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Abstract

Semantic cues and statistical regularities in real-world environment layouts can
improve efficiency for navigation in novel environments. This paper learns and
leverages such semantic cues for navigating to objects of interest in novel environ-
ments, by simply watching YouTube videos. This is challenging because YouTube
videos don’t come with labels for actions or goals, and may not even showcase op-
timal behavior. Our method tackles these challenges through the use of Q-learning
on pseudo-labeled transition quadruples (image, action, next image, reward). We
show that such off-policy Q-learning from passive data is able to learn meaningful
semantic cues for navigation. These cues, when used in a hierarchical navigation
policy, lead to improved efficiency at the ObjectGoal task in visually realistic
simulations. We observe a relative improvement of 15� 83% over end-to-end RL,
behavior cloning, and classical methods, while using minimal direct interaction.

1 Introduction

Consider the task of finding your way to the bathroom while at a new restaurant. As humans, we
can efficiently solve such tasks in novel environments in a zero-shot manner. We leverage common
sense patterns in the layout of environments, which we have built from our past experience of similar
environments. For finding a bathroom, such cues will be that they are typically towards the back
of the restaurant, away from the main seating area, behind a corner, and might have signs pointing
to their locations (see Figure 1). Building computational systems that can similarly leverage such
semantic regularities for navigation has been a long-standing goal.

Hand-specifying what these semantic cues are, and how they should be used by a navigation policy
is challenging. Thus, the dominant paradigm is to directly learn what these cues are, and how to
use them for navigation tasks, in an end-to-end manner via reinforcement learning. While this is a
promising approach to this problem, it is sample inefficient, and requires many million interaction
samples with dense reward signals to learn reasonable policies.

But, is this the most direct and efficient way of learning about such semantic cues? At the end of the
day, these semantic cues are just based upon spatial consistency in co-occurrence of visual patterns
next to one another. That is, if there is always a bathroom around the corner towards the back of
the restaurant, then we can learn to find this bathroom, by simply finding corners towards the back
of the restaurant. This observation motivates our work, where we pursue an alternate paradigm to
learn semantic cues for navigation: learning about this spatial co-occurrence in indoor environments
through video tours of indoor spaces. People upload such videos to YouTube (see project video)
to showcase real estate for renting and selling. We develop techniques that leverage such YouTube
videos to learn semantic cues for effective navigation to semantic targets in indoor home environments
(such as finding a bed or a toilet).

Project website with code, models, and videos: https://matthewchang.github.io/value-learning-from-videos/.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.
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Figure 1: Semantic Cues for Navigation. Even though you don’t see a restroom, or a sign pointing
to one in either of these images, going straight ahead in the left image is more likely to lead to a
restroom than going straight in the right image. This paper seeks to learn and levarage such semantic
cues for finding objects in novel environments, by watching egocentric YouTube videos.

Such use of videos presents three unique and novel challenges, that don’t arise in standard learning
from demonstration. Unlike robotic demonstrations, videos on the Internet don’t come with any
action labels. This precludes learning from demonstration or imitation learning. Furthermore, goals
and intents depicted in videos are not known, i.e., we don’t apriori know what each trajectory is a
demonstration for. Even if we were to label this somehow, the depicted trajectories may not be optimal,
a critical assumption in learning from demonstration [54] or inverse reinforcement learning [44].

Our formulation, Value Learning from Videos or VLV, tackles these problems by a) using pseudo
action labels obtained by running an inverse model, and b) employing Q-learning to learn from video
sequences that have been pseudo-labeled with actions. We follow work from Kumar et al. [38] and
use a small number of interaction samples (40K) to acquire an inverse model. This inverse model is
used to pseudo-label consecutive video frames with the action the robot would have taken to induce
a similar view change. This tackles the problem of missing actions. Next, we obtain goal labels
by classifying video frames based on whether or not they contain the desired target objects. Such
labeling can be done using off-the shelf object detectors. Use of Q-learning [65] with consecutive
frames, intervening actions (from inverse model), and rewards (from object category labels), leads
to learning optimal Q-functions for reaching goals [60, 65]. We take the maximum Q-value over all
actions, to obtain value functions. These value functions are exactly �s, where s is the number of
steps to the nearest view location of the object of interest (� is the Q-learning discount factor). These
value functions implicitly learn semantic cues. An image looking at the corner towards the back of
the restaurant will have a higher value (for bathroom as the semantic target) than an image looking at
the entrance of the restaurant. These learned value functions when used with a hierarchical navigation
policy, efficiently guide locomotion controllers to desired semantic targets in the environment.

Learning from such videos can have many advantages, some of which address limitations of learning
from direct interaction (such as via RL). Learning from direct interaction suffers from high sample
complexity (the policy needs to discover high-reward trajectories which may be hard to find in sparse
reward scenarios) and poor generalization (limited number of instrumented physical environments
available for reward-based learning, or sim2real gap). Learning from videos side-steps both these
issues. We observe a 47� 83% relative improvement in performance over RL and imitation learning
methods, while also improving upon strong classical methods.

2 Related Work

This paper tackles semantic visual navigation in novel environments. Our proposed solution is a
hierarchical policy that employs value functions learned from videos. We survey different navigation
tasks, the different representations used to tackle them, and the different training methodologies
employed to build those representations.

Navigation Tasks. Navigation tasks take many forms [3], but can largely be grouped into two cate-
gories based on whether they require exploration or not. Finding paths in known environments [71], or
going to a known relative offset in a previously unknown environment [27], do not require very much
exploration. On the other hand, tasks such as finding an object [27] (or a given image target [11]) in
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a novel environment, or exhaustively mapping one [10, 12], require exploration and are thus more
challenging. Our down-stream task of finding objects in previously unseen novel environments
falls into this second category. Most current work [16, 27, 45, 70] on this task employ end-to-end,
interaction-heavy learning to get at necessary semantic cues. Our work instead seeks to mine them
from videos with minimal active interaction.

Representations. Solving navigation tasks, requires building and maintaining representations for
space. These range from explicit metric maps [20, 61, 68] or topological representations [11, 35, 52],
to more abstract learned implicit representations [41]. Such learned representations can effectively
learn about semantic cues. Research has also focused on making classical metric and topological
representations more semantic: explicitly by storing object detector or scene classifier outputs [8, 25,
30, 36, 42, 47, 67], or implicitly by storing abstract learned feature vectors useful for the end-task [27].
In our work, we use a hybrid topological and metric representation that incorporates implicit semantic
information. Our focus is on investigating alternate ways of learning such semantic information.

Hierarchical Policies. Researchers have pursued many different hierarchical policies [7] for
navigation: no hierarchy [41], macro-actions [27, 71], low-level controllers [6, 33], and sub-
policies [10, 15, 25]. In particular, Chaplot et al. [10, 11] decompose exploration policies into a
global policy, for high-level semantic reasoning, and a local policy, for low-level execution to achieve
short-term goals produced by the global policy. We follow a similar decomposition, but tackle a
different task (object goal), and investigate learning from unlabeled passive data vs. active interaction
or strong supervision.

Training Methodology. Different papers pursue different strategies for training navigation policies:
no training [61], supervised learning for collision avoidance [22, 24], behavior cloning, DAgger [27,
37,49], reinforcement learning with sparse and dense rewards [10,41,50,51,66,71], and combinations
of imitation and RL [12, 14, 48]. In contrast, this paper designs a technique to derive navigation
policies by watching YouTube videos. This is most similar to work from Kumar et al. [38] that
studies how to learn low-level locomotion sub-routines from synthetic videos. In contrast, we learn
high-level semantic cues from actual YouTube videos.

Learning for Acting from Videos. Learning about affordances [21], state-transitions [2, 31], and
task-solving procedures [13], with the goal of aiding learning for robots, is a long-standing goal in
computer vision. Our work is also a step in this direction, although our output is directly useful for
building navigation policies, and our experiments demonstrate this.

Learning without Action Labels. A number of recent papers focus on learning from observation-
only (or state-only) demonstrations (i.e. demonstrations without action labels). Some works focus
on directly learning policies from such data [19, 23, 46, 55, 62, 63], while others focus on extracting
a reward function for subsequent policy learning through RL [5, 17, 18, 40, 57, 58]. All of these
works focus on learning a policy for the same task in the same environment that is depicted in the
observation-only demonstrations (with the exception of Gangwani et al. [23] who show results in
MDPs with different transition dynamics). Our work relaxes both these assumptions, and we are able
to use video sequences to derive cues that aid solving novel tasks in novel environments.

3 Proposed Approach

The final task we tackle is that of reaching semantic goals in a novel environment, i.e., at test time
we will place the agent in a novel environment and measure how efficiently it can find common
house-hold objects (bed, chair, sofa, table and toilets).

Overview. We design a 2-level hierarchical policy. The high-level policy incrementally builds
a topological graph and uses semantic reasoning to pick promising directions of exploration. It
generates a short-term goal (within 2m) for the low-level policy, that achieves it or returns that the
short-term goal is infeasible. This process is repeated till the agent reaches its goal. We describe
the details of this hierarchical policy in Supplementary Section S1. Our central contribution is the
procedure for learning the semantic reasoning function, which we call a value function (following RL
terminology [60]), for the high-level policy from videos, and we describe this next.
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Figure 2: Learning Values Functions from Videos. Egocentric videos tours of indoor spaces are
a) grounded in actions (by labeling via an inverse model), b) labeled with goals (using an object
detector). This prepares them for c) Q-learning, which can extract out optimal Q-functions for
reaching goals purely by watching egocentric videos. See Section 3.1 for more details.

3.1 Value Learning from Videos

Given an image I and a set of object categories C, we seek to learn a function f(I, c) that can predict
the value for image I for reaching an object of category c 2 C. Images that show physical space close
to instances of category c should have a higher value than images that show regions far away from it.

Let’s say we have V, a set of egocentric video tours of indoor spaces. We seek to learn this function
from such videos. We follow a three step procedure: a) imagining robot actions that convey the robot
between intervening frames, b) labeling video frames of images containing instances of the desired
object category, and c) Q-learning on the resulting reward-labeled image-action sequence trajectories.
Figure 2 shows an overview of this process, we describe it in more detail below.

Action grounding. Such videos don’t come with any information for how one image is related
to another. We follow the pseudo-labeling approach from [38, 62], to imagine the actions the
robotic agent would have taken to induce the depicted transformation. We collect a small amount
of interaction data, where a robot executes random actions in a handful of environments. This data
is in the form of image action sequences, . . . , It, at, It+1, . . ., and importantly, has information
of the action that was executed to go from It to It+1. We use this interaction dataset to train a
one-step inverse model  [1, 32] that uses It and It+1 to predict ât =  (It, It+1).  is trained via
a cross-entropy loss between its prediction ât and ground truth at. We use this inverse model  to
pseudo-label the video dataset V with action labels to obtain V̂.

Labeling Video Frames with Goals. Our next step involves labeling video frames with the presence
of object instances from categories in C. This can simply be done by using an off-the-shelf object
detector D (such as Mask RCNN [28]) trained on the MS-COCO dataset [39]. We assign a binary
reward value rc(I) for each category c for each video frame I: +1 if object detected, and 0 otherwise.

Value Learning via Off-policy Q-Learning. Our next step is to derive value function f(I, c) for
the different categories. The above two steps, generate reward-labeled, image-action trajectories
for traversals in indoor environments. For each category c 2 C, these are in the form of quadruples�
It, ât, It+1, rct+1

�
, where It and It+1 are consecutive frames, ât is the pseudo-label as predicted

from the inverse model  , and rct+1 is the label for category c for image It+1. These quadruples can
be thought of as transitions from a Markov Decision Process (MDP) [60], where the agent gets +1
reward for entering into a location close to the desired target object, and 0 reward otherwise.

Thus, even though we don’t have access to the physical environment, a simple video traversal of an
indoor space can be pseudo-labeled to obtain transition samples from the underlying MDP operating
in this environment. Under mild conditions, such samples are all that are necessary for learning
optimal value functions via Q-learning [65]. Thus, instead of directly learning the value function
f(I, c), we learn a Q-function Q(I, c, a) that predicts the Q value of executing action a when at
image I and seeking to find object from category c.
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Q-learning takes the following form, where we seek to learn the fixed point, Q⇤ of the following
Bellman equation (for each category c): Q⇤(It, at, c) = maxa0

�
rct+1 + �Q⇤ (It+1, a0, c)

�
. This is

done by finding the Q that minimizes the following objective function, over transition quadruples
from V̂ (we parameterize Q as a convolutional neural network (more details in Section 4)):

X

V̂

h
Q(It, at, c)�

⇣
rct+1 + �max

a0
Q (It+1, a

0, c)
⌘i2

. (1)

Value function f(I, c) can be obtained by simply taking a maximum of the Q-values over all actions,
i.e., f(I, c) = maxa Q(I, a, c). This gives us our desired value function.

Note, Q-learning can learn optimal Q-functions independent of where transition quadruples come
from (as long as they cover the space), and in particular, can learn from off-policy data. This allows
us to learn optimal value functions even though the video dataset may not follow optimal paths to any
targets. This also leads us to favor Q-learning over the simpler alternative of employing Monte Carlo
or TD(0) policy evaluation [60]. Policy evaluation is simpler as it does not involve reasoning about
intervening actions, but consequently only learns the value of the underlying policy depicted in the
video, rather than the optimal policy. Our experiments demonstrate this contrast between these two
design choices, in scenarios where videos don’t show the optimal goal reaching behavior.

The learned Q-function, and the associated value function f(I, c), implicitly learn semantic cues
for navigation. They can learn what images lead to the desired category, and what don’t. Relative
magnitude of their prediction can be used to pick directions for exploration. It is worth noting, this
obtained value function is the optimal value function under the dynamics of the agent recording
the video. We are implicitly assuming that optimal value function under the robot’s action space
or dynamics would be similar enough. This assumption may not always be true (specially at fine
temporal scales), but is true in a number of situations at coarser time scales.

4 Experiments

We show results on the ObjectGoal task in novel environments [3]. Our experiments test the extent to
which we are able to learn semantic cues for navigation by watching videos, and how this compares
to alternate techniques for learning such cues via direct interaction. We also compare against alternate
ways of learning from passive video data, and show visualizations of our learned value functions.

Video Dataset. We mined for real estate tours from YouTube. This YouTube House Tours Dataset

consists of 1387 videos with a total run length of 119 hours. A sample video is shown in supplementary
video. We sample a frame every 1.5 seconds resulting in 550K transitions tuples It, It+1 for Q-
learning (after removing outdoor scenes and people). We denote this dataset as Vyt.

Experimental Setup. We work with a simulated robot in visually realistic simulation environments.
We use the Habitat simulator [53] with the Gibson environments [69] (100 training environments
from the medium split, and the 5 validation environments from the tiny split). These environments
are derived from scans of real world environments, and thus retain the visual and layout complexity
of the real world, but at the same time allow for systematic experimentation.

We split the 105 environments into three sets: Etrain, Etest, and Evideo with 15, 5, and 85 environments
respectively. The robot has access to, and can directly interact with environments in Etrain. Etest is same
as the official Gibson tiny validation set that comes with human verified semantic class labels [4].
It is used to setup downstream semantic navigation tasks for evaluation. Etrain and Vyt are used for
learning via our proposed formulation. Learned policies are evaluated on Etest. For some additional
control experiments, we also create a dataset of synthetic videos Vsyn using the 85 environments in
Evideo (generation procedure described in supplementary). Our splitting procedure ensures: a) final
testing happens in novel, previously unseen environments, and b) the robot does not have direct
access to environments in which videos were shot (neither the Evideo used to generate Vsyn, nor the
real estate shown in YouTube House Tours Dataset Vyt).

Robot Model. We use a simplified robot action space with four actions: move forward by 25cm,
rotate left 30�, rotate right 30� and stop. We assume perfect localization, that is, the robot exactly
knows where it is relative to its previous location. This can be achieved by running a SLAM system,
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or using additional sensors such as an IMU. The robot is a 1.25m long cylinder of radius 10cm, and
has a RGB-D camera with 90� field of view, mounted at a height of 1.25m.

Semantic Visual Navigation Task. We set up the ObjectGoal task [3] in Etest for testing different
models. Note that Etest is same as the Gibson tiny validation set (and does not overlap with environ-
ments in Etrain or Evideo), and comes with human-verified annotations for semantic classes. We use
these semantic annotations to set up the ObjectGoal task for 5 categories: bed, chair, couch, dining
table, and toilet. We sample 1075 test episodes, equally distributed among these 5 classes. For each
episode, the agent is initialized at the starting location, and asked to go to the chosen object category.
An episode is considered successfully solved if the agent reaches within 1m of any instance of the
target category. We report both the success rate and SPL [3]. Minimum geodesic distance to any

instance of the target category, is used as the reference path length for computing SPL. We consider
two settings: Oracle Stop (episode is automatically terminated and deemed successful when the agent
is within 1m of the target category), and Policy Stop (agent needs to indicate that it has reached the
goal). We report results along with a 90% bootstrap confidence interval.

4.1 Implementation Details

Action Grounding. Inverse model  processes RGB images It and It+1 using a ResNet-18
model [29], stacks the resulting convolutional feature maps, and further processes using 2 con-
volutional layers, and 2 fully connected layers to obtain the final prediction for the intervening action.
We train  on 40K interaction frames gathered by randomly executing actions in Etrain. This is an
easy learning task, we obtain close to 96% classification accuracy on a held-out validation set. We
use this inverse model to pseudo-label video dataset Vyt and Vsyn to obtain V̂yt and V̂syn.

Object Detectors. We use Mask RCNN [28] trained on MS-COCO dataset [39] as our detector
Dcoco. Frames with detections with score in the top 10% are labeled as +1 reward frames. Dcoco also
predicts a foreground mask for each detection. We use it to evaluate a stopping criterion at test time.

Q-Learning. We represent our Q-function with ResNet 18 models, followed by 1 convolutional layer,
and 2 fully connected layers with ReLU non-linearities. We use Double DQN (to prevent chronic
over-estimation [64]) with Adam [34] for training the Q-networks, and set � = 0.99. As our reward
is bounded between 0 and 1, clipping target value between 0 and 1 led to more stable training.

Semantic Navigation Policy. High-level policy stores 12 images for each node in the topological
graph (obtained by rotating 12 times by 30� each). It uses the learned value function, f(I, c), to
score these 12n images (for a n node topological graph), and samples the most promising direction
for seeking objects of category c. The sampled direction is converted into a short-term goal by
sampling a location at an offset of 1.5m from the chosen node’s location, in the chosen view’s
direction. Low-level policy [26] uses occupancy maps (built using depth images) [20] with fast
marching planning [59] to execute robot actions to reach the short-term goal. It returns control on
success / failure / timeout. The High-level policy also factors in the distance to the sampled direction,
and score from Dcoco while sampling directions. Stopping criterion: The agent chooses to stop if
Dcoco fires with confidence � ⌧c and median depth value in the predicted mask is  dc distance.
More details are provided in Supplementary Section S1.

4.2 Results

Table 1 reports performance on the ObjectGoal task for our method and compares it to other methods
for solving this task. An important aspect to consider is the amount and type of supervision being
used by different methods. We explicitly note the scale (number of frames, environments) and type
(reward signals) of active interaction used by the different methods. For Policy Stop setting, for all
methods, we found our stopping criterion to work much better than using the method’s own stop
signal. We use it for all methods. Using only 40K reward-less interaction samples from Etrain, along
with in-the-wild YouTube videos our proposed method is able to achieve an OS-SPL (Oracle Stop
SPL) of 0.53 and PS-SPL (Policy Stop SPL) of 0.22 respectively in the Oracle and Policy stop
settings. We put this in context of results from other methods.

Topological Exploration exhaustively explores the environment. It uses our hierarchical policy but
replaces f(I, c) with a random function, and ignores scores from Dcoco to score different directions.
As the topological map grows, this baselines systematically and exhaustively explores the environment.
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Table 1: Results: Performance for ObjectGoal in novel environments Etest. Details in Section 4.2.

Method Training Supervision Oracle Stop Policy Stop (using Dcoco)

# Active Frames Reward Other SPL Success (SR) SPL Success (SR)

Topological Exploration - - - 0.30 ± 0.02 0.67 ± 0.02 0.13 ± 0.01 0.29 ± 0.02
Detection Seeker - - - 0.46 ± 0.02 0.75 ± 0.02 0.19 ± 0.02 0.37 ± 0.02
RL (RGB-D ResNet+3CNN) 100K (Etrain) Sparse - 0.17 ± 0.01 0.37 ± 0.02
RL (RGB-D ResNet+3CNN) 10M (Etrain [ Evideo) Dense - 0.26 ± 0.02 0.54 ± 0.02
RL (RGB-D 3CNN) 38M (Etrain [ Evideo) Dense - 0.28 ± 0.02 0.57 ± 0.03
RL (RGB ResNet) 20M (Etrain) Dense - 0.29 ± 0.02 0.56 ± 0.03 0.08 ± 0.01 0.21 ± 0.02
RL (Depth 3CNN) 38M (Etrain) Dense - 0.25 ± 0.02 0.52 ± 0.02
Behavior Cloning 40K (Etrain) - V̂yt 0.25 ± 0.02 0.53 ± 0.03 0.08 ± 0.01 0.20 ± 0.02
Behavior Cloning + RL 12M (Etrain) Dense V̂yt 0.24 ± 0.02 0.58 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂yt 0.53 ± 0.02 0.79 ± 0.02 0.22 ± 0.02 0.39 ± 0.03

Behavior Cloning 40K (Etrain) - V̂syn 0.36 ± 0.02 0.71 ± 0.02 0.10 ± 0.01 0.26 ± 0.02
Behavior Cloning + RL 12M (Etrain) Dense V̂syn 0.24 ± 0.02 0.55 ± 0.03
Our (Value Learning from Videos) 40K (Etrain) - V̂syn 0.48 ± 0.02 0.75 ± 0.02 0.21 ± 0.02 0.38 ± 0.03

Strong Supervision Values Labeled Maps (Evideo) 0.55 ± 0.02 0.81 ± 0.02 0.24 ± 0.02 0.43 ± 0.02
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + V̂yt 0.57 ± 0.02 0.82 ± 0.02 0.23 ± 0.02 0.41 ± 0.02

Thus, this is quite a bit stronger than executing random actions (OS-SPL of 0.15). It is able to find
objects often (67%), though is inefficient with OS-SPL of 0.30.

Detection Seeker also does topological exploration, but additionally also uses scores from Dcoco to
seek the object once it has been detected. This performs quite a bit better at 0.46 SPL. This indicates
that object detectors provide a non-trivial signal for object goal navigation. Even lower confidence
detection scores for more distant but partially visible objects will guide the agent in the right direction.
Our method captures more out of view context, and consequently does better across all settings.

End-to-end RL. We also compare against many variants of end-to-end RL policies trained via direct
interaction. We use the PPO [56] implementation for CNN+GRU policies that are implemented in
Habitat [53]. We modify them to work with ObjectGoal tasks (feeding in one-hot vector for target
class, modifying rewards), and most importantly adapt them to use ImageNet initialized ResNet-18
models [29] for RGB (given no standard initialization for Depth image, it is still processed using the
original 3-layer CNN in Habitat code-base). The fairest comparison is to train using sparse rewards
(dense rewards will require environment instrumentation not needed for our method) in Etrain for
40K interaction samples with RGB-D sensors. This unsurprisingly did not work (OS-SPL: 0.17 and
OS-SR: 37%). Thus, we aided this baseline by providing it combinations of more environments
(Etrain [ Evideo), many times more samples, and dense rewards. Even in these more favorable settings,
end-to-end RL didn’t perform well. The best model had a OS-SPL of 0.29 and OS-SR of 56% (vs.

0.50 and 75% for our method), even when given interaction access to 6⇥ more environments, 250⇥
more interaction, and dense rewards (vs. no rewards). This demonstrates the power of our proposed
formulation that leverages YouTube videos for learning about spatial layout of environments. Policy
stop evaluation is computationally expensive so, we report the score only for the strongest model.

Behavior Cloning (BC) on Pseudo-Labeled Videos V̂. We pre-process the videos to find trajectories
that lead to objects of interest (as determined by Dcoco). We train CNN+GRU models to predict
the pseudo-labeled action labels on these trajectories. As this is passive data that has already been
collected, we are limited to using behavior cloning wth RGB input as opposed to richer inputs or
the more sophisticated DAgger [49]. This is effectively the BCO(0) [62] algorithm. This performs
fairly similarly to RL methods and with negligible sample complexity, though still lags far behind
our proposed method that utilizes the exact same supervision. Perhaps this is because our proposed
method uses pseudo-labeled action indirectly and is more tolerant to mismatch in action space. In
contrast, behavior cloning is critically reliant on action space similarity. This is brought out when we
use V̂syn instead of V̂yt where the action space is more closely matched. Behavior cloning performs
much better at 0.36 OS-SPL, though our method still performs better than all the baselines even when
trained on videos in V̂syn.

Behavior Cloning+RL. We also experimented with combining behavior cloning and RL. We use the
behavior cloning policies obtained above, and finetune them with RL. For the same reasons as above,
this policy is limited to use of RGB inputs. When finetuning from behavior cloning policy trained on
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V̂yt we found performance to remain about the same (OS-SPL 0.24). When starting off from a policy
trained on V̂syn, we found the performance to drop to OS-SPL of 0.24. We believe that the dense
reward shaped RL may be learning a qualitatively different policy than one obtained from behavior
cloning. Furthermore, use of dense rewards for RL, may limit the benefit of a good initialization.

Strong Supervision Value Function. While our focus is on learning purely from passive data, our
semantic navigation policy can also be trained using strong supervision obtained using semantically
labeled maps. We train f(I, c) to predict ‘ground-truth’ Q-values computed using the number of
steps to the nearest instance of category c on the meshes from environments in Evideo. This model is
strong at OS-SPL of 0.55. This serves as a very competitive ObjectNav policy in the regime where
we allow such strong supervision. Our proposed method that uses significantly less supervision
(in-the-wild videos from YouTube vs. environment scans) is still close to the performance of this
strongly supervised method (OS-SPL 0.53). When we combine the two by training the strongly
supervised objective jointly with our Q-learning based objective, performance is even stronger at
OS-SPL of 0.57 (significant at a p-value of 0.025).

Thus, in conclusion, value functions learned via our approach from YouTube video tours of indoor
spaces are effective and efficient for semantic navigation to objects of interest in novel environments.
They compare favorably to competing reinforcement learning based methods, behavior cloning
approaches, and strong exploration baselines, across all metrics.

4.3 Ablations

We present ablations when testing policies on Etrain in Oracle Stop setting. Note Etrain was only used
to train the inverse model, and not the Q-learning models that we seek to compare. The base setting

from which we ablate corresponds to training f(I, c) on V̂syn with pseudo-labeled actions, Dcoco
based reward labels, and the use of f(I, c) and spatial consistency for sampling short-term goals.
This achieves an OS-SPL of 0.40± 0.02. We summarize results below, table in supplementary.

We notice only a minor impact in performance when a) using true actions as opposed to actions
from inverse model  (0.41 ± 0.03), b) using true detections as opposed to detections from Dcoco
(0.40± 0.03), c) using true reward locations as opposed to frames from which object is visible as
per Dcoco (0.41± 0.03) (the proposed scheme treats frames with high-scoring detections as reward
frames as opposed to true object locations), and d) using optimal trajectories as opposed to noisy
trajectories (0.43± 0.03). Albeit on simulated data, this analysis suggests that there is only a minor
degradation in performance when using inferred estimates in place of ground truth values.

Perhaps, a more interesting observation is that there is a solid improvement when we additionally use
Dcoco score to sample short-term goals (0.46±0.03). We believe use of Dcoco produces a more peak-y
directional signal when the object is in direct sight, where as differences in f(I, c) are more useful
at long-range. Secondly, we found that use of 360� images at training time also leads to a strong
improvement (0.47 ± 0.02). We believe use of 360� images at training time prevents perceptual

aliasing during Q-learning. In the base setting, Q-values can erroneously propagate via an image
that looks directly at a wall. Presence of 360� context prevents this. While this is useful for future
research, we stick with the base setting as we are limited by what videos we could find on YouTube.

T1

T3

T2

Gnear

Gfar

SPL (Policy 

Evaluation): 0.34

Gnear

Gfar

SPL (Q-Learning): 0.88

Is action pseudo-labeling necessary? As discussed in Section 3.1, we
favored use of Q-learning over action agnostic methods, such as policy
evaluation, as this allows us to learn optimal value functions as opposed
to value of the policy depicted in the video. To test this, we train different
methods in the branching environment as shown in the figure on the right
(top). Desired goal locations are labeled by Gnear and Gfar. We investigate
the learned behavior at the branch point B, by initializing the agent at
random locations in the circle S. Desired behavior is for agent to reach
Gnear. In departure from all other experiments, here we train and test in
the same branching environment. This is a deliberate choice as we seek
to understand how different methods interpret the training data.

Videos in this branching environment are a 50 � 49.5 � 0.5% mix of trajectories T1, T2, and T3.
T1 and T2 are sub-optimal trajectories to reach Gnear and Gfar respectively, while T3 is the optimal
trajectory to reach Gnear. The policy evaluation method doesn’t use any action labels, and correctly
infers the values for the policy from which videos are sampled. As expected, this causes it to pursue
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Dining Table

Current 
Location

Last Sub-Goal

Next Sub-Goal
Couch

Object Goal Task: Find Couch

 0.82  0.85  0.87  0.78  0.74  0.69  0.55  0.60  0.75  0.63  0.78  0.86

 0.81  0.77  0.79  0.62  0.54  0.49  0.48  0.58  0.69  0.65  0.70  0.82

Figure 3: Left figure shows predicted values for reaching a dining table at different points on the
top-view map in a novel environment. Values are high near the dining tables (denoted by the red
boxes), and smoothly bleed out to farther away regions. Right shows a sample execution of our
navigation policy finding a couch in a novel environment. More in Supplementary.

the sub-optimal goal (red paths in bottom figure). In contrast, Q-learning with pseudo-labeled actions,
estimates the optimal value function, and consistently reaches Gnear (green paths).

5 Discussion

We presented a technique to enable learning of semantic cues for finding objects in novel environments
from in-the-wild YouTube videos. Our proposed technique employs Q-learning on pseudo-labeled
transition quadruples. This allows learning of effective semantic cues even in the absence of action
grounding and goal-directed optimal behavior. When coupled with a hierarchical navigation policy,
these cues convey the agent to desired objects more effectively than competitive exploration baselines
and RL methods at a fraction of interaction cost. In the future, we will test our policies on real robots
and extend to other navigation tasks.

Broader Impact

Our specific research in this paper lowers barriers for the training of navigation policies. Instead of
needing fully instrumented environments, or large-scale 3D scans, we can now train using video tours
of indoor spaces. This significantly expands the environments that such methods can be trained on.
Existing datasets [9, 69] used for training current systems have a bias towards expensive houses. This
is because sensors and services involved in constructing such scans are expensive. While our current
YouTube Walks dataset also has some of this bias, a video tour can be collected merely by using
a phone with a camera. This will allow training of navigation policies that will work well in more
typical environments, and will democratize the use of learning-based policies for navigation. We also
acknowledge that the use of publicly available data from the Internet (in our case YouTube videos)
raises questions about privacy and consent. These issues require a broader discussion.

Our broader research aims to improve policies for navigation in unstructured environments. This
by itself has numerous desirable applications (such as automated delivery, search and monitoring
in hazardous environments, automated crop inspection and mechanical weeding via under-canopy
robots). Such applications can save lives, prevent food shortage (by preventing herbicide resistance),
and enable development of other automation technologies.

While there are a number of critical applications that our research can potentially enable, we acknowl-
edge that our research falls under automation, and as with all other research in this area, in the future
it could replace jobs currently performed by humans. However, this must be viewed in context of the
critical applications described above. Resolving or even fully understanding this trade-off will need a
much broader discussion.

Acknowledgement: We thank Sanjeev Venkatesan for help with data collection. We also thank
Rishabh Goyal, Ashish Kumar, and Tanmay Gupta for feedback on the paper. This material is based
upon work supported by NSF under Grant No. IIS-2007035, and DARPA Machine Common Sense.

Gibson dataset license: http://svl.stanford.edu/gibson2/assets/GDS_agreement.pdf
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S1 Hierarchical Policies for Semantic Navigation

High-Level Policy
Value Predictions
via .f(I, c)

Short-term 
Goal

�Pose

Low-Level Policy

Occupancy Map

Forward

Left

Right

Stop
Return control

  on success or failure

Current 
Node

FMM Path Plan

Figure S1: Hierarchical navigation policy. High-level policy does semantic reasoning (using the
learned value functions) over images in different directions and outputs short-term goals, that are
consumed by the low-level policy. The low-level policy employs classical mapping and planning to
achieve the short-term goal, and returns control to the high-level policy if it achieves the short-term
goal, or determines it to be infeasible. Black nodes depict nodes stored by the high-level policy in
the topological graph, and blue nodes show the value predictions in different directions from each
of the black nodes (size indicates predicted value, we use 12 uniformly sampled directions but only
show few for clarity). Current location is indicated by the hollow circle. High-level policy outputs
the most promising direction to pursue as the short-term goal. Relative offset of this location from
the current location (�Pose) is passed to the low-level policy. Low-level policy incrementally builds
occupany map. It uses the fast-marching method to plan a path to the desired short-term goal, and
outputs low-level robot actions. Low-level policy returns control on success (reaching the short-term
goal), infeasible goal (short-term goal determined to be in occupied space), or timeout.

We use the learned value function f(I, c) from Section 3.1 in a hierarchical navigation policy for
semantic navigation. Our hierarchical policy is motivated by Chaplot et al. [11], and consists of
a high-level policy and a low-level policy. The high-level policy outputs short-term goals that are
achieved by the low-level policy. The high-level policy uses value predictions on images seen so
far (at short-term goal locations), to sample a short-term goal in the most promising direction. This
short-term goal is expressed as a relative offset from the agent’s current location. The low-level policy
emits low-level robot actions to navigate to this short-term goal, or returns that the short-term goal
is infeasible. This process is repeated, i.e., the high-level policy takes feedback from the low-level
policy, along with the image at the agent’s new location to sample the next short-term goal. We
describe these two policies in more detail below. Figure S1 shows an overview of this navigation
policy.

S1.1 High-level policy

The high-level policy, ⇧ builds a hybrid spatial and topological representation. It stores 360� images
along with their locations at each short-term goal location. 360� images are obtained by incrementally
rotating the agent 12 times by 30� each. High-level policy also stores the value prediction from
f(I, c) on these 12 images, for the category of interest c. These 12 values denote the promise of
exploring in the different directions for reaching the objects of the desired class. These predicted
values are combined with object detector output and a spatial consistency term to give the final score:
fcomb(I, c) = �1f(I, c) + �2 �0.5 [Dcoco(I, c)] · (1 +Dcoco(I, c))| {z }

Object Detector

+0.05�3 max (10� d, 0)| {z }
Spatial Consistency

(S1)
where f(I, c) is the semantic score for the object class of interest c on the image I , Dcoco(I, c) is
the maximum confidence for Mask-RCNN detections of class c in I , d is the estimated geodesic
distance (based on the current map) of the proposed short-term goal from the current agent position
in meters, and �0.5 is an indicator function that outputs 1 if Dcoco(I, c) � 0.5, and 0 otherwise. We
set �1 = �2 = �3 = 1.
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As it is expensive to get these images (it costs 12 steps), we only store these at locations where
the short-term policy returns control to the high-level policy (we call these locations as semantic

reasoning locations, and these are marked in Figure S1 with black dots).

The high-level policy maintains a priority heap of all of these 12N values (along with their location
and associated direction vectors in the agent’s coordinate frame), where N is the number of semantic
reasoning nodes currently stored in the topological graph. At each time step, the high-level policy
pops the highest of these 12N values1 from the priority heap, and samples k (= 100) short-term
goals in this direction (±7�) that are between 1m and 2m from the parent node. These k short-term
goals are passed onto the low-level policy, which pursues the first of these k goals that is not known
to be infeasible, and returns control to the high-level policy if it succeeds, or determines that the
sampled short-term goal is infeasible or too far away.

S1.2 Low-level policy

The low-level policy uses metric occupancy maps [20] along with fast-marching method (FMM)
path planners [59] to incrementally plan paths to provided short-term goals. The low-level policy
filters the provided k goals for feasibility (using the current occupancy map). It takes the first one of
these filtered short-term goals, plans a path to it, and outputs planned robot actions. Low-level policy
continues to re-plan when the occupancy map updates. Low-level policy executes actions output
from the FMM planner. It stops and returns control when a) it has reached the goal, b) it has already
executed enough steps (based on estimate from original FMM computation), or c) the short-term goal
turns out to be infeasible or much further than originally anticipated (as more of the map becomes
visible). We assume access to depth images, and adapt code from the map and plan implementation
from [26], to implement the low-level policy.

As our focus is on high-level semantic cues, for simplicity we assume access to perfect agent pose for
this hierarchical policy. This can be achieved using additional sensors on the robot (depth cameras,
and IMU units), or using a SLAM system [43], or just with RGB images by using learned pose
estimators and free space estimators [10].

S1.3 Stopping Criteria

We elaborate on the stopping criteria used for Policy Stop setting. At every semantic reasoning step,
we compute a proxy measure for whether we are close to an object of the desired category or not by
using the depth image and Dcoco. For all high-scoring detections for class c from Dcoco (detection
score more than ⌧c = 0.75), we approximate the distance to the detected object instance by the
median depth value within the predicted instance segmentation mask. If any detected instance is
within a distance dc, the agent emits a stop signal. dc is a per-category hyper-parameter (as object
sizes vary drastically across categories). We set it using 100 episodes sampled in Etrain.

As noted in Section 4.2, we found that this hand-crafted stopping criteria also led to best performance
for all methods that we compare to (as opposed to using the method’s own stopping method).
Threshold ⌧c was fixed to 0.75 for all methods, while dc was optimized for each category for each

method on the same 100 episodes from Etrain using the exact same procedure. For behavior cloning
and RL methods, stopping criteria is evaluated at all times steps, where as for our method and
baselines based on our method, it is evaluated at every semantic reasoning step.

1As we keep popping values from the priority heap, there are 11N + 1 (and not 12N ) entries in the heap at
the popping time.
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S2 Experimental Details

S2.1 Environment Splits

Table S1: List of Gibson environments in different splits. See Section 4 for details.
Split Environments

Etrain Andover, Annona, Adairsville, Brown, Castor, Eagan, Goodfield, Goodwine, Kemblesville, Mau-
gansville, Nuevo, Springerville, Stilwell, Sussex

Etest Collierville, Corozal, Darden, Markleeville, Wiconisco

Evideo Airport, Albertville, Allensville, Anaheim, Ancor, Arkansaw, Athens, Bautista, Beechwood, Benev-
olence, Bohemia, Bonesteel, Bonnie, Broseley, Browntown, Byers, Chilhowie, Churchton, Clairton,
Coffeen, Cosmos, Cottonport, Duarte, Emmaus, Forkland, Frankfort, Globe, Goffs, Goodyear,
Hainesburg, Hanson, Highspire, Hildebran, Hillsdale, Hiteman, Hominy, Irvine, Klickitat, Lakeville,
Leonardo, Lindenwood, Lynchburg, Maida, Marland, Marstons, Martinville, Merom, Micanopy,
Mifflinburg, Musicks, Neibert, Neshkoro, Newcomb, Newfields, Onaga, Oyens, Pamelia, Parole,
Pinesdale, Pomaria, Potterville, Ranchester, Readsboro, Rogue, Rosser, Shelbiana, Shelbyville, Silas,
Soldier, Stockman, Sugarville, Sunshine, Sweatman, Thrall, Tilghmanton, Timberon, Tokeland,
Tolstoy, Tyler, Victorville, Wainscott, Willow, Wilseyville, Winooski, Woodbine

S2.2 Difficulty Distribution of Test Episodes

41%

29%

30%

We plot the distribution of difficulty (distance to near-
est object of interest) of the evaluation episodes in
Etest in figure on right. We group these episodes into
3 difficulty levels, based on distance to the nearest
instance of the target category: easy ( 3m, green),
medium (3m to 5m, orange), and hard (5m to 15m,
red). In total there were 313 easy, 324 medium and
438 hard episodes. There were 200, 250, 200, 125,
300 episodes each for object categories Bed, Chair,
Couch, Dining Table, Toilet respectively.

S2.3 Generation of Vsyn

We use environments in Evideo to render out egocentric navigation tours. We employ a path planner to
compute shortest path between random pairs of points in each environment. We render out panorama
images (4 images: straight facing, left facing, back facing, and right facing, relative to the direction
of motion) along these shortest paths and throw out the sequence of actions that were executed, to
arrive at the dataset of videos Vsyn. To make these tours more realistic, we execute a random action
with 20% probability at each time step (and replan accordingly). We sample 300 trajectories in each
of the 85 environments. Average trajectory length is 40 steps.

S2.4 More Implementation Details

We note further implementation details for our method and baselines.

1. Topological Exploration and Detection Seeker are implemented by setting (�1,�2,�3) to
be (0, 0, 1), and (0, 1, 1) respectively in Eq. S1. This assures a fair comparison between the
three methods, and tests the effectiveness of our learned function f(I, c).

2. For End-to-End RL, we experimented with different architectures as noted in Table 1 in the
main paper. Baselines as part of Habitat [53] use a 3 layered CNN (denoted by 3CNN and
SimpleCNN interchangeably in the main paper) to represent RGB, Depth or RGB-D input.
We report performance with this default network (RL (RGB-D 3CNN, RL Depth 3CNN)) in
Table 1 in main paper. We found that using a ResNet-18 model (initialized by pre-training
on ImageNet) worked better than using this SimpleCNN to represent RGB images. Thus we
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additionally also reported performance with ResNet-18 models (RGB-D ResNet-18+3CNN,
RGB ResNet-18). For RGB-D models, we could only use ResNet-18 for the RGB part.
Depth is still processed through the same 3-layer CNN (as there is no standard initialization
for Depth models that is commonly used). Output from ResNet-18 for RGB and 3CNN for
Depth were concatenated before feeding into the LSTM model.

3. Our Q-learning models were optimized using Adam with a learning rate of 10�4, �1 = 0.9
and �2 = 0.999. Model was trained for 300K mini-batches of size 16 and the model after
the last update was used for experiments.

4. Architecture of Q-network: The architecture of the Q-network was based off of ResNet-18.
We used a ResNet-18 pretrained on ImageNet removing the last convolution layer and all
later layers. We add to the pre-trained head, an additional convolution layer with kernel size
3 ⇥ 3 and 64 channels. After this convolution layer there are 3 fully-connected layers of size
[512, 256, 15] respectively. The output of the final layer is reshaped to 3 ⇥ 5 to represent
the value of taking each of the 3 possible actions with respect to the 5 possible classes.

5. Compute Infrastructure: All experiments were conducted on a single GPU server with 8
GPUs (NVidia 2080 Ti). Model training for our method was done on a single GPU and took
22 hours.

S3 Detailed Results

Figure S2: Oracle Stop SPL for various methods against the number of direct interaction samples
used.
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Table S2: Results: SPL and Success Rate for ObjectGoal wth Oracle Stop in novel environments
Etest by episode difficulty. Details in Section 4.2.

Method Training Supervision SPL

# Active Frames Reward Other Easy Medium Hard Overall

Topological Exploration - - - 0.47 ± 0.03 0.31 ± 0.03 0.16 ± 0.02 0.30 ± 0.02
Detection Seeker - - - 0.73 ± 0.03 0.53 ± 0.03 0.22 ± 0.02 0.46 ± 0.02
RL (RGB-D ResNet+3CNN) 100K (Etrain) Sparse - 0.30 ± 0.03 0.19 ± 0.03 0.07 ± 0.02 0.17 ± 0.02
RL (RGB-D ResNet+3CNN) 10M (Etrain [ Evideo) Dense - 0.42 ± 0.03 0.29 ± 0.03 0.11 ± 0.02 0.26 ± 0.02
RL (RGB-D 3CNN) 38M (Etrain [ Evideo) Dense - 0.42 ± 0.03 0.32 ± 0.03 0.15 ± 0.02 0.28 ± 0.02
RL (RGB ResNet) 20M (Etrain) Dense - 0.40 ± 0.04 0.30 ± 0.03 0.21 ± 0.02 0.29 ± 0.02
RL (Depth 3CNN) 38M (Etrain) Dense - 0.40 ± 0.04 0.24 ± 0.03 0.15 ± 0.02 0.25 ± 0.02
Behavior Cloning 40K (Etrain) - V̂yt 0.44 ± 0.04 0.29 ± 0.03 0.07 ± 0.01 0.25 ± 0.02
Behavior Cloning + RL 12M (Etrain) Dense V̂yt 0.41 ± 0.03 0.26 ± 0.03 0.09 ± 0.01 0.24 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂yt 0.75 ± 0.03 0.63 ± 0.03 0.30 ± 0.02 0.53 ± 0.02

Behavior Cloning 40K (Etrain) - V̂syn 0.48 ± 0.04 0.34 ± 0.03 0.24 ± 0.02 0.34 ± 0.02
Behavior Cloning + RL 12M (Etrain) Dense V̂syn 0.42 ± 0.03 0.22 ± 0.03 0.11 ± 0.02 0.24 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂syn 0.71 ± 0.03 0.55 ± 0.03 0.26 ± 0.02 0.48 ± 0.02

Strong Supervision Values Labeled Maps (Evideo) 0.73 ± 0.03 0.60 ± 0.03 0.33 ± 0.02 0.53 ± 0.02
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + V̂yt 0.80 ± 0.03 0.65 ± 0.03 0.35 ± 0.03 0.57 ± 0.02

Method Training Supervision Success Rate

# Active Frames Reward Other Easy Medium Hard Overall

Topological Exploration - - - 0.89 ± 0.03 0.80 ± 0.04 0.41 ± 0.04 0.67 ± 0.02
Detection Seeker - - - 0.95 ± 0.02 0.90 ± 0.03 0.50 ± 0.04 0.75 ± 0.02
RL (RGB-D ResNet+3CNN) 100K (Etrain) Sparse - 0.62 ± 0.05 0.41 ± 0.05 0.15 ± 0.03 0.37 ± 0.02
RL (RGB-D ResNet+3CNN) 10M (Etrain [ Evideo) Dense - 0.81 ± 0.04 0.65 ± 0.05 0.26 ± 0.03 0.54 ± 0.03
RL (RGB-D 3CNN) 38M (Etrain [ Evideo) Dense - 0.79 ± 0.04 0.65 ± 0.04 0.35 ± 0.04 0.57 ± 0.03
RL (RGB ResNet) 20M (Etrain) Dense - 0.75 ± 0.04 0.59 ± 0.05 0.40 ± 0.04 0.56 ± 0.03
RL (Depth 3CNN) 38M (Etrain) Dense - 0.73 ± 0.04 0.58 ± 0.05 0.32 ± 0.04 0.52 ± 0.02
Behavior Cloning 40K (Etrain) - V̂yt 0.81 ± 0.04 0.68 ± 0.04 0.21 ± 0.03 0.53 ± 0.02
Behavior Cloning + RL 12M (Etrain) Dense V̂yt 0.86 ± 0.03 0.69 ± 0.04 0.29 ± 0.03 0.58 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂yt 0.95 ± 0.02 0.90 ± 0.03 0.58 ± 0.04 0.79 ± 0.02

Behavior Cloning 40K (Etrain) - V̂syn 0.84 ± 0.03 0.74 ± 0.04 0.55 ± 0.04 0.69 ± 0.02
Behavior Cloning + RL 12M (Etrain) Dense V̂syn 0.83 ± 0.03 0.62 ± 0.04 0.31 ± 0.04 0.55 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂syn 0.96 ± 0.02 0.88 ± 0.03 0.51 ± 0.04 0.75 ± 0.02

Strong Supervision Values Labeled Maps (Evideo) 0.95 ± 0.02 0.92 ± 0.03 0.64 ± 0.04 0.81 ± 0.02
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + V̂yt 0.98 ± 0.01 0.94 ± 0.02 0.62 ± 0.04 0.82 ± 0.02
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Table S3: Results: SPL and Success Rate for ObjectGoal wth Oracle Stop in novel environments
Etest by object class. Details in Section 4.2.

Method Training Supervision SPL

# Active Frames Reward Other Bed Chair Couch Dining Table Toilet

Topological Exploration - - - 0.35 ± 0.04 0.39 ± 0.03 0.29 ± 0.03 0.27 ± 0.04 0.19 ± 0.03
Detection Seeker - - - 0.49 ± 0.05 0.64 ± 0.04 0.48 ± 0.04 0.53 ± 0.06 0.26 ± 0.03
RL (RGB-D ResNet+3CNN) 100K (Etrain) Sparse - 0.12 ± 0.03 0.29 ± 0.04 0.16 ± 0.03 0.20 ± 0.05 0.11 ± 0.03
RL (RGB-D ResNet+3CNN) 10M (Etrain [ Evideo) Dense - 0.24 ± 0.04 0.37 ± 0.04 0.29 ± 0.04 0.38 ± 0.05 0.09 ± 0.02
RL (RGB-D 3CNN) 38M (Etrain [ Evideo) Dense - 0.30 ± 0.04 0.39 ± 0.04 0.26 ± 0.04 0.36 ± 0.05 0.14 ± 0.03
RL (RGB ResNet) 20M (Etrain) Dense - 0.30 ± 0.04 0.44 ± 0.04 0.24 ± 0.04 0.27 ± 0.05 0.21 ± 0.03
RL (Depth 3CNN) 38M (Etrain) Dense - 0.29 ± 0.04 0.32 ± 0.04 0.26 ± 0.04 0.32 ± 0.05 0.13 ± 0.02
Behavior Cloning 40K (Etrain) - V̂yt 0.24 ± 0.04 0.34 ± 0.04 0.28 ± 0.04 0.36 ± 0.05 0.10 ± 0.02
Behavior Cloning + RL 12M (Etrain) Dense V̂yt 0.23 ± 0.04 0.33 ± 0.03 0.25 ± 0.03 0.28 ± 0.04 0.13 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂yt 0.49 ± 0.04 0.68 ± 0.03 0.60 ± 0.04 0.71 ± 0.05 0.32 ± 0.03

Behavior Cloning 40K (Etrain) - V̂syn 0.36 ± 0.05 0.45 ± 0.04 0.37 ± 0.04 0.35 ± 0.05 0.20 ± 0.03
Behavior Cloning + RL 12M (Etrain) Dense V̂syn 0.21 ± 0.03 0.31 ± 0.03 0.23 ± 0.03 0.35 ± 0.05 0.14 ± 0.03
Our (Value Learning from Videos) 40K (Etrain) - V̂syn 0.44 ± 0.04 0.60 ± 0.04 0.48 ± 0.04 0.56 ± 0.06 0.37 ± 0.04

Strong Supervision Values Labeled Maps (Evideo) 0.46 ± 0.04 0.59 ± 0.03 0.57 ± 0.04 0.68 ± 0.05 0.43 ± 0.03
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + V̂yt 0.50 ± 0.04 0.69 ± 0.03 0.58 ± 0.04 0.77 ± 0.04 0.43 ± 0.04

Method Training Supervision Success rate

# Active Frames Reward Other Bed Chair Couch Dining Table Toilet

Topological Exploration - - - 0.67 ± 0.05 0.85 ± 0.04 0.71 ± 0.05 0.68 ± 0.07 0.48 ± 0.05
Detection Seeker - - - 0.74 ± 0.05 0.92 ± 0.03 0.80 ± 0.05 0.80 ± 0.06 0.57 ± 0.05
RL (RGB-D ResNet+3CNN) 100K (Etrain) Sparse - 0.36 ± 0.06 0.54 ± 0.05 0.34 ± 0.05 0.43 ± 0.07 0.21 ± 0.04
RL (RGB-D ResNet+3CNN) 10M (Etrain [ Evideo) Dense - 0.48 ± 0.06 0.77 ± 0.04 0.62 ± 0.05 0.86 ± 0.05 0.19 ± 0.04
RL (RGB-D 3CNN) 38M (Etrain [ Evideo) Dense - 0.66 ± 0.05 0.74 ± 0.05 0.57 ± 0.06 0.74 ± 0.07 0.30 ± 0.04
RL (RGB ResNet) 20M (Etrain) Dense - 0.64 ± 0.05 0.74 ± 0.05 0.55 ± 0.06 0.50 ± 0.07 0.38 ± 0.04
RL (Depth 3CNN) 38M (Etrain) Dense - 0.54 ± 0.06 0.71 ± 0.05 0.54 ± 0.06 0.63 ± 0.07 0.30 ± 0.04
Behavior Cloning 40K (Etrain) - V̂yt 0.46 ± 0.06 0.74 ± 0.05 0.63 ± 0.06 0.72 ± 0.07 0.24 ± 0.04
Behavior Cloning + RL 12M (Etrain) Dense V̂yt 0.59 ± 0.06 0.79 ± 0.04 0.66 ± 0.06 0.67 ± 0.07 0.30 ± 0.04
Our (Value Learning from Videos) 40K (Etrain) - V̂yt 0.76 ± 0.05 0.94 ± 0.03 0.86 ± 0.04 0.91 ± 0.04 0.57 ± 0.05

Behavior Cloning 40K (Etrain) - V̂syn 0.70 ± 0.05 0.84 ± 0.04 0.70 ± 0.05 0.82 ± 0.06 0.51 ± 0.05
Behavior Cloning + RL 12M (Etrain) Dense V̂syn 0.59 ± 0.06 0.77 ± 0.04 0.60 ± 0.06 0.68 ± 0.07 0.25 ± 0.04
Our (Value Learning from Videos) 40K (Etrain) - V̂syn 0.70 ± 0.05 0.90 ± 0.03 0.77 ± 0.05 0.82 ± 0.06 0.62 ± 0.05

Strong Supervision Values Labeled Maps (Evideo) 0.72 ± 0.05 0.91 ± 0.03 0.86 ± 0.04 0.94 ± 0.03 0.71 ± 0.04
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + V̂yt 0.81 ± 0.05 0.94 ± 0.02 0.82 ± 0.04 0.94 ± 0.03 0.69 ± 0.04

Table S4: Results: SPL and Success Rate for ObjectGoal wth Policy Stop in novel environments
Etest by episode difficulty. Details in Section 4.2.

Method Training Supervision SPL

# Active Frames Reward Other Easy Medium Hard Overall

Topological Exploration - - - 0.22 ± 0.03 0.12 ± 0.02 0.06 ± 0.01 0.13 ± 0.01
Detection Seeker - - - 0.31 ± 0.04 0.22 ± 0.03 0.09 ± 0.01 0.19 ± 0.02
RL (RGB ResNet) 20M (Etrain) Dense - 0.10 ± 0.02 0.09 ± 0.02 0.05 ± 0.01 0.08 ± 0.01
Behavior Cloning 40K (Etrain) - V̂yt 0.16 ± 0.03 0.10 ± 0.02 0.02 ± 0.01 0.08 ± 0.01
Our (Value Learning from Videos) 40K (Etrain) - V̂yt 0.32 ± 0.04 0.29 ± 0.03 0.11 ± 0.02 0.22 ± 0.02

Behavior Cloning 40K (Etrain) - V̂syn 0.13 ± 0.02 0.12 ± 0.02 0.07 ± 0.01 0.10 ± 0.01
Our (Value Learning from Videos) 40K (Etrain) - V̂syn 0.29 ± 0.04 0.23 ± 0.03 0.13 ± 0.02 0.21 ± 0.02

Strong Supervision Values Labeled Maps (Evideo) 0.34 ± 0.04 0.25 ± 0.03 0.15 ± 0.02 0.24 ± 0.02
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + V̂yt 0.31 ± 0.04 0.29 ± 0.03 0.13 ± 0.02 0.23 ± 0.02

Method Training Supervision Success Rate

# Active Frames Reward Other Easy Medium Hard Overall

Topological Exploration - - - 0.43 ± 0.04 0.31 ± 0.04 0.17 ± 0.03 0.29 ± 0.02
Detection Seeker - - - 0.52 ± 0.05 0.43 ± 0.05 0.21 ± 0.03 0.37 ± 0.02
RL (RGB ResNet) 20M (Etrain) Dense - 0.27 ± 0.04 0.26 ± 0.04 0.12 ± 0.03 0.21 ± 0.02
Behavior Cloning 40K (Etrain) - V̂yt 0.36 ± 0.04 0.25 ± 0.04 0.05 ± 0.02 0.20 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂yt 0.53 ± 0.04 0.48 ± 0.05 0.22 ± 0.03 0.39 ± 0.02

Behavior Cloning 40K (Etrain) - V̂syn 0.35 ± 0.04 0.28 ± 0.04 0.18 ± 0.03 0.26 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂syn 0.50 ± 0.05 0.42 ± 0.05 0.26 ± 0.03 0.38 ± 0.02

Strong Supervision Values Labeled Maps (Evideo) 0.58 ± 0.05 0.45 ± 0.05 0.30 ± 0.04 0.43 ± 0.02
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + V̂yt 0.50 ± 0.05 0.50 ± 0.05 0.27 ± 0.04 0.41 ± 0.02
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Table S5: Results: SPL and Success Rate for ObjectGoal wth Policy Stop in novel environments
Etest by object class. Details in Section 4.2.

Method Training Supervision SPL

# Active Frames Reward Other Bed Chair Couch Dining Table Toilet

Topological Exploration - - - 0.18 ± 0.04 0.17 ± 0.03 0.09 ± 0.02 0.11 ± 0.03 0.09 ± 0.02
Detection Seeker - - - 0.25 ± 0.04 0.25 ± 0.04 0.13 ± 0.03 0.23 ± 0.05 0.14 ± 0.02
RL (RGB ResNet) 20M (Etrain) Dense - 0.02 ± 0.01 0.15 ± 0.03 0.05 ± 0.02 0.07 ± 0.03 0.08 ± 0.02
Behavior Cloning 40K (Etrain) - V̂yt 0.13 ± 0.03 0.12 ± 0.03 0.02 ± 0.01 0.12 ± 0.04 0.05 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂yt 0.25 ± 0.04 0.28 ± 0.04 0.22 ± 0.04 0.20 ± 0.05 0.17 ± 0.03

Behavior Cloning 40K (Etrain) - V̂syn 0.06 ± 0.02 0.16 ± 0.03 0.09 ± 0.02 0.14 ± 0.04 0.08 ± 0.02
Our (Value Learning from Videos) 40K (Etrain) - V̂syn 0.21 ± 0.04 0.25 ± 0.03 0.13 ± 0.03 0.17 ± 0.04 0.24 ± 0.03

Strong Supervision Values Labeled Maps (Evideo) 0.24 ± 0.04 0.24 ± 0.03 0.22 ± 0.04 0.28 ± 0.05 0.22 ± 0.03
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + V̂yt 0.14 ± 0.04 0.31 ± 0.04 0.18 ± 0.04 0.32 ± 0.05 0.24 ± 0.03

Method Training Supervision Success Rate

# Active Frames Reward Other Bed Chair Couch Dining Table Toilet

Topological Exploration - - - 0.27 ± 0.05 0.35 ± 0.05 0.26 ± 0.05 0.29 ± 0.07 0.27 ± 0.04
Detection Seeker - - - 0.38 ± 0.06 0.48 ± 0.05 0.23 ± 0.05 0.37 ± 0.07 0.36 ± 0.05
RL (RGB ResNet) 20M (Etrain) Dense - 0.07 ± 0.03 0.38 ± 0.05 0.12 ± 0.04 0.15 ± 0.05 0.23 ± 0.04
Behavior Cloning 40K (Etrain) - V̂yt 0.23 ± 0.05 0.30 ± 0.05 0.06 ± 0.03 0.33 ± 0.07 0.14 ± 0.03
Our (Value Learning from Videos) 40K (Etrain) - V̂yt 0.40 ± 0.06 0.52 ± 0.05 0.36 ± 0.06 0.31 ± 0.07 0.32 ± 0.04

Behavior Cloning 40K (Etrain) - V̂syn 0.11 ± 0.04 0.43 ± 0.05 0.24 ± 0.05 0.34 ± 0.07 0.20 ± 0.04
Our (Value Learning from Videos) 40K (Etrain) - V̂syn 0.30 ± 0.05 0.49 ± 0.05 0.26 ± 0.05 0.34 ± 0.07 0.43 ± 0.05

Strong Supervision Values Labeled Maps (Evideo) 0.34 ± 0.06 0.50 ± 0.05 0.37 ± 0.05 0.54 ± 0.07 0.42 ± 0.05
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + V̂yt 0.20 ± 0.05 0.53 ± 0.05 0.30 ± 0.05 0.52 ± 0.08 0.47 ± 0.05

Table S6: We report various ablations of our method, when using automatic stopping behavior,
evaluated on Etrain. Base setting uses noisy trajectores, action labels from inverse models and
panorama images. We ablate these settings. See Section 4.3 for details.

SPL Success Rate

Method Easy Medium Hard Overall Easy Medium Hard Overall

Base setting 0.62± 0.04 0.42± 0.04 0.23± 0.03 0.40± 0.02 0.95± 0.03 0.86± 0.05 0.56± 0.05 0.75± 0.03
True actions 0.61± 0.05 0.45± 0.05 0.25± 0.03 0.41± 0.03 0.94± 0.03 0.86± 0.05 0.51± 0.05 0.73± 0.03
True detections 0.62± 0.05 0.45± 0.05 0.22± 0.03 0.40± 0.03 0.95± 0.03 0.86± 0.05 0.48± 0.05 0.72± 0.03
True rewards 0.64± 0.05 0.46± 0.05 0.21± 0.03 0.41± 0.03 0.95± 0.03 0.86± 0.05 0.48± 0.05 0.72± 0.03
No noise in videos 0.65± 0.05 0.46± 0.04 0.25± 0.03 0.43± 0.03 0.95± 0.03 0.92± 0.04 0.59± 0.05 0.78± 0.03
Dcoco score 0.73± 0.04 0.48± 0.05 0.26± 0.03 0.46± 0.03 0.98± 0.02 0.88± 0.05 0.58± 0.06 0.78± 0.03
Train on 360� videos 0.66± 0.04 0.51± 0.05 0.32± 0.03 0.47± 0.02 0.98± 0.02 0.92± 0.04 0.66± 0.05 0.82± 0.03
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S4 Visualizations

S4.1 Value Predictions on Panorama

Figure S3: Example panoramas from novel environments with scores from our value network. Scores
for each object class (Bed, Chair, Couch, Dining Table, and Toilet) are reported. We can see that
value is high in the likely direction of objects even if the object is not directly visible.
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Figure S4: Example panoramas from novel environments with scores from our value network. Scores
for each object class (Bed, Chair, Couch, Dining Table, and Toilet) are reported. We can see that
value is high in the likely direction of objects even if the object is not directly visible.
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S4.2 Executed Trajectories

Figure S5: Example trajectores from our method navigating in novel environments, sorted by SPL
(first few show successes, last few show failures). The black path indicates the trajectory taken by the
agent. A blue circle indicates potential short-term goal, and a red rectangle indicates the object goal.
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S4.3 Etest Problem Setup Visualization

Figure S6: Top-down maps of selected floors from the Etest environments. We also show ground truth
object locations. Agent does not have access to any of these maps or ground truth object locations.
Visualizations here are provided only to show the difficulty and realism of our problem setup.
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S4.4 Predicted Values on Held-out Environments

Figure S7: Maps representing the value of different locations in novel environments as predicted by
our method trained on V̂syn. We can see that high value regions fall off smoothly as the distance from
object goals increases.

S4.5 Value in Branching EnvironmentGnearGfar
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Figure S8: The predicted value in the branching environment using models trained with Q-learning,
and policy evaluation via TD(0) and Monte Carlo. We see that the policy evaluation methods
drastically under estimate the value in the optimal direction at the branch point. This leads to
sub-optimal policies for those methods while the Q-learning based value function finds the optimal
trajectory. See Section 4.3 for details.
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