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Abstract

Deep Neural Networks (DNNSs) are currently
predominantly trained using first-order methods.
Some of these methods (e.g., Adam, AdaGrad,
and RMSprop, and their variants) incorporate a
small amount of curvature information by using
a diagonal matrix to precondition the stochastic
gradient. Recently, effective second-order meth-
ods, such as KFAC, K-BFGS, Shampoo, and
TNT, have been developed for training DNNSs,
by preconditioning the stochastic gradient by
layer-wise block-diagonal matrices. Here we pro-
pose a "mini-block Fisher (MBF)" preconditioned
stochastic gradient method, that lies in between
these two classes of methods. Specifically, our
method uses a block-diagonal approximation to
the empirical Fisher matrix, where for each layer
in the DNN, whether it is convolutional or feed-
forward and fully connected, the associated diago-
nal block is itself block-diagonal and is composed
of a large number of mini-blocks of modest size.
Our novel approach utilizes the parallelism of
GPUs to efficiently perform computations on the
large number of matrices in each layer. Conse-
quently, MBF’s per-iteration computational cost
is only slightly higher than it is for first-order
methods. The performance of MBF is compared
to that of several baseline methods, on Autoen-
coder, Convolutional Neural Network (CNN), and
Graph Convolutional Network (GCN) problems,
to validate its effectiveness both in terms of time
efficiency and generalization power. Finally, it
is proved that an idealized version of MBF con-
verges linearly.
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1 INTRODUCTION

First-order methods based on stochastic gradient descent
(SGD) (Robbins & Monro 1951), and in particular, the class
of adaptive learning rate methods, such as AdaGrad (Duchi
et al. 2011), RMSprop (Hinton et al. 2012), and Adam
(Kingma & Ba 2014), are currently the most widely used
methods to train deep learning models (the recent paper
(Schmidt et al. 2021) lists 65 methods that have “Adam” or
“Ada” as part of their names). While these methods are easy
to implement and have low computational complexity, they
make use of only a limited amount of curvature information.
Standard SGD and its mini-batch variants, use none. SGD
with momentum (SGD-m) (Polyak 1964) and stochastic ver-
sions of Nesterov’s accelerated gradient method (Nesterov
1998), implicitly make use of curvature by choosing step
directions that combine the negative gradient with a scaled
multiple of the previous step direction, very much like the
classical conjugate gradient method.

To effectively optimize ill-conditioned functions, one usu-
ally needs to use second-order methods, which range from
the Newton’s method to those that use approximations to the
Hessian matrix, such as BFGS quasi-Newton (QN) meth-
ods (Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno
1970), including limited memory (LM) variants (Liu & No-
cedal 1989), and Gauss-Newton (GN) methods (Ortega &
Rheinboldt 1970). To handle large machine learning data
sets, stochastic methods such as sub-sampled Newton (Xu
et al. 2019)), QN (Byrd et al. 2016, Gower et al. 2016, Wang
et al. 2017), GN, natural gradient (NG) (Amari et al. 2000),
Hessian-free (Martens 2010), Krylov subspace, (Vinyals &
Povey 2012), and LM variants of Anderson acceleration
(He et al. 2022, Scieur et al. 2018), that are related to LM
multisecant QN methods (see (Scieur et al. 2021)), have
been developed. However, in all of these methods, whether
they use the Hessian or an approximation to it, the size of
the matrix becomes prohibitive when the number of training
parameters is huge.

Therefore, deep learning training methods have been pro-
posed that use layer-wise block-diagonal approximations to
the second-order preconditioning matrix. These include a
Sherman-Morrison-Woodbury based variant (Ren & Gold-
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farb 2019) and a low-rank variant (Roux et al. 2008) of the
block-diagonal Fisher matrix approximations for NG meth-
ods. Also, Kronecker-factored matrix approximations of the
diagonal blocks in Fisher matrices have been proposed to
reduce the memory and computational requirements of NG
methods, starting from KFAC for multilayer preceptrons
(MLPs) (Martens & Grosse 2015), which was extended
to CNNs in (Grosse & Martens 2016); (in addition, see
Heskes (2000), Povey et al. (2014), George et al. (2018)).
Kronecker-factored QN methods (Goldfarb et al. 2020), gen-
eralized GN methods (Botev et al. 2017), an adaptive block
learning rate method Shampoo (Gupta et al. 2018), based
on AdaGrad, and an approximate NG method TNT (Ren &
Goldfarb 2021b), based on the assumption that the sampled
tensor gradient follows a tensor-normal distribution have
also been proposed.

Our Contributions: We propose here a new Mini-Block
Fisher (MBF) gradient method that lies in between adap-
tive first-order methods and block diagonal second-order
methods. Specifically, MBF uses a block-diagonal approx-
imation to the empirical Fisher matrix, where for each
DNN layer, whether it is convolutional or feed-forward and
fully-connected, the associated diagonal block is also block-
diagonal and is composed of a large number of mini-blocks
of modest size.

Crucially, MBF has comparable memory requirements to
those of first-order methods, while its per-iteration time
complexity is smaller, and in many cases, much smaller
than that of popular second-order methods (e.g. KFAC) for
training DNNs. Further, we prove convergence results for a
variant of MBF under relatively mild conditions.

In numerical experiments on well-established Autoencoder,
CNN and GCN models, MBF consistently outperformed
state-of-the-art (SOTA) first-order methods (SGD-m and
Adam) and performed favorably compared to popular
second-order methods (KFAC and Shampoo).

2 NOTATION AND DEFINITIONS

Notation. Diag, 1, (A;) is the block diagonal matrix with
{A4,..., AL} on its diagonal; [L] := {1,...,L}; X =
[T1,...,2,] T € R"*9 s the input data; Apmin (M), Amax (M)
are the smallest and largest eigenvalues of the matrix M; ®
denotes the Kronecker product; ||.||2 denotes the Euclidean
norm of a vector or matrix; and vec(A) vectorizes A by
stacking its columns.

We consider a DNN with L layers, defined by weight
matrices W;, for | € [L], that transforms the in-
put vector & to an output f(W,z). For a data-
point (z,y), the loss £ (f(W,x),y) between the output

f(W . x) and v, is a non-convex function of vec(W) T =

vec (T/Vl)T s eeey VEC (T/VL)T € RP, containing all of the

network’s parameters, and £ measures the accuracy of the
prediction (e.g. squared error loss, cross entropy loss). The
optimal parameters are obtained by minimizing the average
loss £ over the training set:

Zz

This setting is applicable to most common models in deep
learning such as multilayer perceptrons (MLPs), CNNs,
recurrent neural networks (RNNs), etc. In these models,
the trainable parameter W; (I = 1,..., L) come from the
weights of a layer, whether it be a feed-forward, convolu-
tional, recurrent, etc. For the weight matrix W; € RP! corre-
sponding to layer [ and a subset of indices b C {1,...,p;},
we denote by W, the subset of parameters of W; corre-
sponding to b.

FW.x:),¥,), (1)

The average gradient over a mini-batch of size m, g™ =

1 Zm 8£(f ’Xz) ¥y)

, is computed using standard back-
propagatlon. In the full-batch case, where m = n, g\") =
= M(‘X,V) = DW. Here, we are using the notation

DX = 2% (W) for any subset of variables X C W.
The Jacobian J(W) of the loss £(-) w.r.t the parame-
ters W for a single output network is defined as J =
[J{, .., JT]T € R™¥P, where J,| is the gradient of the
. T _ 0L(f(W xi),y;)
loss w.r.t the parameterTs, ie., J; = vec(—Fapr).
We use the notation JX
[J1XT, vy Jff—r]T for any subset of variables X of W.

The Fisher matrix F'(W) of the model’s conditional dis-
tribution is defined as

_ Vec(af(f(‘(;V)&Xi)»yi)) and JX =

B dlogpw (y|z) (dlogpw (ylz)\
Fw)= E oW oW )
y~pw (-|x)

where @, is the data distribution of 2 and pw (-|x) is the
density function of the conditional distribution defined by
the model with a given input x. As shown in (Martens 2020),
F (W) is equivalent to the Generalized Gauss-Newton
(GGN) matrix if the conditional distribution is in the ex-
ponential family, e.g., a categorical distribution for classifi-
cation or a Gaussian distribution for regression.

The empirical Fisher matrix (EFM) F'(W) defined as:

FOW,x:),5,) U(F(W,x;),y;)
ow ow

F(W) = %Z U

=1

W) TI(W),

is obtained by replacing the expectation over the model’s
distribution in F'(W') by an average over the empirical data.
MBF uses the EFM rather than the Fisher matrix, since
doing so does not require extra backward passes to compute
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additional gradients and memory to store them. We note
that, as discussed in (Kunstner et al. 2019) and (Thomas et al.
2020), the EFM , which is an un-centered second moment
of the gradient, captures less curvature information than
the Fisher matrix, which coincides with the GGN matrix
in many important cases, and hence is closely related to
V2L(W). To simplify notation we will henceforth drop
the "tilde"~and denote the EFM by F'. We denote by FX =
L(JX)TJX, the sub-block of F(W) associated with any
subset of variables X C W, and write (FX)~! as Fy .

3 MINI-BLOCK FISHER (MBF) METHOD

At each iteration, MBF preconditions the gradient direction
by the inverse of a damped EFM:

W(k+1) = W(k) —a(F(W (k) + )" g(k), ()

where « is the learning rate and ) is the damping parameter.

To avoid the work of computing and storing the inverse of
the p x p damped EFM, (F + A\I)~!, where p can be in the
millions, we assume, as in KFAC and Shampoo, that the
EFM has a block diagonal structure, where the [;;, diagonal
block corresponds to the second moment of the gradient of
the model w.r.t to the weights in the l;;, layer. Hence, the
block-diagonal EFM is:

F(W) ~ Diag (F"",..., F"V*).

Figure 1 summarizes how several existing methods further
approximate these diagonal blocks.

KBFGS

Block-diagonal
Preconditionner
matrix

gradient

direction Adaptive gradient methods:

Diagonal preconditionner

' _ k
Pl g | Gt =A L' |®-of Lt

Shampoo

Second moment [
based methods

5 Mini-block Fisher
r . MBF
]

F |~ Ut |9 Ut TNT

Fisher
approximation ®| 4!
methods -

Figure 1: MBF vs other block-diagonal preconditioned gra-
dient methods

KFAC

MBEF further approximates each of the diagonal blocks Fyy,
by a block-diagonal matrix, composed of a typically large
number mini-blocks, depending on the nature of layer [, as
follows:

Layer [ is convolutional : For simplicity, we assume
that the convolutional layer [ is 2-dimensional and has .J

Adam, AdaGrad, RMSProp...

Convolutional layer
parameters

T Y]
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Figure 2: Illustration of MBF’s approximation for a convolu-
tional layer.

Fully connected layer [
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I Inputs

w
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Figure 3: Illustration of MBF’s preconditionner for a feed-
forward fully-connected layer.

input channels indexed by 7 = 1, ..., J, and I output chan-
nels indexed by ¢ = 1,...,I; there are I x J Kkernels
W, ;.i. each of size (2R + 1) x (2R + 1), with spatial off-
sets from the centers of each filter indexed by § € A :=
{—R,..,R} x {—R, ..., R}; the stride is of length 1, and
the padding is equal to R, so that the sets of input and output
spatial locations (¢t € T C R?) are the same.'. For such
layers, we use the following (IJ + 1) x (IJ + 1) block-
diagonal approximation to the [, diagonal block F"i of
the Fisher matrix

: 4% %% 1%% %% b
diag{FWir1,  FWerr  FWioa | FWior oy

where each of the I.J diagonal blocks FWti.i isa |A| x |A]
symmetric matrix corresponding to the kernel vector W7 ; ;
and where F is an I x I diagonal matrix corresponding
the bias vector b;. Therefore, the preconditioning matrix
F‘;,LIH corresponding to the kernel for input-output channel

pair (7, %) is given by:
-1
1
F‘;/ll = ((Jlej,i)TJWl,j,i =+ )\I)
2Js? n

A common choice in CNNGs is to use eithera 3 x 3or5 x 5
kernel for all of the I.J channel pairs in a layer. Therefore,
all of these matrices are of the same (small) size, |A| x |A],

'The derivations in this paper can also be extended to the case
where the stride is greater than 1.
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and can be inverted efficiently by utilizing the parallelism
of GPUs. We illustrate MBF’s approximation for a convolu-
tional layer for the case of one data-point in Fig. 2. From
Fig. 2, it is apparent that the kernal matrices in a convolu-
tional layer that connect the input to the output channels
are analogous to the scalar weights that connect input to
output nodes in a ff-cc layer. Hence, the "mini" diagonal
blocks F'"u.i+ in MBF are analogous to the squares of the
components of the gradient in a ff-cc network, and hence
MBEF can be viewed as a "squared" version of an adaptive
first-order method. This observation (detailed in Appendix
10) was in fact the motivation for our development of the
MBF approach.

Layer [ is feed forward and fully connected (ff-fc): For a
ff-fc layer with I inputs and O outputs, we use the following
O x O block-diagonal approximation to the Fisher matrix

FWi = diag{ F"Vi1, ... FWVi0},

whose jy;, diagonal block FWei is an (I + 1) x (I + 1)
symmetric matrix corresponding to the vector W ; of I
weights from all of the input neurons and the bias to the j;p
output neuron. Therefore, the preconditioning matrix F‘;,llyj
corresponding to the j;; output neuron is given by:

—1
Foy = <i(Jlej)TJWw + /\I>

Our choice of such a mini-block subdivision was motivated
by the findings presented in (Roux et al. 2008), first derived
in (Collobert 2004), where it was shown that the Hessian of
a neural network with one hidden layer with cross-entropy
loss converges during optimization to a block-diagonal ma-
trix, where the diagonal blocks correspond to the weights
linking all the input units to one hidden unit and all of the
hidden units to one output unit.

This suggests that a similar block-diagonal structure applies
to the Fisher matrix in the limit of a sequence of iterates pro-
duced by an optimization algorithm. The latter suggestion
was indeed confirmed by findings presented in (ichi Amari
et al. 2018), where the authors proved that a "unit-wise"
block diagonal approximation to the Fisher information ma-
trix is close to the full matrix modulo off-diagonal blocks
of small magnitude, which provides a justification for the
quasi-diagonal natural gradient method proposed in (Ollivier
2015) and our mini-block approximation in the case of fully
connected layers. Finally, since the O matrices FWui for
j=1,...,0, are all of the same size, (I + 1) x (I + 1),
they can be inverted efficiently by utilizing the parallelism
of GPUs. We illustrate MBF’s ability to approximate the
EFM of a fully connected layer for the case of one data-
point in Figure 5 for a 7-layer (256-20-20-20-20-20-10)
feed-forward DNN using tanh activations, partially trained
to classify a 16 x 16 down-scaled version of MNIST as in
(Martens & Grosse 2015).

Algorithm 1 Generic MBF training algorithm

Require: Given learning rates {cy}, damping value A,
batch size m
I: fork=1,2,...do
2:  Sample mini-batch M of size m
3:  Perform a forward-backward pass over M to com-
pute stochastic gradient DW; (I =1, ..., L)

4 fori=1,...,Ldo

5 for mini-block b in layer /, in parallel do
6: e CHCACO L ALY
7 Wiy =Wy — OékF{;/Ll)b’DVVl,b

8 end for

9:  end for

10: end for

Algorithm 1 gives the pseudo-code for a generic version of
MBEF. Since updating the Fisher mini-blocks is time con-
suming in practice as it requires storing and computing the
individual gradients, we propose in Section 7 below, a prac-
tical approach for approximating these matrices. However,
we first present empirical results that justify and motivate
both the kernel-based and the all-to-one mini-block subdi-
visions described above for convolutional and ff-fc layers,
respectively, followed by a discussion of the linear conver-
gence of an idealized version of the generic MBF algorithm.

After deriving our MBF method, we became aware of the
paper (Anil et al. 2021), which proposes using sub-layer
block-diagonal preconditioning matrices for Shampoo, a
tensor based DNN training method. Specifically, it consid-
ers two cases: partitioning (i) very large individual ff-fc
matrices (illustrating this for a matrix of size [2% x 2!!] into
either a 1 X 2 or a 2 x 2 block matrix with blocks all of
the same size) and (ii) ResNet-50 layer-wise matrices into
sub-layer blocks of size 128. However, (Anil et al. 2021)
does not propose a precise method for using mini-blocks as
does MBF.

Motivation for MBF: Our choice of mini-blocks for both
the convolutional and ff-fc layers was motivated by the
observation that most of the weight in the EFM inverse
resides in diagonal blocks, and in particular in the mini-
blocks described above. More specifically, to illustrate this
observation for convolutional layers, we trained a simple
convolutional neural network, Simple CNN, (see Appendix
11.4.6 for more details) on Fashion MNIST (Xiao et al.
2017). Figure 4 shows the heatmap of the absolute value
of the EFM inverse corresponding to the first convolutional
layer, which uses 32 filters of size 5 x 5 (thus 32 mini-
blocks of size 25 x 25 ). One can see that the mini-block
(by filter) diagonal approximation is reasonable. Figures for
the 2nd convolutional layer are included in the Appendix
11.4.6. Since the ff-fc layers in the Simple-CNN model
result in an EFM for those layers that is too large to work



Achraf Bahamou, Donald Goldfarb, Yi Ren

0 W f00 125 160 47

(b) Zoom on first 10 blocks

(a) First CNN layer

Figure 4: Absolute EFM inverse after 10 epochs for the first
convolutional layer of the Simple CNN network that uses 32
filters of size 5 x 5.

(a) Last layer (b) Middle layer

Figure 5: Absolute EFM inverse after 50 epochs of the last
and middle layers (including bias) of a small FCC-NN.

with, we chose to illustrate the mini-block structure of the
EFM on a standard DNN, partially trained to classify a
16 x 16 down-scaled version of MNIST that was also used
in (Martens & Grosse 2015). Figure 5 shows the heatmap
of the absolute value of the EFM inverse for the last and
middle fully connected layers (including bias). One can see
that the mini-block (by neuron) diagonal approximation is
reasonable. A larger figure for the second fully-connected
layer is included in Appendix 11.4.6).

Comparison: directions of MBF and other methods vs.
full block-diagonal EFM: To explore how close MBF’s
direction is to the one obtained by a block-diagonal full
EFM method (BDF), where each block corresponds to one
layer’s full EFM in the model, we computed the cosine
similarity between these two directions. We also included
SOTA first-order (SGD-m, Adam) and second-order (KFAC,
Shampoo) methods for reference. The algorithms were run
on a 16 x 16 down-scaled MNIST (LeCun et al. 2010)
dataset and a small feed-forward NN with layer widths 256-
20-20-20-20-20-10 described in (Martens & Grosse 2015).
As in (Martens & Grosse 2015), we only show the middle
four layers. For all methods, we followed the trajectory
obtained using the BDF method. In our implementation
of the BDF method, both the gradient and the block- EFM
matrices were estimated with a moving-average scheme,
with the decay factors set to 0.9. Note that MBF-True refers

to the version of MBF in which, similarly to KFAC, the
mini-block Fisher is computed by drawing one label from
the model distribution for each input image as opposed to
MBEF, where we use the average over the empirical data.
For a more detailed comparison on Autoencoder and CNN
problems, see Appendix 11.

As shown in Figure 6, the cosine similarity between the
MBF and MBF-True and the BDF direction falls on most
iterations between 0.6 to 0.7 for all four layers and not
surprisingly, falls midway between the SOTA first-order and
block-diagonal second order methods - always better than
SGD-m and Adam, but usually lower than that of KFAC and
Shampoo. Moreover, the closeness of the plots for MBF
and MBF-True shows that using moving average mini-block
versions of the 5 EFM rather than the Fisher matrix does
not significantly affect the effectiveness of our approach.

We also report a comparison of the performance of MBF-
True and MBF on autoencoders and CNN problems in Ap-
pendix 11.4.2. Note that, in MBF-True, the only difference
between it and MBF is that we are using the mini-batch
gradient Do W 3, (denoted by D) of the model on sampled
labels y; from the model’s distribution to update the esti-
mate of mini-block preconditioners, using a moving average
(see lines 12, 13 in Algorithm 4 in Appendix 11.4.1), with a
rank one outer-product, which is different from computing
the true Fisher for that mini-block.

4 LINEAR CONVERGENCE

We follow the framework established in (Zhang, Martens
& Grosse 2019) to provide convergence guarantees for the
idealized MBF with exact gradients (i.e. full batch case with
m = n) and the mini-block version of the true Fisher matrix,
rather than the EFM, as the underlying preconditioning
matrix. We focus on the single-output case with squared
error loss, but analysis of the multiple-output case is similar.

We denote by u(W) = [f(W,x1),..., f(W,z,)]" the
output vector and iy = [y1, ..., y,] " the true labels. We con-
sider the squared error loss £ on a given data-set {x;, y; } 7,
with z; € R and y; € R, i.e. the objective is to minimize

: 1 )
Jin L(W) = 2| u(W) —y]"

The update rule of MBF with exact gradient becomes

W (k+1) = W(k) = n(Fap(W (k) + A1) T (k)T (u(W (k) —y),

where FMB(W(]{Z)) = 1JMB(W(]€))TJMB(W(I€)) is

the mini-block-Fisher martlrix and the mini-block Jacobian
is defined as Jyrp (k) = Diagc(; Diag, (J™*(k)) and

Of(W(k),x1)
W,

Af (W (k),Xn) 7
oWy

JWie (k) = |
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Figure 6: Cosine similarity between the directions produced by the methods shown in the legend and that of a block diagonal

Fisher method (BDF).

We use similar assumptions to those used in (Zhang,
Martens & Grosse 2019), where the first assumption, en-
sures that at initialization, the mini-block Gram matrices
are all positive-definite, (i.e., the rows of their respective
Jacobians are linearly independent), and the second assump-
tion ensures the stability of the Jacobians by requiring that
the network is close to a linearized network at initialization
and therefore MBF’s update is close to the gradient descent
direction in the output space. These assumptions allow us
to control the convergence rate.

Assumption 4.1. The mini-block Gram matrices
JWes (0)JWee (0)T at initialization are positive definite,
ie. minge(z) ming Apan (JW00 (0)T T (0)) = Ao > 0.

Assumption 4.2. There exists 0 < C < 1 that satis-

fies [|J(W (k)) — J(W ()] < §vAo if [W(k) —
W)z < A=lly — u(0)]2.

Theorem 1. Suppose Assumptions 4.1, 4.2 hold. Consider
the Generic BMF Algorithm 1, using exact gradients and
the mini-block version of the true Fisher as the underly-
ing preconditioning matrix for a network with L layers.
Then there exists an interval of suitable damping values A
in [\, | and corresponding small enough learning rates
N, such that for any learning rate 0 < 1 < 1\ we have

la(W (k) = yl3 < (1= )" u(W(0)) - yl3.

Theorem 1 states that an idealized verion of MBF converges
to the global optimum with a linear rate under Assumptions
4.1 and 4.2. Our analysis is an adaptation of the proof in
(Zhang, Martens & Grosse 2019), where we first exploit
Assumptions 4.1 and 4.2 to obtain a positive lower bound
on the eigenvalues of mini-block version of the true Fisher
matrix Fy; (W (k)), which then allows us to characterize
the rate of convergence of the method. The proof can be
found in the Appendix 9.

S IMPLEMENTATION DETAILS OF MBF
AND COMPARISON ON COMPLEXITY

Mini-batch averages, Exponentially decaying averages
and Momentum: Because the size of training data sets
is usually large, we use mini-batches to estimate the quan-
tities needed for MBF. We use X to denote the average

value of X over a mini-batch for any quantity X . Moreover,
for the EFM mini-blocks, we use moving averages to both
reduce the stochasticity and incorporate more information
from the past, more specifically, we use a moving average
scheme to get a better estimate of the EFM mini-blocks,
i.e.CTW: = /BG/VE + (1 - B)Gw,,,, where G, , is the
current approximation to the mini-block EFM defined below.
In order to bring MBF closer to a drop-in replacement for
adaptive gradient methods such as Adam, we add momen-
tum to the mini-batch gradient, let: DW, = uDW, + DW,
and then apply the preconditioner to fﬂ\/l to compute the
step.

Approximating the mini-block Fisher matrices: As
mentioned previously, computing the matrices Gy, , :=
L(JWee)T JWeb to update the EFM mini-blocks is ineffi-
cient in practice as this requires storing and computing the
individual gradients. Hence, we approximate these mini-
block matrices by the outer product of the part of the mini-
batch gradient corresponding to the subset of weights W 5,
i.e., GWz,b ~ ('DVVU))('DI/Vlb)T

Spacial average for large fully-connected layers: In some
CNN and autoencoder models, using the EFM mini-blocks
can still be computationally prohibitive for fc layers, where
both the input and output dimensions are large. Therefore,
for such layers we used a Spatial Averaging technique, simi-
lar to one used in (Yao et al. 2021), where we maintained
a single preconditioning matrix for all the mini-blocks by
averaging the approximate mini-block EFM matrices when-
ever we updated the preconditioning matrix. This technique
also leads to more stable curvature updates as a side benefit,
as observed for the method proposed in (Yao et al. 2021),
where the Hessian diagonal was "smoothed" across each
layer. We also explored using spacial averaging for convolu-
tional layers. However since the kernel-wise mini-blocks are
small in size, spacial averaging does not compare favorably
to the full MBF method (see Appendix 11.4.3).

Amortized updates of the preconditioning matrices: The
extra work for the above computations, as well as for updat-
ing the inverses Iy, ! compared with first-order methods
is amortized by only performmg the Fisher matrix updates
every T} iterations and computing their inverses every 75
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iterations. This approach which is also used in KFAC and
Shampoo, does not seem to degrade MBF’s overall perfor-
mance, in terms of computational speed.

Comparison of Memory and Per-iteration Time Com-
plexity. In Table 1, we compare the space and computational
requirements of the proposed MBF method with KFAC,
Shampoo and Adam (see Appendix 11.1), which are among
the predominant 2nd and Ist-order methods used to train
DNNs. We focus on one convolutional layer, with J input
channels, I output channels, kernel size |A| = (2R + 1)2,
and |T| spacial locations. Let m denote the size of the
minibatches, and 7T} and 7, denote, respectively, the fre-
quency for updating the preconditioners and inverting them
for KFAC, Shampoo and MBE. As indicated in Table 1, the
amount of memory required by MBF is the same order of
magnitude as that required by Adam, (specifically, more
by a factor of |A|, which is usually small in most CNN
architectures; e.g, in VGG16 (Simonyan & Zisserman 2014)
|A] = 9) and less than KFAC, Shampoo and other SOTA
Kronecker-factored preconditioners, (specifically, e.g., by a

factor of O (J + ﬁ) for KFAC.

We indicate in Table 1, in gray, the portion of the compu-
tational complexity for both the curvature and step compu-
tations that can benefit from GPU broadcasting and paral-
lelism. Since MBF maintains mini-block curvature matrices
of the same size, its effective computational complexity is
) (% + % + \A|2) , which is of modest magnitude as
it is a function of only the kernel-size A, which is small
in most CNN architectures. Note that in our experiments,
Ty ~ |A] and Ty ~ |A|?. “ The computationnal and stor-
age requirements for fully connected layers are discussed in
Appendix 11.1.5. A pseudocode that fully describes our
MBEF algorithm is given in Algorithm 2 in the Appendix 8.

6 EXPERIMENTS

In this section, we compare MBF with some SOTA first-
order (SGD-m, Adam) and second-order (KFAC, Sham-
poo) methods. (See Appendix 11.1 on how these methods
were implemented.) Since MBF uses information about
the second-moment of the gradient to construct a precon-
ditioning matrix, Adam, KFAC and Shampoo were obvi-
ous choices for comparison with MBF. We used the most
popular version of Adam, AdamW (Loshchilov & Hutter
2019) as a representative of adaptive first-order methods.
An extensive study in (Schmidt et al. 2021) of more than
100 optimization methods, 65 of which have “Adam” or
“Ada” as part of their names, concluded that no method was
"clearly dominating across all tested tasks and that ADAM
remains a strong contender, with newer methods failing
to significantly and consistently outperform it". We also
include in Appendix 11.4.5 additional results that include
Adabelief and Adagrad.

Our experiments were run on a machine with one V100 GPU
and eight Xeon Gold 6248 CPUs using PyTorch Paszke
et al. (2019). Each algorithm was run using the best hyper-
parameters, determined by a grid search (specified in Ap-
pendices 11.3 and 11.2), and 5 different random seeds. The
performance of MBF and the comparison algorithms is plot-
ted in Figures 7 and 8: the solid curves depict the results
averaged over the 5 different runs, and the shaded areas
depict the +standard deviation range for these runs.

Generalization performance, CNN problems: We first
compared the generalization performance of MBF to SGD-
m, Adam, KFAC and Shampoo on three CNN models,
namely, ResNet32 He et al. (2016), VGG16 Simonyan
& Zisserman (2014) and VGG11 Simonyan & Zisserman
(2014), respectively, on the datasets CIFAR-10, CIFAR-100
and SVHN Krizhevsky et al. (2009). The first two have
50,000 training data and 10,000 testing data (used as the
validation set in our experiments), while SVHN has 73,257
training data and 26,032 testing data. For all algorithms,
we used a batch size of 128. In training, we applied data
augmentation as described in Krizhevsky et al. (2012), in-
cluding random horizontal flip and random crop, since these
setting choices have been used and endorsed in many pre-
vious research papers, e.g. Zhang, Wang, Xu & Grosse
(2019), Choi et al. (2019), Ren & Goldfarb (20215b). (see
Appendix 11 for more details about the experimental set-up)

On all three model/dataset problems, the first-order meth-
ods were run for 200 epochs, and KFAC and Shampoo
for 100 epochs, while MBF was run for 150 epochs on
VGG16/CIFAR-100 and VGG11/SVHN, and 200 epochs
on ResNet32/CIFAR-10. The reason that we ran MBF for
200 epochs (i.e., the same number as run for Adam) on
ResNet32 was because all of ResNet32’s convolutional lay-
ers use small (3 x 3) kernels, and it contains just one fully
connected layer of modest size (I, 0) = (64, 10). Hence
as we expected, MBF and Adam took almost the same time
to complete 200 epochs. As can be seen in Figure 7, MBF
could have been terminated after 150 epochs, without a sig-
nificant change in validation error. On the other hand, since
VGG16 and VGG11 have two large fully connected-layers
(e.g [4096, 4096, 10/100]), MBF’s per-iteration computa-
tional cost is substantially larger than Adam’s due to these
layers. Consequently, for both methods to finish roughly in
the same amount of time, we ran MBF for only 150 epochs.

All methods employed a learning rate (LR) schedule that
decayed LR by a factor of 0.1 every K epochs, where K was
set to 60, 50 and 40 , for the first-order methods, MBF, and
KFAC/Shampoo, respectively, on the VGG16 and VGG11
problems, and set to 80, 60 and 40, respectively, on the
ResNet32 problem

Moreover, weight decay, which has been shown to im-
prove generalization across different optimizers Loshchilov
& Hutter (2019), Zhang, Wang, Xu & Grosse (2019),
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Table 1: Computation and Storage Requirements per iteration for convolutional layer.

Algorithm Additional pass Curvature Step AW, Storage P
MBF — oA 4 1217)) o(17]1A%) O(1J|A2)
Shampoo _ 0(<"2+‘§1'22“21> ¢ LBALEAL ) O((1 4+ (ADIIA)  OUP + I+ |AP)
KFAC o(mLIallTl) 0("'L<"2‘A‘T1“2>'T‘ + ZIAPEIY ) oL |A2 + 12014 O(J2|A[% + 17)
Adam — O(I.J|A]) O(I.J|A]) o(1J|A|)

was employed by all of the algorithms, and a grid search 100 100

on the weight decay factor and the initial learning rate

based on the criteria of maximal validation classifica- % %

tion accuracy, was performed. Finally, the damping pa- z z

rameter was set to le-8 for Adam (following common gw. gm

practice), and 0.03 for KFAC (https://github.com/

RN T T 53500 050 500

alecwangcq/KFAC-Pytorch). For Shampoo, we set
€ = 0.01. For MBF, we set A = 0.003. We set T} = 10 and
T5 = 100 for KFAC, Shampoo and MBF.

From Figure 7, we see that MBF has a similar (and some-
times better) generalization performance than the other
methods. Moreover, in terms of process time, MBF is
roughly as fast as SGD-m and Adam on ResNet32/CIFAR-
10 in Figure 7, and is competitive with all of the SOTA first
and second-order methods in our experiments.

Optimization Performance, Autoencoder Problems:
We also compared the optimization performance of the algo-
rithms on three autoencoder problems Hinton & Salakhut-
dinov (2006) with datasets MNIST LeCun et al. (2010),
FACES, and CURVES, which were also used for bench-
marking algorithms in Martens (2010), Martens & Grosse
(2015), Botev et al. (2017), Goldfarb et al. (2020). The
details of the layer shapes of the autoencoders are specified
in Appendix 11.2. For all algorithms, we used a batch size
of 1,000, and settings that largely mimic the settings in the
latter papers. Each algorithm was run for 500 seconds for
MNIST and CURVES, and 2000 seconds for FACES.

For each algorithm, we conducted a grid search on the LR
and damping value based on minimizing the training loss.
We set the Fisher matrix update frequency 77 = 1 and in-
verse update frequency T, = 20 for second-order methods,
as in Ren & Goldfarb (20215). From Figure 8, it is clear
that MBF outperformed SGD-m and Adam, both in terms
of per-epoch progress and process time. Moreover, MBF
performed (at least) as well as KFAC and Shampoo. We
postulate that the performance of MBF is due to its ability
to capture important curvature information from the mini-
block Fisher matrix, while keeping the computational cost
per iteration low and close to that of Adam.

Graph Convolutional Networks (GCN) Problems: In
this section, we compare the performance of the optimiza-
tions algorithms on a 3-layer GCN for the task of node clas-
sification in graphs applied to three citation datasets, Cora,
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(c) SVHN, VGG11

Figure 7: Generalization ability of MBF, KFAC, Shampoo,
Adam, and SGD-m on three CNN problems.

CiteSeer, and PubMed(see Sen et al. (2008)). In Table 2,
nodes and edges correspond to documents and citation links,
respectively, for these datasets. A sparse feature vector of
document keywords, and a class label are associated with
each node. For our experiments, as in Chen et al. (2018),
for each dataset we used all of the nodes for training, except
for 1000 nodes that were reserved for testing.

In our experiments, we used a 3-layer GCN with the fol-
lowing node-sizes [I, 128,64, O], where I and O are the
numbers of input features and classes, respectively. In the
first and second layers of this GCN, the activation function
ReL.U was followed by a dropout function with a rate of
0.5. The loss function was evaluated as the negative log-
likelihood of Softmax of the last layer. The weights of
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Figure 8: Optimization performance of MBF, KFAC, Sham-
poo, Adam, and SGD-m on three autoencoder problems.

Table 2: Citation network datasets statistics

Dataset Nodes Edges Classes Features
Citeseer 3,327 4732 6 3,703
Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500

parameters were initialized as in Kipf & Welling (2016) and
input vectors were row-normalized as in Glorot & Bengio
(2010). The models were trained for 300 epochs on the Cora
and Citeseer datasets and 500 epochs on the Pubmed dataset.
The hyperparameter search space was the same as that used
for the CNN problems with no LR schedule. For MBF,
spacial averaging was only used in the first layer to mitigate
the memory and computational burden in that layer. We set
the Fisher matrix update frequency 7} = 1 and the inverse
update frequency 7o = 25 for all second-order methods.
The optimization performance was measured by the test
accuracy. From Figure 9, we see that MBF had better final
generalization performance than the other methods and, in
terms of process time, MBF was roughly as fast as SGD-m
and Adam on Cora and Citeseer, and was competitive with
all of the SOTA first and second-order methods.

Testing accuracy
N W oA OO N ®
S 5 0 6 o o o
| i
=3
Testing accuracy
N oW o Uoa N ®
S 5 0 o6 o o 0o

200 400
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Figure 9: Generalization performance of MBF, KFAC, Sham-
poo, Adam, and SGD-m on three GCN problems.

7 CONCLUSION AND FUTURE
RESEARCH

We proposed a new EFM-based method, MBF, for training
DNNs, by approximating the EFM by a mini-block diagonal
matrix that arises naturally from the structure of convolu-
tional and ff-fc layers. MBF requires very mild memory and
computational overheads, compared with first-order meth-
ods, and is easy to implement. Our experiments on various
DNNs and datasets, demonstrate conclusively that MBF pro-
vides comparable and sometimes better results than SOTA
methods, both from an optimization and generalization per-
spective. Future research will investigate extending MBF to
other deep learning architectures such as Recurrent neural
networks.
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8 MBF Full implementation

We present below pseudo-code for the full detailed implementation of our MBF algorithm that we used to generate the
results in the main text.

Algorithm 2 Mini-Block Fisher method (MBF)

Require: Given batch size m, learning rate {ny, } ,>1, weight decay factor -y, damping value ), statistics update frequency
Ty, inverse update frequency 75
. u=0.958=09
2: Initialize él\’b = E[G] (I = 1, .., k, mini-blocks b) by iterating through the whole dataset, D/T/Vl\,b =0(=1,.,k,
mini-blocks b)

3: fork=1,2,...do
4:  Sample mini-batch M, of size m
5:  Perform a forward-backward pass over M; to compute the mini-batch gradient DWW,
6: forl=1,..Ldo
7: for mini-block b in layer [, in parallel do
8: 'D/I—/VE, = [L'D/I—/Vl\,b + DWl’b
9: if k=0 (mod T}) then
10: If Layer [ is convolutional: G/l; = BCTZJ\Z +(1—B8)DW, ., (DWZW;)T
11: If Layer [ is fully-connected: G =BG, + % Zjo:l DWy; (DWZJ)T
12: end if
13: if k=0 (mod T») then
14: Recompute and store (él\b + A7t
15: end if .
16: iy = (Gip + M) ' DWip + Wi
17: Wiy = Wiy — nuDip
18: end for
19:  end for
20: end for

9 Proof of Convergence of Algorithm MBF and Associated Lemmas

We follow the framework used in Zhang, Martens & Grosse (2019) to prove linear convergence of NG descent, to provide
similar convergence guarantees for our idealized MBF Algorithm, that uses exact gradients (i.e. full batch case with m = n)
and the mini-block version of the true Fisher as the underlying preconditioning matrix. >

Proof of Theorem 1. If Assumption 6.2 holds, then one can obtain a lower bound on the minimum eigenvalue of the
mini-block Fisher matrix Fu;3(W (k)) = LJap(k) T Jap(k) at each iteration.

In fact, if |[W (k) — W(0)]2 <

< \/%Hy — u(0)]|2, then, by Assumption 6.2, there exists 0 < C < 2 that satisfies

%in Soori et al. (2021), a similar extension of the proof in Zhang, Martens & Grosse (2019) is used to analyse the convergence of a
layer-wise block Fisher method.
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| T(W (k) = J(W(0))]2 < §+/ Ao, and therefore, we have that

Cm< Ao
3 - 3

| Trrp (k) — I (0)]2 <
On the other hand, based on the inequality omin (A + B) > 0min(A) — 0max(B), where o denotes singular value, we have

Omin(InmB(k)) > omin(Jr5(0) — omin (I (k) — (Jme(k)))

> a5 0) ~ 1T () — T )l 2 /3 — Y20 = Vo,
Therefore
M (Garp (W) > 220

where G 5(W (k) := Jyg(W (k) Jpyg(W (E)) T is the mini-block Gram matrix. We prove Theorem 1 by induction.
Assume || u(W (k)) —y||2 < (1—n)¥|| u(W(0)) — y||3. One can see that the relationship between the Jacobian J (W (k))
and the mini-Block Jacobian Jy 5 (W (k)) is:

JH(W (k) = Jus(W (k) K,

where the matrix K = [I,,, ..., In]T € REnxn T isthe identity matrix of dimension n, the number of samples, and K is
————

K
the total number of mini-blocks. We define

Wi(s) =sW(k+1)+ (1 —s)W(k)
= W (k) = s (Farp(W () + A1)~ J(W (k)T (u(W (k) =) = u(W(K)),

we have:

u(Wi(k+1)) — u(W(k))
= w(W (k) = 2L (Fyp (W (k) + A1)~ T(W (k)T (u(W (k) = y)) = u(W (k)
= P P (W (1) 4+ A1) TOW (1) (W (8) )l

- / 10<8U(W(k)) o (W () £ A1)~ T (W ()T (w(W () — ) )ds

OWT 'n
@

b [ (D DU (w0 M) W (0 W ) — ) s
s=0 n

ow'T ow'T

In what follows, to simplify the notation, we drop W (k) whenever the context is clear. Thus, we have

@: ZJ(FMB-F)\IY1 I (y —u(k)). 3)
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Now, we bound the norm of :

(@< 2| [ 5w - 7w )as

(1) 7720
- 3n

mss a0 7T @) v

—1
1
H(Erams o 31) | FlpK ) )

2

_m20 1|1 -1
<X H <nJ11—IBJMB + /\I> J;\;[B [ K (u(k) —y))ll,

2

- 3n

@ 5C @) 1CVAK
< W\/%HK(U(’C)—ZJ))IIQ Vv I(w(k) =yl

where in (1) we used Assumption 6.2, which implies
< |J(W (k) = J(W(0)ll, + [[J(W(k+1)) = J(W(0))ll,

2

<2 /%

3
1 —1
= Omax ((nJJ\DBJIMB‘F/\I) J]\TIB)

-2
1

/ TWi(s) = (W (E)s

The inequality (2) follows from the fact that

—1
1
H (nJJLBJMB + )J) Jis

2

and that

nA n

1 - K
Mmoo | T ( =T fpdus +AL)  Thp | = = Tan
max < MB <n MBYMB + ) NIB) #eigenvrz}llu%)ngMB (% + )\)2 - (n,,T)\ + /\)2 4\

and in the equality (3), we have used the fact that || K (u(k) — y))|, = VK ||(u(k) — y))|,- Finally, we have:
el + 1) — g2 = [[u(k) -y +ulk+ 1) — u(h)|3
= [Ju(k) - yll3 — 2 (y —w(k) " (u(k+1) = uk)) + |lulk+ 1) - k)]
< lu(k) - yll3 - 2%7 (y —u(k)" J(k) (Fap + M) T (k)" (y — ulk)

@

+ ZOVRE (’f)—y))|§+|u(k+1<)®—u(k)||§
< [Ju(k) — I3 - %Hu(k) — g2

e Bty — )12+ 2 (m ?W) I(u(k) —y))3
< (1—n) | (ulk) - 9)Il3

(k) — )2 <n (K+

3Van Ao + nA 3Van

C\/ATK)Q_ ( 2K\ 20vAK _1>>.

“)
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Part @ is lower bounded as follows:
1 -1
(D 2 Auin (JMB (HJLBJMB + M) Jh) | K (u(k) — y)|3

1 -1
= K)\min (JMB (nJ]—&BJMB + /\I) J;\[[B) ||u(k:) — y”%

)\min(GJWB(k))
=nK|u(k) — yl3
nK/\o 9
—||u(k) — .
> 5 g ) ~ ol

Part @ is upper bounded, on the other hand, using equality (3) and inequality (4). More specifically, we have:

-+ 1) = w(k)ll2 < 2| 70) By + AD T T8 ( — k)| + 1B

< %HJMB(]C) (Fug + M)~ Iurp(k H [(u y)lls + ni\/)\i [(w(k) =)l
<77<K+C3\/ﬁ> k) — )]l

The last inequality follows from the fact that if (u,v) is an (eigenvalue, eigenvector) pair for Gy = Jup J]E - then
(p, I, gv) and (%—M’ J;pv) are such pairs for Fy;p and (£ Fyyp + AI) ™!, respectively, and it follows that

HJMB(k) (Fayp +M)~! JMB(kl)TH2 = Aaz (JMB(k) (Frp + M)~ JMB(k)T)

np
= max
w eigenvalue of Garp (k) fL + A —

Let us consider the function A fA) = (Agfg‘;)\ — qurvi“;f( - 1). We have that
4

4N

5,

)=K — C\F—1>K—§\/l?—1>o for K > 3.

Thereforem by continuity of the function f(.), there exists an interval [\, A, such as 49% € [A, A, and for all damping
values \ in [), \], the function f(.) is positive. For such choice of damping value \ (for example \ = %), and for a small
enough learning rate, i.e:

2N _ 2CVAK _
Xo+§nA 3vAn
n < iy =M.
“vAaon
(K+ Evve )

We Hence, we get that

[k +1) = yll3 < (1= n) l|(ulk) = 9))ll5

which concludes the proof.

10 Motivation for kernel-wise mini-blocks choice in convolutional layers

We recall from the main manuscript the following assumptions and notation for a single convolutional layer from the CNN
with trainable parameters (i.e. weights W and biases b) :
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1. the convolutional layer is 2-dimensional;

2. the layer has J input channels indexed by j = 1, ..., J, I output channels indexed by i =1, ..., I;

3. there are I x J filters, each of size (2R + 1) x (2R + 1), with spatial offsets from the centers of each filter indexed by
0eA:={-R,..,R} x{—R,..,R};

4. the stride is of length 1, and the padding is equal to R, so that the sets of input and output spatial locations (t € 7 C R?)
are the same.>;

The weights W, corresponding to the elements of all of the filters in this layer, can be viewed as a 3-dimensional tensor of
size I x J x A, where A = (2R + 1)2. We shall use I, J and A to denote both sets of indices and the cardinalities of these
sets. Each element of W is denoted by W; ; 5, where the first two indices ¢, j are the output/input channels, and the third
index § specifies the spatial offset within a filter as indicated in item 3 above. The bias b is a vector of length I.

For the weights and biases, we define the vectors

T J|A|+1
W; = (wi,l,ﬁla"’7wi,.],5‘A‘7bi) eR A1+ )

fori =1, ..., 1, and from them the matrix

W= (wy,...,wy)| € RIXUIARD - (q)

We shall also express the vectors w; as

o T . T T JA+1 .
W 1= (wm’...,wi”],bi) eR/AT Viel,
where
Wi = (Wi,l,ja"';wi,A,j) eR s VZGI,jGJ.
Let the vector a := {a1,...,a ¢}, where aj.¢, denotes the input from channel j of the previous layer to the current layer

after padding is added, where ¢ denotes the spatial location of the padded input. Note that the index pairs t € 7 C R? can
be ordered, for example, lexicographically, into a one dimensional set of A indices.

It is useful to expand each component a; ; of a to a A-dimensional vector &; ¢, that includes all components in the input a
covered by the filter centered at ¢, yielding the following vectors defined for all locations ¢ € T
AT AT 1) JA+1
a; = (a1 tr e @y 1) e R/ATL
where

A T A : .

aji = (aj1t,...,a5a6) ERZ, Vje;
hence

— T cpJlAI+L

a; = (al,t+§17"'7a’J,t+6|A‘ ) 1) € .

Note that a single homogeneous coordinate is concatenated at the end of a;. Expressing the pre-activation output for the
layer at spatial location ¢t € 7T as a vector of length equal to the number of output channels, i.e.,

hy = (hyg, ... hry) ' €RY,

for all spatial locations ¢t € 7. We note that, given inputs a and W, the pre-activation outputs h can be computed, for all
locations t € T, as

J
hi,t = Z Z Wi .6G5.¢+5 + b;, teT,i=1,..,1. ®))

j=138€eA
or equivalently, hy = Wa,, whose i-th component h; ; we can write as
~T A
hit = Zwi’jaj’t ~+ b;. (2)
jeJ

3The derivations in this paper can also be extended to the case where stride is greater than 1.
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Expressing the input-output relationship in a CNN this way, we see that it is analogous to the input-output relationship in a
fully connected feed-forward NN, except that the role of input and output node sets J and [ are taken on by the input and
output channels and the affine mapping of the vector of inputs a to the vector of outputs h,

hi:Zwi’jaj—kbi, Viel,
jeJ

where the terms w; ja; are the products of two scalars becomes in (2) the inner product of two A-dimensional vectors, and
this mapping is performed for all locations .

Hence, MBF is analaous to using the squares of the components of the gradient in a ff-cc network, and hence is analagous to
a "squared" version of an adaptive first-order method.

11 Experiment Details

11.1 Comparison Algorithms
11.1.1 SGD-m

In SGD with momentum, we updated the momentum m; of the gradient using the recurrence
My = [h-My—1 + Gt

at every iteration, where ¢, denotes the mini-batch gradient at current iteration and p = 0.9. The gradient momentum is also
used in the second-order methods, in our implementations. For the CNN problems, we used weight decay with SGD-m, as it
is used in SGDW in Loshchilov & Hutter (2019).

11.1.2 Adam

For Adam, we followed exactly the algorithm in Kingma & Ba (2014) with 8; = 0.9 and 8> = 0.999, updating the
momentum of the gradient at every iteration by the recurrence

my=p1-mt—14+(1—p51)- g

The role of 51 and [ is similar to that of 1z and 3 in Algorithms 2 and 3, as we will describe below. For the CNN problems,
we used weight decay with Adam, as it is used in AdamW in Loshchilov & Hutter (2019).

11.1.3 Shampoo

We implemented Shampoo as described below in Algorithm 3 following the description given in Gupta et al. (2018), and
include major improvements, following the suggestions in Anil et al. (2021). These improvements are (i) using a moving

average to update the estimates Ggi) and (ii) using a coupled Newton method to compute inverse roots of the preconditioning
matrices,
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Algorithm 3 Shampoo

Require: Given batch size m, learning rate {n; }r>1, weight decay factor -y, damping value e, statistics update frequency
T, inverse update frequency 75
1 p=0.9, B/f 0.9
2: Initialize Gl(z) = ]E[Gl(z)] (I=1,..,k,i=1,..., k) by iterating through the whole dataset, V/W\Lﬁ =0(=1,..,L)
3: fork=1,2,...do
4:  Sample mini-batch M}, of size m
5. Perform a forward-backward pass over the current mini-batch Mj, to compute the minibatch gradient V£
6 for Lz\l, ...L /d(_)\
7 Vw, L =uVw, L+ Vw, L
8: if k =0 (mod T3) then
9: Update Gl(l) = BGl(Z) +(1— B)@(z) fori =1,...,k; where G, = Vy, L
10: end if

11: if t =0 (mod T5) then
— —1/2k — —1/2k

12: Recompute (Gl(l) + el ) s eee (Gl(kl) + €l ) with the coupled Newton method
13: end if

/\ — —1/2k — —1/2k,
14: pr = Vw, L X1 (Gl(l)+e[) Xog - X <Gl(kl)+d>
15: p=p+ YW
16: Wi=Wi—ne-p
17:  end for
18: end for

11.1.4 KFAC

In our implementation of KFAC, the preconditioning matrices that we used for linear layers and convolutional layers are
precisely those described in Martens & Grosse (2015) and Grosse & Martens (2016), respectively. For the parameters in the
BN layers, we used the gradient direction, exactly asin https://github.com/alecwangcqg/KFAC-Pytorch. We
did a warm start to estimate the pre-conditioning KFAC matrices in an initialization step that iterated through the whole data
set, and adopted a moving average scheme to update them with 8 = 0.9 afterwards. As in the implementation described in
Ren & Goldfarb (2021a), for autoencoder experiments, we inverted the damped KFAC matrices and used them to compute
the updating direction, where the damping factors for both A and G' were set to be v/, where \ is the overall damping
value; and for the CNN experiments, we employed the SVD (i.e. eigenvalue decomposition) implementation suggested
inhttps://github.com/alecwangcqg/KFAC-Pytorch, which, as we verified, performs better than splitting the
damping value and inverting the damped KFAC matrices (as suggested in Martens & Grosse (2015), Grosse & Martens
(2016)). Further, for the CNN problems, we implemented weight decay exactly as in MBF (Algorithm 2) and Shampoo
(Algorithm 3).

11.1.5 MBF, other details

In Tables 3 and 4, we compare the space and computational requirements of the proposed MBF method with KFAC,
Shampoo and Adam for a fully connected layer, with d; inputs and d,, outputs. Note that these tables are the fully-connected
analogs to Table 1 in Section 5, which compare the storage and computational requirements for MBF, KFAC, Shampoo
and Adam for a convolutional layer. Here, m denotes the size of the minibatches, and 77 and 75 denote, respectively, the
frequency for updating the preconditioners and inverting them for KFAC, Shampoo and MBF.

For the parameters in the BN layers, we used the direction used in Adam, which is equivalent to using mini-blocks of size 1,
dividing each stochastic gradient component by that blocks square root. We did a warm start to estimate the pre-conditioning
mini-block matrices in an initialization step that iterated through the whole data set, and adopted a moving average scheme
to update them with 5 = 0.9 afterwards as described in Algorithm 2.
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Table 3: Storage Requirements for fully connected layer

Algorithm DW P

MBF O(d;d,) O(d?)
KFAC O(did,) O(d? + d? + d;d,)
Shampoo | O(d;d,) O(d? + d?)
Adam O(dzdo) O(dldo)

Table 4: Computation per iteration beyond that required for the minibatch stochastic gradient for fully connected layer

Algorithm | Additional pass Curvature Step AW,
(/,,d? (/,,d?
MBF — O(2 T j T23) . O(d,d?)
KFAC O(mgde)y  o(mifmde 4 dtde)  O(d2d, + d2d;)
BLE | ddydd
Shampoo — O(Zp= +=x=)  O((di +do)did,)
Adam — O(d;d,) O(d;d,)

11.2 Experiment Settings for the Autoencoder Problems

Table 5 describes the model architectures of the autoencoder problems. The activation functions of the hidden layers are
always ReLU, except that there is no activation for the very middle layer.

Table 5: DNN architectures for the MLP autoencoder problems

Layer width
MNIST [784, 1000, 500, 250, 30, 250, 500, 1000, 784]
FACES [625, 2000, 1000, 500, 30, 500, 1000, 2000, 625]

CURVES [784, 400, 200, 100, 50, 25, 6, 25, 50, 100, 200, 400, 784]

MNIST#, FACES?’, and CURVES® contain 60,000, 103,500, and 20,000 training samples, respectively, which we used in
our experiment to train the models and compute the training losses.

We used binary entropy loss (with sigmoid) for MNIST and CURVES, and squared error loss for FACES. The above settings
largely mimic the settings in Martens (2010), Martens & Grosse (2015), Botev et al. (2017), Ren & Goldfarb (2021b). Since
we primarily focused on optimization rather than generalization in these tasks, we did not include Lo regularization or
weight decay.

In order to obtain Figure 8, we first conducted a grid search on the learning rate (Ir) and damping value based on the criteria
of minimizing the training loss. The ranges of the grid searches used for the algorithms in our tests are specified in Table 6.

The best hyper-parameter values determined by our grid searches are listed in Table 5.

11.3 Experiment Settings for the CNN Problems

The ResNet32 model refers to the one in Table 6 of He et al. (2016), whereas the VGG16 model refers to model D of
Simonyan & Zisserman (2014), with the modification that batch normalization layers were added after all of the convolutional
layers in the model. For all algorithms, we used a batch size of 128 at every iteration.

We used weight decay for all the algorithms that we tested, which is related to, but not the same as Ly regularization added
to the loss function, and has been shown to help improve generalization performance across different optimizers Loshchilov
& Hutter (2019), Zhang, Wang, Xu & Grosse (2019). The use of weight decay for MBF and Shampoo is implemented in

*http://yann.lecun.com/exdb/mnist/
Shttp://www.cs.toronto.edu/~jmartens/newfaces_rot_single.mat
*http://www.cs.toronto.edu/~Jjmartens/digs3pts_1.mat
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Table 6: Grid of hyper-parameters for autoencoder problems

Algorithm learning rate damping A

SGD-m le-4, 3e-4, 1e-3, 3e-3, le-2, 3e-2 damping: not applicable
Adam le-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, le-2 le-8, le-4, 1e-2

Shampoo le-5, 3e-5, le-4, 3e-4, 1e-3, 3e-3 le-4, 3e-4, 1e-3, 3e-3, le-2
MBF le-7, 3e-7, 1le-6, 3e-6, le-5, 3e-5, le-4 le-5, 3e-5, le-4, 3e-4, 1e-3, 3e-3, le-2
KFAC le-4, 3e-4, 1e-3, 3e-3, le-2, 3e-2, le-2, 3e-2 le-2, 3e-2, le-1, 3e-1, 1e0, 3e0, lel

Table 7: Hyper-parameters (learning rate, damping) used to produce Figure 8

Name MNIST FACES CURVES

MBF (le-5,3e-4) — 51.49 (le-6,3e-3) —» 5.17 (le-5, 3e-4) — 55.14
KFAC (3e-3, 3e-1) — 53.56  (le-1, lel) =+ 5.55 (le-2, 1e0) — 56.47
Shampoo (3e-4, 3e-4) — 53.80 (3e-4, 3e-4) — 7.21 (le-3, 3e-3) — 54.86
Adam (3e-4, le-4) — 53.67 (le-4, le-4) — 5.55 (3e-4, le-4) — 55.23
SGD-m (3e-3,-) — 55.63 (1e-3,-) — 7.08 (le-2,-) — 55.49

lines 16 and 17 in Algorithm 2 and in lines 15 and 16 in Algorithm 3, respectively, and is similarly applied to SGD-m ,
Adam, and KFAC.

For MBF, we set A\ = 0.003. We also tried values around 0.003 and the results were not sensitive to the value of A. Hence,
A can be set to 0.003 as a default value. For KFAC, we set the overall damping value to be 0.03, as suggested in the
implementation in https://github.com/alecwangcqg/KFAC-Pytorch. We also tried values around 0.03 for
KFAC and confirmed that 0.03 is a good default value.

In order to obtain Figure 7, we first conducted a grid search on the initial learning rate (Ir) and weight decay (wd) factor
based on the criteria of maximizing the classification accuracy on the validation set. The range of the grid searches for the
algorithms in our tests are specified in Table 8.

Table 8: Grid of hyper-parameters for CNN problems

Algorithm learning rate weight decay

SGD-m 3e-5, le-4, 3e-4, 1e-3, 3e-3, le-2, 3e-2, le-1, 3e-1, 1e0  1le-2, 3e-2, le-1, 3e-1, 10, 3e0, lel
Adam le-6, 3e-6, 1e-5, 3e-5, le-4, 3e-4, 1e-3, 3e-3, 1le-2, 3e-2  1le-2, 3e-2, le-1, 3e-1, 10, 3e0, lel
Shampoo 3e-5, le-4, 3e-4, 1e-3, 3e-3, le-2, 3e-2, le-1 le-2, 3e-2, le-1, 3e-1, 1e0, 3e0, lel
MBF le-6, 3e-6, le-5, 3e-5, le-4, 3e-4, 1e-3, 3e-3 le-2, 3e-2, le-1, 3e-1, 1e0, 3e0, lel
KFAC 3e-6, le-5, 3e-5, le-4, 3e-4, 1e-3, 3e-3, le-2, 3e-2 le-2, 3e-2, le-1, 3e-1, 1€0, 3e0, 1el

The best hyper-parameter values, and the validation classification accuracy obtained using them, are listed in Table 9.

Table 9: Hyper-parameters (initial learning rate, weight decay factor) used to produce Figure 7 and the average validation
accuracy across 5 runs with different random seeds shown in Figure 7

Name CIFAR-10 + ResNet32  CIFAR-100 + VGG16  SVHN + VGGl11

MBF (le-4,3e0) — 93.42%  (3e-5, lel) — 74.80%  (le-3, 3e-1) — 96.59%
KFAC (3e-3, le-1) — 93.02%  (le-3,3e-1) — 74.38%  (3e-3, le-1) — 96.37%
Shampoo (le-2, le-1) —92.97% (le-3,3e-1) — 73.37% (3e-3, le-1) — 96.15%
Adam (3e-3, le-1) — 93.34%  (3e-5, lel) — 72.95%  (3e-4, 1e0) — 96.34%
SGD-m  (le-1,1e-2) = 93.23% (3e-2, le-2) — 73.99%  (3e-2, le-2) — 96.63%
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11.4 More on MBF Implementation Motivations

11.4.1 Details on the Cosine similarity experiment

We provide in Algorithm 4 the full implementation of MBF-True for completeness. Note that, in MBF-True, the only
difference between it and MBF is that we are using the mini-batch gradient D, W, ;, (denoted by D, ) of the model on
sampled labels y; from the model’s distribution (see lines 10-13 in Algorithm 4) to update the estimate of mini-block
preconditioners, using a moving average (lines 12, 13), with a rank one outer-product, which is different from computing the
true Fisher for that mini-block.

Algorithm 4 MBF-True

Require: Given batch size m, learning rate {ny, } ,>1, weight decay factor -y, damping value ), statistics update frequency
Ty, inverse update frequency 75
I u=0.9=09
2: Initialize él\,b = E[G ] (I =1, .., k, mini-blocks b) by iterating through the whole dataset, D/VITJ, =0(=1,.,k,
mini-blocks b)

3: fork=1,2,...do
4:  Sample mini-batch M, of size m
5:  Perform a forward-backward pass over M; to compute the mini-batch gradient DWW,
6: forl=1,..Ldo
7: for mini-block b in layer /, in parallel do
8: 'D/I—/VZ\J, = [LD/I-/Vl\,b +DWi
9: if k =0 (mod T}) then
10: Sample the labels y; from the model’s distribution
11: Perform a backward pass over y; to compute the mini-batch gradients Do W ;,
12: If Layer [ is convolutional: le]\l = ﬁCTg—J\, + (1= B)DW, ;i (Dng,j7i)T
13: If Layer [ is fully-connected: é\l = ﬁé\z + % Z].Ozl DWWy 5 (DQWl’j)T
14: end if
15: if k =0 (mod T3) then
16: Recompute and store (él\b + AL
17: end if o
18: pip = (Grp+ )\I)*l'DVVl,b + Wi
19: Wiy = Wiy — i
20: end for
21:  end for
22: end for

As mentioned in the main manuscript, we explored how close MBF’s direction is to the one obtained by a block-diagonal full
EFM method (that we call BDF). We provide here a detailed implementation of the procedure that we used for completeness.
More specifically, for any algorithm X, we reported the cosine similarity between the direction given by X and that obtained
by BDF in the procedure described in Algorithm 5.

The algorithms were run on a 16 x 16 down-scaled MNIST LeCun et al. (2010) dataset and a small feed-forward NN with
layer widths 256-20-20-20-20-20-10 described in Martens & Grosse (2015). For all methods, we followed the trajectory
obtained using the BDF method as described in Algorithm 5.

11.4.2 Comparison between MBF and MBF-True on Autoencoder and CNN problems

The cosine similarity results reported in the main manuscript (see Figure 6 and related discussion) on the down-scaled
MNIST suggest that the direction obtained by MBF and MBF-True behave similarly with respect the direction obtained
by BDF. In this section, we compare the performance of MBF-True to MBF on the same Autoencoder problems (MNIST,
FACES, CURVES) described in 11.2 and the same CNN problems (CIFAR-10 + ResNet32, CIFAR-100 + VGG16, and
SVHN + VGGI11) described in 11.3. We used the same grid of parameters to tune MBF-True as the one described in 11.2
and 11.3. We report in Figures 10 and 11 the training and validation errors obtained on these problems, as well as the
best hyper-parameters for both methods in the legends. It seems that using the symmetric outer product of the empirical
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Algorithm 5 Cosine(BDF, Algorithm X)

Require: All required parameters for Algorithm X

1: m =1000,n=0.01,4 = 0.9, = 0.9, A = 0.01

2: Initialize the block EFM matrices F; = E[F}] (I = 1, .., L) by iterating through the whole dataset

DWW, =0(=1,.,L)

4: fork=1,2,...do

5:  Sample mini-batch M, of size m

6:  Perform a forward-backward pass over M, to compute the mini-batch gradient DWW,
7. forl=1,...Ldo
8.
9

Z?V[\/l :ﬂfﬁ + DW,
. Ri=ph+(1- PER)
10: P = (Fl + )\I)_IDWl’b

11: Compute the direction d; given by algorithm X at the current iterate W,
12 Compute and store the cosine ”Zl)ﬁ#l‘“

13: W, =W, —npi

14:  end for

15: end for

mini-batch gradient to update the mini-block preconditioner yields better results than using the mini-batch gradient from
sampled data from the model’s distribution to compute this inner product.

We think this might be the case because MBF is closer to being an adaptive gradient methods, which also use the empirical
gradient such as ADAGRAD and ADAM, rather than a second-order natural gradient method such as KFAC, where in the
latter case using a sampled gradient yields better results than using the empirical data. Note that, when the mini-block sizes
are 1, MBF becomes a diagonal preconditioning method like ADAM minus the square root operation.

G 250 500 750 1000 1250 1500 1750 2000 g 150 200 560 00 500
Process time (in seconds) s

(b) FACES autoencoder

00 500 © 100 200 300 400 500 600 700 800
Epochs

(c) CURVES autoencoder

Figure 10: Training performance of MBF-True and MBF on three autoencoder problems.

11.4.3 Spacial averaging on convolutional layers.

In this section, we compare the performance of MBF with spacial averaging applied to convolutional layers to MBF on
the same three CNN problems (CIFAR-10 + ResNet-32, CIFAR-100 + VGG16, and SVHN + VGG11) described in 11.3.
We used the same grid of parameters to tune MBF-CNN-Avg as the one described in 11.3. We report in Figure 12 the
validation errors obtained on these problems, as well as the best hyper-parameters for both methods in the legends. It seems
that using the average of the kernel-wise mini-blocks to update the preconditioner yields slightly worse results than using the
individual mini-blocks as preconditioner. We think this might be the case because the averaging over all mini-blocks results
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Figure 11: Testing performance of MBF-True and MBF on three CNN problems.

into a loss of curvarture information as the kernel-wise mini-blocks are small in size. Note that, when using the average
mini-blocks, MBF requires less memory than adaptive first-order methods such as ADAM.
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Figure 12: Testing performance of MBF-CNN-Avg(MBF with spacial averaging applied to CNN layers) and MBF on three
CNN problems.

11.4.4 On the effect of the update frequencies 77, 75:

We also explored the effect of the update frequencies 77,75 for the mini-block preconditionners as used in Algorithm 2.
To be more specific, we tuned the learning rate for various combinations of 77,75 depicted in Figure 13. Comparing the
performance of Algorithm 2 for these different configurations, we can see that the effect of the frequencies 77,75 on the
final performance of MBF is minimal and the configurations 77, T» = (1,20), T1,T> = (2,25) seem to yield the best
performance in terms of process time for autoencoder problems.
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Figure 13: Training performance of MBF on MNIST autoencoder problems for some combinations of 77, T5.

11.4.5 Additional adaptive first order algorithms results

In this section, we compare the performance of two additional adaptive first-order methods AdaBelief and AdaGrad with the
performance of SGD-m, Adam(W), Shampoo, MBF and KFAC. The hyperparameterss for these additional methods were
tuned using the same grid used to tune Adam(W) on the MNIST Autoencoder problem and CIFAR-100 with VGG-16, and

are depicted in Figure 14.
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Figure 14: Additional adaptive first order methods results.
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As Figure 14 shows, AdaBelief outperformed both AdamW and Adagrad on MNIST and CIFAR-100 (but only slightly
so in the comparison to AdamW on MNIST). However, crucially, Adabelief was still outperformed by MBF on these two
problems. In our experiments reported in the main body of the paper, we chose to compare MBF (with weight decay, which
was included in all of the methods in our tests) against AdamW rather than AdaBelief, since to be fai,r if we used the latter
variant, we would need to test "belief" versions of MBF, Shampoo and KFAC by incorporating a "belief" term in updating
the EMA (Exponential Moving Average) of the preconditioning matrices. This is an interesting research direction for future
work.

11.4.6 Additional inverse EFM heatmap illustrations

As mentioned in the main manuscript, we include here additional examples that illustrate that most of the weight in the
inverse of the empirical Fisher matrix resides in the mini-blocks used in MBF. For convolutional layers, we trained a simple
convolutional neural network, Simple CNN, on Fashion MNIST (Xiao et al. 2017). The model is identical to the base model
described in Shallue et al. (2019). It consists of 2 convolutional layers with max pooling with 32 and 64 filters each and
5 x b filters with stride 1, “same” padding, and ReL U activation function followed by 1 fully connected layer. Max pooling
uses a 2 x 2 window with stride 2. The fully connected layer has 1024 units. It does not use batch normalization.

Figure 16 shows the heatmap of the absolute value of the inverse empirical Fisher corresponding to the second convolutional
layer for channels 1, 16 and 32, which all use 64 filters of size 5 x 5 (thus 64 mini-blocks of size 25 x 25 per channel). One
can see that the mini-block (by filter) diagonal approximation is reasonable.

OO0 OO0 00 OO0 0000000000 C
N OooonNdtOooooNtODOoONS OO
A A H N NN NN M NN MN M

Figure 15: Absolute inverse EFM, second fully connected layer 20-20

As mentioned in the main manuscript, we illustrate the mini-block structure of the empirical Fisher matrix on a 7-layer
(256-20-20-20-20-20-10) feed-forward DNN using tanh activations, partially trained (after 50 epochs using SGD-m) to
classify a 16 x 16 down-scaled version of MNIST that was also used in (Martens & Grosse 2015). Figure 15 shows the
heatmap of the absolute value of the inverse empirical FIM for the second fully connected layers (including bias). One can
see that the mini-block (by neuron) diagonal approximation is reasonable.
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(a) Absolute inverse EFM for channel 1 (b) Zoom on the 20th to 30th blocks

(c) Absolute inverse EFM for channel 16 (d) Zoom on the 20th to 30th blocks
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(e) Absolute inverse EFM for channel 32 (f) Zoom on the 20th to 30th blocks

Figure 16: Absolute inverse of the empirical EFM after 10 epochs for the second convolutional layer of the Simple-CNN.
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11.5 Sensitivity to Hyper-parameters:

11.6 MBF
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107
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learning rate

Figure 17: Landscape of the final training loss value w.r.t hyper-parameters (i.e. learning rate and damping) for MBF. The
left, middle, right columns depict results for MNIST, FACES, CURVES, which are terminated after 500, 2000, 500 seconds
(CPU time), respectively.

11.7 KFAC
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Figure 18: Landscape of the final training loss value w.r.t hyper-parameters (i.e. learning rate and damping) for KFAC. The
left, middle, right columns depict results for MNIST, FACES, CURVES, which are terminated after 500, 2000, 500 seconds
(CPU time), respectively.

11.8 Training and testing plots:

For completeness, we report in Figures 19 and 20 both training and testing performance of the results plotted in Figures 7
and 8 in the main manuscript.
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Figure 19: Training and testing performance of MBF, KFAC, Shampoo, Adam, and SGD-m on three CNN problems.
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Figure 20: Training and testing performance of MBF, KFAC, Shampoo, Adam, and SGD-m on three autoencoder problems.

12 Limitations

We have explored using MBF in both Autoencoder and CNN problems. However, we believe it would be interesting to
extend the method to other architectures such as RNNs and other sets of problems such as natural language processing
(NLP) that predominately use Transformer models. It would also be interesting to extend our theoretical results to the fully
stochastic case.



