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Abstract

Nonlinear dynamics are ubiquitous in science and engineering applications, but the
physics of most complex systems is far from being fully understood. Discovering
interpretable governing equations from measurement data can help us understand
and predict the behavior of complex dynamic systems. Although extensive work
has recently been done in this field, robustly distilling explicit model forms from
very sparse data with considerable noise remains intractable. Moreover, quanti-
fying and propagating the uncertainty of the identified system from noisy data is
challenging, and relevant literature is still limited. To bridge this gap, we develop
a novel Bayesian spline learning framework to identify parsimonious governing
equations of nonlinear (spatio)temporal dynamics from sparse, noisy data with
quantified uncertainty. The proposed method utilizes spline basis to handle the
data scarcity and measurement noise, upon which a group of derivatives can be
accurately computed to form a library of candidate model terms. The equation
residuals are used to inform the spline learning in a Bayesian manner, where
approximate Bayesian uncertainty calibration techniques are employed to approxi-
mate posterior distributions of the trainable parameters. To promote the sparsity,
an iterative sequential-threshold Bayesian learning approach is developed, using
the alternative direction optimization strategy to systematically approximate L0
sparsity constraints. The proposed algorithm is evaluated on multiple nonlinear dy-
namical systems governed by canonical ordinary and partial differential equations,
and the merit/superiority of the proposed method is demonstrated by comparison
with state-of-the-art methods.

1 Introduction

In the realm of science and engineering, dynamical systems are ubiquitous. However, in actual
circumstances, the governing equations behind complicated dynamics may not be completely un-
derstood, preventing researchers from developing first-principled models. On the other hand, the
ever-increasing data availability opens up new avenues for scientists to identify predictive models
from enormous observation data, a process known as system identification (SI). Recent advances in
deep learning have prompted the rapid development of powerful SI models for high-dimensional
problems using deep neural networks (DNNs). Many DNN-based SI models have been proposed to
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learn differential operators for complex (spatio)temporal physics from data and shown good potential
in terms of data reproduction and state prediction [1–3]. However, deep learning models usually
lack interpretability and are difficult to comprehend. Furthermore, it is questionable in terms of
generalizability when compared to first-principle models, as such black-box DNN models provide
less insight into the underlying processes.

Instead of identifying a black-box model, we focus on extracting analytical equation forms from data,
which has higher interpretability and has the potential to advance our knowledge of unknown physics.
The sparse identification of non-linear dynamic (SINDy) algorithm [4] is an excellent development
along this path. The central idea is to use sparse linear regression to uncover parsimonious governing
equations from a dictionary of basis functions constructed by data, where the sparsity is promoted
by pruning out redundant terms based on certain specified thresholds [5]. SINDy, although showing
great promise, faces several challenges: (1) it heavily relies on high-quality data to extract derivative
information, which is typically based on finite difference (FD) methods, making it impossible to
handle incomplete, scarce, or noisy data; (2) it is formulated in a deterministic fashion and cannot
account for the uncertainties from multiple sources, which is critical for real-world applications where
data is frequently corrupted and can be very sparse. In the past few years, the SINDy framework has
been further improved in various aspects to address these challenges, e.g., enhancing the library [6]
or using deep learning for denoising and derivative computation by fitting the noisy data in a
decoupled [7–9] or coupled manner [10–14]. For uncertainty quantification, the dictionary-based
equation discovery algorithms have been recently extended to Bayesian settings [15–17], based on
the idea of sparse Bayesian learning pioneered by Tipping and co-workers [18–22].

Despite recent progress and extensive work in this field, reliably distilling explicit equation forms
from very sparse data with significant noise remains an unsolved challenge. There are still significant
gaps in handling data scarcity and noise, quantifying and reducing multi-source uncertainties, and
promoting sparsity, which most existing equation discovery techniques struggle to simultaneously
address. To this end, we propose a novel Bayesian Spline Learning (BSL) approach to identify parsi-
monious ordinal/partial differential equations (ODEs/PDEs) from sparse and noisy measurements;
meanwhile, the associated uncertainties are quantified. To deal with data scarcity and measurement
noise, the proposed BSL uses a spline basis, on which a collection of derivatives can be reliably
computed for the library construction. The posterior distributions of spline-based model parameters
are approximated by a stochastic gradient descent (SGD) trajectory-based training scheme, where
the first moment of SGD iterations is computed by stochastic weight averaging approach [23]. The
proposed BSL approach is effective in two aspects. On the one hand, the spline-based representation
can help to interpolate locally the spatiotemporal field and perform differentiation analytically. As a
result, it considerably enhances learning efficiency in cases with sparse and noisy data. The posterior
distributions of spline, library, and equation coefficients are estimated simultaneously, without adding
too much overhead to the training process. Besides the measurement uncertainty, the model-form
uncertainty is also obtained in the proposed method, which can be used for downstream Bayesian data
assimilation, where online data is assimilated to improve the predictability of the identified system
for chaotic scenarios.3

2 Related Work

The data in real-world circumstances is frequently sparse in spatial/temporal domains and may
contain considerable noise, posing significant challenges to SINDy or its variants [4–6, 16, 24–27].
Deep learning (DL) has been leveraged as a superb interpolator for concurrently generating metadata
and smoothing high-frequency noise [28], effectively improving the performance in identifying
equations from imperfect measurements [7, 10–14]. For example, automatic differentiation (AD)
is effective for computing derivatives analytically from sparse, noisy data using a point-wise multi-
layer perceptron (MLP) [13, 29, 30]. However, it is difficult to impose locality constraints in the
point-wise formulation. Wandel et al. [31] demonstrated the merit of employing a spline basis for
analytically calculating derivatives while enforcing the locality of spatiotemporal fields. Owing to the
superiority of spline-based differentiation compared to numerical discretization, physics-informed
spline networks remarkably outperform point-wise physics-informed neural networks (PINN) in the
context of solving PDEs [31] and discovering ODEs [14].

3The code will be available at https://github.com/luningsun/SplineLearningEquation
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However, these models fail to simultaneously deal with ODE and PDE systems when the data is sparse
and substantially corrupted. For the PDE datasets, for example, the PINN-based sparse regression
(PINN-SR) [13] works admirably, but it fails to converge on ODE datasets. On the other hand,
algorithms such as physics-informed spline learning (PiSL) [14] that performs very well for ODE
discovery cannot handle PDE problems due to the limitation of the B-spline basis adopted. More
importantly, all these SOTA sparse learning algorithms are formulated in deterministic settings and
uncertainties introduced from data/library imperfection cannot be quantified.

For inverse problems like equation discovery, it is natural to use Bayesian framework to quantify and
analyze the prediction uncertainty. To enable the posterior computation for high-dimensional trainable
parameters that are intractable by traditional Bayesian inference, people have resorted to various
approximation strategies, e.g., variational inference [32–34], Monte Carlo dropout [35], Bayes by
backprop [36], Laplace approximation [37], and deep ensemble approaches [38]. Although these
techniques have had great success, training may still be challenging, and costs will rise dramatically as
the problems become more sophisticated. Alternatively, we chose to employ an SGD trajectory-based
algorithm, Stochastic Weight Averaging-Gaussian (SWAG) [23], where the information in the SGD
trajectory is exploited to approximate the posterior. As demonstrated empirically, SWAC is well
scalable to high-dimensional problems and can accurately estimate uncertainty across many different
Bayesian learning tasks [23, 39].

Data assimilation (DA) has been widely used in numerical weather prediction (NWP) by fusing online
sensing data into a predictive model for nonlinear dynamics forecast. People have recently integrate
deep learning into DA to improve online prediction performance [40–42]. However, the predictive
model in DA is assumed to be known a priori, and uncertainties from the model and observations,
which are required for DA, are usually hard to obtain. In our framework, the predictive model can be
unknown a priori and will be identified to assimilate additional data for online forecasting. Moreover,
instead of arbitrarily guessing the observation and model-form errors, this information can be learned
in the proposed BSL framework, as the data and model-form uncertainties are quantified. The UQ
capability of BSL naturally integrates the equation discovery with Bayesian DA techniques.

The main contributions of this work are three-fold: (1) we extended spline learning for sparse
equation discovery of spatiotemporal physics governed by ODEs or PDEs; (2) we developed sparsity-
promoting Bayesian learning for UQ tasks; and (3) the proposed BSL framework can seamlessly
integrate with Bayesian data assimilation techniques to improve online dynamics forecasting.

3 Methodology

Let us consider a dynamical system, which is governed by a parametric ODE/PDE system in the
following general form

du

dt
= F(u), (1)

where u denotes the state vector, for ODE systems, u = [u1(t), u2(t), · · · , ud(t)]T 2 Rd depends
only on time t, for PDE systems, u(x, t) = [u1(x, t), u2(x, t), · · · , ud(x, t)]d 2 Rd depends on
both time t and space x, and F : Rd

! Rd represents unknown nonlinear functions. The states are
observed at discrete times {ti}ni=1 and at spatial locations {xj}

s
j=1 for PDE systems. Let ũ denote

the noisy observation vector, the observation set is Ũ = {ũ(t1), ũ(t2), · · · , ũ(tn)}T 2 Rn⇥d and
Ũ = {ũ(x1, t1), ũ(x2, t1), · · · , ũ(xs, tn)}T 2 R(n⇥s)⇥d for ODE/PDE systems, respectively. Our
goal here is to explicitly discover the parsimonious form of F(·) from a library of candidate basis
functions and quantify the associated uncertainty given noisy observation data.

3.1 Overview

Given the dataset Ũ, the SI problem can be solved by sparse regression techniques with a predefined
library �(u) of m basis functions,

�(u) = [�1(u),�2(u), · · · ,�m(u)] 2 Rm
, (2)

where �i : Rd
! R, 1  i  m denotes a basis function, which, for instance, can be the polynomial

or trigonometric function. Hence, the matrix of library terms evaluated at observed states is defined
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Figure 1: Overview of method. Black box: overall work flow. Blue box: a demo for spline basis with
derivatives in 1D and 2D cases. Red box: a sketch for the Bayesian ADO training process. Green
box: the data assimilation enhanced uncertainty quantification.

as,

ODE : �(Ũ) =


�
�
ũ(t1)

�T
,�

�
ũ(t2)

�T
, · · · ,�

�
ũ(tn)

�T
�T

2 Rn⇥m
,

PDE : �(Ũ) =


�
�
ũ(x1, t1)

�T
,�

�
ũ(x2, t1)

�T
, · · · ,�

�
ũ(xs, tn)

�T
�T

2 R(n⇥s)⇥m
.

(3)

Given the library, the overview of the BSL framework is shown in Fig. 1. Firstly, a spline-based
model is constructed to represent state variables and their derivatives by denoising the observation
data, which is illustrated in the blue box and discussed in Sec.3.2. Then the spline-based model and
sparse regression are trained simultaneously by alternating direction optimization (ADO), as shown
in the red box. Specifically, a single ADO iteration contains two sub-processes, where sub-process
I trains the spline-based model using log posterior loss and passes the trainable parameters and
the noise estimations to sub-process II, which uses a Bayesian SINDy-like method to prune out
redundant terms in the library as defined in Eq. 3, and then updates the number of relevant terms in the
training loss for sub-process I. After several ADO iterations, the parsimonious form of the governing
equations and the posterior distribution for the coefficients will be estimated. More details about the
ADO iterations in the Bayesian framework are shown in Sec. 3.3 and Appendix A.3. Finally, with the
estimated posterior, the predictive uncertainty can be quantified by evaluating the identified system
with an ensemble of parameters. To further improve the prediction capability, especially for chaotic
systems, we propose to leverage data assimilation techniques, which is shown in the green box and
discussed in Sec.3.4 and Appendix A.5.

3.2 Spline-based learning

Several previous works have already shown the potential of spline-based learning and demonstrated
the advantages compared with the classical DL structures, e.g.,(MLP, CNN) [14, 31, 43]. Therefore,
we use this structure to smooth the solution fields based on the noisy measurement and then identify
the underlying PDE/ODE and calculate the corresponding derivatives from the spline-reconstructed
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fields. The B-spline curves, based on the De Boor’s algorithm, are defined in a recursive way as:

Ns,0(t) =

⇢
1, if ⌧s  t  ⌧s+1.

0, otherwise.

Ns,k(t) =
t� ⌧s

⌧s+k � ⌧s
Ns,k�1(t) +

⌧s+k+1 � t

⌧s+k+1 � ⌧s+1
Ns+1,k�1(t),

(4)

where ⌧s is the location of knots, k is the degree of polynomial. When k = 3, it is the well-used
Cubic-B Spline curve. With the defined basis, the spline interpolation can be write as y(t) =
⌃r+k�1

s=0 Ns,k(t)✓s. And the number of control points (trainable weights) ✓ 2 Rr+k is chosen
empirically. It can be proved that the derivative of p order B-spline basis is a function of p� 1 order
B-spline, written as:

d

dt
Ns,k(t) =

k

⌧s+k � ⌧s
Ns,k�1(t)�

k

⌧s+k+1 � ⌧s+1
Ns+1,k�1(t). (5)

The proof of Eq. 5 is attached in Appendix A.1. The higher-order derivative can be calculated
by recursively using Eq. 5. The analytical derivatives of spline basis are very beneficial for PDE
discovery tasks since it always involves constructing library terms containing high order derivatives.
With a proper order p, the first p derivatives are accurate, and there is no error introduced during
the derivation, as opposed to using the numerical methods to approximate derivatives. The spline
function and its derivatives are defined in a one-dimensional scenario. It is straightforward to extend
to n-dimension by direct using tensor-product. For example, for a two-dimensional problem with
spatial-temporal fields, the basis can be defined as

N
k1,k2
s1,s2 (ti, xj) = Ns1,k1(ti)Ns2,k2(xj). (6)

Here the two-dimensional basis is denoted by a different style to write it compactly. Similarly, the
partial derivative for two-dimensional basis is defined as:

@
(q1+q2)Nk1,k2

s1,s2

@t(q1)@x(q2)
(ti, xj) =

d
(q1)Ns1,k1

dt(q1)
(ti)

d
(q2)Ns2,k2

dx(q2)
(xj). (7)

With the definition of sparse system identification and spline reconstruction, the whole spline learning
can be stated as follows: given noisy measurement data Ũ, find the best sets of weights ✓ and
W so that data fitting loss and the weakly physics-informed loss can be minimized under sparsity
constraints , as shown in Eq. 8:

{✓,W} = argmin
✓0,W0

1

Nm
||Nm✓0

� Ũ||L2 +
1

Nc
||�(Nc✓

0)W0
� Ṅc✓

0
||L2 + �||W0

||L↵ . (8)

Here, Nm and Nc denote the spline basis matrices evaluated at measurement and collocation locations.
Moreover, Nm and Nc are numbers of measurement data and collocation points. Furthermore, the
alternating direction optimization (ADO) shown in previous works [13, 14] can be adopted to
minimize the loss function efficiently, and the details are attached in Appendix A.3.

3.3 Sparse system identification in Bayesian formulation

Bayesian methods provide a natural probabilistic representation of uncertainty, which is crucial for
model predictions. System identification from noisy and sparse measurements generally contains two
types of errors (similar to the hidden Markov model): (1) Observation error, where the data is noisy,
and the smoothed data is reconstructed through spline-based learning, as shown in Eq. 9

Ũ = Nm✓0 + ✏1, (9)

where ✏1 represents the observation error. (2) Evolution error or model form error, since the discovered
system cannot be exact due to library imperfection and needs to be reformulated as,

u̇ = �(u)W 0 + ✏2, (10)

where ✏2 represents model form error. And Eq. (10) is evaluated on collocation points.

In this work, these error terms are modeled as zero-mean multivariate Gaussian random variables:
✏1 ⇠ N (0,B) and ✏2 ⇠ N (0,P). And we further assume that these error covariance matrices B,P

5



are diagonal matrix with diagonal terms {bk} and {pk} with 1  k  d and they are learn-able
parameters during training.

According to Bayes’ rule, the posterior can be written as:

p(✓,W,B,P|Ũ, U̇) / p(✓,W,B,P)p(Ũ, U̇|W,✓,B,P). (11)

Here U̇ = Ṅc✓ denotes the derivative estimation on all the collocation points. The prior is further
decomposed by

p(W,✓,B,P) / p(W|↵)p(↵)p(✓|�)p(�)p(B)p(P). (12)
Currently, we specify the prior for the linear coefficient matrix as a zero mean Gaussian distribution
p(W|↵) = N (W|0,↵�1I) with the hyper prior as a Gamma distribution p(↵) = Gamma(↵|a0, b0).
Similarly, we also define the prior for the spline trainable parameters as zero mean Gaussian
distribution with the hyper prior as another Gamma distribution p(✓|�) = N (✓|0,��1I) and
p(�) = Gamma(�|a1, b1). To account for the data uncertainty and process uncertainty, the di-
agonal covariance matrices B and P are also set as learn-able during the training. And hence
improper uniform priors are used for B and P.
The likelihood consists of two parts, as:

p(Ũ, U̇|W,✓,B,P) = p(Ũ|✓,B)p(U̇|W,P,✓), (13)

where

p(Ũ|✓,B) / exp{�
1

2
(Ũ�Nm✓)TB�1(Ũ�Nm✓)}, (14)

p(U̇|W,P,✓) / exp{�
1

2
(Ṅc✓ ��(Nc✓)W )TP�1(Ṅc✓ ��(Nc✓)W )}. (15)

Traditional Bayesian sampling approaches (i.e., Markov chain Monte Carlo methods) can be usu-
ally intractable and expensive, especially when the parameter dimensionality is high. Therefore,
researchers tend to use alternative approximation approaches. Current work uses a stochastic gradient
descent (SGD) trajectory-based approach, Stochastic Weight Averaging Gaussian (SWAG) [23]
algorithm to approximately sample from the posterior distribution. This method approximates the
posterior by collecting the parameters near the loss plateau after a sufficient number of the training
steps. To further reduce the inference cost, we construct a subspace by finding the PCA components
of the SWAG trajectories [44] and then draw samples in the subspace instead. In terms of the loss
function in the probabilistic model, we chose to maximize the log form of the posterior density Eq. 11,
also by leveraging the ADO algorithm. The sub-process I minimizes the log density function defined
by Eq. 11-13 and the sub-process II adopts the Bayesian variants of SINDy algorithm modified from
[17, 19]. The likelihood function in sub-process II has the same form as in Eq. 15 but with a different

sparsity promoting prior p(W|A) =
mY

j=1

N (Wj |0,↵
0�1
j ), where A = [↵0

1,↵
0
2, ...,↵

0
m]T . In a single

ADO iteration, the sub-process I provides the updated ✓ and P to sub-process II for constructing the
library terms. While the sub-process II shrinks the library terms and passes updated library/weight
structure W back to sub-process I. The whole training requires multiple ADO iterations before it
reaches the final balance, where no more terms will be pruned out in sub-process II. The detailed
ADO algorithm is listed in Appendix A.3. After obtaining the approximated posterior distribution,
predicting uncertainty can be estimated by marginalizing out the model parameters.

3.4 Data assimilation for enhanced predictability

For a chaotic system, one notorious problem is that a slight perturb in any model parameters can
significantly influence the prediction. For example, in numerical weather prediction (NWP) tasks
where the researcher always needs to predict the behavior of chaotic weather systems, various data
assimilation (DA) techniques have been developed to assimilate the available data and the known
equations. Kalman filter and its variants are successful mathematical tools for data assimilation.
Our Bayesian formulation, providing the observation error covariance matrix B and evolution error
covariance matrix P, can be naturally incorporated with the Kalman filter frameworks to improve the
predictability of chaotic systems. Current works choose the ensemble Kalman filter for the task, and
more background can be found in Appendix A.3.
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Figure 2: The discovery results for ODE systems; the red box shows results for the Van der
Pol (VdP) system, and the blue box shows the result for Lorenz 96 system. The layout inside
each box follows the rules below. Upper left sub-fig: discovered mean for the relevant library
terms; Lower left sub-figs: selected posterior distribution for the identified distributions; Right
sub-figs: ensemble prediction plots for UQ. For VdP system, the governing equation is dx

dt = y and
dy
dt = �x� 0.5x2

y + 0.5y. For the Lorenz96 system, the compact form of the governing equation is
dXi
dt = (Xi+1 �Xi�2)Xi�1 �Xi + F with periodic boundary conditions.

4 Experiment and Result

In this section, we first show the equation discovery and uncertainty quantification results for nonlinear
ODE systems. We also show that incorporating DA techniques can improve the predicting ability for
chaotic systems. Finally, we present the PDE discovery results for several canonical PDE systems.

The first pedagogical ODE example is the Van der Pol oscillator, which is defined as dx
dt = y

and dy
dt = µ(1 � x

2)y � x with µ = 0.5. The data is corrupted with 5% noise, and the library
consists of polynomials of state variables up to 3rd order. The parsimonious model structure can be
correctly identified, and the result is shown in the upper red box of Fig. 2. There are five sub-figures,
which depict the library discovery, coefficient distribution, and the forward propagated UQ results.
Specifically, the single upper left figure shows the mean of discovered coefficients (blue lines �) and
the truth equation coefficients (black stars ⇤), where the horizontal axis represents term indices. For
example, the Van der Pol system has four different terms, and the x-axis ranges from 1 to 4. The
two sub-figures in the lower left part show probability density distributions (PDF) of two identified
coefficients, where truth equation coefficients (red lines �) fall within the confidence interval with
high probability. The right sub-figures show the propagated ensemble results (blue lines �) based on
the discovered equations, measurement data (green circles �), and the true state trajectories of x and
y (red dashed lines ��). The result clearly shows that the ensemble predictions can cover the data,
and the uncertainty range fluctuates around the truth state values.
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Figure 3: The discovery results for PDE systems; the red box shows results for the advection system,
and the blue box shows the result for the Burgers’ system. The layout inside each box follows the
rules below. Leftmost sub-fig: true contour plot; Middle two sub-figs: the spatial results at different
time t; Rightmost sub-figs: the temporal result at a fixed point x.

The second ODE example is a chaotic system, Lorenz 96. It is a simplified mathematical model
for atmospheric convection, defined as: dXi

dt = (Xi+1 �Xi�2)Xi�1 �Xi + F , i = 1, 2, ...n with
periodic boundary conditions X�1 = Xn�1, X0 = Xn and Xn+1 = X1. We chose n = 4 in
current case and F = 8 for the forcing terms. The measurement states variables are corrupted with
10% Gaussian noise, and the library consists of polynomials of state variables up to 3rd order. The
discovery result for these systems is shown in the lower blue box in Fig. 2 following the same layout
as the Van der Pol systems. The upper left figure indicates that the sparsity structure can be identified,
and the horizontal axis marks 24 parsimonious terms (4 terms for each state, 6 states in total) out of
84 library terms. The detailed PDF plots show that posterior distributions still cover truth values with
high probability. Although the discovery result is quite accurate, the forward simulations of identified
Lorenz 96 system would induce a large phase difference compared with truth trajectories due to the
chaotic nature of the underlying system (in Appendix A.5). To alleviate the chaotic behavior and
improve the predictability, we seamlessly coupled the ensemble Kalman filter (EnKF), a classical
DA technique, to assimilate noisy measurements with the identified system. The observation error
matrix B and evolution error matrix P required for the EnKF scheme can be directly passed from
the Bayesian spline learning framework. The right subplots show the DA results for the 3 out of
6 state variables to save space. The horizontal axis marks the evolving time, and the vertical axis
represents the state variables. In each subplot, the green shaded region indicates the time interval
with available noisy measurement data (marked by green circles (�)). And the red solid-line (�) is
the true L96 states. Finally, the blue curves (�) are the ensemble predictions. It can be seen that the
ensemble predictions inside the region with measurement data almost overlap with the true trajectory.
Furthermore, the ensemble uncertainty grows more significantly in the extrapolation region, but the
ensemble ranges still fluctuate around the true trajectory. Note that the prediction for the chaotic
system with the DA process is much better than directly forward simulating the identified system,
where the predictable interval is only about 1 second. More discovery results are attached in Appendix
A.5.

Then, we use the proposed BSL framework to identify classical PDE systems and evaluate the
performance of two of them in the main text. They include advection equation @u

@t + @u
@x = 0 and

Burgers’ equation @u
@t + u

@u
@x � 0.5@2u

@x2 = 0. The qualitative results are shown in Fig. 3 inside the
red and blue boxes, respectively. Inside each box, the leftmost contour plot shows the true state
value in the spatiotemporal field, and the right three sub-figures show the UQ results for different
cross-sections from the left contour plot. The red lines (�) represent the truth value, blue lines (�) are
obtained by ensemble predictions, and green circles (�) represent sparse and noisy measurements. The
prediction from the identified PDE system is accurate in the spatiotemporal field, and the ensemble
fluctuates around the truth state variables.
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Finally we benchmark our proposed method with several state-of-the-art discovery algorithms (PINN-
SR [13], SINDy [5] and RVM [45]). The error metric is defined as:

rmse =
||CDiscovery �CTrue||2

||CTrue||2
(16)

MP =
||CDiscovery �CTrue||0

||CDiscovery||0
(17)

MR =
||CDiscovery �CTrue||0

||CTrue||0
(18)

where CDiscovery are the non-zero mean prediction from the posterior distribution and CTrue are the
true coefficients of the governing equations. If the method fails to converge or cannot identify the
correct parsimonious form, we will report the final result as Fail. The errors are scaled by ⇥10�3

to have a clear comparison. Two additional metrics, precision MP and recall MR, are also defined,
where the � represents element-wise product of vectors and the l0 norm is the non-zero terms in a
vector. It can be seen from Table 1 that our BSL method always performs best, when the noise is
significant (> 5%), demonstrating its robustness to noise.

The PINN-SR can discover the PDE equation with corrupted data set, but it fails to predict accurate
time trajectories for ODE systems. This is also reported in a relevant paper [46], that the plain
MLP structure is not satisfactory for predicting time series. The SINDy method can behave much
better when large high-quality data exist. However, the SINDy method can easily fail when noise is
significant. Our BSL requires fewer parameters and is easier to converge due to the enforcement of
locality constraints by the spline basis model. Furthermore, the SINDy and RVM methods require
much more data (100%) to train but are still vulnerable to data noise. These benchmark cases show
the potential of our BSL for equation discovery tasks. The full table with more benchmark test cases
can be found in Tab. 3 in Appendix. We also apply the proposed method on a real-world dataset, as
shown in Tab. 9 and Tab. 10 and discuss the effect of smoothing method in Tab. 12 and Tab. 13.

Table 1: ODE and PDE discovery comparison

Name rmse(0%) rmse(1%) rmse (large4) MP MR
5 Training Cost6

Van der Pol Oscillator

BSL(Ours) 0.2 2.82 18.04 1 1 ⇠ 133(+3)s
PINN-SR Fail7 Fail Fail 0.214 0.75 ⇠ 1213s
SINDy 1.0 1.93 Fail 0.267 1.0 ⇠ 10s
RVM 1.0 2.54 27.46 1 1 ⇠ 10s

Lorenz 96

BSL(Ours) 0.269 1.47 13.0 1 1 ⇠ 1654(+438)s
PINN-SR Fail Fail Fail 0.5 0.22 ⇠ 10788s
SINDy 0.4 0.64 Fail 0.75 1 ⇠ 10s
RVM 0.4 0.6 49.7 1 1 ⇠ 25s

Advection Equation

BSL(Ours) 0.26 1 1.9 1 1 ⇠ 946(+233)s
PINN-SR 5.9 4.5 30.4 1 1 ⇠ 650s
SINDy 2.3 8.2 38.9 1 1 ⇠ 10s
RVM 0.77 6.76 Fail 0.2 1 ⇠ 4s

Burgers’ Equation

BSL(Ours) 3.62 4.13 6.38 1 1 ⇠ 117(+74)s
PINN-SR 10.2 3.3 10.3 1 1 ⇠ 512s
SINDy 0.826 Fail Fail 1 0.5 ⇠ 10s
RVM 0.754 Fail Fail 0.1429 0.5 ⇠ 4s
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5 Discussion and Limitation

In this work, we developed a novel Bayesian spline learning (BSL) framework for equation discovery
from sparse and noisy datasets with quantified uncertainty. The proposed framework significantly
improves SI performance and contributes to the existing literature in the following aspects: Firstly,
the use of spline basis enables us to accurately interpolate solution surfaces and analytically compute
derivatives to form the candidate library, outperforming other benchmark methods based on finite
difference (FD) or auto differentiation (AD), which either suffer from noisy/sparse data or overfitting
issues. Secondly, the proposed Bayesian learning formulation notably enhances the robustness for
large data noise and sparsity, and meanwhile, quantifies the predictive uncertainty with minimum
computational overhead. Moreover, a Bayesian sparsity-promoting ADO iteration strategy is pro-
posed to promote sparsity and recover the parsimonious governing equation as well as the posterior
distribution of its coefficients. Last but not least, the Bayesian DA is also integrated into the BSL
framework to improve the online predictability of the chaotic systems, which can potentially benefit
real-world tasks such as numerical weather forecasting. The proposed framework is evaluated on
discovering multiple canonical ODE and PDE systems, and great superiority has been demonstrated
in comparison with state-of-the-art methods.

Admittedly, this work still relies on a pre-defined library of candidate terms, and thus the identified
system is largely limited to the functional space determined by the user-specified library. In general,
for library-based methods, how to design an inclusive but not unnecessarily large library a priori is
important yet very challenging, which may require prior knowledge of the system to be identified
and thus limit their applications for systems involving complex governing physics. Moreover, in
this work, only a uniform displacement of knots is used for spline representation, and the tensor
product of 1-D splines is adopted for multi-dimensional spline constructions as shown in Tab. 7.
These choices are not optimal and have notable limitations for high-dimensional problems. To tackle
this issue, we propose to apply more advanced spline learning techniques to reduce the computational
cost and improve the scalability. For instance, using deep learning to optimize knot size has shown
great promise for lowering computational costs in high-dimensional settings [47, 48], while defining
continuous spline kernels and expanding basis in subdomains will allow a significant reduction of
trainable parameters [43]. The improvement of spline learning will be explored in our future work.
Lastly, similarly to all data-driven models, the proposed method could have a negative societal impact
if it is used abusively, particularly for predictive modeling of high-consequence natural systems,
where caution should be taken for decision making.
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