
Self-Stabilization: The Implicit Bias of Gradient
Descent at the Edge of Stability

Alex Damian*
Princeton University

ad27@princeton.edu

Eshaan Nichani*
Princeton University

eshnich@princeton.edu

Jason D. Lee
Princeton University

jasonlee@princeton.edu

October 13, 2022

Abstract

Traditional analyses of gradient descent show that when the largest eigenvalue of
the Hessian, also known as the sharpness S(θ), is bounded by 2/η, training is "stable"
and the training loss decreases monotonically. Recent works, however, have observed
that this assumption does not hold when training modern neural networks with full
batch or large batch gradient descent. Most recently, Cohen et al. [7] observed two
important phenomena. The first, dubbed progressive sharpening, is that the sharpness
steadily increases throughout training until it reaches the instability cutoff 2/η. The
second, dubbed edge of stability, is that the sharpness hovers at 2/η for the remainder
of training while the loss continues decreasing, albeit non-monotonically.

We demonstrate that, far from being chaotic, the dynamics of gradient descent
at the edge of stability can be captured by a cubic Taylor expansion: as the iterates
diverge in direction of the top eigenvector of the Hessian due to instability, the cubic
term in the local Taylor expansion of the loss function causes the curvature to decrease
until stability is restored. This property, which we call self-stabilization, is a general
property of gradient descent and explains its behavior at the edge of stability. A
key consequence of self-stabilization is that gradient descent at the edge of stability
implicitly follows projected gradient descent (PGD) under the constraint S(θ) ≤ 2/η.
Our analysis provides precise predictions for the loss, sharpness, and deviation from
the PGD trajectory throughout training, which we verify both empirically in a number
of standard settings and theoretically under mild conditions. Our analysis uncovers the
mechanism for gradient descent’s implicit bias towards stability.

*Equal contribution

1

1 Introduction

1.1 Gradient Descent at the Edge of Stability
Almost all neural networks are trained using a variant of gradient descent, most commonly
stochastic gradient descent (SGD) or ADAM [17]. When deciding on an initial learning rate,
many practitioners rely on intuition drawn from classical optimization. In particular, the
following classical lemma, known as the "descent lemma," provides a common heuristic for
choosing a learning rate in terms of the sharpness of the loss function:

Definition 1. Given a loss function L(θ), the sharpness is defined to be S(θ) := λmax(∇2L(θ)).
When this eigenvalue is unique, the associated eigenvector is denoted by u(θ).

Lemma 1 (Descent Lemma). Assume that S(θ) ≤ ℓ for all θ. If θt+1 = θt − η∇L(θt),

L(θt+1) ≤ L(θt)−
η(2− ηℓ)

2
∥∇L(θt)∥2.

Here, the loss decrease is proportional to the squared gradient, and is controlled by the
quadratic η(2 − ηℓ) in η. This function is maximized at η = 1/ℓ, a popular learning rate
criterion. For any η < 2/ℓ, the descent lemma guarantees that the loss will decrease. As a
result, learning rates below 2/ℓ are considered "stable" while those above 2/ℓ are considered
"unstable." For quadratic loss functions, e.g. from linear regression, this is tight. Any
learning rate above 2/ℓ provably leads to exponentially increasing loss.

However, it has recently been observed that in neural networks, the descent lemma is not
predictive of the optimization dynamics. Recently, Cohen et al. [7] observed two interesting
phenomena:

Progressive Sharpening Throughout most of the optimization trajectory, the gradient of
the loss is negatively aligned with the gradient of sharpness, i.e. ∇L(θ) · ∇S(θ) < 0. As a
result, for any reasonable learning rate η, the sharpness increases throughout training until it
reaches S(θ) = 2/η.

Edge of Stability Once the sharpness reaches 2/η, it ceases to increase and remains around
2/η for the rest of training. Despite the fact that the descent lemma no longer guarantees the
loss decreases, the loss still continues to rapidly decrease, albeit non-monotonically (see
Figure 1).

1.2 Self-stabilization: The Implicit Bias of Instability
In this work we explain the second stage, "edge of stability." We identify a new implicit bias
of gradient descent which we call self-stabilization. Self-stabilization is the mechanism by
which the sharpness remains bounded around 2/η, despite the continued force of progressive
sharpening, and by which the gradient descent dynamics do not diverge, despite instability.
Unlike progressive sharpening, which is only observed for neural network loss functions [7],
self stabilization is a general property of gradient descent.

2

0 1000 2000 3000 4000 5000
Training Steps

0.0

0.2

0.4

0.6

Tr
ai

ni
ng

L
os

s Progressive
Sharpening

Edge of
Stability

0 1000 2000 3000 4000 5000
Training Steps

0

100

200

Sh
ar

pn
es

s Progressive
Sharpening

Edge of
Stability

Figure 1: Progressive Sharpening and Edge of Stability: We train an MLP on CIFAR10
with learning rate η = 2/100. It reaches instability after around 2200 training steps after
which the sharpness hovers at 2/η = 100, which is denoted by the horizontal dashed line.

Traditional non-convex optimization analyses involve Taylor expanding the loss function to
second order around θ to prove loss decrease when η ≤ 2/S(θ). When this is violated, the
iterates diverge exponentially in the top eigenvector direction, u, thus leaving the region in
which the loss function is locally quadratic. Understanding the dynamics thus necessitates a
cubic Taylor expansion.

Our key insight is that the missing term in the Taylor expansion of the gradient after
diverging in the u direction is ∇3L(θ)(u, u), which is conveniently equal to the gradient of
the sharpness at θ:

Lemma 2 (Self-Stabilization Property). If the top eigenvalue of ∇2L(θ) is unique, then the
sharpness S(θ) is differentiable at θ and ∇S(θ) = ∇3L(θ)(u(θ), u(θ)).

As the iterates move in the negative gradient direction, this term has the effect of decreasing
the sharpness. The story of self-stabilization is thus that as the iterates diverge in the u
direction, the strength of this movement in the −∇S(θ) direction grows until it forces the
sharpness below 2/η, at which point the iterates in the u direction shrink and the dynamics
re-enter the quadratic regime.

This negative feedback loop prevents both the sharpness S(θ) and the movement in the top
eigenvector direction, u, from growing out of control. As a consequence, we show that
gradient descent implicitly solves the constrained minimization problem:

min
θ

L(θ) such that S(θ) ≤ 2/η. (1)

Specifically, if the stable is defined by M := {θ : S(θ) ≤ 2/η and ∇L(θ) · u(θ) = 0}1

then the gradient descent trajectory {θt} tracks the following projected gradient descent
trajectory {θ†t} which solves the constrained problem [3]:

θ†t+1 = projM

(
θ†t − η∇L(θ†t)

)
where projM(θ) := argmin

θ′∈M
∥θ − θ′∥. (2)

Our main contributions are as follows. First, we explain self-stabilization as a generic prop-
erty of gradient descent for a large class of loss functions, and provide precise predictions for

1The condition that ∇L(θ) · u(θ) = 0 is necessary to ensure the stability of the constrained trajectory.

3

the loss, sharpness, and deviation from the constrained trajectory {θ†t} throughout training
(Section 4). Next, we prove that under mild conditions on the loss function (which we
verify empirically for standard architectures and datasets), our predictions track the true
gradient descent dynamics up to higher order error terms (Section 5). Finally, we verify our
predictions by replicating the experiments in Cohen et al. [7] and show that they model the
true gradient descent dynamics (Section 6).

2 Related Work
Cohen et al. [7] conducted an extensive empirical study showing progressive sharpening
and edge of stability in a wide range of models. Prior work [29, 30] had also observed
that for neural networks full-batch gradient descent reaches instability and the loss is not
monotonically decreasing. Lewkowycz et al. [18] observed that when the initial sharpness
is larger than 2/η, gradient descent "catapults" into a stable region and converges.

Recent works have sought to provide a theoretical analysis for the edge of stability phe-
nomenon. Ma et al. [23] analyzes edge of stability when the loss satisfies a "subquadratic
growth" assumption. Ahn et al. [1] argues that unstable convergence is possible when there
exists a "forward invariant subset" near the set of minimizers. Arora et al. [2] analyzes
progressive sharpening and the edge of stability phenomenon for normalized gradient de-
scent close to the manifold of global minimizers. Lyu et al. [22] uses the edge of stability
phenomenon to analyze the effect of normalization layers on sharpness for scale-invariant
loss functions. Chen and Bruna [6] show global convergence despite instability for certain
2D toy problems and in a 1-neuron student-teacher setting. The concurrent work Li et al.
[21] proves progressive sharpening for a two-layer network and analyzes the edge of stability
dynamics through four stages similar to ours using the norm of the output layer as a proxy
for sharpness.

Beyond the edge of stability phenomenon itself, prior work has also shown that SGD with
large step size or small batch size will lead to a decrease in sharpness [16, 12, 14, 13]. Gilmer
et al. [11] also describes connections between edge of stability, learning rate warm-up, and
gradient clipping.

At a high level, our proof relies on the idea that oscillations in an unstable direction
prescribed by the quadratic approximation of the loss cause a longer term effect arising from
the third-order Taylor expansion of the dynamics. This overall idea has also been used to
analyze the implicit regularization of SGD [4, 8, 20]. In those settings, oscillations come
from the stochasticity, while in our setting the oscillations stem from instability.

3 Setup
We denote the loss function by L ∈ C3(Rd). Let θ ∈ Rd follow gradient descent with
learning rate η, i.e. θt+1 := θt − η∇L(θt). Recall that

M := {θ : S(θ) ≤ 2/η and ∇L(θ) · u(θ) = 0}

4

x = u · (θ −θ ?)

C
ha

ng
e

in
sh

ar
pn

es
s

y
=
∇

S
·(

θ
−

θ?
)

θ ?

Stage 1:
Progressive Sharpening

x = u · (θ −θ ?)

θ ?

Stage 2:
Blowup

x = u · (θ −θ ?)

−∇3L(u,u) =−∇S

θ ?θ ?

Stage 3:
Self-Stabilization

x = u · (θ −θ ?)

θ ?θ ?
∇S

Stage 4:
Return to Stability

Figure 2: The four stages of edge of stability (see Section 4.1), demonstrated on a simple
loss function (see Appendix B).

is the set of stable points and projM := argminθ′∈M ∥θ − θ′∥ is the orthogonal projection
onto M. For notational simplicity, we will shift time so that θ0 is the first point such that
S(projM(θ)) = 2/η.

As in (2), the constrained trajectory θ† is defined by

θ†0 := projM(θ0) and θ†t+1 := projM(θ†t − η∇L(θ†t)).

Our key assumption is the existence of progressive sharpening along the constrained trajec-
tory, which is captured by the progressive sharpening coefficient α(θ):

Definition 2 (Progressive Sharpening Coefficient). We define α(θ) := −∇L(θ) · ∇S(θ).

Assumption 1 (Existence of Progressive Sharpening). α(θ†t) > 0.

We focus on the regime in which there is a single unstable eigenvalue, and we leave
understanding multiple unstable eigenvalues to future work. We thus make the following
assumption on ∇2L(θ†t):

Assumption 2 (Eigengap). For some absolute constant c < 2 we have λ2(∇2L(θ†t)) < c/η.

4 The Self-stabilization Property of Gradient Descent
In this section, we derive a set of equations that predict the displacement between the
gradient descent trajectory {θt} and the constrained trajectory {θ†t}. Viewed as a dynamical
system, these equations give rise to a negative feedback loop, which prevents both the
sharpness and the displacement in the unstable direction from diverging. These equations
also allow us to predict the values of the sharpness and the loss throughout the gradient
descent trajectory.

5

4.1 The Four Stages of Edge of Stability: A Heuristic Derivation
The analysis in this section proceeds by a cubic Taylor expansion around a fixed reference
point θ⋆ := θ†0.2 For notational simplicity, we will define the following quantities at θ⋆:

∇L := ∇L(θ⋆), ∇2L := ∇2L(θ⋆), u := u(θ⋆)

∇S := ∇S(θ⋆), α := α(θ⋆), β := ∥∇S∥2,

where α = −∇L · ∇S > 0 is the progressive sharpening coefficient at θ⋆. For simplicity, in
Section 4 we assume that ∇S ⊥ u and ∇L,∇S ∈ ker(∇2L), and ignore higher order error
terms.3 Our main argument in Section 5 does not require these assumptions and tracks all
error terms explicitly.

We would like to track the movement in the unstable direction u and the direction of changing
sharpness ∇S, and thus define

xt := u · (θt − θ⋆) and yt := ∇S · (θt − θ⋆).

Note that yt is approximately to the change in sharpness from θ⋆ to θt, since Taylor expanding
the sharpness yields

S(θt) ≈ S(θ⋆) +∇S · (θt − θ⋆) = 2/η + yt.

The mechanism for edge of stability can be described in 4 stages (see Figure 2):

Stage 1: Progressive Sharpening While x, y are small, ∇L(θt) ≈ ∇L. In addition,
because ∇L · ∇S < 0, gradient descent naturally increases the sharpness at every step. In
particular,

yt+1 − yt = ∇S · (θt+1 − θt) ≈ −η∇L · ∇S = ηα.

The sharpness therefore increases linearly with rate ηα.

Stage 2: Blowup As xt measures the deviation from θ⋆ in the u direction, the dynamics
of xt can be modeled by gradient descent on a quadratic with sharpness S(θt) ≈ 2/η + yt.
In particular, the rule for gradient descent on a quadratic gives4

xt+1 = xt − ηu · ∇L(θt) ≈ xt − ηS(θt)xt ≈ xt − η[2/η + yt]xt = −(1 + ηyt)xt.

When the sharpness exceeds 2/η, i.e. when yt > 0, |xt| begins to grow exponentially.

2Beginning in Section 5, the reference points for our Taylor expansions change at every step to minimize
errors. However, fixing the reference point in this section simplifies the analysis, better illustrates the negative
feedback loop, and motivates the definition of the constrained trajectory.

3We give an explicit example of a loss function satisfying these assumptions in Appendix B.
4A rigorous derivation of this update in terms of S(θt) instad of S(θ⋆) requires a third-order Taylor

expansion around θ⋆; see Appendix I for more details.

6

Stage 3: Self-Stabilization Once the movement in the u direction is sufficiently large, the
loss is no longer locally quadratic. Understanding the dynamics necessitates a third order
Taylor expansion. The missing cubic term in the Taylor expansion of ∇L(θt) is

1

2
∇3L(θ − θ⋆, θ − θ⋆) ≈ ∇3L(u, u)

x2
t

2
= ∇S

x2
t

2

by Lemma 2. This biases the optimization trajectory in the −∇S direction, which decreases
sharpness. Recalling β = ∥∇S∥2, the new update for y becomes:

yt+1 − yt = ηα +∇S ·
(
−η∇3L(u, u)

x2
t

2

)
= η

(
α− β

x2
t

2

)
Therefore once xt >

√
2α/β, the sharpness begins to decrease and continues to do so until

until the sharpness goes below 2/η and the dynamics return to stability.

Stage 4: Return to Stability At this point |xt| is still large from stages 1 and 2. However,
the self-stabilization of stage 3 eventually drives the sharpness below 2/η so that yt < 0.
Because the rule for gradient descent on a quadratic with sharpness S(θt) = 2/η + yt is
still

xt+1 ≈ −(1 + ηyt)xt,

|xt| begins to shrink exponentially and the process returns to stage 1.

Combining the update for xt, yt in all four stages, we obtain the following simplified
dynamics:

xt+1 ≈ −(1 + ηyt)xt and yt+1 ≈ yt + η

(
α− β

x2
t

2

)
(3)

where we recall α = −∇L · ∇S is the progressive sharpening coefficient and β =
∥∇S∥2.

4.2 Analyzing the simplified dynamics
We now analyze the dynamics in eq. (3). First, note that xt changes sign at every iteration,
and that, xt+1 ≈ −xt due to the instability in the u direction. While eq. (3) cannot be
directly modeled by an ODE due to these rapid oscillations, we can instead model |xt|, yt,
whose update is controlled by η. As a consequence, we can couple the dynamics of |xt|, yt
to the following ODE X(t), Y (t):

X ′(t) = X(t)Y (t) and Y ′(t) = α− β
X(t)2

2
. (4)

This system has the unique fixed point (X, Y) = (δ, 0) where δ :=
√
2α/β. We also

note that this ODE can be written as a Lotka-Volterra predator-prey model after a change
of variables, which is a classical example of a negative feedback loop. In particular, the
following quantity is conserved:

7

X(t)

Y
(t

)

X(t)

Y
(t

) Stage 1

Stage 2

Stage 3

Stage 4

t

X
(t

)

t

Y
(t

)

Figure 3: The effect of X(0) (left): We plot the evolution of the ODE in eq. (4) with
α = β = 1 for varying X(0). Observe that smaller X(0)’s correspond to larger curves. The
four stages of edge of stability (right): We show how the four stages of edge of stability
described in Section 4.1 and Figure 2 correspond to different parts of the curve generated by
the ODE in eq. (4).

Lemma 3. Let h(z) := z − log z − 1. Then the quantity

g(X(t), Y (t)) := h

(
βX(t)2

2α

)
+

Y (t)2

α

is conserved.

Proof.
d

dt
g(X(t), Y (t)) =

βX(t)2Y (t)

α
− 2Y (t) +

2

α
Y (t)

[
α− β

X(t)2

2

]
= 0.

As a result we can use the conservation of g to explicitly bound the size of the trajec-
tory:

Corollary 1. For all t, X(0) ≤ X(t) ≲ δ
√

log(δ/X(0)) and |Y (t)| ≲
√

α log(δ/X(0)).

The fluctuations in sharpness are Õ(
√
α), while the fluctuations in the unstable direction

are Õ(δ). Moreover, the normalized displacement in the ∇S direction, i.e. ∇S
∥∇S∥ · (θ − θ⋆)

is also bounded by Õ(δ), so the entire process remains bounded by Õ(δ). Note that the
fluctuations increase as the progressive sharpening constant α grows, and decrease as the
self-stabilization force β grows.

4.3 Relationship with the constrained trajectory θ†t
Equation (3) completely determines the displacement θt − θ⋆ in the u,∇S directions and
Section 4.2 shows that these dynamics remain bounded by Õ(δ) where δ =

√
2α/β.

However, progress is still made in all other directions. Indeed, θt evolves in these orthogonal
directions by −ηP⊥

u,∇S∇L at every step where P⊥
u,∇S is the projection onto this orthogonal

subspace. This can be interpreted as first taking a gradient step of −η∇L and then projecting
out the ∇S direction to ensure the sharpness does not change. Lemma 9, given in the
Appendix, shows that this is precisely the update for θ†t (eq. (2)) up to higher order terms.
The preceding derivation thus implies that ∥θt − θ†t∥ ≤ Õ(δ) and that this Õ(δ) error term is
controlled by the self-stabilizing dynamics in eq. (3).

8

5 The Predicted Dynamics and Theoretical Results
We now present the equations governing edge of stability for general loss functions.

5.1 Notation
Our general approach Taylor expands the gradient of each iterate θt around the corresponding
iterate θ†t of the constrained trajectory. We define the following Taylor expansion quantities
at θ†t :

Definition 3 (Taylor Expansion Quantities at θ†t).

∇Lt := ∇L(θ†t), ∇2Lt := ∇2L(θ†t), ∇3Lt := ∇3L(θ†t)

∇St := ∇S(θ†t), ut := u(θ†t).

Furthermore, for any vector-valued function v(θ), we define v⊥t := P⊥
ut
v(θ†t) where P⊥

ut
is

the projection onto the orthogonal complement of ut.

We also define the following quantities which govern the dynamics near θ⋆t .

Definition 4. Define

αt := −∇Lt · ∇St, βt :=
∥∥∇S⊥

t

∥∥2, δt :=

√
2αt

βt

and δ := sup
t

δt.

Furthermore, we define

βs→t := ∇S⊥
t+1

[
s+1∏
k=t

(I − η∇2Lk)P
⊥
uk

]
∇S⊥

s .

Recall that αt is the progressive sharpening force, βt is the strength of the stabilization force,
and δt controls the size of the deviations from θ†t and was the fixed point in the x direction
in Section 4.2. The scalars βs→t capture the effect of the interactions between ∇S and the
Hessian.

5.2 The equations governing edge of stability
We now introduce the equations governing edge of stability. We track the following quanti-
ties:

Definition 5. Define vt := θt − θ†t , xt := ut · vt, yt := ∇S⊥
t · vt.

Our predicted dynamics directly predict the displacement vt and the full definition is deferred
to Appendix C. However, they have a relatively simple form in the ut,∇S⊥

t directions:

Lemma 4 (Predicted Dynamics for x, y). Let ⋆
vt denote our predicted dynamics (defined in

Appendix C). Letting ⋆
xt = ut · ⋆

vt and ⋆
yt = ∇S⊥

t · ⋆
vt, we have

⋆
xt+1 = −(1 + η

⋆
yt)

⋆
xt and ⋆

yt+1 = η
t∑

s=0

βs→t

[
δ2s −

⋆
xs

2

2

]
. (5)

9

Note that when βs→t are constant, our update reduces to the simple case discussed in
Section 4, which we analyze fully. When xt is large, eq. (5) demonstrates that there is a
self-stabilization force which acts to decrease yt; however, unlike in Section 4, the strength
of this force changes with t.

5.3 Coupling Theorem
We now show that, under a mild set of assumptions which we verify to hold empirically in
Appendix E, the true dynamics are accurately governed by the predicted dynamics. This
lets us use the predicted dynamics to predict the loss, sharpness, and the distance to the
constrained trajectory θ†t .

Our errors depend on the unitless quantity ϵ, which we verify is small in Appendix E.

Definition 6. Let ϵt := η
√
αt and ϵ := supt ϵt.

To control Taylor expansion errors, we require upper bounds on ∇3L and its Lipschitz
constant:5

Assumption 3. Let ρ3, ρ4 to be the minimum constants such that for all θ, ∥∇3L(θ)∥op ≤ ρ3
and ∇3L is ρ4-Lipschitz with respect to ∥·∥op. Then we assume that ρ4 = O(ηρ23).

Next, we require the following generalization of Assumption 1:

Assumption 4. For all t,

−∇Lt · ∇St

∥∇Lt∥
∥∥∇S⊥

t

∥∥ = Θ(1) and
∥∥∇S⊥

t

∥∥ = Θ(ρ3).

Finally, we require a set of “non-worst-case" assumptions, which are that the quantities
∇2L,∇3L, and λmin(∇2L) are nicely behaved in the directions orthogonal to ut, which gen-
eralizes the eigengap assumption. We verify the assumptions on ∇2L and ∇3L empirically
in Appendix E.

Assumption 5. For all t and v, w ⊥ ut,

∥∇3Lt(v, w)∥
∥∇3Lt∥op∥v∥∥w∥

,
|∇2Lt(

⋆
v⊥t ,

⋆
v⊥t)|

∥∇2Lt∥
∥∥ ⋆
v⊥t
∥∥2 and

|λmin(∇2Lt)|
∥∇2Lt∥2

≤ O(ϵ).

With these assumptions in place, we can state our main theorem which guarantees ⋆
x,

⋆
y,

⋆
v

predict the loss, sharpness, and deviation from the constrained trajectory up to higher order
terms:

5For simplicity of exposition, we make these bounds on ∇3L globally, however our proof only requires
them in a small neighborhood of the constrained trajectory θ†.

10

Theorem 1. Let T := O(ϵ−1) and assume that mint≤T | ⋆xt| ≥ c1δ. Then for any t ≤ T ,
we have

L(θt) = L(θ†t) +
⋆
x2
t/η +O

(
ϵδ2/η

)
(Loss)

S(θt) = 2/η +
⋆
yt + (St · ut)

⋆
xt +O

(
ϵ2/η

)
(Sharpness)

θt = θ†t +
⋆
vt +O(ϵδ) (Deviation from θ†)

The sharpness is controlled by the slowly evolving quantity ⋆
yt and the period-2 oscillations

of (∇S · U)
⋆
xt. This combination of gradual and rapid periodic behavior was observed by

Cohen et al. [7] and appears in our experiments. Theorem 1 also shows that the loss at θt
spikes whenever ⋆

xt is large. On the other hand, when ⋆
xt is small, L(θt) approaches the loss

of the constrained trajectory.

6 Experiments
We verify that the predicted dynamics defined in eq. (5) accurately capture the dynamics of
gradient descent at the edge of stability by replicating the experiments in [7] and tracking
the deviation of gradient descent from the constrained trajectory. In Figure 4, we evaluate
our theory on a 3-layer MLP and a 3-layer CNN trained with mean squared error (MSE) on
a 5k subset of CIFAR10 and a 2-layer Transformer [28] trained with MSE on SST2 Socher
et al. [27]. We provide additional experiments varying the learning rate and loss function in
Appendix G, which use the generalized predicted dynamics described in Section 7.2. For
additional details, see Appendix D.

Figure 4 confirms that the predicted dynamics eq. (5) accurately predict the loss, sharp-
ness, and distance from the constrained trajectory. In addition, while the gradient flow
trajectory diverges from the gradient descent trajectory at a linear rate, the gradient descent
trajectory and the constrained trajectories remain close throughout training. In particu-
lar, the dynamics converge to the fixed point (|xt|, yt) = (δt, 0) described in Section 4.2
and ∥θt − θ†t∥ → δt. This confirms our claim that gradient descent implicitly follows the
constrained trajectory eq. (2).

In Section 5, various assumptions on the model were made to obtain the edge of stability
behavior. In Appendix E, we numerically verify these assumptions to ensure the validity of
our theory.

7 Discussion

7.1 Takeaways from the Predicted Dynamics
The predicted dynamics enable many interesting observations about the edge of stability
dynamics. First, the loss and sharpness only depend on the quantities (⋆

xt,
⋆
yt), which are

governed by the 2D dynamical system with time-dependent coefficients eq. (5). When
αt, βs→t are constant, we showed that this system cycles and has a conserved potential. In

11

Gradient Descent Predicted Dynamics Constrained Trajectory
Gradient Flow Predicted Fixed Point

0 200 400
0.140

0.145

0.150

L
os

s

0 200 400

1000

1010

1020

Sh
ar

pn
es

s

0.000 0.002 0.004

995

1000

1005

1010

Sh
ar

pn
es

s

0 200 400
0.000

0.002

0.004

D
is

ta
nc

e
to

θ†

0 1000 2000
Step

0.13

0.14

0.15

L
os

s

0 1000 2000
Step

1000

1025

1050
Sh

ar
pn

es
s

0.000 0.002 0.004
|x|

995

1000

1005

1010

Sh
ar

pn
es

s

0 1000 2000
Step

0.00

0.01

0.02

D
is

ta
nc

e
to

θ†

MLP+MSE on CIFAR10, η = 0.002

0 100 200

0.6200

0.6225

0.6250

L
os

s

0 100 200

400

410

420

Sh
ar

pn
es

s

0.000 0.002 0.004

395

400

405
Sh

ar
pn

es
s

0 100 200
0.0000

0.0025

0.0050

0.0075

D
is

ta
nc

e
to

θ†

0 1000 2000
Step

0.60

0.61

0.62

L
os

s

0 1000 2000
Step

400

450

500

550

Sh
ar

pn
es

s

0.000 0.002 0.004
|x|

395

400

405

Sh
ar

pn
es

s

0 1000 2000
Step

0.00

0.02

0.04

0.06

D
is

ta
nc

e
to

θ†

CNN+MSE on CIFAR10, η = 0.005

0 200 400

0.665

0.670

L
os

s

0 200 400

2000

2020

2040

Sh
ar

pn
es

s

0.000 0.001 0.002

1990

2000

2010

Sh
ar

pn
es

s

0 200 400
0.000

0.002

0.004

D
is

ta
nc

e
to

θ†

0 500 1000
Step

0.65

0.66

0.67

L
os

s

0 500 1000
Step

2000

2050

Sh
ar

pn
es

s

0.000 0.001 0.002
|x|

1990

2000

2010

Sh
ar

pn
es

s

0 500 1000
Step

0.000

0.005

D
is

ta
nc

e
to

θ†

Transformer+MSE on SST2, η = 0.001

Figure 4: We empirically demonstrate that the predicted dynamics given by eq. (5) track the
true dynamics of gradient descent at the edge of stability. For each learning rate, the top row
is a zoomed in version of the bottom row which isolates one cycle and is reflected by the
dashed rectangle in the bottom row. Reported sharpnesses are two-step averages for visual
clarity. For additional experimental details, see Section 6 and Appendix D.

12

general, understanding the edge of stability dynamics only requires analyzing the 2D system
eq. (5), which is generally well behaved (Figure 4).

In the limit, we expect ⋆
xt,

⋆
yt to approach (±δt, 0), the fixed point of the system eq. (5). In

fact, Figure 4 shows that after a few cycles, (⋆
xt,

⋆
yt) indeed converges to this fixed point. We

are able to accurately predict its location, as well as the loss increase from the constrained
trajectory due to ⋆

xt ̸= 0.

7.2 Generalized Predicted Dynamics
In order for our cubic Taylor expansions to track the true gradients, we need a bound on
the fourth derivative of the loss (Assumption 3). This is usually sufficient to capture the
dynamics at the edge of stability as demonstrated by Figure 4 and Appendix E. However,
this condition was violated in some of our experiments, especially when using logistic loss.
To overcome this challenge, we developed a generalized form of the predicted dynamics
whose definition we defer to Appendix F. These generalized predictions are qualitatively
similar to those given by the predicted dynamics in Section 5; however, they precisely track
the dynamics of gradient descent in a wider range of settings. See Appendix G for empirical
verification of the generalized predicted dynamics.

7.3 Implications for Neural Network Training
Non-Monotonic Loss Decrease A central phenomenon at edge of stability is that despite
non-monotonic fluctuations of the loss, the loss still decreases over long time scales. Our
theory provides a clear explanation for this decrease. We show that the gradient descent
trajectory remains close to the constrained trajectory (Sections 4 and 5). Since the con-
strained trajectory is stable, it satisfies a descent lemma (Lemma 10), and has monotonically
decreasing loss. Over short time periods, the loss is dominated by the rapid fluctuations of
xt described in Section 4. Over longer time periods, the loss decrease of the constrained
trajectory due to the descent lemma overpowers the bounded fluctuations of xt, leading to
an overall loss decrease. This is reflected in our experiments in Section 6.

Generalization & the Role of Large Learning Rates Prior work has shown that in neural
networks, both decreasing sharpness of the learned solution [16, 9, 24, 15] and increasing
the learning rate [26, 19, 18] are correlated with better generalization. Our analysis shows
that gradient descent implicitly constrains the sharpness to stay near 2/η, which suggests
larger learning may improve generalization by reducing the sharpness. In Figure 5 we
confirm that in a standard setting, full-batch gradient descent generalizes better with large
learning rates.

Training Speed Additional experiments in [7, Appendix F] show that, despite the instabil-
ity in the training process, larger learning rates lead to faster convergence. This phenomenon
is explained by our analysis. Gradient descent is coupled to the constrained trajectory which
minimizes the loss while constraining movement in the ut,∇S⊥

t directions. Since only two
directions are “off limits," the constrained trajectory can still move quickly in the orthogonal

13

directions, using the large learning rate to accelerate convergence. We demonstrate this
empirically in Figure 5.

We defer additional discussion of our work, including the effect of multiple unstable
eigenvalues and connections to Sharpness Aware Minimization [10], warm-up [11], and
scale-invariant loss functions [22] to Appendix H.

7.4 Future Work
An important direction for future work is understanding the dynamics when there are
multiple unstable eigenvalues, which we briefly discuss in Appendix H. Another interesting
direction is understanding the global convergence properties at the edge of stability, including
convergence to a KKT point of the constrained update eq. (2). Next, our analysis focused
on the edge of stability dynamics but left open the question of why neural networks exhibit
progressive sharpening. Finally, we would like to understand the role of self-stabilization
in stochastic-gradient descent and how it interacts with the implicit biases of SGD [4, 8,
20].

Acknowledgements
AD acknowledges support from a NSF Graduate Research Fellowship. EN acknowledges
support from a National Defense Science & Engineering Graduate Fellowship. JDL, AD,
EN acknowledge support of the ARO under MURI Award W911NF-11-1-0304, the Sloan
Research Fellowship, NSF CCF 2002272, NSF IIS 2107304, NSF CIF 2212262, ONR
Young Investigator Award, and NSF-CAREER under award #2144994.

The authors would like to thank Jeremy Cohen, Kaifeng Lyu, and Lei Chen for helpful
discussions throughout the course of this project.

References
[1] K. Ahn, J. Zhang, and S. Sra. Understanding the unstable convergence of gradient

descent. ArXiv, abs/2204.01050, 2022.

[2] S. Arora, Z. Li, and A. Panigrahi. Understanding gradient descent on the edge of
stability in deep learning. In Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages
948–1024. PMLR, 2022.

[3] R. F. Barber and W. Ha. Gradient descent with nonconvex constraints: local concavity
determines convergence. arXiv: Optimization and Control, 2017.

[4] G. Blanc, N. Gupta, G. Valiant, and P. Valiant. Implicit regularization for deep neural
networks driven by an ornstein-uhlenbeck like process. In Conference on Learning
Theory, pages 483–513, 2020.

14

[5] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/
google/jax.

[6] L. Chen and J. Bruna. On gradient descent convergence beyond the edge of stability.
ArXiv, abs/2206.04172, 2022.

[7] J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient descent on neural
networks typically occurs at the edge of stability. In International Conference on
Learning Representations, 2021.

[8] A. Damian, T. Ma, and J. D. Lee. Label noise SGD provably prefers flat global
minimizers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems, 2021.

[9] G. K. Dziugaite and D. M. Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. In
Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence,
2017.

[10] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning
Representations, 2021.

[11] J. Gilmer, B. Ghorbani, A. Garg, S. Kudugunta, B. Neyshabur, D. Cardoze, G. Dahl,
Z. Nado, and O. Firat. A loss curvature perspective on training instability in deep
learning, 2021. URL https://arxiv.org/abs/2110.04369.

[12] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. J. Storkey.
Three factors influencing minima in sgd. ArXiv, abs/1711.04623, 2017.

[13] S. Jastrzebski, M. Szymczak, S. Fort, D. Arpit, J. Tabor, K. Cho, and K. Geras. The
break-even point on optimization trajectories of deep neural networks. In International
Conference on Learning Representations, 2020.

[14] S. Jastrzębski, Z. Kenton, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. On the
relation between the sharpest directions of DNN loss and the SGD step length. In
International Conference on Learning Representations, 2019.

[15] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio. Fantastic general-
ization measures and where to find them. In International Conference on Learning
Representations, 2020.

[16] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-
batch training for deep learning: Generalization gap and sharp minima. In International
Conference on Learning Representations, 2017.

15

http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/2110.04369

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

[18] A. Lewkowycz, Y. Bahri, E. Dyer, J. Sohl-Dickstein, and G. Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. ArXiv, abs/2003.02218,
2020.

[19] Y. Li, C. Wei, and T. Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. In Advances in Neural Information
Processing Systems, 2019.

[20] Z. Li, T. Wang, and S. Arora. What happens after SGD reaches zero loss? –a
mathematical framework. In International Conference on Learning Representations,
2022.

[21] Z. Li, Z. Wang, and J. Li. Analyzing sharpness along gd trajectory: Progressive
sharpening and edge of stability. arXiv, abs/2207.12678, 2022.

[22] K. Lyu, Z. Li, and S. Arora. Understanding the generalization benefit of normalization
layers: Sharpness reduction. ArXiv, abs/2206.07085, 2022.

[23] C. Ma, L. Wu, and L. Ying. The multiscale structure of neural network loss functions:
The effect on optimization and origin. ArXiv, abs/2204.11326, 2022.

[24] B. Neyshabur, S. Bhojanapalli, D. Mcallester, and N. Srebro. Exploring generalization
in deep learning. In Advances in Neural Information Processing Systems, 2017.

[25] P. Ramachandran, B. Zoph, and Q. V. Le. Swish: a self-gated activation function.
arXiv: Neural and Evolutionary Computing, 2017.

[26] S. L. Smith, P.-J. Kindermans, and Q. V. Le. Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations, 2018.

[27] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts.
Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1631–1642, Seattle, Washington, USA, Oct. 2013. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/
D13-1170.

[28] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In NIPS, 2017.

[29] L. Wu, C. Ma, and E. Weinan. How sgd selects the global minima in over-parameterized
learning: A dynamical stability perspective. In NeurIPS, 2018.

[30] C. Xing, D. Arpit, C. Tsirigotis, and Y. Bengio. A walk with sgd. ArXiv,
abs/1802.08770, 2018.

16

https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170

Table of Contents
1 Introduction 2

1.1 Gradient Descent at the Edge of Stability 2
1.2 Self-stabilization: The Implicit Bias of Instability 2

2 Related Work 4

3 Setup 4

4 The Self-stabilization Property of Gradient Descent 5
4.1 The Four Stages of Edge of Stability: A Heuristic Derivation 6
4.2 Analyzing the simplified dynamics . 7
4.3 Relationship with the constrained trajectory 8

5 The Predicted Dynamics and Theoretical Results 9
5.1 Notation . 9
5.2 The equations governing edge of stability 9
5.3 Coupling Theorem . 10

6 Experiments 11

7 Discussion 11
7.1 Takeaways from the Predicted Dynamics 11
7.2 Generalized Predicted Dynamics . 13
7.3 Implications for Neural Network Training 13
7.4 Future Work . 14

A Notation 18

B A Toy Model for Self-Stabilization 18

C Definition of the Predicted Dynamics 19

D Experimental Details 19
D.1 Architectures . 19
D.2 Data . 20
D.3 Experimental Setup . 20

E Empirical Verification of the Assumptions 20

F The Generalized Predicted Dynamics 26
F.1 Deriving the Generalized Predicted Dynamics 26
F.2 Properties of the Generalized Predicted Dynamics 27

G Additional Experiments 28
G.1 The Benefit of Large Learning Rates: Training Time and Generalization . . 28

17

G.2 Experiments with the Generalized Predicted Dynamics 29

H Additional Discussion 34
H.1 Scale Invariant Loss Functions . 35

H.1.1 Verification of Assumptions . 36

I Proofs 37
I.1 Properties of the Constrained Trajectory 37
I.2 Proof of Coupling Theorem . 40
I.3 Proof of Auxiliary Lemmas . 41

A Notation
We denote by ∇kL(θ) the k-th order derivative of the loss L at θ. Note that ∇kL(θ) is a
symmetric k-tensor in (Rd)⊗k when θ ∈ Rd.

For a symmetric k-tensor T , and vectors u1, . . . , uj ∈ Rd we will use T (u1, . . . , uj) to
denote the tensor contraction of T with u1, . . . , uj , i.e.

[T (u1, . . . , uk)]i1,...,ik−j
:= Ti1,...,ik(u1)ik−j+1

· · · (uj)ik .

We use Pu1,...,uk
to denote the orthogonal projection onto span(u1, . . . , uk) and P⊥

u1,...,uk
is

the projection onto the corresponding orthogonal complement.

For matrices A1, . . . , Ak, we define

t∏
k=1

Ak := A1 . . . At and
1∏

k=t

Ak := At . . . A1.

B A Toy Model for Self-Stabilization
For α, β > 0, consider the function

L(x, y, z) :=

(
2

η
+
√
βy

)
x2

2
− α√

β
y − z

initialized at the point (x0, 0, 0). Note that the constrained trajectory will follow x†
t = 0,

y†t = 0, z†t = −ηt as it cannot decrease y without increasing the sharpness past 2/η. We
therefore have:

∇Lt =

[
0,− α√

β
, 1

]
, ut = [1, 0, 0], St = 2/η +

√
βy, ∇2Lt = Stutu

t
t, ∇St =

[
0,
√

β, 0
]
.

Note that this satisfies all of the assumptions in Section 4 and it satisfies α = −∇Lt·∇St = 0
and β = ∥∇St∥2. This process will then follow eq. (4) in the x, y directions while it tracks
the constrained trajectory θ†t moving linearly in the −P⊥

u,∇S∇L = [0, 0,−1] direction.

18

C Definition of the Predicted Dynamics
Below, we present the full definition of the predicted dynamics:

Definition 7 (Predicted Dynamics, full). Define ⋆
v0 = v0, and let ⋆

xt =
⋆
vt · ut,

⋆
yt = ∇S⊥ · ⋆

vt.
Then

v∗t+1 = P⊥
ut+1

(I − η∇2Lt)P
⊥
ut
v∗t + ηP⊥

ut+1
∇S⊥

t

[
δ2t − x∗

t
2

2

]
− (1 + ηy∗t)x

∗
t · ut+1 (6)

For convenience, we will define the map stept : Rd → Rd as follows:

Definition 8. Given a vector v and a timestep t, define stept(v) by

P⊥
ut+1

stept(v) = P⊥
ut+1

[
(I − η∇2Lt)P

⊥
ut
v + η∇S⊥

t

[
δ2t − x2

2

]]
(7)

ut+1 · stept(v) = −(1 + ηy)x. (8)

where x = ut · v and y = ∇S⊥
t · v.

It is easy to see that ⋆
vt+1 = stept(

⋆
vt).

Proof of Lemma 4. Defining At = (I − η∇2Lt)P
⊥
ut

, we can unfold the recursion in eq. (6)
to obtain the following formula for ⋆

vt.

v∗t+1 = η
t∑

s=0

P⊥
ut+1

[
s+1∏
k=t

Ak

]
∇S⊥

s

[
δ2s − x∗

s
2

2

]
− (1 + ηy∗t)x

∗
t · ut+1. (9)

It is then immediate to see that ⋆
xt =

⋆
vt · ut,

⋆
yt = ∇S⊥

t · ⋆
vt have the following simple update:

x∗
t+1 = −(1 + ηy∗t)x

∗
t and y∗t+1 = η

t∑
s=0

βs→t

[
δ2s − x∗

s
2

2

]
,

where we recall that we have defined

βs→t := ∇S⊥
t+1

[
s+1∏
k=t

Ak

]
∇S⊥

s . (10)

D Experimental Details

D.1 Architectures
We evaluated our theory on four different architectures. The 3-layer MLP and CNN are
exact copies of the MLP and CNN used in [7]. The MLP has width 200, the CNN has
width 32, and both are using the swish activation [25]. We also evaluate on a ResNet18 with
progressive widths 16, 32, 64, 128 and on a 2-layer Transformer with hidden dimension 64
and two attention heads.

19

D.2 Data
We evaluated our theory on three primary tasks: CIFAR10 multi-class classification with
both categorical MSE loss and cross-entropy loss, CIFAR10 binary classification (cats vs
dogs) with binary MSE loss and logistic loss, and SST2 [27] with binary MSE loss and
logistic loss.

D.3 Experimental Setup
For every experiment, we tracked the gradient descent dynamics until they reached instability
and then began tracking the constrained trajectory, gradient descent, gradient flow, and both
our predicted dynamics (Section 5) and our generalized predicted dynamics (Appendix F).
In addition, we tracked the various quantities on which we made assumptions for Section 5
in order to validate these assumptions. We also tracked the second eigenvalue of the Hessian
at the constrained trajectory throughout training and stopped training once it reached 1.9/η,
to ensure the existence of a single unstable eigenvalue. Finally, as the edge of stability
dynamics are very sensitive to small perturbation when |x| is small (see Figure 3), we
switched to computing gradients with 64-bit precision after first reaching instability to avoid
propagating floating point errors.

Eigenvalues were computed using the LOBPCG sparse eigenvalue solver in JAX [5]. To
compute the constrained trajectory, we computed a linearized approximation for projM
inspired by Lemma 9 along with a Newton step in the ut direction to ensure that ∇L · u = 0.
Each linearized approximation step required recomputing the sharpness and top eigenvector
and each projection step then consisted of three linearized projection steps, for a total of
three eigenvalue computations per projection step.

Our experiments were conducted in JAX [5], using https://github.com/locuslab/
edge-of-stability as a reference for replicating the experimental setup used in [7].
All experiments were conducted on two servers, each with 10 NVIDIA GPUs. Code is
available at https://github.com/adamian98/EOS.

E Empirical Verification of the Assumptions
For each of the experimental settings considered (MLP+MSE, CNN+MSE, CNN+Logistic,
ResNet18+MSE, Transformer+MSE, Transformer+Logistic), we plot a number of quantities
along the constrained trajectory to verify that the assumptions made in the main text hold.
For each learning rate η we have 8 plots tracking various quantities, which verify the
assumptions as follows: Assumption 1 is verified by the 1st plot, ϵ being small is verified by
the 2nd plot, Assumption 4 is verified by the 3rd and 4th plots, Assumption 3 is verified by
the 5th plot, and Assumption 5 is verified by the last 3 plots. As described in the experimental
setup, training is stopped once the second eigenvalue is 1.9/η, so Assumption 2 always
holds with c = 1.9 as well.

20

https://github.com/locuslab/edge-of-stability
https://github.com/locuslab/edge-of-stability
https://github.com/adamian98/EOS

MLP+MSE on CIFAR10

0 100
0

10

αt :=−∇Lt ·∇St

0 100
0.00

0.05

εt := η
√

αt

0 100
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 100
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 100
0

2

ρ4
ηρ2

3

0 100
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 100
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 100
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.02

0 100 200
0

20

αt :=−∇Lt ·∇St

0 100 200
0.00

0.05
εt := η

√
αt

0 100 200
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 100 200
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 100 200
0

2

ρ4
ηρ2

3

0 100 200
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 100 200
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 100 200
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.01

0 500
0

25

αt :=−∇Lt ·∇St

0 500
0.00

0.02

εt := η
√

αt

0 500
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 500
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 500
0

2

ρ4
ηρ2

3

0 500
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 500
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 500
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.005

0 1000 2000
0

50
αt :=−∇Lt ·∇St

0 1000 2000
0.00

0.01

εt := η
√

αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

5

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.002

21

CNN+MSE on CIFAR10

0 200 400
0

10
αt :=−∇Lt ·∇St

0 200 400
0.00

0.05

εt := η
√

αt

0 200 400
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 200 400
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 200 400
0.0

0.5

ρ4
ηρ2

3

0 200 400
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 200 400
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 200 400
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.02

0 1000
0

20

αt :=−∇Lt ·∇St

0 1000
0.00

0.02

εt := η
√

αt

0 1000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000
0.0

0.5

ρ4
ηρ2

3

0 1000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.005

0 1000 2000
0

20

αt :=−∇Lt ·∇St

0 1000 2000
0.00

0.01

εt := η
√

αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

1

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.002

22

CNN+Logistic on CIFAR10 (cats vs dogs)

0 1000 2000
0

5

αt :=−∇Lt ·∇St

0 1000 2000
0.00

0.05
εt := η

√
αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

5

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.02

0 1000 2000
0

10

αt :=−∇Lt ·∇St

0 1000 2000
0.00

0.02

εt := η
√

αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

10

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.01

0 1000 2000
0

20

αt :=−∇Lt ·∇St

0 1000 2000
0.00

0.02

εt := η
√

αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

20

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.005

0 1000 2000
0

100

αt :=−∇Lt ·∇St

0 1000 2000
0.00

0.02
εt := η

√
αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

20

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.002

23

ResNet18+MSE on CIFAR10 (cats vs dogs)

0 500 1000
0

2000

αt :=−∇Lt ·∇St

0 500 1000
0.0

0.1
εt := η

√
αt

0 500 1000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 500 1000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 500 1000
0.0

2.5

ρ4
ηρ2

3

0 500 1000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 500 1000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 500 1000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.002

0 500 1000
0

5000
αt :=−∇Lt ·∇St

0 500 1000
0.00

0.05

εt := η
√

αt

0 500 1000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 500 1000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 500 1000
0

5

ρ4
ηρ2

3

0 500 1000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 500 1000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 500 1000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.001

Transformer+MSE on SST2

0 1000
0

200
αt :=−∇Lt ·∇St

0 1000
0.00

0.02

εt := η
√

αt

0 1000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000
0

20

ρ4
ηρ2

3

0 1000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.002

0 1000
0

100

αt :=−∇Lt ·∇St

0 1000
0.00

0.01

εt := η
√

αt

0 1000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000
0.0

2.5

×106

ρ4
ηρ2

3

0 1000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.001

24

Transformer+Logistic on SST2

0 1000 2000
0

20

αt :=−∇Lt ·∇St

0 1000 2000
0.0

0.1
εt := η

√
αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

5

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.02

0 1000 2000
0

25

αt :=−∇Lt ·∇St

0 1000 2000
0.00

0.05

εt := η
√

αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

10

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.01

0 1000 2000
0

50

αt :=−∇Lt ·∇St

0 1000 2000
0.00

0.02

εt := η
√

αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

20

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.005

0 1000 2000
0

100
αt :=−∇Lt ·∇St

0 1000 2000
0.00

0.02
εt := η

√
αt

0 1000 2000
0.0

0.5

1.0

−∇Lt ·∇St
‖∇Lt‖‖∇S⊥t ‖

0 1000 2000
0.0

0.5

1.0

‖∇S⊥t ‖
ρ3

0 1000 2000
0

10

ρ4
ηρ2

3

0 1000 2000
0.0

0.5

1.0

∇3Lt(v⊥t ,v⊥t)

‖∇3Lt‖op‖v⊥t ‖2

0 1000 2000
0.0

0.5

1.0

∇3Lt(∇Lt ,∇Lt)
‖∇3Lt‖op‖∇Lt‖2

0 1000 2000
0.0

0.5

1.0

∇2Lt(v⊥t ,v⊥t)

‖∇2Lt‖‖v⊥t ‖2

η = 0.002

25

F The Generalized Predicted Dynamics
Our analysis relies on a cubic Taylor expansion of the gradient. However, in order for this
Taylor expansion to accurately track the gradients we need a bound on the fourth derivative
of the loss (Assumption 3). Section 6 and Appendix E show that this approximation is
sufficient to capture the dynamics of gradient descent at the edge of stability for many
standard models when the loss criterion is the mean squared error. However, for certain
architectures and loss functions, including ResNet18 and models trained with the logistic
loss, this condition is often violated.

In these situations, the loss function in the top eigenvector direction is either sub-quadratic,
meaning that the quadratic Taylor expansion overestimates the loss and sharpness6, or
super-quadratic, meaning that the quadratic Taylor expansion underestimates the loss and
sharpness. To capture this phenomenon, we derive a more general form of the predicted
dynamics which reduces to the standard predicted dynamics in Section 5 when the loss in
the top eigenvector direction is approximately quadratic. In addition, Appendix G shows
that the generalized predicted dynamics capture the dynamics of gradient descent at the edge
of stability for both mean squared error and cross-entropy in all settings we tested.

F.1 Deriving the Generalized Predicted Dynamics
To derive the generalized predicted dynamics, we will abstract away the dynamics in the top
eigenvector direction. Specifically, for every t we define

Ft(x) := L(θ†t + xut)− L(θ†t)−
x2

η
.

We say that L is sub-quadratic at t if Ft(x) < 0 and super-quadratic if Ft(x) > 0.

Note that knowing Ft is not sufficient to capture the dynamics in the ut direction. Specifi-
cally,

xt+1 = xt − ηut · ∇L(θ†t + vt) ̸= xt − ηut · ∇L(θ†t + xut).

It is still critically important to track the effect that the movement in the ∇S⊥
t direction has

on the dynamics of x. As in Section 4.1, the effect of the movement in the ∇S⊥
t direction on

the dynamics of x is changing the sharpness by yt. This gives us the generalized predicted
dynamics update:

v∗t+1 = P⊥
ut+1

(I − η∇2Lt)P
⊥
ut
v∗t + ηP⊥

ut+1
∇S⊥

t

[
δ2t − x∗

t
2

2

]
− x⋆

t+1 · ut+1

where x⋆
t+1 = −(1 + ηy⋆t)x

⋆
t − ηF ′(x⋆

t).

Note that when Ft(x) = 0 is exactly quadratic, this reduces to the standard predicted
dynamics update in eq. (6). Note that the update for y is completely unchanged:

6This sub-quadratic phenomenon was also observed in [23].

26

Lemma 5. Restricted to the ut,∇St directions, the generalized predicted dynamics v⋆t
imply:

x⋆
t+1 = −(1 + ηy⋆t)x

⋆
t − ηF ′(x⋆

t) and y⋆t+1 = η
t∑

s=0

βs→t

[
δ2s − x∗

s
2

2

]
. (11)

The proof is identical to the proof of Lemma 4.

F.2 Properties of the Generalized Predicted Dynamics
Note that due to the sign flipping argument in Appendix I, we can assume that F is an even
function as the odd part will only influence the dynamics through additional oscillations of
period 2, so throughout the remainder of this section we will assume that Ft(x) = Ft(−x).
Otherwise, we can simply redefine F by its even part.

Next, note that the fixed point of eq. (11) is still when xt = δt, regardless of the shape of
Ft, due to the need to stabilize the ∇S⊥

t direction. This contradicts previous 1-dimensional
analyses of edge of stability in which the fixed point in the top eigenvector direction strongly
depends on the shape of Ft, the loss in the ut direction.

The limiting value of yt can therefore be read from the update for xt. If (δt, y) is an orbit of
period 2 of eq. (11), then

−δt = −(1 + ηy)δt − ηF ′(δt) =⇒ y = −F ′(δt)

δt
.

In addition, note that the sharpness can no longer be approximated as S(θt) ≈ 2/η + yt
as the sharpness now changes along the ut direction. In particular, it changes by F ′′(x) so
that

S(θt) ≈ 2/η + yt + F ′′(xt).

Therefore, the limiting sharpness of eq. (11) is

S(θt) → 2/η − F ′
t (δt)

δt
+ F ′′

t (δt).

When Ft = 0 and the loss is exactly quadratic in the u direction, this update reduces to fixed
point predictions in Section 4.1.

One interesting phenomenon observed by Cohen et al. [7] is that with cross-entropy loss,
the sharpness was never exactly 2/η, but usually hovered above it. This contradicts the
predictions of the standard predicted dynamics which predict that the fixed point has
sharpness 0. However, using the generalized predicted dynamics eq. (11), we can give a
clear explanation.

When the loss is sub-quadratic, e.g. when Ft(x) = −ρ4
x4

24
, we have

S(θt) → 2/η + ρ4
δ2t
6

− ρ4
δ2t
2

= 2/η − ρ4
δ2t
3

< 2/η

27

so the sharpness will converge to a value below 2/η. On the other hand if the loss is super-
quadratic, the sharpness converges to a value above 2/η. More generally, whether the loss
converges to a value above or below 2/η depends on the sign of F ′′

t (δt)− δtF
′
t (δt).

In our experiments in Appendix G, we observed both sub-quadratic and super-quadratic loss
functions. In particular, the loss was usually sub-quadratic when it first reached instability
but gradually became super-quadratic as training progressed at the edge of stability.

G Additional Experiments

G.1 The Benefit of Large Learning Rates: Training Time and General-
ization

We trained ResNet18 with full batch gradient descent on the full 50k training set of CIFAR10
with various learning rates, in addition to the commonly proposed learning rate schedule
ηt := 1/S(θt). We show that despite entering the edge of stability, large learning rates
converge much faster. In addition, due to the self-stabilization effect of gradient descent,
the final sharpness is bounded by 2/η which is smaller for larger learning rates and leads to
better generalization (see Figure 5).

0 5000 10000
Step

0

1

2

Tr
ai

ni
ng

L
os

s

0 5000 10000
Step

0

25

50

75

100

Tr
ai

ni
ng

A
cc

ur
ac

y

0 5000 10000
Step

30

40

50

60

Te
st

A
cc

ur
ac

y η = 0.2
η = 0.1
η = 0.05
η = 0.02
η = 0.005
ηt = 1/S(θt)

Figure 5: Large learning rates converge faster and generalize better (ResNet18 and CI-
FAR10).

28

G.2 Experiments with the Generalized Predicted Dynamics

MLP+MSE on CIFAR10
Gradient Descent Predicted Dynamics Constrained Trajectory

Gradient Flow Predicted Fixed Point

0 100
Step

0.58

0.60

0.62

0.64

L
os

s

0 100
Step

90

100

110

120

Sh
ar

pn
es

s

0.00 0.02
|x|

90

95

100

105

110

Sh
ar

pn
es

s

0 100
Step

0.00

0.01

0.02

0.03

0.04

D
is

ta
nc

e
to

θ†

η = 0.02

0 100 200
Step

0.48

0.49

0.50

0.51

0.52

0.53

L
os

s

0 100 200
Step

190

200

210

220

230

Sh
ar

pn
es

s

0.00 0.01
|x|

190

195

200

205

210
Sh

ar
pn

es
s

0 100 200
Step

0.00

0.01

0.02

0.03

D
is

ta
nc

e
to

θ†

η = 0.01

0 250 500
Step

0.34

0.36

0.38

L
os

s

0 250 500
Step

400

420

440

460

Sh
ar

pn
es

s

0.000 0.005 0.010
|x|

390

400

410

Sh
ar

pn
es

s

0 250 500
Step

0.00

0.01

0.02

0.03

D
is

ta
nc

e
to

θ†

η = 0.005

0 1000 2000
Step

0.130

0.135

0.140

0.145

0.150

L
os

s

0 1000 2000
Step

1000

1020

1040

1060

Sh
ar

pn
es

s

0.000 0.002 0.004
|x|

995

1000

1005

1010

Sh
ar

pn
es

s

0 1000 2000
Step

0.000

0.005

0.010

0.015

0.020

D
is

ta
nc

e
to

θ†

η = 0.002

29

CNN+MSE on CIFAR10
Gradient Descent Predicted Dynamics Constrained Trajectory

Gradient Flow Predicted Fixed Point

0 200 400
Step

0.70

0.71

0.72

0.73

0.74

L
os

s

0 200 400
Step

100

120

140

Sh
ar

pn
es

s

0.00 0.01 0.02
|x|

90

95

100

105

110

Sh
ar

pn
es

s

0 200 400
Step

0.00

0.02

0.04

0.06

0.08

D
is

ta
nc

e
to

θ†

η = 0.02

0 1000
Step

0.60

0.61

0.62

0.63

L
os

s

0 1000
Step

400

450

500

550

Sh
ar

pn
es

s

0.0000 0.0025 0.0050
|x|

395

400

405

410

Sh
ar

pn
es

s

0 1000
Step

0.00

0.02

0.04

0.06

D
is

ta
nc

e
to

θ†

η = 0.005

0 2000
Step

0.5250

0.5275

0.5300

0.5325

0.5350

0.5375

L
os

s

0 2000
Step

1000

1020

1040

1060

1080

Sh
ar

pn
es

s

0.000 0.002
|x|

995.0

997.5

1000.0

1002.5

1005.0

Sh
ar

pn
es

s

0 2000
Step

0.000

0.005

0.010

0.015

D
is

ta
nc

e
to

θ†
η = 0.002

30

CNN+Logistic on CIFAR10 (cats vs dogs)
Gradient Descent Predicted Dynamics Constrained Trajectory

Gradient Flow Predicted Fixed Point

0 1000 2000
Step

0.52

0.54

0.56

0.58

L
os

s

0 1000 2000
Step

100

150

200

250

Sh
ar

pn
es

s

0.00 0.01
|x|

96

98

100

102

104

Sh
ar

pn
es

s

0 1000 2000
Step

0.0

0.1

0.2

0.3

D
is

ta
nc

e
to

θ†

η = 0.02

0 1000 2000
Step

0.51

0.52

0.53

0.54

L
os

s

0 1000 2000
Step

200

220

240

260

Sh
ar

pn
es

s

0.000 0.005
|x|

196

198

200

202

204

Sh
ar

pn
es

s

0 1000 2000
Step

0.00

0.02

0.04

0.06

0.08

0.10

D
is

ta
nc

e
to

θ†

η = 0.01

0 1000 2000
Step

0.455

0.460

0.465

0.470

0.475

0.480

L
os

s

0 1000 2000
Step

400

420

440

460

Sh
ar

pn
es

s

0.000 0.005
|x|

395

400

405

Sh
ar

pn
es

s

0 1000 2000
Step

0.00

0.02

0.04

0.06
D

is
ta

nc
e

to
θ†

η = 0.005

0 1000 2000
Step

0.3700

0.3725

0.3750

0.3775

0.3800

L
os

s

0 1000 2000
Step

1000

1020

1040

1060

Sh
ar

pn
es

s

0.000 0.002
|x|

994

996

998

1000

1002

1004

Sh
ar

pn
es

s

0 1000 2000
Step

0.000

0.005

0.010

0.015

0.020

0.025

D
is

ta
nc

e
to

θ†

η = 0.002

31

ResNet18+MSE on CIFAR10 (cats vs dogs)
Gradient Descent Predicted Dynamics Constrained Trajectory

Gradient Flow Predicted Fixed Point

0 500 1000
Step

0.25

0.50

0.75

1.00

1.25

L
os

s

0 500 1000
Step

1000

2000

3000

4000

5000

Sh
ar

pn
es

s

0.00 0.02
|x|

900

950

1000

1050

1100

Sh
ar

pn
es

s

0 500 1000
Step

0.0

0.2

0.4

0.6

D
is

ta
nc

e
to

θ†

η = 0.002

0 500 1000
Step

0.2

0.4

0.6

0.8

L
os

s

0 500 1000
Step

2000

2500

3000

3500

4000

4500

Sh
ar

pn
es

s

0.00 0.01 0.02
|x|

1900

1950

2000

2050

2100

Sh
ar

pn
es

s

0 500 1000
Step

0.0

0.1

0.2

0.3

D
is

ta
nc

e
to

θ†

η = 0.001

Transformer+MSE on SST2
Gradient Descent Predicted Dynamics Constrained Trajectory

Gradient Flow Predicted Fixed Point

0 1000
Step

0.82

0.84

0.86

0.88

0.90

L
os

s

0 1000
Step

1000

1100

1200

1300

Sh
ar

pn
es

s

0.000 0.005
|x|

980

1000

1020

Sh
ar

pn
es

s

0 1000
Step

0.00

0.02

0.04

0.06

D
is

ta
nc

e
to

θ†

η = 0.002

0 1000
Step

0.65

0.66

0.67

0.68

0.69

L
os

s

0 1000
Step

1975

2000

2025

2050

2075

2100

Sh
ar

pn
es

s

0.000 0.002 0.004
|x|

1980

2000

2020

Sh
ar

pn
es

s

0 1000
Step

0.0000

0.0025

0.0050

0.0075

0.0100

D
is

ta
nc

e
to

θ†

η = 0.001

32

Transformer+Logistic on SST2
Gradient Descent Predicted Dynamics Constrained Trajectory

Gradient Flow Predicted Fixed Point

0 1000 2000
Step

0.4

0.5

0.6

0.7

L
os

s

0 1000 2000
Step

250

500

750

1000

1250

Sh
ar

pn
es

s

0.00 0.02
|x|

90

100

110

Sh
ar

pn
es

s

0 1000 2000
Step

0.0

0.5

1.0

D
is

ta
nc

e
to

θ†

η = 0.02

0 1000 2000
Step

0.50

0.55

0.60

0.65

L
os

s

0 1000 2000
Step

200

400

600

Sh
ar

pn
es

s

0.00 0.01
|x|

190

200

210

Sh
ar

pn
es

s

0 1000 2000
Step

0.0

0.1

0.2

0.3

0.4

D
is

ta
nc

e
to

θ†

η = 0.01

0 1000 2000
Step

0.52

0.54

0.56

0.58

0.60

0.62

L
os

s

0 1000 2000
Step

400

500

600

700

Sh
ar

pn
es

s

0.000 0.005 0.010
|x|

380

390

400

410

420

Sh
ar

pn
es

s

0 1000 2000
Step

0.00

0.05

0.10

0.15

D
is

ta
nc

e
to

θ†
η = 0.005

0 1000 2000
Step

0.39

0.40

0.41

0.42

0.43

0.44

L
os

s

0 1000 2000
Step

1000

1050

1100

1150

Sh
ar

pn
es

s

0.000 0.002 0.004
|x|

990

995

1000

1005

1010

Sh
ar

pn
es

s

0 1000 2000
Step

0.00

0.01

0.02

0.03

0.04

D
is

ta
nc

e
to

θ†

η = 0.002

33

H Additional Discussion
Multiple Unstable Eigenvalues Our work focuses on explaining edge of stability in the
presence of a single unstable eigenvalue (Assumption 2). However, Cohen et al. [7] observed
that progressive sharpening appears to apply to all eigenvalues, even after the largest
eigenvalue has become unstable. As a result, all of the top eigenvalues will successively
enter edge of stability (see Figure 6). In particular, Figure 6 shows that the dynamics are
fairly well behaved in the period when only a single eigenvalue is unstable, yet appear to be
significantly more chaotic when multiple eigenvalues are unstable.

0 500 1000 1500 2000
Training Steps

0.18

0.20

0.22

0.24

0.26

Tr
ai

ni
ng

L
os

s

0 500 1000 1500 2000
Training Steps

40

60

80

100

Sh
ar

pn
es

s

Figure 6: Edge of stability with multiple unstable eigenvalues. Each vertical line is the time
at which the corresponding eigenvalue of the same color becomes unstable.

One technical challenge with dealing with multiple eigenvalues is that, when the top
eigenvalue is not unique, the sharpness is no longer differentiable and it is unclear how to
generalize our analysis. However, one might expect that gradient descent can still be coupled
to projected gradient descent under the non-differentiable constraint S(θ†T) ≤ 2/η. When
there are k unstable eigenvalues, with corresponding eigenvectors u1

t , . . . , u
k
t , the constrained

update is roughly equivalent to projecting out the subspace span{∇3Lt(u
i
t, u

j
t) : i, j ∈ [k]}

from the gradient update −η∇Lt. Demonstrating self-stabilization thus requires analyzing
the dynamics in the subspace span

(
{ui

t : i ∈ [k]} ∪ {∇3Lt(u
i
t, u

j
t) : i, j ∈ [k]}

)
. We leave

investigating the dynamics of multiple unstable eigenvalues for future work.

Connection to Sharpness Aware Minimization (SAM) Foret et al. [10] introduced the
sharpness-aware minimization (SAM) algorithm, which aims to control sharpness by solving
the optimization problem minθ max∥δ∥≤ϵ L(θ+ δ). This is roughly equivalent to minimizing
S(θ) over all global minimizers, and thus SAM tries to explicitly minimize the sharpness.
Our analysis shows that gradient descent implicitly minimizes the sharpness, and for a fixed
η looks to minimize L(θ) subject to S(θ) = 2/η.

Connections to Warmup. Gilmer et al. [11] demonstrated that learning rate warmup,
which consists of gradually increasing the learning rate, empirically leads to being able to
train with a larger learning rate. The self-stabilization property of gradient descent provides
a plausible explanation for this phenomenon. If too large of an initial learning rate η0 is
chosen (so that S(θ0) is much greater than 2/η0), then the iterates may diverge before self

34

stabilization can decrease the sharpness to 2/η0. On the other hand, if the learning rate
is chosen that S(θ0) is only slightly greater than 2/η0, self-stabilization will decrease the
sharpness to 2/η0. Repeatedly increasing the learning rate slightly could then lead to small
decreases in sharpness without the iterates diverging, thus allowing training to proceed with
a large learning rate.

H.1 Scale Invariant Loss Functions
In this section we consider scale invariant loss functions with weight decay. Specifically, for
any L : Sd−1 → R, we can consider the scale invariant loss function Lλ:

Lλ(θ) := L

(
θ

∥θ∥

)
+ λ

∥θ∥2
2

.

This setting has also been studied in Lyu et al. [22]. We will use the notation that for any
parameter θ, θ := θ

∥θ∥ ∈ Sd−1 so that Lλ(θ) = L (θ) + λ∥θ∥2
2

. In this setting we have

∇kLλ(θ) =
1

∥θ∥k
∇kL (θ) +

λ

2
∇k
(
∥θ∥2

)
where ∇kL (θ) is the Riemannian derivative of L with respect to Sd−1 ⊂ Rd. Note that
∇kL (θ) is perpendicular to θ, i.e. ∇kL (θ)(θ) = 0. We will denote by S(θ) the sharpness
of L at θ, i.e.

S(θ) := λmax(∇2L (θ)).

As before we will denote the top eigenvalue and eigenvector of ∇2Lλ(θ) by Sλ(θ) and uλ(θ)
respectively. Note that

Sλ(θ) =
S(θ)
∥θ∥2 + λ.

and that uλ(θ) is independent of λ. We will denote this common value by u(θ). Note that
u(θ) is also the eigenvector corresponding to the eigenvalue S(θ) of ∇2L (θ). We can now
derive an expression for ∇Sλ(θ):

Lemma 6.

∇Sλ(θ) =
∇S(θ)− 2θ

∥θ∥3

Proof. [AD: FILL IN]

35

H.1.1 Verification of Assumptions

Lemma 7 (Assumption 1: Progressive Sharpening). For all θ such that

∇L (θ) · S(θ)[AD : finishlemma]

αλ(θ) := −∇Lλ(θ) · ∇Sλ(θ) > 0.

We have

−∇Lλ(θ) · ∇Sλ(θ) = −
(

1

∥θ∥∇L (θ) + λθ

)
·
(∇S(θ)− 2θ

∥θ∥3
)

= −∇L (θ) · ∇S(θ)
∥θ∥4

+
λ

∥θ∥2
.

[AD: Work in Progress]

Connection to Weight Decay and Sharpness Reduction. Lyu et al. [22] proved that
when the loss function is scale-invariant, gradient descent with weight decay and sufficiently
small learning rate converges leads to reduction of the normalized sharpness S(θ/∥θ∥). In
fact, the mechanism behind the sharpness reduction is exactly the self-stabilization force
described in this paper restricted to the setting in [22]. We present here a heuristic derivation
of this equivalence.

Our primary result is that gradient descent solves the constrained problem minθ L(θ) such
that S(θ) ≤ 2/η. To prove equivalence to the sharpness reduction, we will need the
following lemma from [22] which follows from the scale invariance of the loss:

S(θ) =
1

∥θ∥2S(θ/∥θ∥).

Let Lλ(θ) := L(θ)+ λ
2
∥θ∥2 and Sλ(θ) = S(θ)+λ denote the regularized loss and sharpness

respectively and let θ := θ
∥θ∥ . Then we have the following equality between minimization

problems:

min
θ

Lλ(θ) such that Sλ(θ) ≤ 2/η

⇐⇒ min
θ

L(θ) + λ
∥θ∥2
2

such that S(θ) ≤ 2/η − λ

⇐⇒ min
θ,∥θ∥

L(θ) + λ
∥θ∥2
2

such that
1

∥θ∥2S(θ) ≤
2− ηλ

η

⇐⇒ min
θ

L(θ) +
ηλ

2− ηλ
S(θ)

where the last line follows from the scale-invariance of the loss function. In particular if ηλ
is sufficiently small and the dynamics are initialized near a global minimizer of the loss, this
will converge to the solution of the constrained problem:

min
∥θ∥=1

S(θ) such that L(θ) = 0.

36

I Proofs

I.1 Properties of the Constrained Trajectory
We next prove several nice properties of the constrained trajectory. Before, we require
the following auxiliary lemma, which shows that several quantities are Lipschitz in a
neighborhood around the constrained trajectory:

Lemma 8 (Lipschitz Properties).

1. θ → ∇L(θ) is O(η−1)-Lipschitz in each set St.

2. θ → ∇2L(θ) is ρ3-Lipschitz with respect to ∥·∥2.
3. θ → λi(∇2L(θ)) is ρ3-Lipschitz.

4. θ → u(θ) is O(ηρ3)-Lipschitz in each set St.

5. θ → ∇S(θ) is O(ηρ23)-Lipschitz in each set St.

Proof. The Lipschitzness of ∇2L(θ) follows immediately from the bound ∥∇3L(θ)∥op ≤ ρ3.
Weil’s inequality then immediately implies the desired bound on the Lipschitz constant of
the eigenvalues of ∇2L(θ). Therefore for any t, we have for all θ ∈ St:

λ1(∇2L(θ))− λ2(∇2L(θ)) ≥ λ1(∇2L(θ))− λ2(∇2L(θ))− 2ρ3
2− c

4ηρ3
≥ 2− c

2η
.

Next, from the derivative of eigenvector formula:

∥∇u(θ)∥2 =
∥∥(λ1(∇2L(θ))I −∇2L(θ))†∇3L(θ)(u(θ))

∥∥
2

≤ ρ3
λ1(∇2L(θ))− λ2(∇2L(θ))

≤ 2ηρ3
2− c

= O(ηρ3)

which implies the bound on the Lipschitz constant of u restricted to St. Finally, because
∇S(θ) = ∇3L(θ)(u(θ), u(θ)),∥∥∇2S(θ)

∥∥
2
≤
∥∥∇4L(θ)

∥∥
op
+ 2
∥∥∇3L(θ)

∥∥
op
∥∇u(θ)∥2 ≤ O(ρ4 + ηρ23) ≤ O(ηρ23)

where the second to last inequality follows from the bound on ∥∇u(θ)∥2 restricted to St and
the last inequality follows from Assumption 3.

Lemma 9 (First-order approximation of the constrained trajectory update {θ†t}). For all
t ≤ T ,

θ†t+1 = θ†t − ηP⊥
ut,∇St

∇Lt +O
(
ϵ2 · η∥∇Lt∥

)
and St = 2/η.

37

Proof. We will prove by induction that St = 2/η for all t. The base case follows from
the definitions of θ0, θ

†
0. Next, assume S(θ†t) = 0 for some t ≥ 0. Let θ′ = θ†t − η∇Lt.

Then because θ†t ∈ M we have
∥∥∥θ†t+1 − θ′

∥∥∥ ≤
∥∥∥θ†t − θ′

∥∥∥ = η∥∇Lt∥. Then because

θ†t+1 = projM(θ′), the KKT conditions for this minimization problem imply that there exist
x, y with y ≥ 0 such that

θ†t+1 = θ†t − η∇Lt − x∇θ[∇L(θ) · u(θ)]
∣∣∣∣
θ=θ†t+1

− y∇St+1

= θ†t − η∇Lt − x
[
St+1ut+1 +∇uT

t+1∇Lt+1

]
− y∇St+1

= θ†t − η∇Lt − x[St+1ut+1 +O(ηρ3∥∇Lt+1∥)]− y∇St+1

= θ†t − η∇Lt − x[Stut +O(ηρ3∥∇Lt∥)]− y
[
∇St +O(η2ρ23∥∇Lt∥)

]
= θ†t − η∇Lt − xStut − y∇St +O

(
(|x|ηρ3 + |y|η2ρ23)∥∇Lt∥

)
.

Next, note that we can decompose ∇St = ut(∇St · ut) +∇S⊥
t :

θ†t+1 = θ†t − η∇Lt − [xSt + y(∇St · ut)]ut − y∇S⊥
t +O

(
(|x|ηρ3 + |y|η2ρ23)∥∇Lt∥

)
.

Let st =
∇S⊥

t

∥∇S⊥
t ∥ . We can now perform the change of variables

(x′, y′) =
(
xSt + y(∇St · ut), y

∥∥∇S⊥
t

∥∥), (x, y) =

x′ − y′ ∇St·ut

∥∇S⊥
t ∥

St

,
y′∥∥∇S⊥

t

∥∥


to get

θ†t+1 = θ†t − η∇Lt − x′ut − y′st +O
(
η2ρ3∥∇L∥(|x′|+ |y′|)

)
.

Note that

O(η2ρ3∥∇L∥(|x|+ |y|)) ≤
√

x2 + y2

2
(12)

for sufficiently small ϵ so because
∥∥∥θ†t+1 − θ′

∥∥∥ ≤ η∥∇Lt∥ we have√
x2 + y2

2
≤
∥∥∥θ†t+1 − θ′

∥∥∥ ≤ η∥∇Lt∥

so x, y = O(η∥∇Lt∥). Therefore,

θ†t+1 = θ†t − η∇Lt − x′ut − y′st +O
(
η3ρ3∥∇L∥2

)
= θ†t − η∇Lt − x′ut − y′st +O

(
ϵ2 · η∥∇Lt∥

)
Then Taylor expanding ∇Lt+1 around θ†t gives

∇Lt+1 · ut+1 = ∇Lt · ut + (∇Lt+1 −∇Lt) · ut +∇Lt+1 · (ut+1 − ut)

= uT
t ∇2Lt

[
−η∇Lt − x′ut − y′st +O(ϵ2 · η∥∇Lt∥

]
+O

(
ϵ2 · ∥∇Lt∥

)
= −x′St +O

(
ϵ2 · ∥∇Lt∥

)
38

so x′ = O(ϵ2 · η∥∇Lt∥). We can also Taylor expand St+1 around θ†t and use that St = 2/η
to get

St+1 = 2/η +∇St ·
[
−η∇Lt − x′ut − y′st +O

(
η3ρ3∥∇Lt∥2

)]
+O

(
ϵ2 · ρ3η∥∇Lt∥

)
= 2/η + ηαt − y′∥∇S⊥

t ∥+O
(
ϵ2 · ρ3η∥∇Lt∥

)
.

Now note that for ϵ sufficiently small we have

O
(
ϵ2 · ρ3η∥∇Lt∥

)
≤ O

(
ϵ2 · ηαt

)
≤ ηαt.

Therefore if y′ = 0, we would have St+1 > 2/η which contradicts θ†t+1 ∈ M. Therefore
y′ > 0 and therefore y > 0, which by complementary slackness implies St+1 = 2/η. This
then implies that

−η∇Lt · ∇S⊥
t − y′∥∇S⊥

t ∥+O(ϵ2 · ρ3η∥∇Lt∥) = 0 =⇒ y′ = −η∇Lt ·
∇S⊥

t∥∥∇S⊥
t

∥∥ +O
(
ϵ2 · η∥∇Lt∥

)
.

Putting it all together gives

θ†t+1 = θ†t − ηP⊥
∇S⊥

t
∇Lt +O

(
ϵ2 · η∥∇Lt∥

)
= θ†t − ηP⊥

ut,∇St
∇Lt +O

(
ϵ2 · η∥∇Lt∥

)
where the last line follows from ut · ∇Lt = 0.

Lemma 10 (Descent Lemma for θ†). For all t ≤ T ,

L(θ†t+1) ≤ L(θ†t)− Ω
(
η
∥∥P⊥

ut,∇St
∇Lt

∥∥2).
Proof. Taylor expanding L(θ†t+1) around L(θ†t) and using Lemma 9 gives

L(θ†t+1) = L(θ†t) +∇Lt · (θ†t+1 − θ†t) +
1

2
(θ†t+1 − θ†t)

T∇2Lt(θ
†
t+1 − θ†t) +O

(
ρ3

∥∥∥θ†t+1 − θ†t

∥∥∥3)
= L(θ†t)− η

∥∥P⊥
ut,∇St

∇Lt

∥∥2 + η2λ2(∇2Lt)
∥∥P⊥

ut,∇St
∇Lt

∥∥2
2

+O
(
η3ρ3∥∇Lt∥3

)
= L(θ†t)−

η(2− c)

2

∥∥P⊥
ut,∇St

∇Lt

∥∥2 +O
(
η3ρ3∥∇Lt∥3

)
.

Next, note that because γt = Θ(1) we have ∥∇Lt∥ = O(
∥∥P⊥

ut,∇St
∇Lt

∥∥).Therefore for ϵ
sufficiently small,

O
(
η3ρ3∥∇Lt∥3

)
= O(ϵ2 · η∥∇Lt∥2) ≤

η(2− c)

4

∥∥P⊥
ut,∇St

∇Lt

∥∥2.
Therefore,

L(θ†t+1) ≤ L(θ†t)−
η(2− c)

4

∥∥P⊥
ut,∇St

∇Lt

∥∥2 = L(θ†t)− Ω(η
∥∥P⊥

ut,∇St
∇Lt

∥∥2)
which completes the proof.

39

Corollary 2. Let L⋆ = minθ L(θ). Then there exists t ≤ T such that

∥∥P⊥
ut,∇St

∇Lt

∥∥2 ≤ O

(
L(θ†0)− L⋆

ηT

)
.

Proof. Inductively applying Lemma 10 we have that there exists an absolute constant c such
that

L⋆ ≤ L(θ†T) ≤ L(θ†0)− cη
∑
t<T

∥∥P⊥
ut,∇St

∇Lt

∥∥2
which implies that

min
t<T

∥∥P⊥
ut,∇St

∇Lt

∥∥2 ≤ ∑
t<T

∥∥P⊥
ut,∇St

∇Lt

∥∥2
T

≤ O

(
L(θ†0)− L⋆

ηT

)
.

I.2 Proof of Theorem 1
We first require the following three lemmas, whose proofs are deferred to Appendix I.3.

Lemma 11 (2-Step Lemma). Let

rt := vt+2 − stept+1(stept(vt)).

Assume that ∥vt∥ ≤ ϵ−1δ. Then

∥rt∥ ≤ O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)
.

Lemma 12. Assume that there exists constants c1, c2 such that for all t ≤ T , ∥ ⋆
vt∥ ≤ c2δ,

| ⋆xt| ≥ c1δ. Then, for all t ≤ T , we have

∥vt − ⋆
vt∥ ≤ O(ϵδ)

Lemma 13. For t ≤ T , ∥ ⋆
vt∥ ≤ O(δ).

With these lemmas in hand, we can prove Theorem 1.

Proof of Theorem 1. First, by Lemma 13, we have ∥ ⋆
vt∥ ≤ O(δ).

Next, by Lemma 12, we have

θt − θ†t = vt =
⋆
vt +O(ϵδ).

40

Next, we Taylor expand to calculate S(θt):

S(θt) = S(θ†t) +∇St · vt +O(ηρ23∥vt∥2)
= 2/η +∇S⊥

t · vt +∇St · utut · vt +O(ηρ23δ
2)

= 2/η +∇S⊥
t · ⋆

vt +∇St · utut · ⋆
vt +O(ρ3ϵδ + ηρ23δ

2)

= 2/η + yt + (∇St · ut)xt +O(η−1ϵ2).

Finally, we Taylor expand the loss:

L(θt) = L(θ†t) +∇Lt · vt +
1

2
vTt ∇2Ltvt +O(ρ3∥vt∥3)

= L(θ†t) +
1

η
x2
t +

1

2
v⊥t

T∇2Ltv
⊥
t +O(ρ1∥vt∥+ ρ3∥vt∥3)

= L(θ†t) +
1

η
⋆
x2
t +

1

2
⋆
v⊥t

T∇2Lt
⋆
v⊥t +O(η−1δ2ϵ)

= L(θ†t) +
1

η
⋆
x2
t +O(η−1δ2ϵ),

where the last line follows from Assumption 5.

I.3 Proof of Auxiliary Lemmas
Proof of Lemma 11. Taylor expanding the update for θt+1 about θ†t , we get

θt+1 = θt − η∇L(θt)

= θt − η∇Lt − η∇2Ltvt −
1

2
η∇3Lt(vt, vt) +O

(
ηρ4∥vt∥3

)
Additionally, recall that the update for θ†t+1 is

θ†t+1 = θ†t − ηP⊥
∇S⊥

t
∇Lt +O

(
ϵ2 · η∥∇Lt∥

)
.

41

Subtracting the previous 2 equations and expanding out ∇3L(vt, vt) via the non-worst-case
bounds, we obtain

vt+1 = (I − η∇2Lt)vt − η(∇Lt − P⊥
∇S⊥

t
∇Lt)−

1

2
ηx2

t∇St − ηxt∇3Lt(ut, v
⊥
t)−

1

2
η∇3Lt(v

⊥
t , v

⊥
t)

+O
(
ηρ4∥vt∥3 + ϵ2 · η∥∇Lt∥

)
= (I − η∇2Lt)vt − η

[∇L · ∇S⊥

∥∇S⊥∥2
]
∇S⊥

t − 1

2
ηx2

t∇St − ηxt∇3Lt(ut, v
⊥
t)

+O
(
ηρ3ϵ∥vt∥2 + ηρ4∥vt∥3 + ϵ2 · η∥∇Lt∥

)
= (I − η∇2Lt)vt + η∇S⊥

t

[
ϵ2t − x2

t

2

]
− 1

2
ηx2

t∇St · utut − ηxt∇3Lt(ut, v
⊥
t)

+O

(
ϵ2 · ∥vt∥

2

δ
+ ϵ2 · ∥vt∥

3

δ2
+ ϵ3δ

)

= (I − η∇2Lt)vt + η∇S⊥
t

[
ϵ2t − x2

t

2

]
− 1

2
ηx2

t∇St · utut − ηxt∇3Lt(ut, v
⊥
t)

+O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

We would first like to compute the magnitude of vt+1.

∥vt+1∥ = O

(
∥vt∥+ ηρ3∥vt∥2 + η∥∇Lt∥+ ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)
.

Observe that by definition of ϵ and δ, and since ∥vt∥ ≤ ϵ−1δ

O(ηρ3∥vt∥2) ≤ O
(
∥vt∥ · ϵ−1ηρ3δ

)
≤ O

(
∥vt∥ · ϵ−1η

√
ρ1ρ3

)
≤ O(∥vt∥)

O(ϵ2δ ·max

(
1,

∥vt∥
δ

)3

) ≤ O
(
ϵ2δ + ∥vt∥ · ϵ2 · (ϵ−1)2

)
≤ O

(
ϵ2δ + ∥vt∥

)
.

Hence

∥vt+1∥ = O
(
∥vt∥+ η∥∇Lt∥+ ϵ2δ

)
= O(∥vt∥+ ϵδ).

Note that we can bound

∥ut+1 − ut∥ · ∥vt+1∥ = O
(
η2ρ3∥∇Lt∥ · (∥vt∥+ ϵδ)

)
= O

(
ϵ2 · (∥vt∥+ ϵδ)

)
≤ O

(
ϵ2 ·max(∥vt∥, δ)

)
.

42

Therefore, the one-step update in the ut direction is:

xt+1 = vt+1 · ut+1

= vt+1 · ut +O
(
ϵ2 ·max(∥vt∥, δ)

)
= −vt · ut −

1

2
ηx2

t∇St · ut − ηxt∇St · v⊥t +O

(
ϵ2 ·max(∥vt∥, δ) + ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= −xt(1 + ηyt)−
1

2
ηx2

t∇St · ut +O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= −xt(1 + ηyt)−
1

2
ηx2

t∇St · ut +O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= −xt(1 + ηyt)−
1

2
ηx2

t∇St · ut +O(Et),

where we have defined the error term Et as

Et := ϵ2δ ·max

(
1,

∥vt∥
δ

)3

.

The update in the v⊥ direction is

v⊥t+1 = P⊥
ut+1

[
(I − η∇2Lt)vt + η∇S⊥

t

[
ϵ2t − x2

2

]]
− 1

2
ηx2

t∇St · utP
⊥
ut+1

ut − ηxtP
⊥
ut+1

∇3Lt(ut, v
⊥
t)

+O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= P⊥
ut+1

[
(I − η∇2Lt)P

⊥
ut
vt + η∇S⊥

t

[
ϵ2t − x2

2

]]
− xtP

⊥
ut+1

ut −
1

2
ηx2

t∇St · utP
⊥
ut+1

ut

− ηxtP
⊥
ut+1

∇3Lt(ut, v
⊥
t) +O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

First, observe that∥∥P⊥
ut+1

ut

∥∥ =
∥∥ut − ut+1u

T
t+1ut

∥∥ ≤ ∥ut − ut+1∥2 ≤ O(∥ut − ut+1∥)

Therefore we can control the first of the error terms as∥∥∥∥xtP
⊥
ut+1

ut +
1

2
ηx2

t∇St · utP
⊥
ut+1

ut

∥∥∥∥ ≤ O
(
∥ut − ut+1∥ · (∥vt∥+ ηρ3∥vt∥2)

)
≤ O(∥ut − ut+1∥ · ∥vt∥)
≤ O

(
ϵ2∥vt∥

)
,

As for the second error term, we can decompose∥∥ηxtP
⊥
ut+1

∇3Lt(ut, v
⊥
t)
∥∥ ≤ η∥vt∥

(∥∥P⊥
ut
∇3Lt(ut, v

⊥
t)
∥∥+ ∥∥P⊥

ut
− P⊥

ut+1

∥∥∥∥∇3Lt(ut, v
⊥
t)
∥∥).

43

By Assumption 5, we have
∥∥P⊥

ut
∇3Lt(ut, v

⊥
t)
∥∥ ≤ O(ϵρ3∥vt∥). Additionally,

∥∥P⊥
ut
− P⊥

ut+1

∥∥ ≤
O(∥ut − ut+1∥). Therefore∥∥ηxtP

⊥
ut+1

∇3Lt(ut, v
⊥
t)
∥∥ ≤ O(ϵρ3∥vt∥ · η∥vt∥+ η∥vt∥∥ut+1 − ut∥ · ρ3∥vt∥)
≤ O

(
ϵηρ3∥vt∥2 + ηρ3∥vt∥2ϵ2

)
≤ O

(
ϵ2
∥vt∥2
δ

+ ϵ2∥vt∥
)

= O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

where we used ηρ3∥vt∥ = O(1). Altogether, we have

v⊥t+1 = P⊥
ut+1

[
(I − η∇2Lt)P

⊥
ut
vt + η∇S⊥

t

[
ϵ2t − x2

2

]]
+O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= P⊥
ut+1

[
(I − η∇2Lt)P

⊥
ut
vt + η∇S⊥

t

[
ϵ2t − x2

2

]]
+O(Et)

We next compute the two-step update for xt:

xt+2 = −xt+1(1 + ηyt+1)−
1

2
ηx2

t+1∇St+1 · ut+1 +O(Et+1)

= xt(1 + ηyt)(1 + ηyt+1) +
η

2

(
ηytx

2
t∇St · ut + x2

t∇St · ut − x2
t+1∇St+1 · ut+1

)
+O((1 + ηρ3∥vt∥)Et + Et+1).

We previously obtained ηρ3∥vt∥ = O(1). Furthermore,

Et+1 = ϵ2δ ·max

(
1,

∥vt+1∥
δ

)3

= O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

+ ϵ

)3
)

= O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)

= O(Et).

Hence

xt+2 = xt(1 + ηyt)(1 + ηyt+1) +
η

2

(
ηytx

2
t∇St · ut + x2

t∇St · ut − x2
t+1∇St+1 · ut+1

)
+O(Et).

The first of these two error terms can be bounded as∣∣∣∣12η2ytx2
t∇St · ut

∣∣∣∣ ≤ O
(
η2ρ23∥vt∥3

)
≤ O

(
ϵ2 · ∥vt∥

3

δ2

)
.

44

As for the second term, we can bound

|∇St+1 · ut+1 −∇St · ut| ≤ |ut+1 · (∇St+1 −∇St)|+ |∇St · (ut+1 − ut)|
≤ ∥∇St+1 −∇St∥+O(ρ3) · ∥ut+1 − ut∥
≤ O

(
η2ρ23∥∇Lt∥

)
≤ O(ϵ2ρ3)

Additionally, we have

xt+1 = −xt +O(ηρ3∥vt∥2 + Et).

Therefore

η
∣∣x2

t+1∇St+1 · ut+1 − x2
t∇St · ut

∣∣ ≤ ηx2
t |∇St+1 · ut+1 −∇St · ut|+ η(x2

t+1 − x2
t)|∇St+1 · ut+1|

≤ O
(
ηρ3∥vt∥2 · ϵ2 + ηρ3∥vt∥

(
ηρ3∥vt∥2 + Et

))
≤ O

(
ϵ2∥vt∥+ ϵ2 · ∥vt∥

3

δ2
+ Et

)
= O(Et).

Altogether, the two-step update for xt is

xt+2 = xt(1 + ηyt)(1 + ηyt+1) +O(Et).

Additionally, the two-step update for v⊥t is

v⊥t+2 = P⊥
ut+2

[
(I − η∇2Lt+1)P

⊥
ut+1

vt+1 + η∇S⊥
t+1

[
ϵ2t+1 − x2

t+1

2

]]
+O(Et+1)

= P⊥
ut+2

(I − η∇2Lt+1)P
⊥
ut+1

(I − η∇2Lt)P
⊥
ut
vt + ηP⊥

ut+2
(I − η∇2Lt+1)P

⊥
ut+1

∇S⊥
t

[
ϵ2t − x2

t

2

]
+ ηP⊥

ut+2
∇S⊥

t+1

[
ϵ2t+1 − x2

t+1

2

]
+O(Et).

Define vt+1 = stept(vt), vt+2 = stept+1(vt), and xi = vi · ui, yi = ∇S⊥
i · vi for i ∈

{t+ 1, t+ 2}. By the definition of step, one sees that∥∥v⊥t+1 − v⊥t+1

∥∥ ≤ O(Et).

and

|xt+1 − xt+1| ≤
1

2
ηx2

t |∇St · ut|+O(Et) ≤ O(ηρ3∥vt∥2 + Et)

The update for x after applying step is

xt+2 = −xt+1(1 + ηyt+1)

= xt(1 + ηyt)(1 + ηyt+1).

45

Therefore

|xt+2 − xt+2| ≤ O
(
|xt|η

∣∣yt+1 − yt+1

∣∣)+O(Et)

≤ O
(
ηρ3∥vt∥

∥∥v⊥t+1 − v⊥t+1

∥∥)+O(Et)

≤ O(Et).

Additionally, the update for v⊥ is

v⊥t+2 = P⊥
ut+2

(I − η∇2Lt+1)P
⊥
ut+1

(I − η∇2Lt)P
⊥
ut
vt + ηP⊥

ut+2
(I − η∇2Lt+1)P

⊥
ut+1

∇S⊥
t

[
ϵ2t − x2

t

2

]
+ ηP⊥

ut+2
∇S⊥

t+1

[
ϵ2t+1 − x2

t+1

2

]
.

Therefore ∥∥v⊥t+2 − v⊥t+2

∥∥ ≤ O
(
η∥∇St+1∥(x2

t+1 − x2
t+1) + Et

)
≤ O(ηρ3∥vt∥|xt+1 − xt+1|+ Et)

≤ O
(
η2ρ23∥vt∥3 + Et

)
≤ O

(
ϵ2 · ∥vt∥

3

δ2
+ Et

)
= O(Et)

Altogether, we get that

∥rt∥ ≤ O(Et) = O

(
ϵ2δ ·max

(
1,

∥vt∥
δ

)3
)
,

as desired.

Proof of Lemma 12. Define

wt =

{
0 t if is even
rt−1 t if is odd

and define the auxiliary trajectory v̂ by v̂0 = v0 and v̂t+1 = step(v̂t) + wt. I first claim that
v̂t = vt for all even t ≤ T , which we will prove by induction on t. The base case is given
by assumption so assume the result for some even t ≥ 0. Then,

vt+2 = stept+1(stept(vt)) + rt

= stept+1(stept(v̂t)) + rt

= stept+1(v̂t+1) + wt+1

= v̂t+2

which completes the induction.

46

Next, we will prove by induction that for t ≤ T ,∥∥v̂⊥t − ⋆
v⊥t
∥∥, |x̂t − ⋆

xt| ≤ O(ϵδ) ≤ c2δ.

By definition, v̂0 = v0 =
⋆
v0, so the claim is clearly true for t = 0. Next, assume the claim

holds for t. If t is even then ∥wt∥ = 0; otherwise ∥vt∥ ≤ 2c2δ, and thus

∥wt∥ ≤ O
(
ϵ2δ ·max (1, c2)

3) ≤ O
(
ϵ2δ
)
.

First observe that∥∥v̂⊥t+1 −
⋆
v⊥t+1

∥∥ ≤
∥∥(I − η∇2Lt)(v̂

⊥
t − ⋆

v⊥t)
∥∥+ ηρ3|x̂2

t −
⋆
x2
t |

2
+ ∥wt∥

≤
(
1 + η

∣∣λmin(∇2Lt)
∣∣)∥∥v̂⊥t − ⋆

v⊥t
∥∥+O(ϵ) · |x̂t − ⋆

xt|+O
(
ϵ2δ
)

≤
(
1 + η

∣∣λmin(∇2Lt)
∣∣)∥∥v̂⊥t − ⋆

v⊥t
∥∥+O(ϵδ) ·

∣∣∣∣ x̂t − ⋆
xt

⋆
xt

∣∣∣∣+O
(
ϵ2δ
)

Next, note that

x̂t+1
⋆
xt+1

=
(1 + ηŷt)x̂t +O(ϵ2δ)

(1 + η
⋆
yt)

⋆
xt +O(ϵ2δ)

=
(1 + η

⋆
yt)x̂t +O(ϵ2δ) +O(ϵ) ·

∥∥v̂⊥t − ⋆
v⊥t
∥∥

(1 + η
⋆
yt)

⋆
xt +O(ϵ2δ)

=
x̂t
⋆
xt

+O
(
ϵ2 +

ϵ

δ

∥∥v̂⊥t − ⋆
v⊥t
∥∥).

Therefore ∣∣∣∣ x̂t+1 − ⋆
xt+1

⋆
xt+1

∣∣∣∣ ≤ ∣∣∣∣ x̂t − ⋆
xt

⋆
xt

∣∣∣∣+O(ϵ2 +
ϵ

δ

∥∥v̂⊥t − ⋆
v⊥t
∥∥).

Let dt = max
(∥∥v̂⊥t − ⋆

v⊥t
∥∥, δ∣∣∣ x̂t−

⋆
xt

⋆
xt

∣∣∣). Then∥∥v̂⊥t+1 −
⋆
v⊥t+1

∥∥ ≤ (1 + η
∣∣λmin(∇2Lt)

∣∣+O(ϵ))dt +O(ϵ2δ)

δ

∣∣∣∣ x̂t+1 − ⋆
xt+1

⋆
xt+1

∣∣∣∣ ≤ (1 +O(ϵ))dt +O(ϵ2δ).

Therefore

dt+1 ≤ (1 + η
∣∣λmin(∇2Lt)

∣∣+O(ϵ))dt +O(ϵ2δ)

≤ (1 +O(ϵ))dt +O(ϵ2δ),

so for t ≤ T we have dt+1 ≤ O(ϵδ). Therefore∥∥v̂⊥t+1 −
⋆
v⊥t+1

∥∥, |x̂t+1 − ⋆
xt+1| ≤ O(ϵδ) ≤ c2δ,

so the induction is proven. Altogether, we get ∥v̂t − ⋆
vt∥ ≤ O(ϵδ) for all such t, as desired.

47

Proof of Lemma 13. Recall that

x∗
t+1 = −(1 + ηy∗t)x

∗
t and y∗t+1 = η

t∑
s=0

βs→t

[
δ2s − x∗

s
2

2

]
,

Since t ≤ 1
ηmaxt |λmin(∇2Lt)| , we have that βs→t = O(ρ23), and thus

⋆
yt ≤ O(ρ23)tηδ

2 = O(
√
ρ1ρ3).

Therefore

| ⋆xt+1| = (1 + η
⋆
yt)| ⋆xt| ≤ (1 +O(ϵ))| ⋆xt|.

Since t ≤ O(ϵ−1), | ⋆xt| grows by at most a constant factor, and thus | ⋆xt| ≤ O(δ). Finally,
recall that

⋆
v⊥t+1 = η

t∑
s=0

P⊥
ut+1

[
s+1∏
k=t

Ak

]
∇S⊥

s

[
δ2s − x∗

s
2

2

]
.

By the triangle inequality, ∥∥ ⋆
v⊥t+1

∥∥ ≤ O(ηtρ3δ
2) ≤ O(δ).

Therefore ∥ ⋆
vt∥ ≤ O(δ).

48

	Introduction
	Gradient Descent at the Edge of Stability
	Self-stabilization: The Implicit Bias of Instability

	Related Work
	Setup
	The Self-stabilization Property of Gradient Descent
	The Four Stages of Edge of Stability: A Heuristic Derivation
	Analyzing the simplified dynamics
	Relationship with the constrained trajectory

	The Predicted Dynamics and Theoretical Results
	Notation
	The equations governing edge of stability
	Coupling Theorem

	Experiments
	Discussion
	Takeaways from the Predicted Dynamics
	Generalized Predicted Dynamics
	Implications for Neural Network Training
	Future Work

	Notation
	A Toy Model for Self-Stabilization
	Definition of the Predicted Dynamics
	Experimental Details
	Architectures
	Data
	Experimental Setup

	Empirical Verification of the Assumptions
	The Generalized Predicted Dynamics
	Deriving the Generalized Predicted Dynamics
	Properties of the Generalized Predicted Dynamics

	Additional Experiments
	The Benefit of Large Learning Rates: Training Time and Generalization
	Experiments with the Generalized Predicted Dynamics

	Additional Discussion
	Scale Invariant Loss Functions
	Verification of Assumptions

	Proofs
	Properties of the Constrained Trajectory
	Proof of Coupling Theorem
	Proof of Auxiliary Lemmas

