j Is,x[j] for each x 2 {0, 1}k. Also notice that recovering

s is equivalent to recovering Is,x for all x 2 {0, 1}k. A k-mer
density map can be obtained by computing

Ks,x[i] =
n�k+1X

j=1

h(i, j)Is,x[j] (2)

for i 2 {1, ..., n�k+1} and some “smoothing kernel” h(i, j),
as illustrated in Figure 2. Intuitively, for a given x, Ks,x gives
a coarse indication of the occurrences of x in s. Moreover, if
h is such that

P
i h(i, j) = 1 for each j, it holds that

X

i

Ks,x[i] =
X

j

Is,x[j]
X

i

h(i, j) =
X

j

Is,x[j],

which means that the k-subword deck Sk(s) is a function
of Ks,x, and the density map Ks,x can be thought of as a
generalization of the k-subword deck that provides information
about k-mer location.

We will focus on a specific choice of h(i, j) that will render
Ks,x easier to estimate from the traces. We will let h(i, j) be
the probability that a binomial random variable with j � 1
trials and probability parameter 1 � p is equal to i � 1; i.e.,
h(i, j) =

�j�1
i�1

�
(1 � p)i�1pj�i. This is also the probability

that the jth bit of s (if not deleted) ends up as the ith bit of
a trace. Hence we have

Ks,x[i] =
n�k+1X

j=1

✓
j � 1

i� 1

◆
(1� p)i�1pj�iIs,x[j]. (3)

for i 2 {1, . . . , n� k+1}. Notice that the maximum value of
h(i, j) for a fixed j occurs when i ⇡ j(1 � p) so the kernel
h(·, j) has its peak shifted to the left and Ks,x is a density
map of occurrences of x in s shifted to the left. Operationally,
(1� p)kKs,x[i] is the probability that a fully preserved copy
of x in s appears in position i on a given trace of s.

We define the k-mer density map of s as Ks = [Ks,x : x 2
{0, 1}k] (the concatenation of all vectors Ks,x). If the k-mer
density map Ks is known exactly, s can also be recovered
exactly. This can be seen by noticing the invertibility of the
upper-triangular matrix F that transforms the binary vector
Is,x into the vector Ks,x (for a fixed x). The matrix F is upper
triangular with non-zero entries on the main diagonal, which
makes it invertible. While invertible, F is ill-conditioned since

Fig. 2. For each x 2 {0, 1}k , Is,x indicates the occurrences of x in s. The
density map Ks,x can be obtained via Ks,x[i] =

Pn�k+1
j=1 h(i, j)Is,x[j].

some of the entries on the diagonal are close to 0, making the
transformation from Ks,x to Is,x sensitive to noise in Ks,x. To
see this, notice that the condition number is at least (1�p)k�n,
which is exponentially large in n (this holds because F1,1 = 1
and Fn�k+1, n�k+1 = (1� p)n�k).

We present an algorithm that, given T traces, constructs
an estimate K̂s for the k-mer density map. Our main result
establishes that we can achieve estimation error

kK̂s �Ksk1 = max
x,i

|K̂s,x[i]�Ks,x[i]| < ✏

using T = ✏�2 · poly(n) traces. Hence, the density map Ks

can be estimated with maximum error ✏n = 1/g(n) for g(n) 2
poly(n) using polynomially many traces. In particular, given
a set of candidate source strings A ⇢ {0, 1}n such that, for
any s, s0 2 A,

kKs �Ks0k1 � 2✏,

the true source sequence s 2 A can be recovered with ✏�2 ·
poly(n) traces. This adds to the existing literature on classes
of strings recoverable/distinguishable with polynomially many
traces [23–25].

Since Is,x and Ks,x are related through an invertible (albeit
ill-conditioned) linear transformation Ks,x = FIs,x, the
approximate recovery of the k-mer density map K̂s,x suggests
natural reconstruction algorithms for Is,x, e.g., based on a
regularized least squares problem

min
Îs,x

kK̂s,x � F Îs,xk22 + �kÎs,xk22,

which is a convex program if Îs,x is allowed to be real-valued.
The solution Îs,x can then be converted into a reconstructed
string ŝ 2 {0, 1}n through a majority voting across candidate
k-mers for each position. Hence, in contrast to much of the
theoretical literature on the trace reconstruction problem, the
k-mer density map leads to new reconstruction approaches.

Our main result relies on a nontrivial estimator for Ks,x that
simultaneously uses count information for all binary strings y
that are supersequences of x. The estimator is obtained by
first deriving a recursive formula for Ks,x, then applying a
known result in the combinatorics of strings on the expansion
of the recursive formula to obtain a non-recursive formula. An
application of McDiarmid’s inequality is then used to prove
the estimator is successful with high probability. To the best
of our knowledge, these techniques have not appeared in the



trace reconstruction literature, where most recent results have
been based on complex analysis [6–9, 26]. Our techniques
also lead to an improvement on a previously known upper
bound [13] on the number of traces needed for reconstructing
the k-subword deck of s for p < 0.5. A longer version of this
paper [27] provides omitted proofs.

A. Notation
Strings in this paper are binary and indexed starting from

1. If the index i is negative, x[i] is the (�i)th element starting
from the right end of x. For example, if s = 1001, then s[1] =
1, s[2] = 0, s[�1] = 1, and s[�2] = 0. Let s 2 {0, 1}n be
the length-n string we are trying to recover. The string s will
be called the source string. A trace of s is denoted by S̃,
and is generated by deleting each bit of s independently with
probability p. Let q = 1�p be the probability a bit is retained.

For a given string x, we let |x| denote the length of x. For a
string a and integer r, ar denotes the string formed by concate-
nating r copies of a. A subsequence of x is a string that can
be formed by deleting elements from x, and a supersequence
of x is a string that can be formed by inserting elements into
x. This is in contrast to a substring of x, which is a string
that appears in x. We let x[i, j] = (x[i], x[i + 1], . . . , x[j])
be the substring of x the begins at position i and ends at
position j. For example, if s = 10101, then s[1 : 3] = 101
and s[2 : �2] = 010. For two stings x and y, the number
of ways we can make |y| � |x| deletions on y to form x
is denoted by

�y
x

�
[11, 28]. This is a generalization of the

binomial coefficient for strings. Observe that
�y
x

�

�|y|
|x|
�
.

2. MAIN RESULTS

Let s 2 {0, 1}n denote the source string and x 2 {0, 1}k
denote the target k-mer, whose density Ks,x we wish to
estimate. To simplify the notation, we fix a constant c > 0
and define

fc(n) =

�
1 + 2n↵c(p)

�2

2n2c log(q)�1
and

↵c(p) = 1 + c log

✓
q

p

◆
+

cH(1� p
q ) + c log

⇣
p
q

⌘

1� p
q

(4)

where H(·) is the binary entropy function. The function fc(n)
can be upper bounded by a polynomial of degree �c(p) =
2↵c(p)�2c log(1�p)+1, which can be numerically computed
(see Figure 3(a)). Letting � 2 (0, 1), and {✏n} be a positive-
valued sequence, the following is proved in Section 3.

Theorem 1. Suppose p < 0.5 and k = c log n. Given log
�
2
�

�
·

✏�2
n · fc(n) traces, an estimator K̂s,x[i] for the ith entry of
Ks,x can be constructed so that |K̂s,x[i]�Ks,x[i]| < ✏n with
probability 1��. Moreover, given log

⇣
2n1+c log 2

�

⌘
·✏�2

n ·fc(n)
traces, an estimator for the entire density map K̂s can be
constructed so that kK̂s�Ksk1 < ✏n with probability 1� �.

In particular, Theorem 1 implies that for p < 0.5 and ✏n =
1/g(n) where g(n) 2 poly(n), all entries of the (c log n)-
mer density map Ks,x can be estimated with error at most ✏n
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Fig. 3. (a) Plot of �c(p) for various c. Observe that as p increases, the
algorithm requires more traces to achieve the same level of performance.
Similarly, as c increases, more traces are needed. For all values of c, the limit
of �c(p) as p ! 0 is equal to 3. (b) Plot of exponent in (6) versus plot of
exponent in (7) for c = 1. Observe that our bound is significantly tighter than
the existing bound.

using poly(n) traces (and poly(n) time as discussed in Section
3). Theorem 1 also implies the following result on the trace
reconstruction problem restricted to a set of binary strings with
a bounded minimum density map distance.

Corollary 1. Suppose p < 0.5 and k = c log n, and let A ⇢
{0, 1}n be such that, for any s, s0 2 A,

kKs �Ks0k1 � 2✏n.

Given log
⇣

2n1+c log 2

�

⌘
· ✏�2

n · fc(n) traces from some source
string s 2 A, s can be correctly identified with probability
1� �.

Consequently, the trace reconstruction problem restricted to
a set of binary strings with minimum density map distance
1/g(n) where g(n) 2 poly(n) can be solved with poly(n)
traces. We have not been able to find a pair of strings s and
s0 so that kKs�Ks0k1 = o(1/g(n)) for any g(n) 2 poly(n),
and to the best of our knowledge, no such example of s and
s0 is known.

Recall that, from [13], one can recover the (c log n)-
subword deck using poly(n) traces with high probability.
A pair of strings s, s0 can be distinguished based on their
(c log n)-subword deck alone if and only if their (c log n)-
subword decks are distinct, which is equivalent to requiring

|Ns,x �Ns0,x| = |kKs,xk1 � kKs0,xk1| � 1

for some x 2 {0, 1}c logn, since Ns,x = kKs,xk1. In contrast,
our main result implies that as long as |kKs,xk1�kKs0,xk1| �
1/poly(n) for some x, s and s0 can be distinguished with
poly(n) traces, since due to the equivalence of `1 and `1
norms and the reverse triangle inequality,

kKs,x �Ks0,xk1 � 1

n
|kKs,xk1 � kKs0,xk1|. (5)

This further establishes the k-mer density map as a general-
ization of the k-subword deck.

A special case of Corollary 1 with an explicit condition is
given below and proved in the longer version [27].

Corollary 2. Suppose p < 0.5 and k = c log n. If the
strings s, s0 are such that x 2 {0, 1}k begins at position i



in s and x does not appear in s0 at an index in the range
[i � f(n), i + f(n)] for f(n) = ⌦(na) where a > 0.5, then
s can be distinguished from s0 with high probability using
poly(n) traces.

Corollaries 1 and 2 are an addition to the literature on
conditions for distinguishing strings from traces, which in-
cludes the facts that strings at constant Hamming distance can
be distinguished using poly(n) traces [23, 24], and strings
at constant Levenshtein distance can be distinguished using
poly(n) traces [25]. Observe that there are string pairs that
our results immediately prove are poly-trace distinguishable
that the results of [13, 23–25] do not. Consider the string
pair s = 0m1log(m)01.1m and s0 = 01.1m1log(m)0m where
n = 2.1m + log(m). Observe that s, s0 do not have constant
Hamming or Levenshtein distance, and have the same c log(n)
spectrum for any constant c, so previous results [13, 23–25]
do not apply.

Improved upper bound for k-subword deck reconstruc-
tion: Using our proof technique for estimating Ks,x, we
also give a novel proof that the (c log n)-subword deck can be
reconstructed using poly(n) traces for p < 0.5, which yields
an improved upper bound on the required number of traces
compared to the analysis of the algorithm for p < 0.5 in [13].

Theorem 2. For p < 0.5, we can reconstruct the (c log n)-
subword deck of any source string s 2 {0, 1}n from

Õ
⇣
n1+c( qH(1�p/q)+p log(p/q)

1/2�p
+2 log( 1

q ))
⌘

(6)

traces in poly(n) time with high probability.

In contrast, the analysis in [13] proves that

Õ

✓
n
4+12c

⇣
e
2

1/2�p

⌘
+c log(4)

◆
(7)

traces are sufficient for this task.
For p < 0.5, the exponent in (6) is strictly less than that

in (7) as shown in the longer version of this paper [27]. This
shows that asymptotically, our upper bound is tighter for any
c and any p < 0.5. See Figure 3(b) for a plot showing the
comparison. In particular, for c close to zero, (6) is close to
linear in n, nearly matching the following lower bound that
we prove in [27].

Theorem 3. For deletion probability p and any source string
s 2 {0, 1}n, we have that ⌦(npq) traces are necessary for
recovering the g(n)-subword deck for any function g such that
g(n) � 2.

We did not compare our upper bound on trace complexity
to the analysis of the algorithm in [13] that reconstructs
the (log n)-subword deck using poly(n) traces for p < 1
because an explicit upper bound for this algorithm has not
appeared in the literature to the best of our knowledge. In [27],
we also prove that the initial algorithm for k-subword deck
reconstruction presented in [13] only needs poly(n) traces
for reconstructing the (log n)-subword deck of a string for
p < 0.5, which was previously unknown.

3. AN ESTIMATOR FOR THE k-MER DENSITY MAP

In this section, we describe our estimator for the k-mer
density map and prove Theorem 1. We first introduce some
additional notation. For strings x, y, we let

�y
x

�0
=
�y[2:�2]
x[2:�2]

�
.

For a string x, let Yi(x) be the set of length-i supersequences
of x that have the same first and last bit of x. For example, if
x = 101, then Y4(x) = {1011, 1101, 1001}.

For source string s and k-mer x, let Ps,x[i] = Pr(S̃[i :
i+ |x|�1] = x), i.e., the probability that x appears at position
i in a trace S̃ of s. Notice that it is straightforward to estimate
Ps,x[i] from the set of traces as P̂s,x[i] =

1
T

PT
t=1 {S̃t[i :

i + |x| � 1] = x}. Recall that the entry in the k-mer density
map Ks corresponding to the substring x at index i of s is
defined as

Ks,x[i] =
nX

j=i

✓
j � 1

i� 1

◆
qi�1pj�i {s[j : j + `� 1] = x}.

In order to estimate Ks,x[i], we first write it in terms of Ps,x[i]
and Ps,y[i] for all y of length greater than k. This will then
allow us to estimate Ks,x[i] using the estimates of Ps,x[i] and
Ps,y[i], which can be obtained directly from the set of traces.

Lemma 1. For source string s and k-mer x, we have that
Ks,x[i] is given by

1

qk

✓
Ps,x[i]�

nX

`=k+1

X

y2Y`(x)

(�1)|y|�|x|+1Ps,y[i]

✓
y

x

◆0✓p

q

◆`�k ◆
.

Proof: We begin by deriving a recursive formula for
Ks,x[i]. We first notice that

Ps,x[i] =
nX

`=k

X

y2Y`(x)

✓
y

x

◆0
p`�kqk

⇥
nX

j=i

✓
j � 1

i� 1

◆
qi�1pj�i {s[j : j + `� 1] = y}

=
nX

`=k

X

y2Y`(x)

✓
y

x

◆0
p`�kqkKs,y[i]. (8)

This follows because, in order for x to appear at position i
in a trace, a superstring y 2 Y`(x) must appear at position
j � i in s,

�y
x

�0 bits from y must be deleted, and
�j�1
i�1

�
bits

in front of y must be deleted. Notice that
�y
x

�0
p`�kqk is the

probability that a copy of y in s becomes x in S̃, and Ks,y[i]
is the probability that the beginning of a copy of y in s is
shifted to position i in S̃.

Notice that, for ` = k, the only term in the summation in
(8) is qkKs,x[i]. This allows us to rewrite (8) as

Ks,x[i] =
1

qk

0

@Ps,x[i]�
nX

`=k+1

X

y2Y`(x)

✓
y

x

◆0
p`�kqkKs,y[i]

1

A

=
1

qk

0

@Ps,x[i]�
nX

`=k+1

X

y2Y`(x)

q`
✓
y

x

◆0
Ks,y[i]

✓
p

q

◆`�k
1

A .

(9)



By recursively applying (9) into itself, we write Ks,x[i] in
terms of Ps,x[i] terms. This yields

Ks,x[i]=
1

qk

0

@Ps,x[i]�
nX

`=k+1

X

y2Y`(x)

Ps,y[i]as,x,y

✓
p

q

◆`�k
1

A (10)

where as,x,y 2 Z is a constant that depends on s, x, y. Observe
that as,x,y obeys the following recursion: for y 2 Y`(x), we
have that

as,x,y =

✓
y

x

◆0
�

X

k+1j<`

X

z2Yj(x)

as,x,z

✓
y

z

◆0
. (11)

This is because as we expand (9) one step at a time to
eventually obtain (10), we observe that every time we obtain
a new term involving Ps,y[i] in the expansion with coefficient

cy
⇣

p
q

⌘|y|�k
, in the next step of the expansion we obtain a

term involving Ps,z[i] with coefficient �cy
�z
y

�0 ⇣p
q

⌘|z|�k
for

every z 2 [n
`=|y|+1Y`(y). One step of the expansion is shown

in [27] to illuminate this argument. We proceed to prove via
induction on |y|� |x| that for any s, x, y, we have that

as,x,y = (�1)|y|�|x|+1

✓
y

x

◆0
. (12)

We will use the following lemma, which appears as Corollary
(6.3.9) in [28].

Lemma 2. For any two strings f, g over an alphabet ⌃,
X

h

(�1)|g|+|h|
✓
f

h

◆✓
h

g

◆
= �f,g (13)

where �f,g = 0 if f 6= g, and �f,g = 1 if f = g.

If |y| � |x| = 1, (11) implies that as,x,y =
�y
x

�0, and (12)
clearly holds. Suppose (12) holds for |y| � |x| < m. Then if
|y|� |x| = m, we have that

as,x,y =

✓
y

x

◆0
�
X

k<j<`

X

z2Yj(x),

as,x,z

✓
y

z

◆0

=

✓
y

x

◆0
�
X

k<j<`

X

z2Yj(x),

(�1)|z|�|x|+1

✓
z

x

◆0✓y
z

◆0

=

✓
y

x

◆0
+
X

k<j<`

X

z2Yj(x),

(�1)|z|+|x|
✓
z

x

◆0✓y
z

◆0

=

✓
y

x

◆0
+

0

@
X

kj`

X
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= (�1)|y|�|x|+1

✓
y

x

◆0

where (14) follows from Lemma 2. By plugging in this
formula for as,x,y into (10), we obtain the result.

Lemma 1 allows us to obtain an unbiased estimator K̂s,x[i]
for Ks,x[i] given by

1

qk

✓
P̂s,x[i]�

nX

`=k+1

X

y2Y`(x)

(�1)|y|�|x|+1P̂s,y[i]

✓
y

x

◆0✓p

q

◆`�k ◆

(15)

where P̂s,x[i] =
1
T

PT
t=1 {S̃t[i : i+ |x|� 1] = x}.

One way to analyze the performance of our estimator
K̂s,x[i] would be to apply a standard concentration inequality
such as the Chernoff bound to each of the terms P̂s,y[i] and use
that to bound the error of K̂s,x[i]. However, this yields a sub-
optimal analysis as we do not need to guarantee the accuracy
of each P̂s,y[i] term. Directly analyzing the accuracy of K̂s,x[i]
is more subtle, as K̂s,x[i] is not a sum of independent random
variables. To that end, we apply McDiarmid’s inequality to
analyze the deviation of K̂s,x[i] from Ks,x[i] directly.

Lemma 3. For source string s, a k-mer x with |x| = c log n,
and a set of T traces, we have

Pr
⇣
|K̂s,x[i]�Ks,x[i]| � ✏

⌘

 2 exp

 
� 2T ✏2

n
�

1
nc log(q)

�
1 + 2n↵c(p)

��2

!
.

Setting � = Pr
⇣
|K̂s,x[i]�Ks,x[i]| � ✏

⌘
, we conclude that

T = log(2/�)
n

2✏2

✓
1

nc log(q)

⇣
1 + 2n↵c(p)

⌘◆2

(16)

traces suffices for recovering Ks,x[i] with error less than ✏
with probability at least 1� �.

We can compute the estimator in (15) efficiently by iterating
through all T traces, and for each ` 2 {k + 1, ..., n},
constructing a linked list that stores each length-` string that
starts at position i in at least one trace, along with the number
of times it is seen in the set of traces. After generating this
set of linked lists, for each string y present in a linked list,
we compute the corresponding term in (15), which requires
the computation of

�y
x

�0. The entire process requires O(T 2n3)
time since we iterate through O(n) strings that start at position
i in each of the T traces, and for each observed string y, we
must check if there is already a node corresponding to y in a
linked list using O(T ) time, and compute

�y
x

�0 in O(n2) time
using dynamic programming (see Proposition 6.3.2 in [28]).

In conjunction with our trace complexity analysis, the above
approach for computing the estimator implies that for x of
length c log(n), we can estimate Ks,x[i] with error at most
1/poly(n) with high probability in poly(n) time, and can
therefore estimate the c log(n)-density map with maximum
error 1/poly(n) with high probability in poly(n) time.
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