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Abstract—Motivated by testing for pathogenic diseases we con-

sider a new nonadaptive group testing problem for which: (1)

positives occur within a burst, capturing the fact that infected test

subjects often come in clusters, and (2) that the test outcomes

arise from semiquantitative measurements that provide coarse

information about the number of positives in any tested group.

Our model generalizes prior work on detecting a single burst

with classical group testing [1] to the setting of semiquantitative

group testing (SQGT) [2]. Specifically, we study the setting where

the burst-length ` is known and the semiquantitative tests provide

potentially nonuniform estimates on the number of positives in a

test group. The estimates represent the index of a quantization

bin containing the (exact) total number of positives, for arbitrary

thresholds ⌘1, . . . , ⌘s. Interestingly, we show that the minimum

number of tests needed for burst identification is essentially only a

function of the largest threshold ⌘s. In this context, our main result

is an order-optimal test scheme that can recover any burst of length

` using roughly b `
2⌘s

c+logs+1(n) measurements. This suggests that

a large saturation level ⌘s is more important than finely quantized

information when dealing with bursts. We also provide results for

related modeling assumptions and specialized choices of thresholds.

I. INTRODUCTION

Group testing (GT) is a protocol for identifying relatively
small subsets of marked elements, referred to as positives, within
a larger collection of entities termed test subjects. The gist
of the approach is to group subjects into carefully selected
subpools and test the subjects in each subpool jointly so as
to reduce the number of tests compared to that needed for
individual testing. The first GT scheme comprising two stages of
testing was described by Dorfman [3] in the context of finding
individuals with venereal diseases. His scheme also represents
the first instance of adaptive testing, where measurements from
one round of testing can be used to inform the test selections
in subsequent rounds. Unlike adaptive testing, nonadaptive GT
requires that all tests be designed and conducted simultaneously.
Since Dorfman’s work, GT has been extended and generalized in
many different directions and has found numerous applications
in search systems, experimental and circuit design and computa-
tional biology. For comprehensive surveys, the interested reader
is referred to [4], [5].

In [1], Colbourn considered a specialized GT technique for
identifying one single burst of consecutive positives of length
 ` within an ordered list of n elements. For nonadaptive
techniques, Colbourn showed that the order-optimal number of
measurements equals ` + log(n). Follow-up works focused on
improving some aspects of the scheme [6]–[8], extending the

results to include new adaptive protocols [9], and generalizing
the approach to handle multiple bursts [10].

However, in many real-life scenarios, such as testing for
infections with viral pathogens based on quantitative PCR (quan-
titative polymerase chain reaction, qPCR), the outcomes are real-
valued and usually confined to an interval such as [10, 45]. A
measurement is known as the Ct (cycle threshold) value and
it conveys information about how likely an individual is to be
infected. For example, a Ct value close to 40 is highly indicative
of a negative subject, while a value below 20 is a strong sign that
the individual is highly virulent. One can therefore quantize the
Ct values using a carefully selected collection of s thresholds
⌘ = (⌘1, . . . , ⌘s) so that each quantization bin provides an
estimate of the viral load in the pool and, consequently, an
estimate of the number of positives in the pool. This type of GT
approach is known as semiquantitative GT (SQGT) [2], [11].
Furthermore, whenever testing is done on large populations in
which individuals that cohabitate are naturally adjacent in the
order used for testing [12] (for example, families, dorm-mates
etc.), bursty positive models are appropriate and can result in
significant savings compared to classical GT approaches [1].

Given the additional quantitative information and the assump-
tion regarding consecutive orderings of positives, one can easily
envision performing SQGT for bursty positives that quantizes
the Ct values into quantization bins that indicate the level of the
viral load, or an estimate of the number of infected individuals in
the population [13], [14]. Here, for the first time, we study the
reduction in the number of group measurements achievable in
such a nonadaptive setting. In particular, we investigate two new
bursty SQGT models [2], one in which the length of the burst is
known and fixed to ` (henceforth referred to as the fixed-length
burst model, B(n, `, ⌘)); and another, in which the length of the
burst is known to be upper-bounded by ` (henceforth referred to
as the bounded-length burst model, B(n, `, ⌘)).

Our main contributions include

1) Order-optimal constructions (i.e., constructive lower and
upper bounds that differ by a constant factor of 2) for the
B(n, `, ⌘) setting with quantization thresholds ⌘ for which
` = ⌦ (⌘s log2(⌘s)).

2) Order-optimal constructions (i.e., lower and upper bounds
that differ by a constant factor of 4) for the nonadaptive
B(n, `, ⌘) setting with SQGT thresholds ⌘ = (1, . . . , s)
corresponding to the so-called saturation model [13], [15].

Two important comments are in place. Semiquantitative measure-



ments significantly decrease the number of tests needed for the
B(n, `, ⌘) setting (the improvement is linear in the number of
thresholds s). Somewhat surprisingly, for the B(n, `, ⌘) setting
the number of tests is basically determined by the value of
the largest threshold ⌘s rather than by the total number of
thresholds s. These findings may have interesting consequences
for test schedules and quantization schemes used for practical
quantitative PCR protocols.

The paper is organized as follows. Section II introduces the
notation and provides the formal problem formulation. Section
III contains the results for the lower bounds, while Section IV
contains the main results of the work, pertaining to upper bounds
on the number of SQGT burst identification models for a fixed
and upper-bounded length of the burst.

II. PROBLEM FORMULATION

We start by introducing the relevant notation as well as
the fixed-length and bounded-length single burst identification
problems under SQGT measurements.

Let hM, wM,M (⇤, i) ,M (j, ⇤) denote the number of rows
(height), number of columns (width), i-th column and j-th
row of the matrix M

hM⇥wM , respectively. Our row indices
lie in [0, hM � 1], while the column indices are confined to
[0, wM � 1]. In addition, R (M) ,Mc,M1 are used to denote a
matrix obtained from M by reversing the column order (so that
R (M) (⇤, i) = M(⇤, wM � i� 1), a c-fold horizontal concate-
nation of M (i.e, [M, . . . ,M] with c constituent matrices), and
an infinitely horizontal concatenation of matrices M such that
wM1 = 1. Finally, we use M(i, j) to denote the entry in M

in row i and column j.
The single burst of positives problem requires introducing the

following notions.
Bursts: A burst is denoted by a binary n ⇥ 1 column vector

b, and is specified by a head and tail hb  tb, which dictate its
length `b = tb � hb + 1. It comprises consecutive positives:

b(i) =

8
><

>:

0, 0  i < hb,

1, hb  i  tb,

0, tb < i  n.

When `b is fixed, bi denotes the burst with hb = i, and the
distance between two burst bi, bj is defined as the difference of
their head position |i� j|.

SQGT measurements: An SQGT measurement is described by
a 1⇥ n binary vector m such that

m (i) =

(
1, ith element is included in the test,
0, otherwise,

and a set of integer-valued quantized thresholds

⌘ = (⌘1, . . . , ⌘s) with 0 < ⌘1 < . . . < ⌘s  n,

such that the SQGT measurement outcomes equal

⌘(mb) =

8
><

>:

0, 0  mb < ⌘1,

i, ⌘i  mb < ⌘i+1,

s, ⌘s  mb  n.

Definition 2.1: When ⌘ = (1, 2, . . . , s), we refer to this
specialized SQGT scheme as the saturation SQGT model.

Correct burst detection: for any hidden burst b, the estimate b̂
generated by the detection algorithm should equal b.

Definition 2.2: B(n, `, ⌘) and B(n, `, ⌘) are used to denote
the fixed-length and bounded-length burst problem with burst-
lengths = ` and  `, respectively, and with n test elements and
SQGT quantized thresholds ⌘.

A nonadaptive SQGT testing scheme with m measurements on
n elements is represented by a m⇥n binary measurement matrix
M with each row corresponding to a single SQGT measurement.
We say M solves the B(n, `, ⌘) (or the B(n, `, ⌘) ) problem
if and only if

8b 6= b
0

allowed by the B(n, `, ⌘) (B(n, `, ⌘) ) problem,

one has ⌘(Mb) 6= ⌘(Mb
0
).

The smallest possible number of measurements possible to
meet this requirement, among all nonadaptive SQGT schemes
is denoted by m⇤

B(n, `, ⌘) and m⇤
B(n, `, ⌘).

Our constructions will make use of Gray codes (also used in
[1]) and generalizations thereof. However, The ways for using
Gray codes are different. The way of [1] can handle multiple
lengths but only leverage a single threshold. On the other hand,
our way (Theorem 2) can only handle a single length but leverage
all thresholds. Our construction leverage Fact 2.1 and Fact 2.2.
To learn more about Gray code, see [16]. We say that Gs,h 2
{0, . . . , s}h⇥sh represents an s-ary Gray code with length h if
it satisfies the following two conditions:

1) Any two consecutive columns differ in exactly one posi-
tion, and the difference has magnitude one.

2) Gs,h includes all possible sh codewords exactly once.
Example 2.1: The following matrix has columns that constitute

a 3-ary Gray code of length two:

0 0 0 1 1 1 2 2 2
0 1 2 2 1 0 0 1 2

�
.

Fact 2.1: The Gray code Gs,h can be constructed by first
recursively constructing paired Gray code matrices Ps,h :=
[Gs,h,R (Gs,h)] using the rule below and then removing half
of the columns from the right side:

8
><

>:

Ps,1 = [0, . . . , s� 1, s� 1, . . . , 0] ,

Ps,i =

"
Ps,1 ⌦ 1

si�1

P
s
s,i�1.

#
(1)

Here, ⌦ stands for the Kronecker product while 1
a is a row

vector of 1s.
Example 2.2: The following matrix P3,2 is constructed recur-

sively using (1). The left half, as claimed, equals G3,2 and was
illustrated in Example 2.1:


000 111 222 222 111 000
012 210 012 210 012 210

�
.

We also make use of the following property of binary Gray codes.
Fact 2.2: G2,h ((i, ⇤)) contains 2i�1 runs of 1s for all i except

i = 0, which contains only one run of 1s. Consequently, the
matrix contains a total of

Ph�1
i=1 2i�1 + 1 = 2h�1 runs of 1s



within its rows. This is illustrated by the following example for
G2,3, with a total number of 23�1 = 4 runs of 1s.

2

4
0 0 0 0 [1 1 1 1]
0 0 [1 1 1 1] 0 0
0 [1 1] 0 0 [1 1] 0

3

5 .

III. LOWER BOUNDS

We first provide lower bounds for the smallest number of mea-
surements needed for the m⇤

B(n, `, ⌘) and m⇤
B(n, `, ⌘) settings.

The proofs mostly use ideas from [1].
Theorem 1: We have

8
<

:
m⇤

B(n, `, ⌘) � max
⇣
logs+1 (n� `+ 1) , d `

2⌘s
e
⌘
,

m⇤
B(n, `, ⌘) � max

�
log2 (n) , d `

se
�
.

The proof technique used for m⇤
B(n, `, ⌘) is similar to that for

m⇤
B(n, `, ⌘); hence, we only provide the proof for m⇤

B(n, `, ⌘). We
prove the first bound by establishing each of the bounds on the
right-hand side separately and combining them via maximization.

1) The bound logs+1 (n� `+ 1) follows from a simple
counting argument: there are a total of n� `+ 1 different
head positions and a total of s + 1 possible outcomes for
each measurement.

2) The bound d `
2⌘s

e: we show that even if we only require
to discriminate among the first ` + 1 bursts (i.e., bursts
bi with 0  i  `), we still need d `

2⌘s
e measurements.

For any measurement m, let m1 and m2 denote the
first and second block of ` bits of m. Only the last ⌘s
nonzero bits in m1 and the first ⌘s nonzero bits in m2

are relevant. For simplicity, we only provide a proof for
the m2 case. Let `  i1 < i2 < . . . < 2` be the
elements included in m2. Since `b = ` and hb  `, if
ij is included in the burst b then i1, . . . , ij�1 must also
be included. Therefore, if j > ⌘s, by observing that ⌘s is
the largest threshold, one can remove ij from m2 without
changing the outcome. Hence one can only retain the first
⌘s nonzero bits in m2 and still arrive at the same outcome.
As a result, it suffices to only consider those m for whichP2`�1

j=0 m(j)  2⌘s. Let M
hM⇥2` be our measurement

matrix restricted to the first 2` columns. Suppose that
hM < `

2⌘s
; then

PhM�1
i=0

P2`�1
j=0 M(i, j)  2⌘shM < `.

This implies that there exists a 0  j < ` such that
M(⇤, j) = M(⇤, j + `) = 0

hM⇥1. Then ⌘
�
Mbi+1

�
=

⌘
�
Mbi +M(⇤, j + `)�M(⇤, j)

�
= ⌘

�
Mbi

�
. Therefore

m⇤
B(n, `, ⌘) � d `

2⌘s
e.

IV. MAIN RESULTS

In Section IV-A, we describe an order-optimal construction of
measurement matrices for the B(n, `, ⌘) problem pertaining to
two different cases, the case of general SQGT thresholds with
` = ⌦(⌘s log(⌘s)) and the saturation model with `  ⌘s = s. It
is interesting to note that for the first case, m⇤

B(n, `, ⌘) basically
depends only on the largest threshold ⌘s. In other words, as long
as ` = ⌦(⌘s log2(n)) with a sufficiently large constant, there
is no benefit of using multiple thresholds (SQGT) compared to
threshold group testing (TGT) with the single biggest threshold
⌘s. In Section IV-B, we describe an order-optimal scheme (within

an approximation constant 4) for the B(n, `, ⌘) problem and
the saturation model.
A. The B(n, `, ⌘) Model

Since for this case the burst length is fixed, one only needs
to locate the position of the head hb 2 [0, n� `] of the burst b.
Vaguely speaking, the near-optimal construction follows a two-
step sketch-and-refine procedure, also used in classical binary
burst GT detection [1]. The first part, referred to as the General
Sketch Scheme, uses a measurement matrix K (Theorem 2)
that produces different outcomes for all potential bursts whose
starting locations are separated by > ` + 1 positions. The
second part, referred to as the General Refinement Scheme, uses
a measurement matrix R (Theorem 3) that produces different
outcomes for all potential bursts whose starting locations are
separated by < 2` positions. Stacking the two measurement
matrices leads to the result reported in Theorem 4.

Theorem 2: For B(n, `, ⌘), the measurement matrix K de-
scribed in Section IV-A1 produces different outcomes for all
potential bursts whose starting locations are at distances > `+1
using dlogs+1

�
n�`+1

`

�
e measurements.

Theorem 3: For B(n, `, ⌘) with parameters ⌘s = 2h�1+2 and
` = c2h + 1, where c, h 2 N and c > 2(h + 1), the measure-
ment matrix R described in Section IV-A2 produces different
outcomes for all potential bursts whose starting locations are at
distances < 2` using  `

2⌘s
+1 measurements. The construction

depends only on the largest threshold ⌘s.
Theorem 4: Combining the General Sketch matrix of Theo-

rem 2 and the General Refinement matrix of Theorem 3, leads
to the measurement matrix [K|,R|]| which can be used to
solve B(n, `, ⌘) using  `

2⌘s
+logs+1

�
n�`+1

`

�
+2 measurements

whenever ` > 4⌘s log2 (4⌘s). This number of measurements is at
most twice the number of measurements from the lower bounds
reported in Theorem 1.

Remark 4.1: Note that the scheme from Theorem 3 only uses
the largest threshold ⌘s. Therefore, if we only make use of
⌘s in the General Sketch Scheme of Theorem 2, the resulting
measurement matrix has height roughly `

2⌘s
+ log2

�
n�`+1

`

�

and depends on one threshold, ⌘s. When ` = ⌦(⌘s log2(n))
with a sufficiently large constant, `

2⌘s
+ logs+1

�
n�`+1

`

�
=

⌦ (log2(n)) =
`

2⌘s
+ log2

�
n�`+1

`

�
. Therefore, in this parameter

regime, there is no benefit from using multiple thresholds.
1) Proof of Theorem 2: We start with some relevant no-

tation. Let K
hK⇥n be the measurement matrix. We say that

K
hK⇥n results in the outcome matrix O

hK⇥n�`+1 if O =⇥
⌘
�
Kb0

�
. . . ⌘

�
Kbn�`+1

�⇤
represents the collection of out-

comes for all length-` bursts bi when using the measurement
matrix K.

Next, let ~B` (x) := 0
`�x

1
x and ~B` (x) := 1

x
0
`�x, for

all x 2 {0, . . . , `}. Also, let ~B` (0)
i , ~B` (0)

i stand for the
horizontal concatenation of i copies of ~B` (x) and ~B` (x).
Observe that dlogs+1

�
n�`+1

l

�
e (almost) matches the counting

bound logs+1

�
n�`+1

`

�
. The key idea is to first construct K with

wK � n such that the outcome matrix satisfies

O = Gs+1,hK ⌦ 1
`+1, (2)

and then truncate it to n columns. By the definition of O, K can
identify all bursts at distance � `+ 1 if and only if all columns



of Gs+1,hK are different; that this is true follows from the fact
that Gray codes include all vectors {0, . . . , s}hK exactly once.
We need the following lemma for our subsequent derivations.

Lemma 4.1: The following measurement

m (c) :=
h
~B` (0)

c 0 ~B` (⌘1)
c . . . 0 ~B` (⌘s)

c

1 ~B` (`)
c 1 ~B` (⌘s � 1)c . . . 1 ~B` (⌘1 � 1)c 0

i1

results in the outcome
�
[0, . . . , s, s, . . . , 0]⌦ 1

c`+1
�1.

Proof: The case c = 1 can be proved easily and is illustrated
by the following example. For ⌘ = (1, 2, 4) and ` = 6, m(1)
equals

(000000 0000001 0000011 0001111

1111111 1111000 1100000 1000000 0)

For c > 1, and any length-` row-vector x, ⌘
�
xcbi

�
remains

unchanged for all bi, where i 2 [0, (c� 1) `].

8i, ⌘
�
xcbi+1

�
= ⌘

�
xcbi + xc(⇤, i+ `)� xc(⇤, i)

�
= ⌘

�
xcbi

�

We are now ready to present our construction. Let M [i] be the
measurement matrix recursively constructed as follows:

8
>><

>>:

M [1] = m (1) ,

M [i] =

"
m

⇣
(`+1)(s+1)i�1�1

`

⌘

M [i� 1]s+1

#
.

(3)

Note that (`+1)(s+1)i�1�1
` may not be an integer. We therefore

first focus on the special case s = ` (therefore (`+1)(s+1)i�1�1
` =

(`+1)i�1
` 2 N) to illustrate the idea and then generalize the

result for s < ` through slight modifications of the argument
in Theorem 6.

Lemma 4.2: For s = `, M [i]1 results in the outcome matrix�
P`+1,i ⌦ 1

`+1
�1. Where P`+1,i is the `+1-ary length-i paired

gray code matrix.
Proof: The proof is by induction.

1) For i = 1: by Lemma 4.1, M [i]1 = m (1)1 results
in the outcome matrix

�
[0, . . . , `, `, . . . , 0]⌦ 1

`+1
�1

=�
P`+1,1 ⌦ 1

`+1
�1.

2) For i > 1: Suppose that the claim holds for i� 1. Then

M [i]1 =

"
m

⇣
(`+1)i�1

`

⌘

M [i� 1]`+1

#1

results in the outcome matrix
"
[0, . . . , `, `, . . . , 0]⌦ 1

(`+1)i

P
`+1
`+1,i�1 ⌦ 1

`+1

#1

=
�
P`+1,i ⌦ 1

`+1
�1

.

By Lemma 4.2, M [hK] truncated to (`+1)hK+1+`�1 columns
from the right results in the outcome matrix G`+1,hK ⌦ 1

`+1,
and consequently produces different outcomes for all potential
bursts whose starting locations are within distance > ` + 1. It
is not hard to show that a single measurement 0`

�
1
`+1

0
`+1

�1

results in the outcome matrix (0, . . . , `, `, . . . , 0)1. Hence we
have the following theorem.

Theorem 5: For the saturation SQGT model with ` thresholds

⌘ = (1, . . . , `),

M

⇥
dlog`+1 (n� `+ 1)� 1e

⇤1

0
`
�
1
`+1

0
`+1

�1
�

truncated to

n columns on the right can be used as the test matrix for the
B(n, `, ⌘) model with dlog`+1 (n� `+ 1)e measurements.
For the case s < `, some modifications in the recursion given by
(3) are required. The modification involves truncating a certain
number of columns from the left, right, or both sides of M

0
[i]

at each stage of recursion i:
8
><

>:

M
0
[1] = m (1) ,

M
0
[i] =

"
0
↵ mod ` m

�
b↵
` c
�

0
↵ mod `

M
0

r [i� 1] M
0

lr [i� 1]s�1
M

0

l [i� 1]

#
,

where ↵ =
w

M
0
[i�1]

2 �1, and M
0

r [i� 1] ,M
0

l [i� 1] ,M
0

lr [i� 1]
denotes M

0
[i� 1] truncate ↵ mod ` columns from the right, left,

and both sides, respectively.
By using a similar proof as the one described above and

some simple but tedious calculations, one can show that
M

0 ⇥dlogs+1

�
n�`+1

`

�
e
⇤

truncated to n columns from the right
can be used as K. Hence we have the following result.

Theorem 6: For s < `, M
0 ⇥dlogs+1

�
n�`+1

`

�
e
⇤

truncated to
n columns from the right produces different outcomes for all
potential bursts whose starting locations are at distance > `+ 1
using dlogs+1

�
n�`+1

`

�
e measurements.

2) Proof of Theorem 3: We now focus our attention on the
General Refinement Scheme. Let ~B to denote the cyclic shift of
columns in B one position to the left so that ~B(⇤, i) = B(⇤, i+
1 mod `). We need the following lemma.

Lemma 4.3: Suppose that a binary matrix B
hB⇥` satisfies the

following three conditions:
1) All columns and their binary complement

{B(⇤, i), B̄(⇤, i)}`�1
i=0 are distinct.

2) The first column is the zero vector, B(⇤, 0) = 0
hB⇥1.

3) Each row of ~B�B has ⌘s � 1 elements equal to �1.
Then the following measurement matrix produces different out-
comes for all potential bursts b 6= b

0
whose starting locations

are at distance < 2`:

R :=
⇥
R

�
R

+
R

�
R

+ . . .
⇤
, (4)

where R
� denotes the “negative” part of ~B � B (obtained by

setting 1s to 0s and �1s to 1s), while R
+ denotes the positive

part of ~B�B (obtained by setting �1s to 0s), and the last column
is changes from 0

hB⇥1 to 1
hB⇥1 (note that the last column

of ~B � B before the modification is B(⇤, 0) � B(⇤, ` � 1) =
�B(⇤, `� 1), which implies that the positive part is zero).

Proof: Since R is a repeated horizontal concatenation of
R

� and R
+, it suffices to show that

80  i 6= j < 2`, ⌘
�
Rbi

�
6= ⌘

�
Rbj

�
. (5)

In particular, we prove that

Rbi =

(
(⌘s � 1)1hB⇥1 +B(⇤, i) 0  i < `,

⌘s1hB⇥1 �B(⇤, i) `  i < 2`.
(6)

Note that each entry of Rbi is either ⌘s�1 or ⌘s. By condition 1,
all Rbi are different. Consequently, all ⌘

�
Rbi

�
are different as

well. Therefore, R produces different outcomes for all potential
bursts whose starting locations are at distance < 2` using hB



measurements; only the largest threshold ⌘s is relevant. Next we
prove (6).

For 0  i < `,

Rbi �Rb0 =
iX

j=1

Rbj �Rbj�1 =
iX

j=1

R
�
bj � bj�1

�

=
iX

j=1

R
+(⇤, j � 1)�R

�(⇤, j � 1)

=
iX

j=1

R(⇤, j � 1)
(a)
= B(⇤, i).

For `  i < 2`,
Rbi �Rb` =

iX

j=`+1

Rbj �Rbj�1 =
iX

j=`+1

R
�
bj � bj�1

�

=
iX

j=`+1

R
�(⇤, j � 1)�R

+(⇤, j � 1)

= �
i�X̀

j=1

R(⇤, j � 1)
(a)
= �B(⇤, i).

The equalities
(a)
= follows from Condition 2. Finally, by Condi-

tion 3 and the fact that we changed the last column of R+ from
0
hB⇥1 to 1

hB⇥1, Rb0 = (⌘s � 1)1hB⇥1 and Rb` � Rb0 =
1
hB⇥1 ) Rb` = ⌘s1hB⇥1.

It remains to construct a matrix B that satisfies Conditions 1-
3 in Lemma 4.3 with hB roughly equal to `

2⌘s
. Let Gh⇥2h

2,h be
the code matrix of a binary Gray code of length h such that
2(h+ 1) < hB. We construct ḠhB⇥2h

2,h,i as

Ḡ
|
2,h,i =

h
0
2h⇥i

1
2h⇥1

G
|
2,h 0

(2h⇥hB�i�h�1)
i|

.

Then, B is constructed as follows:

B =
⇥
0
hB⇥1

Ḡ2,h,hB�1 . . . Ḡ2,h,0

⇤
.

Example 4.1: The matrix B is constructed using G2,2 and for
hB = 7:

2

666666664

0 0011 0110 1111
0 0110 1111 0011
0 1111 0011 0110
0 1111 0011 0110
0 1111 0011 0110
0 1111 0011 0110
0 1111 0011 0110

3

777777775

• Condition 1: we demonstrate a 2-step procedure for recov-
ering the index of each column based on its content which
establishes that all columns are different. The idea is first
to use 1

1⇥2h to recover i (the index of Ḡ2,h,i) and then use
the following h bits from the Gray code to locate the exact
column. To do so, in the first step, we need an additional
constraint hB � 2(h + 1). In a nutshell, we can recover i
by looking at the first 1 after a length-h + 1 burst of 0 in
each column. Moreover, by this constraint, each column in
B has more zeros than ones. Consequently, all B(⇤, i) and
B̄(⇤, i) must be distinct.

• Condition 2: this condition is easy to verify.

• Condition 3: by the construction from (IV-A2), each row
B (i) is a horizontal cyclic shift of

v :=
h
1
2h ,G2,h(0, ⇤), . . . ,G2,h(h� 1, ⇤)

i

with an additional 0 appended at the left. In Example 4.1, we
have v = [111100110110]. By this construction, the number
of �1s in each row of ~B�B equals the number of runs of
1s in B(i, ⇤), which equals the sum of the number of runs
of 1s in 1

1⇥2h and each row of the Gray code G2,h(i, ⇤).
By Fact 2.2, the total number of runs of 1s in each B(i, ⇤)
equals h�1X

i=1

2i�1 + 2 = 2h�1 + 1.

Finally, we set ⌘s = 2h�1 + 2. Then, `
hB

= hB2h+1
hB

> 2h =
2⌘s � 4 with the minor restriction that hB > 2(h+ 1).

B. The Saturation SQGT Model for B(n, `, ⌘)

For the bounded-length burst problem B(n, `, ⌘) , one needs
to recover both hb and tb in order recover the burst. We describe
next an order-optimal scheme for B(n, `, ⌘) restricted to the
saturation SQGT model. First, for ⌘s = s � l, we describe an
optimal scheme termed the Integer code. Then, for ⌘s = s < l,
by adapting the bursty GT scheme from [1], we arrive at an order-
optimal scheme (within a constant factor of 4) in Theorem 8 with
the proof left in full version.

Theorem 7: For B(n, `, ⌘) and the saturation SQGT model
for which ⌘ = (0, . . . , s) and s � `, there exists and order-
optimal scheme N that solves B(n, `, ⌘) using dlog2 (n)e+1
measurements.

Proof: The matrix N is a vertical concatenation of a
dlog2(n)e⇥n Index matrix and an 1

1⇥n. Note that the ith column
of the Index matrix is the binary representation of i.

Example 4.2: For n=8, we have

N =

2

664

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

3

775 .

Since `  s, ⌘ (Nb) = Nb. We then treat the outcome vector as
a binary representation of an integer k equal to

k : =

dlog2(n)eX

i=0

2i (Nb) (i, 0) =

dlog2(n)eX

i=0

2i
tbX

j=hb

N(i, j)

=
tbX

j=hb

dlog2(n)eX

i=0

2iN(i, j) =
tbX

j=hb

j =
hb + tb

2
`b.

We can deduce `b from the outcome corresponding to 1
1⇥n.

Hence, N recover the burst b using dlog2(n)e+1 measurements.

Theorem 8: For B(n, `, ⌘) under the saturation SQGT model
with ⌘ = (0, . . . , s) and s < `, there exists an order-optimal
scheme (within a constant factor 4) C that solves B(n, `, ⌘)
using  2`

s + 2 log2(n) + 3 measurements. When s = 1, this
recovers the original bound for GT from [1].
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