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Abstract—Motivated by applications in polymer-based data
storage we introduced the new problem of characterizing the
code rate and designing constant-weight binary B2-sequences.
Binary B2-sequences are collections of binary strings of length
n with the property that the real-valued sums of all distinct
pairs of strings are distinct. In addition to this defining property,
constant-weight binary B2-sequences also satisfy the constraint
that each string has a fixed, relatively small weight ! that scales
linearly with n. The constant-weight constraint ensures low-cost
synthesis and uniform processing of the data readout via tandem
mass spectrometers. Our main results include upper bounds on
the size of the codes formulated as entropy-optimization problems
and constructive lower bounds based on Sidon sequences.

I. INTRODUCTION

Binary B2-sequences were introduced by Lindström in [1]
and were subsequently studied in a number of follow-up
works [2], [3], [4]. Binary B2-sequences represent a set
(codebook) of binary vectors of some fixed length such that the
entry-wise real-valued sums of all pairs of codevectors from
the set are distinct; hence, given the sum one can uniquely
determine the vectors that were summed up. Since their
introduction, these sequences have found many applications
such as for search algorithms [5], [6], multiple access system
design [7], [8], and data fingerprinting [9], [3].

Some more recent applications of binary B2-sequences in-
clude polymer-based data storage. Nonvolatile storage systems
based on DNA and other native macromolecules and synthetic
polymers hold the promise of ultrahigh storage densities, long-
term readout compatibility and exceptional durability [10],
[11], [12], [13], [14], [15], [16], [17]. Synthetic polymers
are binary molecular storage media that represent 0s and
1s using polymers of significantly different masses [18]. A
user-defined binary string is created by stitching together
the polymer symbols in the required order and it is read
by measuring the masses of prefixes and suffixes (or all
substrings) of the polymer strings [19], [20]. To ensure unique
reconstruction of mixture of polymer strings based on their
prefix and suffix compositions only, one needs to follow a
more involved process, described in [21], [22]. There, binary
Bh-sequences (codes) [1], [3], [4] are used to ensure that
the sums of masses of prefixes of the same length uniquely
determine the strings themselves. Since in practice the polymer
used to represent 1s has a significantly higher mass than the
polymer used to represent 0s, the mass discrepancy can lead to
high fragmentation loss and significantly increased chemical
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synthesis cost, using binary B2-sequences of relatively small
weight is desirable. This motivates introducing the problem of
constant-weight B2-sequence design, complementing results
from the well-studied area of constant-weight error-control
coding, [23], [24], [25], [26], [27], [28], [29].

The main results of our work include information-theoretic,
prefix-suffix splitting upper bounds on the size of constant-
weight binary B2-sequences for which the weight ! scales
linearly with n. Unlike its unconstrained counterpart, the
strongest upper bound is given in terms of an optimization
problem that has to be solved numerically. In addition, we
also provide constructive lower bounds based on Sidon se-
quences. The equally important problem of designing binary
B2-sequences of bounded, small weight, will be discussed
elsewhere.

The paper is organized as follows. Section II presents
the notation, relevant concepts and a generalization of the
approach from [1] to the case of constant-weight binary
strings. Section II-A contains our main result, the sharpest
known upper bound on the size of binary constant-weight
B2-sequences. Constructive lower bounds are presented in
Section III.

II. PRELIMINARIES AND ENTROPY BOUNDS

We denote sets by calligraphic upper-case letters and vec-
tors by boldface lower-case letters. Cardinalities of sets are
denoted by upper-case letters. We also use [n] to denote the
set {1, 2, . . . , n}. All logarithms, unless stated otherwise, are
taken base-2.

A set An ⇢ {0, 1}n of binary vectors is called a B2-
sequence set if real-valued sums of all distinct pairs of strings
c1 + c2, c1, c2 2 An, are distinct. A B2-sequence set
A!

n
is said to have constant weight ! if every vector c =

(c1, . . . , cn) 2 A!

n
has Hamming weight |c| , P

n

i=1 ci = !.
Let A

!

n
be the size of the largest constant-weight B2-

sequence set A!

n
of weight !. We are interested in the asymp-

totic behavior of A
!

n
, for constant !̄ = !

n
, or more precisely,

in the asymptotic code rate R!̄ = lim sup
n!1

logA
!̄n
n

n
. The

results established in [1], [3] imply that for unrestricted binary
B2-sequence sets, the asymptotic code rate satisfies  0.5753,
which also establishes R!̄  0.5753 for any !̄ 2 [0, 1]. We
seek to improve this upper bound on R!̄ for !̄ 2 [0, 1/2).

A simple asymptotic upper bound on R!̄ can be derived
using information-theoretic arguments (attributed to Katona
for the case of unrestricted sequences), by assuming a uniform
probability distribution on the set of all possible ordered pairs
(C,C 0) of codevectors and invoking the fact that each pair



results in a unique sum. Note that C and C
0 are chosen

independently but are allowed to be equal. To obtain an
upper bound on R!̄ , we assume that the size of the constant-
weight B2 code of length n equals A

!

n
. Then, the entropy

of all ordered pairs of codevectors equals 2 log(A!

n
). Let

G = (C > C 0) be an indicator random variable for the event
that c is lexicographically ranked higher than c0. Since the
sums of all unordered pairs are all distinct, there is a bijection
between the conditional probability space of the pair (C,C 0)
given G and the probability space of a sequence of random
variables, Xi = Ci +C

0
i
, i 2 [n], representing the coordinates

of the sum vector. Consequently,

2 log(A!

n
) = H(C,C 0|G) +H(G) (1)
= H(X1, X2, . . . , Xn|G) +H(G)

 H(X1) +H(X2) + . . .+H(Xn) + 1.

Assume that the probability of observing a 1 at the ith
coordinate (i.e., Ci) of the B2-sequence code equals pi,
i = 1, . . . , n. Given that the weight of the binary vectors is
!, we have 1

n
(p1 + p2 + . . .+ pn) =

!

n
= !̄. The entropy of

the ith coordinate of all possible 2-sums equals H(Xi) and is
equal to the entropy of a Binomial(2, pi) distribution, i.e., the
distribution pi with probabilities of 0, 1 and 2 equal to

p
i

0 = (1� pi)
2
, p

i

1 = 2 pi (1� pi) , p
i

2 = p
2
i
, i 2 [n]

respectively. Note that H(Xi) = H(pi) equals

� p
2
i
log p2

i
� (1� pi)

2 log(1� pi)
2 � 2pi(1� pi) log pi

� 2pi(1� pi) log(1� pi)� 2pi(1� pi)

=� 2pi log pi � 2(1� pi) log(1� pi)� 2pi + 2p2
i
, Hbin(pi).

Since d
2
Hbin(pi)
dp

2
i

= � 2
ln(2) (

1
pi

+ 1
1�pi

) + 4 < 0, the function
Hbin(pi) is concave in pi. Hence, we have

H(X1) +H(X2) + . . .+H(Xn)

= Hbin(p1) +Hbin(p2) + . . .+Hbin(pn)

 nHbin

✓Pn

i=1 pi

n

◆
= nHbin (!̄) . (2)

Note that Hbin(!̄) stands for the entropy of a Binomial(2, !

n
)

distribution, i.e., the distribution

p0 = (1� !̄)2 , p1 = 2 !̄ (1� !̄) , p2 = !̄
2
.

By (1) and (2) it follows that 2 log(A!

n
)  nHbin (!̄)+ 1 and

R!̄  1

2
Hbin (!̄) . (3)

While (3) provides a good starting upper bound for R!̄ , we
note that an alternative entropy bound can be obtained by
considering the coordinates of the difference of codevector,
rather than the sum of codevectors. Specifically, we assume a
uniform distribution on the set of ordered pairs of codevectors
(C,C 0) in a constant-weight B2 code, so that the entropy
of the ordered pair is as before given by 2 log(A!

n
). Let

Yi = Ci � C
0
i
, i 2 [n], be the sequence of random variables

representing the values of coordinates of the difference of

vector in the ordered pair. Then, either one of the following
holds: (1) Yi = 0 for i 2 [n], whenever the two vectors in
the ordered pair are equal; (2) there is a one to one mapping
between Y1, Y2, . . . , Yn and the ordered pair if the two vectors
in the pair are not equal. This follows because if any two
different pairs c1, c2 2 A

!

n
and c1, c2 2 A

!

n
have the same

difference c1 � c2 = c3 � c4, then the two pairs c1, c4 and
c2, c3 have the same sum c1+c4 = c2+c3, which violates the
B2 constraint. Next, let E be the event {(Y1, . . . , Yn) = 0n}.
Then, we can upper-bound 2 log(A!

n
) by

H(C,C 0|Y1, Y2, . . . , Yn) +H(Y1, Y2, . . . , Yn)

=

✓
1� 1

A!
n

◆
H(C,C 0|Y1, Y2, . . . , Yn, E

c)

+
1

A!
n

H(C,C 0|Y1, Y2, . . . , Yn, E) +H(Y1, Y2, . . . , Yn)

=
logA!

n

A!
n

+H(Y1, Y2, . . . , Yn)

H(Y1) +H(Y2) + . . .+H(Yn) +
logA!

n

A!
n

,

where (1� 1
A!

n
) equals the probability that the two codevectors

in the pair are not equal. Assume that P{Ci = 1} = qi. Then,
as before, we have 1

n
(q1+q2+ . . .+qn) = !̄. The distribution

qi of Yi is given by

q
i

0 = q
2
i
+(1�qi)

2
, q

i

1 = qi(1�qi), q
i

�1 = qi(1�qi), i 2 [n].

Since the entropy function H(qi) is concave in qi,

H(Y1) +H(Y2) + . . .+H(Yn)

=H(q1) +H(q2) + . . .+H(qn)

nH(
q1 + q2 + . . .+ qn

n
)

=n

⇣
� t log t� (1� t) log(

1� t

2
)
⌘
,

where t =
Pn

i=1[q
2
i+(1�qi)

2]
n

. Note that t � !̄
2 + (1 � !̄)2 �

1
2 by Jensen’s inequality, and that for t � 1

2 the function
�t log t� (1� t) log( 1�t

2 ) decreases as t increases. Hence, by
the previous inequality we have

H(Y1) +H(Y2) + . . .+H(Yn)  nH(q),

where the distribution q is given by

q0 = !̄
2 + (1� !̄)2, q1 = !̄(1� !̄), q�1 = !̄(1� !̄).

As a result, 2 log(A!

n
)  nH(q) + logA

!
n

A!
n

, and

R!̄  1

2
H(q). (4)

It can easily be shown that the upper bound (3) is strictly
better than (4). However, as we will see later, the bound (4)
is more useful for deriving upper bounds than those obtained
from direct information-theoretic arguments.

In Table I, we provide numerical values for the information-
theoretic bounds derived in this section, along with those of
the improved upper bounds to be described in the subsequent



exposition, for different values of weights ! that scale linearly
with n. As may be seen, as ! decreases, all upper bounds
become closer in value. Additional results included in the table
are lower bounds, discussed in more detail in the last section.

TABLE I
UPPER AND LOWER BOUNDS ON THE SIZE OF BINARY,

CONSTANT-WEIGHT B2-SEQUENCES

The value of !̄ 0.5 0.4 0.345 0.2 0.1 0.05 0.02
Entropy bound (3) 0.75 0.731 0.704 0.562 0.379 0.239 0.122
Entropy bound (4) 0.75 0.739 0.723 0.612 0.43 0.274 0.139
Upper bound (5) 0.6 0.6 0.594 0.515 0.365 0.235 0.121
Upper bound (6) 0.6 0.59 0.575 0.487 0.349 0.228 0.12
Lower bound 0.25 0.259 0.263 0.232 0.166 0.108 0.056

A. Improved Upper Bounds

An improved upper bound on R!̄ for our constrained B2

codebook design can be obtained by adapting and generalizing
a recent approach from [4] for unconstrained B2 vectors.
The underlying proof combines entropy bounds with a prefix-
suffix decomposition approach first reported in [2]. For com-
pleteness, we first describe how to extend the prefix-suffix
decomposition approach for constant-weight B2 codebooks.
Afterwards, we improve the two bounds – the information-
theoretic and prefix-suffix bound – by combining them [4]. The
main differences between the approaches designed for general
codebooks [4], [2] and our approach is that we use more
elaborate entropy bounds, group the codevectors c 2 A!

n
based

on the weight of their prefixes and invoke specialized counting
techniques. Importantly, the approach in [4] does not improve
the result that can be obtained purely through the use of
prefix-suffix decompositions [2], while our scheme improves
both the entropy and prefix-suffix approach for constant-weight
codebooks. The proof is deferred to the appendix.

Lemma 1. Let every codevector be split as c = ab 2 A!

n
,

where a 2 {0, 1}e and b 2 {0, 1}n�e. Let e = ēn, where ē is
a constant in [0, 1]. Then, R!̄ can be upper bounded by

min
ē2[0,1]

max
!̄02[max{0,!̄�1+ē},min{ē,!̄}]

max

(
H(

!̄
0

ē
) · ē,

1

2

h
H(

!̄
0

ē
) · ē+H(

2!̄00

1� ē
) · (1� ē) + 2!̄00

i)
, (5)

where !̄
00 = min{!̄ � !̄

0
,
1�ē

4 }. By optimizing over ē,
numerical values for the bound can be found for different !0s.
A sampling of the results is shown in Table I.

We describe next our main result, constituting a sharper
asymptotic upper bound on constant-weight binary B2-
sequences.

Theorem 1. The rate R!̄ is upper bounded by

R!̄  min
ē2[0,1]

max
!̄02[max{0,!̄�1+ē},min{ē,!̄}]

max
�
ē H

✓
!̄
0

ē

◆
,

1

2

h
ē H

✓
!̄
0

ē

◆
+ (1� ē)H(p0, p1, p�1)

i 
, (6)

where p0 = (!̄00)2+(1�ē�!̄
00)2

(1�ē)2 , p1 = p�1 = 1�p0

2 , and !̄
00 =

!̄ � !̄
0.

In the following, we prove Theorem 1. Let

B!
0

n
= {c : c = ab 2 A!

n
, a 2 {0, 1}e, |a| = !

0}, (7)

where e = ēn and !
0 = !̄

0
n are constants s.t. ē, !̄0 2 [0, 1], be

the set of codevectors in A!

n
whose prefixes of length e have

weight !0 2 [max{0,! � n + e},min{e,!}]. For notational
convenience, we also use f = n � e to denote the length of
the suffixes. Note that

A
!

n
=

X

!02[max{0,!�f},min{e,!}]

|B!
0

n
|. (8)

Hence, we need to establish an upper bound on |B!
0

n
| for any

n, e and !
0 2 [max{0,! � f},min{e,!}].

Lemma 2. For any !
0 2 [max{0,!�f},min{e,!}], we have

log |B!
0

n
| max

(
eH

✓
!
0

e

◆
+ log n,

1

2

h
eH

✓
!
0

e

◆
+ fH(p0, p1, p�1)

i
+ 1

)
, (9)

where p0 = (!00)2+(f�!
00)2

f2 , p1 = p�1 = 1�p0

2 , and !
00 =

! � !
0. The function H(x) = �x log x � (1 � x) log(1 �

x) stands for the binary Shannon entropy function, while the
function H(p0, p1, p�1) = �p0 log p0�p1 log p1�p�1 log p�1

stands for the entropy of a ternary random variable with the
distribution (p0, p1, p�1) described above.

Proof. Fix !
0 and set B!

0

n
= |B!

0

n
|. Let {a1, . . . ,ar} = {a :

ab 2 B!
0

n
for some b} be the set of all possible prefixes of

the codevectors in B!
0

n
. Note that each ai has weight !0 and

that there are at most r different such vectors, where r 
�
e

!0

�
.

Let Si = {b : aib 2 B!
0

n
}, i 2 [r], be the (possibly empty)

set of suffixes of codevectors in B!
0

n
that have prefix ai. Then,

B
!

0

n
=

rX

i=1

|Si|. (10)

Now consider the set of all pairs of suffixes that belong to the
same group Si for some i 2 [r], denoted by

D = [r

i=1{(b1,b2) : b1,b2 2 Si}. (11)

Note that b1 and b2 are allowed to be the same and that
(b1,b2) and (b2,b1) are considered two different pairs,
provided b1,b2 2 Si, i 2 [r], are distinct. Hence, D is a
multiset. Then

|D| =
rX

i=1

|Si|2 �
(
P

r

i
|Si|)2

r
=

(B!
0

n
)2

r
, (12)

where the bound follows from Cauchy-Schwarz’s inequality.
Furthermore, consider the differences between all pairs in D,

Z = {b1 � b2 : (b1,b2) 2 D}, (13)



where Z is a multiset. The multiplicity of 0f (the all 0 vector
of length f ) in Z is exactly B

!
0

n
. In addition, the multiplicity of

any nonzero element in Z is exactly one. To see this, suppose
on the contrary that there exist different pairs of unequal
elements (b1,b2), (b3,b4) 2 D satisfying b1�b2 = b3�b4.
By definition of D, we have that b1,b2 2 Si for some
i 2 [r] and b3,b4 2 Sj for some j 2 [1, r]. This implies
that aib1,aib2,ajb3,ajb4 are codevectors in B!

0

n
. Then,

aib1 � aib2 = ajb3 � ajb4, (14)

contradicting the fact that B!
0

n
is a binary B2-sequence.

Next, we generalize the derivation of an information-
theoretic argument from [4]. Uniformly at random pick a pair
from D and denote the outcome by a pair of random variables
(X,Y ). Then, the difference X �Y is uniformly distributed
over Z\{0f} (i.e, conditioned on X � Y 6= 0f ). Let E be
the event {X � Y = 0f}. Then, H(X,Y ) equals

H(X,Y ,X � Y ) = H(X � Y ) +H(X,Y |X � Y )

= H(X � Y ) + Pr(E)H(X,Y |X � Y , E)

+ Pr(Ec)H(X,Y |X � Y , E
c). (15)

Clearly, H(X,Y |X � Y , E
c) = 0, since different nonzero

elements in Z have multiplicity one. In addition,

H(X,Y |X � Y , E) = logB!
0

n
, Pr(E) =

B
!

0

n

|D|  r

B!0
n

,

where the inequality follows from (12). Therefore,

Pr(E)H(X,Y |X � Y , E)  r

B!0
n

logB!
0

n
. (16)

Combining (15), (16) with H(X,Y ) = log |D| � (B!0
n )2

r
, we

obtain

log(
(B!

0

n
)2

r
)  H(X � Y ) +

r

B!0
n

logB!
0

n
. (17)

In order to obtain an upper bound on B
!

0

n
, we need an upper

bound on H(X�Y ) specialized for constant-weight vectors.
Let nij , i 2 [f ], j 2 [r], be the number of suffixes in

Sj whose ith coordinate is 1. By subadditivity of the entropy
function we have

H(X � Y ) 
fX

i=1

H(Xi � Yi)  fH(

P
f

i=1 p
i

f
), (18)

where pi = (pi0, p
i

1, p
i

�1) is the distribution of Xi � Yi,

p
i

0 =

P
r

j=1[n
2
ij
+ (|Sj |� nij)2]P
r

j=1 |Sj |2
, p

i

1 =

P
r

j=1 nij(|Sj |� nij)P
r

j=1 |Sj |2
,

p
i

�1 =

P
r

j=1 nij(|Sj |� nij)P
r

j=1 |Sj |2
. (19)

We show next that the average distribution, denoted as

p⇤ =

P
f

i=1 p
i

f
, (20)

satisfies p⇤0 � (!00)2+(f�!
00)2

f2 , where !
00 = !�!

0 is the weight
for all suffixes of codevectors in B!

0

n
, i.e., the weight of vectors

in Sj , j 2 [r]. From (19), it follows

p
⇤
0 =

P
f

i=1 p
i

0

f
=

P
r

j=1

�P
f

i=1[n
2
ij
+ (|Sj |� nij)2]

�

f(
P

r

j=1 |Sj |2)

�
P

r

j=1

� (Pf
i=1 nij)

2

f
+

(
Pf

i=1(|Sj |�nij)
2

f

�

f(
P

r

j=1 |Sj |2)

(a)
=

P
r

j=1

�
|Sj |2(!00)2 + |Sj |2(f � !

00)2
�

f2(
P

r

j=1 |Sj |2)

=
(!00)2 + (f � !

00)2

f2
, (21)

where (a) follows from the fact that the weight of the vectors
in Sj is fixed and equal to !

00. In addition, we have p
⇤
1 = p

⇤
�1

since p
i

1 = p
i

�1 from (19). Note that p
⇤
0 � 1

2 and that the
entropy function H(p⇤0,

1�p
⇤
0

2 ,
1�p

⇤
0

2 ) is decreasing in p
⇤
0 when

p
⇤
0 � 1

2 . Therefore, combined with (21) and (18), we have

H(X � Y )  fH(p1, p0, p�1), (22)

where p0 = (!00)2+(f�!
00)2

f2 and p1 = p�1 = 1�p0

2 . Combining
(17) (22), we obtain

logB!
0

n
 1

2
(log r + fH(p0, p1, p�1)) +

r

2B!0
n

logB!
0

n
.

(23)

Finally, to prove (9), suppose to the contrary that

logB!
0

n
> eH

✓
!
0

e

◆
+ log n, and

logB!
0

n
>

1

2

h
eH

✓
!
0

e

◆
+ fH(p0, p1, p�1)

i
+ 1, (24)

From (23), (24), and the fact that r  2eH(!0
e ), we have

1 <
r

2B!0
n

logB!
0

n
, (25)

as well as the inequality below which contradicts (25):

B
!

0

n
> n2

eH

⇣
!0
e

⌘

� nr � r logBw
0

n
. (26)

By combining Lemma 2 and (8) we conclude that

logA!

n
 max

!02[max{0,!�f},min{e,!}]
max

�
eH

✓
!
0

e

◆
,

1

2

h
eH

✓
!
0

e

◆
+ fH(p0, p1, p�1)

i 
+ log n, (27)

where p0 = (!00)2+(f�!
00)2

f2 , p1 = p�1 = 1�p0

2 , and !
00 =

! � !
0, for any choice of e and f such that e + f = n.

Therefore, we have (6). Note that the bound (6) is smaller
than the bound 0.6 in [2] whenever ! <

n

2 , and is smaller
than the best known upper bound 0.5753 for unconstrained
binary B2-sequences reported in [3] whenever !  0.345n.
See Table I for more details regarding the actual values of the
upper bounds.



III. A LOWER BOUND

We describe next a construction for constant-weight binary
B2 codes A!

n
of size (n

!
)

!
2 +o(!) and

(
j
n

!

k
)

!d n
!

e�n

2(d n
!

e�b n
!

c) (
l
n

!

m
)

n�!b n
!

c
2(d n

!
e�b n

!
c) 2o(!)

,

for the case that n

!
is an integer and a noninteger real value,

respectively. The construction implies the following result.

Theorem 2. The rate R!̄ is lower bounded by

R!̄ � !̄

2
log(

1

!̄
)

whenever 1
!̄

is an integer, and

R!̄ �
!̄d 1

!̄
e � 1

2(d 1
!̄
e � b 1

!̄
c)

log(

�
1

!̄

⌫
) +

1� !̄b 1
!̄
c

2(d 1
!̄
e � b 1

!̄
c)

log(

⇠
1

!̄

⇡
)

otherwise.

An important observation is that our construction, although
conceptually simple, results in codes with rate at least 1

4 th
of the largest possible rate of unconstrained constant-weight
codes,

�
n

!

�
.

In what follows, we assume for simplicity that n

!
is an

integer, and as before, we let !  n

2 . The idea is to find
a surjective linear mapping F : {0, 1, 2}n ! [0, (n

!
)! � 1]

that converts any length-n vector over the alphabet {0, 1, 2}
into an integer in [0, (n

!
)! � 1]. More precisely, the mapping

F is required to satisfy the following two properties:
(A) For any integer i 2 [0, (n

!
)! � 1], there exists a vector

c 2 {0, 1}n of weight !, such that F (c) = i.
(B) For any vectors c, c0 2 {0, 1}n, we have that F (c) +

F (c0) = F (c+ c0). Note that c+ c0 2 {0, 1, 2}n.
Given the mapping F , we construct an integer Sidon set [30]
from the set [0, (n

!
)! � 1]. By the Bose-Chawla construction,

there exists a set of integers {i1, . . . , i(n
! )

!
2

+o(!)} ⇢ [0, (n
!
)!�

1] of size (n
!
)

!
2 +o(!) such that the sums of any two integers

in the set are distinct. Then from property (A) of the mapping
F , for every ij , j 2 [1, (n

!
)

!
2 +o(!)], there exists a vector

cj 2 {0, 1}n of weight ! such that F (cj) = ij . Finally, by
property (B) of the mapping F and the definition of the set
{i1, . . . , i(n

! )
!
2

+o(!)}, the set {c1, . . . , c(n
! )

!
2

+o(!)} is a binary
B2 codebook of weight !.

For any integer k 2 [0, n � 1], let k = ak! + bk, where
ak = b k

!
c and bk = k mod !. For any c 2 {0, 1, 2}n define

F (c) ,
nX

i=1

ai�1

⇣
n

!

⌘bi�1

ci. (28)

It is obvious that F satisfies property (B). To show that F

satisfies (A), we note that any integer m 2 [0, (n
!
)! � 1] has

a n

!
-ary representation m =

P
!�1
i=0 mi

�
n

!

�i
, where mi 2

[0, n

!
�1]. Let cm be a vector in {0, 1}n, whose indices of the

1 bits are given by {mi! + i : i 2 [0,! � 1]}. Then, cm has
weight ! and F (cm) =

P
!�1
i=0 ami!+i(

n

!
)bmi!+i = m. Hence

F satisfies property (B).

APPENDIX
We first group the vectors c 2 A!

n
based on the weight of

a, and use the definition B!
0
= {c : c = ab 2 A!

n
, a 2

{0, 1}e, |a| = !
0}. The first part of the proof is similar

to that of Lemma 2. We set {a1, . . . ,ar} = {a : a 2
{0, 1}e,ab 2 B!

0

n
for some b}, Si = {b : aib 2 B!

0

n
}, and

D = [r

i=1{(b1,b2) : b1,b2 2 Si}. This establishes (12).
The remainder of the proof differs from the one provided for
Lemma 2, as we use combinatorial arguments [2].

Denote f = n � e and let {v1, . . . ,v|D|} = {b1 � b2 :
(b1,b2) 2 D} be the set of differences of the pairs of
suffixes in D, with multiplicities. Then, the multiplicity of 0f
in {v1, . . . ,v|D|} is B

!
0

n
and the multiplicity of each nonzero

vector in {v1, . . . ,v|D|} is one. For i 2 [|D|], j 2 [1, f ], let
hij = 1, if the the j-th bit of vi is 0, and hij = �1 otherwise.
Then,

P|D|
i=1 hij � 0 for j 2 [1, f ] and

P|D|
i=1

P
f

j=1 hij � 0.
Since

P
f

j=1 hij = f � 2k for each vi with k non-zero
entries, we have

P
f

j=1 hij  0 for any vi having at least f

2
non-zero entries. In addition, the number of possible difference
vectors with k non-zero entries is at most

�
f

k

�
2k. Let |vi|

denote the number of nonzero entries in vi, i 2 [|D|]. Then,

0 
|D|X

i=1

fX

j=1

hij

(a)
 fB

!
0

n
+

X

i:|vi|�1

(
fX

j=1

hij)

(b)
 fB

!
0

n
+

X

i:1|vi|min{ f
2 ,2(!�!0)}

(
fX

j=1

hij)

�
X

i:|vi|> f
2

1
(c)
 fB

!
0

n
+ 2f!00

✓
f

2!00

◆
22!

00
�

X

i:|vi|> f
2

1,

(29)

where !
00 = min{! � !

0
,
f

4 }, (a) follows from the fact that
the multiplicity of 0f in {v1, . . . ,vs} is B!

0

n
, (b) follows from

the facts that
P

f

j=1 hij < 0 when |vi| > f

2 and that |vi| 
2(!�!

0), and (c) follows from the facts that the number of vi

with |vi| = k is at most
�
f

k

�
2k and that this number increases

with k when k  min{ f

2 , 2(! � !
0)}. Eq. (29) implies that

|D| (f + 1)|B!
0

n
|+ 2(f + 1)!00

✓
f

2!00

◆
22!

00

(f + 1)|B!
0

n
|+ 2fH( 2!00

f )+2!00+log(n(n+1)) (30)

Combining (12) and (30), we have

|B!
0

n
|2  (f + 1)|B!

0

n
|r + 2fH( 2!00

f )+2!00+log(n(n+1))
r.

Since r  2eH(!0
e ), we then have

log |B!
0

n
| max

(
H(

!
0

e
) · e+ log(n+ 1) + 1,

1

2

h
H(

!
0

e
) · e+ log(n+ 1) +H(

2!00

f
) · f

+ 2!00 + log(n(n+ 1))
i
+ 1

)
, (31)

which implies (5) together with (8).
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