
A Mini-Block Fisher Method for Deep Neural Networks

Achraf Bahamou Donald Goldfarb Yi Ren

Department of Industrial Engineering and Operations Research

Columbia University

Abstract

Deep Neural Networks (DNNs) are currently

predominantly trained using first-order methods.

Some of these methods (e.g., Adam, AdaGrad,

and RMSprop, and their variants) incorporate a

small amount of curvature information by using

a diagonal matrix to precondition the stochastic

gradient. Recently, effective second-order meth-

ods, such as KFAC, K-BFGS, Shampoo, and

TNT, have been developed for training DNNs,

by preconditioning the stochastic gradient by

layer-wise block-diagonal matrices. Here we pro-

pose a "mini-block Fisher (MBF)" preconditioned

stochastic gradient method, that lies in between

these two classes of methods. Specifically, our

method uses a block-diagonal approximation to

the empirical Fisher matrix, where for each layer

in the DNN, whether it is convolutional or feed-

forward and fully connected, the associated diago-

nal block is itself block-diagonal and is composed

of a large number of mini-blocks of modest size.

Our novel approach utilizes the parallelism of

GPUs to efficiently perform computations on the

large number of matrices in each layer. Conse-

quently, MBF’s per-iteration computational cost

is only slightly higher than it is for first-order

methods. The performance of MBF is compared

to that of several baseline methods, on Autoen-

coder, Convolutional Neural Network (CNN), and

Graph Convolutional Network (GCN) problems,

to validate its effectiveness both in terms of time

efficiency and generalization power. Finally, it

is proved that an idealized version of MBF con-

verges linearly.

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

1 INTRODUCTION

First-order methods based on stochastic gradient descent

(SGD) (Robbins & Monro 1951), and in particular, the class

of adaptive learning rate methods, such as AdaGrad (Duchi

et al. 2011), RMSprop (Hinton et al. 2012), and Adam

(Kingma & Ba 2014), are currently the most widely used

methods to train deep learning models (the recent paper

(Schmidt et al. 2021) lists 65 methods that have “Adam” or

“Ada” as part of their names). While these methods are easy

to implement and have low computational complexity, they

make use of only a limited amount of curvature information.

Standard SGD and its mini-batch variants, use none. SGD

with momentum (SGD-m) (Polyak 1964) and stochastic ver-

sions of Nesterov’s accelerated gradient method (Nesterov

1998), implicitly make use of curvature by choosing step

directions that combine the negative gradient with a scaled

multiple of the previous step direction, very much like the

classical conjugate gradient method.

To effectively optimize ill-conditioned functions, one usu-

ally needs to use second-order methods, which range from

the Newton’s method to those that use approximations to the

Hessian matrix, such as BFGS quasi-Newton (QN) meth-

ods (Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno

1970), including limited memory (LM) variants (Liu & No-

cedal 1989), and Gauss-Newton (GN) methods (Ortega &

Rheinboldt 1970). To handle large machine learning data

sets, stochastic methods such as sub-sampled Newton (Xu

et al. 2019)), QN (Byrd et al. 2016, Gower et al. 2016, Wang

et al. 2017), GN, natural gradient (NG) (Amari et al. 2000),

Hessian-free (Martens 2010), Krylov subspace, (Vinyals &

Povey 2012), and LM variants of Anderson acceleration

(He et al. 2022, Scieur et al. 2018), that are related to LM

multisecant QN methods (see (Scieur et al. 2021)), have

been developed. However, in all of these methods, whether

they use the Hessian or an approximation to it, the size of

the matrix becomes prohibitive when the number of training

parameters is huge.

Therefore, deep learning training methods have been pro-

posed that use layer-wise block-diagonal approximations to

the second-order preconditioning matrix. These include a

Sherman-Morrison-Woodbury based variant (Ren & Gold-

A Mini-Block Fisher Method for Deep Neural Networks

farb 2019) and a low-rank variant (Roux et al. 2008) of the

block-diagonal Fisher matrix approximations for NG meth-

ods. Also, Kronecker-factored matrix approximations of the

diagonal blocks in Fisher matrices have been proposed to

reduce the memory and computational requirements of NG

methods, starting from KFAC for multilayer preceptrons

(MLPs) (Martens & Grosse 2015), which was extended

to CNNs in (Grosse & Martens 2016); (in addition, see

Heskes (2000), Povey et al. (2014), George et al. (2018)).

Kronecker-factored QN methods (Goldfarb et al. 2020), gen-

eralized GN methods (Botev et al. 2017), an adaptive block

learning rate method Shampoo (Gupta et al. 2018), based

on AdaGrad, and an approximate NG method TNT (Ren &

Goldfarb 2021b), based on the assumption that the sampled

tensor gradient follows a tensor-normal distribution have

also been proposed.

Our Contributions: We propose here a new Mini-Block

Fisher (MBF) gradient method that lies in between adap-

tive first-order methods and block diagonal second-order

methods. Specifically, MBF uses a block-diagonal approx-

imation to the empirical Fisher matrix, where for each

DNN layer, whether it is convolutional or feed-forward and

fully-connected, the associated diagonal block is also block-

diagonal and is composed of a large number of mini-blocks

of modest size.

Crucially, MBF has comparable memory requirements to

those of first-order methods, while its per-iteration time

complexity is smaller, and in many cases, much smaller

than that of popular second-order methods (e.g. KFAC) for

training DNNs. Further, we prove convergence results for a

variant of MBF under relatively mild conditions.

In numerical experiments on well-established Autoencoder,

CNN and GCN models, MBF consistently outperformed

state-of-the-art (SOTA) first-order methods (SGD-m and

Adam) and performed favorably compared to popular

second-order methods (KFAC and Shampoo).

2 NOTATION AND DEFINITIONS

Notation. Diagi2[L](Ai) is the block diagonal matrix with

{A1, ..., AL} on its diagonal; [L] := {1, ..., L}; X =
[x1, ..., xn]

> 2 R
n⇥d is the input data; �min(M),�max(M)

are the smallest and largest eigenvalues of the matrix M ; ⌦
denotes the Kronecker product; k.k2 denotes the Euclidean

norm of a vector or matrix; and vec(A) vectorizes A by

stacking its columns.

We consider a DNN with L layers, defined by weight

matrices Wl, for l 2 [L], that transforms the in-

put vector x to an output f(W ,x). For a data-

point (x, y), the loss ` (f(W ,x), y) between the output

f(W ,x) and y, is a non-convex function of vec(W)> =h
vec (W1)

>
, ..., vec (WL)

>
i
2 R

p, containing all of the

network’s parameters, and ` measures the accuracy of the

prediction (e.g. squared error loss, cross entropy loss). The

optimal parameters are obtained by minimizing the average

loss L over the training set:

L(W) =
1

n

nX

i=1

`(f(W , xi), yi), (1)

This setting is applicable to most common models in deep

learning such as multilayer perceptrons (MLPs), CNNs,

recurrent neural networks (RNNs), etc. In these models,

the trainable parameter Wl (l = 1, . . . , L) come from the

weights of a layer, whether it be a feed-forward, convolu-

tional, recurrent, etc. For the weight matrix Wl 2 R
pl corre-

sponding to layer l and a subset of indices b ⇢ {1, . . . , pl},

we denote by Wl,b, the subset of parameters of Wl corre-

sponding to b.

The average gradient over a mini-batch of size m, g(m) =
1
m

Pm
i=1

@`(f(W ,xi),yi)
@W

, is computed using standard back-

propagation. In the full-batch case, where m = n, g(n) =

g = @L(W)
@W

= DW . Here, we are using the notation

DX := @L(W)
@X

for any subset of variables X ⇢ W .

The Jacobian J(W) of the loss L(·) w.r.t the parame-

ters W for a single output network is defined as J =
[J>

1 , ...,J>
n]> 2 R

n⇥p, where J>
i is the gradient of the

loss w.r.t the parameters, i.e., J>
i = vec(

@`(f(W ,xi),yi)
@W

).

We use the notation JX
i

>
= vec(

@`(f(W ,xi),yi)
@X) and JX =

[JX
1

>
, ...,JX

n
>
]> for any subset of variables X of W .

The Fisher matrix F (W) of the model’s conditional dis-

tribution is defined as

F (W) = E
x⇠Qx

y⇠pW (·|x)

"
@ log pW (y|x)

@W

✓
@ log pW (y|x)

@W

◆>
#
,

where Qx is the data distribution of x and pW (·|x) is the

density function of the conditional distribution defined by

the model with a given input x. As shown in (Martens 2020),

F (W) is equivalent to the Generalized Gauss-Newton

(GGN) matrix if the conditional distribution is in the ex-

ponential family, e.g., a categorical distribution for classifi-

cation or a Gaussian distribution for regression.

The empirical Fisher matrix (EFM) F̃ (W) defined as:

F̃ (W) =
1

n

nX

i=1

@`(f(W , xi), yi)

@W

@`(f(W , xi), yi)

@W

>

=
1

n
J(W)>J(W),

is obtained by replacing the expectation over the model’s

distribution in F (W) by an average over the empirical data.

MBF uses the EFM rather than the Fisher matrix, since

doing so does not require extra backward passes to compute

Achraf Bahamou, Donald Goldfarb, Yi Ren

additional gradients and memory to store them. We note

that, as discussed in (Kunstner et al. 2019) and (Thomas et al.

2020), the EFM , which is an un-centered second moment

of the gradient, captures less curvature information than

the Fisher matrix, which coincides with the GGN matrix

in many important cases, and hence is closely related to

r2L(W). To simplify notation we will henceforth drop

the "tilde"˜and denote the EFM by F . We denote by FX =
1
n (J

X)>JX , the sub-block of F (W) associated with any

subset of variables X ⇢ W , and write (FX)�1 as F�1
X .

3 MINI-BLOCK FISHER (MBF) METHOD

At each iteration, MBF preconditions the gradient direction

by the inverse of a damped EFM:

W (k + 1) = W (k)� ↵ (F (W (k)) + �I)
�1

g(k), (2)

where ↵ is the learning rate and � is the damping parameter.

To avoid the work of computing and storing the inverse of

the p⇥ p damped EFM, (F + �I)�1, where p can be in the

millions, we assume, as in KFAC and Shampoo, that the

EFM has a block diagonal structure, where the lth diagonal

block corresponds to the second moment of the gradient of

the model w.r.t to the weights in the lth layer. Hence, the

block-diagonal EFM is:

F (W) ⇡ Diag
�
FW1 , ...,FWL

�
.

Figure 1 summarizes how several existing methods further

approximate these diagonal blocks.

Block-diagonal
Preconditionner

matrix

KFAC

TNT

Adaptive gradient methods:
Adam, AdaGrad, RMSProp...

Diagonal preconditionner

gradient
direction

Hessian
approximation

methods

KBFGS

Shampoo

Mini-block Fisher
MBF

Fisher
approximation

methods

Second moment
based methods

Figure 1: MBF vs other block-diagonal preconditioned gra-

dient methods

MBF further approximates each of the diagonal blocks FWl

by a block-diagonal matrix, composed of a typically large

number mini-blocks, depending on the nature of layer l, as

follows:

Layer l is convolutional : For simplicity, we assume

that the convolutional layer l is 2-dimensional and has J

Convolutional layer
parameters

Input volume Output

Kernel
filter , channel

Preconditionner of

for a single sample

Figure 2: Illustration of MBF’s approximation for a convolu-

tional layer.

 Inputs

Preconditionner of

for a single sample

 Neurons
Fully connected layer

weights

-th Neuron

Figure 3: Illustration of MBF’s preconditionner for a feed-

forward fully-connected layer.

input channels indexed by j = 1, ..., J , and I output chan-

nels indexed by i = 1, ..., I; there are I ⇥ J kernels

Wl,j,i, each of size (2R+ 1)⇥ (2R+ 1), with spatial off-

sets from the centers of each filter indexed by � 2 ∆ :=
{�R, ..., R} ⇥ {�R, ..., R}; the stride is of length 1, and

the padding is equal to R, so that the sets of input and output

spatial locations (t 2 T ⇢ R
2) are the same.1. For such

layers, we use the following (IJ + 1) ⇥ (IJ + 1) block-

diagonal approximation to the lth diagonal block FWl of

the Fisher matrix

diag{FWl,1,1 , ...,FWl,1,I , ...,FWl,J,1 , ...,FWl,J,I ,F bl},

where each of the IJ diagonal blocks FWl,j,i is a |∆|⇥ |∆|
symmetric matrix corresponding to the kernel vector Wl,j,i

and where F bl is an I ⇥ I diagonal matrix corresponding

the bias vector bl. Therefore, the preconditioning matrix

F�1
Wl,j,i

corresponding to the kernel for input-output channel

pair (j, i) is given by:

F�1
Wl,j,i

:=

✓
1

n
(JWl,j,i)TJWl,j,i + �I

◆�1

A common choice in CNNs is to use either a 3⇥ 3 or 5⇥ 5
kernel for all of the IJ channel pairs in a layer. Therefore,

all of these matrices are of the same (small) size, |∆|⇥ |∆|,

1The derivations in this paper can also be extended to the case
where the stride is greater than 1.

A Mini-Block Fisher Method for Deep Neural Networks

and can be inverted efficiently by utilizing the parallelism

of GPUs. We illustrate MBF’s approximation for a convolu-

tional layer for the case of one data-point in Fig. 2. From

Fig. 2, it is apparent that the kernal matrices in a convolu-

tional layer that connect the input to the output channels

are analogous to the scalar weights that connect input to

output nodes in a ff-cc layer. Hence, the "mini" diagonal

blocks FWl,j,i in MBF are analogous to the squares of the

components of the gradient in a ff-cc network, and hence

MBF can be viewed as a "squared" version of an adaptive

first-order method. This observation (detailed in Appendix

10) was in fact the motivation for our development of the

MBF approach.

Layer l is feed forward and fully connected (ff-fc): For a

ff-fc layer with I inputs and O outputs, we use the following

O ⇥O block-diagonal approximation to the Fisher matrix

FWl ⇡ diag{FWl,1 , . . . ,FWl,O},

whose jth diagonal block FWl,j is an (I + 1) ⇥ (I + 1)
symmetric matrix corresponding to the vector Wl,j of I

weights from all of the input neurons and the bias to the jth
output neuron. Therefore, the preconditioning matrix F�1

Wl,j

corresponding to the jth output neuron is given by:

F�1
Wl,j

:=

✓
1

n
(JWl,j)TJWl,j + �I

◆�1

Our choice of such a mini-block subdivision was motivated

by the findings presented in (Roux et al. 2008), first derived

in (Collobert 2004), where it was shown that the Hessian of

a neural network with one hidden layer with cross-entropy

loss converges during optimization to a block-diagonal ma-

trix, where the diagonal blocks correspond to the weights

linking all the input units to one hidden unit and all of the

hidden units to one output unit.

This suggests that a similar block-diagonal structure applies

to the Fisher matrix in the limit of a sequence of iterates pro-

duced by an optimization algorithm. The latter suggestion

was indeed confirmed by findings presented in (ichi Amari

et al. 2018), where the authors proved that a "unit-wise"

block diagonal approximation to the Fisher information ma-

trix is close to the full matrix modulo off-diagonal blocks

of small magnitude, which provides a justification for the

quasi-diagonal natural gradient method proposed in (Ollivier

2015) and our mini-block approximation in the case of fully

connected layers. Finally, since the O matrices FWl,j , for

j = 1, . . . , O, are all of the same size, (I + 1) ⇥ (I + 1),
they can be inverted efficiently by utilizing the parallelism

of GPUs. We illustrate MBF’s ability to approximate the

EFM of a fully connected layer for the case of one data-

point in Figure 5 for a 7-layer (256-20-20-20-20-20-10)

feed-forward DNN using tanh activations, partially trained

to classify a 16⇥ 16 down-scaled version of MNIST as in

(Martens & Grosse 2015).

Algorithm 1 Generic MBF training algorithm

Require: Given learning rates {↵k}, damping value �,

batch size m

1: for k = 1, 2, ... do

2: Sample mini-batch M of size m

3: Perform a forward-backward pass over M to com-

pute stochastic gradient DWl (l = 1, ..., L)

4: for l = 1, ..., L do

5: for mini-block b in layer l, in parallel do

6: F�1
Wl,b

:=
�

1
m (JWl,b)TJWl,b + �I

��1

7: Wl,b = Wl,b � ↵kF
�1
Wl,b

DWl,b

8: end for

9: end for

10: end for

Algorithm 1 gives the pseudo-code for a generic version of

MBF. Since updating the Fisher mini-blocks is time con-

suming in practice as it requires storing and computing the

individual gradients, we propose in Section 7 below, a prac-

tical approach for approximating these matrices. However,

we first present empirical results that justify and motivate

both the kernel-based and the all-to-one mini-block subdi-

visions described above for convolutional and ff-fc layers,

respectively, followed by a discussion of the linear conver-

gence of an idealized version of the generic MBF algorithm.

After deriving our MBF method, we became aware of the

paper (Anil et al. 2021), which proposes using sub-layer

block-diagonal preconditioning matrices for Shampoo, a

tensor based DNN training method. Specifically, it consid-

ers two cases: partitioning (i) very large individual ff-fc

matrices (illustrating this for a matrix of size [29 ⇥ 211] into

either a 1 ⇥ 2 or a 2 ⇥ 2 block matrix with blocks all of

the same size) and (ii) ResNet-50 layer-wise matrices into

sub-layer blocks of size 128. However, (Anil et al. 2021)

does not propose a precise method for using mini-blocks as

does MBF.

Motivation for MBF: Our choice of mini-blocks for both

the convolutional and ff-fc layers was motivated by the

observation that most of the weight in the EFM inverse

resides in diagonal blocks, and in particular in the mini-

blocks described above. More specifically, to illustrate this

observation for convolutional layers, we trained a simple

convolutional neural network, Simple CNN, (see Appendix

11.4.6 for more details) on Fashion MNIST (Xiao et al.

2017). Figure 4 shows the heatmap of the absolute value

of the EFM inverse corresponding to the first convolutional

layer, which uses 32 filters of size 5 ⇥ 5 (thus 32 mini-

blocks of size 25 ⇥ 25). One can see that the mini-block

(by filter) diagonal approximation is reasonable. Figures for

the 2nd convolutional layer are included in the Appendix

11.4.6. Since the ff-fc layers in the Simple-CNN model

result in an EFM for those layers that is too large to work

Achraf Bahamou, Donald Goldfarb, Yi Ren

(a) First CNN layer (b) Zoom on first 10 blocks

Figure 4: Absolute EFM inverse after 10 epochs for the first

convolutional layer of the Simple CNN network that uses 32
filters of size 5⇥ 5.

(a) Last layer (b) Middle layer

Figure 5: Absolute EFM inverse after 50 epochs of the last

and middle layers (including bias) of a small FCC-NN.

with, we chose to illustrate the mini-block structure of the

EFM on a standard DNN, partially trained to classify a

16⇥ 16 down-scaled version of MNIST that was also used

in (Martens & Grosse 2015). Figure 5 shows the heatmap

of the absolute value of the EFM inverse for the last and

middle fully connected layers (including bias). One can see

that the mini-block (by neuron) diagonal approximation is

reasonable. A larger figure for the second fully-connected

layer is included in Appendix 11.4.6).

Comparison: directions of MBF and other methods vs.

full block-diagonal EFM: To explore how close MBF’s

direction is to the one obtained by a block-diagonal full

EFM method (BDF), where each block corresponds to one

layer’s full EFM in the model, we computed the cosine

similarity between these two directions. We also included

SOTA first-order (SGD-m, Adam) and second-order (KFAC,

Shampoo) methods for reference. The algorithms were run

on a 16 ⇥ 16 down-scaled MNIST (LeCun et al. 2010)

dataset and a small feed-forward NN with layer widths 256-

20-20-20-20-20-10 described in (Martens & Grosse 2015).

As in (Martens & Grosse 2015), we only show the middle

four layers. For all methods, we followed the trajectory

obtained using the BDF method. In our implementation

of the BDF method, both the gradient and the block- EFM

matrices were estimated with a moving-average scheme,

with the decay factors set to 0.9. Note that MBF-True refers

to the version of MBF in which, similarly to KFAC, the

mini-block Fisher is computed by drawing one label from

the model distribution for each input image as opposed to

MBF, where we use the average over the empirical data.

For a more detailed comparison on Autoencoder and CNN

problems, see Appendix 11.

As shown in Figure 6, the cosine similarity between the

MBF and MBF-True and the BDF direction falls on most

iterations between 0.6 to 0.7 for all four layers and not

surprisingly, falls midway between the SOTA first-order and

block-diagonal second order methods - always better than

SGD-m and Adam, but usually lower than that of KFAC and

Shampoo. Moreover, the closeness of the plots for MBF

and MBF-True shows that using moving average mini-block

versions of the 5 EFM rather than the Fisher matrix does

not significantly affect the effectiveness of our approach.

We also report a comparison of the performance of MBF-

True and MBF on autoencoders and CNN problems in Ap-

pendix 11.4.2. Note that, in MBF-True, the only difference

between it and MBF is that we are using the mini-batch

gradient D2Wl,b (denoted by D2) of the model on sampled

labels yt from the model’s distribution to update the esti-

mate of mini-block preconditioners, using a moving average

(see lines 12, 13 in Algorithm 4 in Appendix 11.4.1), with a

rank one outer-product, which is different from computing

the true Fisher for that mini-block.

4 LINEAR CONVERGENCE

We follow the framework established in (Zhang, Martens

& Grosse 2019) to provide convergence guarantees for the

idealized MBF with exact gradients (i.e. full batch case with

m = n) and the mini-block version of the true Fisher matrix,

rather than the EFM, as the underlying preconditioning

matrix. We focus on the single-output case with squared

error loss, but analysis of the multiple-output case is similar.

We denote by u(W) = [f(W , x1), ..., f(W , xn)]
> the

output vector and y = [y1, ..., yn]
> the true labels. We con-

sider the squared error loss L on a given data-set {xi, yi}
n
i=1

with xi 2 R
d and yi 2 R, i.e. the objective is to minimize

min
W2Rp

L(W) =
1

2
k u(W)� yk2.

The update rule of MBF with exact gradient becomes

W (k + 1) = W (k)� ⌘ (FMB(W (k)) + �I)
�1

J(k)>(u(W (k))� y),

where FMB(W (k)) := 1
nJMB(W (k))>JMB(W (k)) is

the mini-block-Fisher matrix and the mini-block Jacobian

is defined as JMB(k) = Diagl2[L]Diagb
�
JWl,b(k)

�
and

JWl,b(k) := [
@f(W (k), x1)

@Wl,b
, ...,

@f(W (k), xn)

@Wl,b
]>

Achraf Bahamou, Donald Goldfarb, Yi Ren

iterations. This approach which is also used in KFAC and

Shampoo, does not seem to degrade MBF’s overall perfor-

mance, in terms of computational speed.

Comparison of Memory and Per-iteration Time Com-

plexity. In Table 1, we compare the space and computational

requirements of the proposed MBF method with KFAC,

Shampoo and Adam (see Appendix 11.1), which are among

the predominant 2nd and 1st-order methods used to train

DNNs. We focus on one convolutional layer, with J input

channels, I output channels, kernel size |∆| = (2R+ 1)2,

and |T | spacial locations. Let m denote the size of the

minibatches, and T1 and T2 denote, respectively, the fre-

quency for updating the preconditioners and inverting them

for KFAC, Shampoo and MBF. As indicated in Table 1, the

amount of memory required by MBF is the same order of

magnitude as that required by Adam, (specifically, more

by a factor of |∆|, which is usually small in most CNN

architectures; e.g, in VGG16 (Simonyan & Zisserman 2014)

|∆| = 9) and less than KFAC, Shampoo and other SOTA

Kronecker-factored preconditioners, (specifically, e.g., by a

factor of O
⇣
J + I

|∆|

⌘
for KFAC.

We indicate in Table 1, in gray, the portion of the compu-

tational complexity for both the curvature and step compu-

tations that can benefit from GPU broadcasting and paral-

lelism. Since MBF maintains mini-block curvature matrices

of the same size, its effective computational complexity is

O
⇣

|∆|2

T1

+ |∆|3

T2

+ |∆|2
⌘

, which is of modest magnitude as

it is a function of only the kernel-size ∆, which is small

in most CNN architectures. Note that in our experiments,

T1 ⇡ |∆| and T2 ⇡ |∆|2. “ The computationnal and stor-

age requirements for fully connected layers are discussed in

Appendix 11.1.5. A pseudocode that fully describes our

MBF algorithm is given in Algorithm 2 in the Appendix 8.

6 EXPERIMENTS

In this section, we compare MBF with some SOTA first-

order (SGD-m, Adam) and second-order (KFAC, Sham-

poo) methods. (See Appendix 11.1 on how these methods

were implemented.) Since MBF uses information about

the second-moment of the gradient to construct a precon-

ditioning matrix, Adam, KFAC and Shampoo were obvi-

ous choices for comparison with MBF. We used the most

popular version of Adam, AdamW (Loshchilov & Hutter

2019) as a representative of adaptive first-order methods.

An extensive study in (Schmidt et al. 2021) of more than

100 optimization methods, 65 of which have “Adam” or

“Ada” as part of their names, concluded that no method was

"clearly dominating across all tested tasks and that ADAM

remains a strong contender, with newer methods failing

to significantly and consistently outperform it". We also

include in Appendix 11.4.5 additional results that include

Adabelief and Adagrad.

Our experiments were run on a machine with one V100 GPU

and eight Xeon Gold 6248 CPUs using PyTorch Paszke

et al. (2019). Each algorithm was run using the best hyper-

parameters, determined by a grid search (specified in Ap-

pendices 11.3 and 11.2), and 5 different random seeds. The

performance of MBF and the comparison algorithms is plot-

ted in Figures 7 and 8: the solid curves depict the results

averaged over the 5 different runs, and the shaded areas

depict the ±standard deviation range for these runs.

Generalization performance, CNN problems: We first

compared the generalization performance of MBF to SGD-

m, Adam, KFAC and Shampoo on three CNN models,

namely, ResNet32 He et al. (2016), VGG16 Simonyan

& Zisserman (2014) and VGG11 Simonyan & Zisserman

(2014), respectively, on the datasets CIFAR-10, CIFAR-100

and SVHN Krizhevsky et al. (2009). The first two have

50,000 training data and 10,000 testing data (used as the

validation set in our experiments), while SVHN has 73,257

training data and 26,032 testing data. For all algorithms,

we used a batch size of 128. In training, we applied data

augmentation as described in Krizhevsky et al. (2012), in-

cluding random horizontal flip and random crop, since these

setting choices have been used and endorsed in many pre-

vious research papers, e.g. Zhang, Wang, Xu & Grosse

(2019), Choi et al. (2019), Ren & Goldfarb (2021b). (see

Appendix 11 for more details about the experimental set-up)

On all three model/dataset problems, the first-order meth-

ods were run for 200 epochs, and KFAC and Shampoo

for 100 epochs, while MBF was run for 150 epochs on

VGG16/CIFAR-100 and VGG11/SVHN, and 200 epochs

on ResNet32/CIFAR-10. The reason that we ran MBF for

200 epochs (i.e., the same number as run for Adam) on

ResNet32 was because all of ResNet32’s convolutional lay-

ers use small (3⇥ 3) kernels, and it contains just one fully

connected layer of modest size (I,O) = (64, 10). Hence

as we expected, MBF and Adam took almost the same time

to complete 200 epochs. As can be seen in Figure 7, MBF

could have been terminated after 150 epochs, without a sig-

nificant change in validation error. On the other hand, since

VGG16 and VGG11 have two large fully connected-layers

(e.g [4096, 4096, 10/100]), MBF’s per-iteration computa-

tional cost is substantially larger than Adam’s due to these

layers. Consequently, for both methods to finish roughly in

the same amount of time, we ran MBF for only 150 epochs.

All methods employed a learning rate (LR) schedule that

decayed LR by a factor of 0.1 every K epochs, where K was

set to 60, 50 and 40 , for the first-order methods, MBF, and

KFAC/Shampoo, respectively, on the VGG16 and VGG11

problems, and set to 80, 60 and 40, respectively, on the

ResNet32 problem

Moreover, weight decay, which has been shown to im-

prove generalization across different optimizers Loshchilov

& Hutter (2019), Zhang, Wang, Xu & Grosse (2019),

A Mini-Block Fisher Method for Deep Neural Networks

References

Amari, S.-I., Park, H. & Fukumizu, K. (2000), ‘Adaptive

method of realizing natural gradient learning for mul-

tilayer perceptrons’, Neural computation 12(6), 1399–

1409.

Anil, R., Gupta, V., Koren, T., Regan, K. & Singer, Y. (2021),

‘Scalable second order optimization for deep learning’,

arXiv preprint arXiv:2002.09018 .

Botev, A., Ritter, H. & Barber, D. (2017), Practical gauss-

newton optimisation for deep learning, in ‘International

Conference on Machine Learning’, PMLR, pp. 557–565.

Broyden, C. G. (1970), ‘The convergence of a class of

double-rank minimization algorithms 1. general consider-

ations’, IMA Journal of Applied Mathematics 6(1), 76–90.

Byrd, R. H., Hansen, S. L., Nocedal, J. & Singer, Y. (2016),

‘A stochastic quasi-newton method for large-scale opti-

mization’, SIAM Journal on Optimization 26(2), 1008–

1031.

Chen, J., Ma, T. & Xiao, C. (2018), ‘Fastgcn: fast learn-

ing with graph convolutional networks via importance

sampling’, arXiv preprint arXiv:1801.10247 .

Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison,

C. J. & Dahl, G. E. (2019), ‘On empirical compar-

isons of optimizers for deep learning’, arXiv preprint

arXiv:1910.05446 .

Collobert, R. (2004), Large scale machine learning, Techni-

cal report, Université de Paris VI.

Duchi, J., Hazan, E. & Singer, Y. (2011), ‘Adaptive sub-

gradient methods for online learning and stochastic

optimization’, Journal of Machine Learning Research

12(Jul), 2121–2159.

Fletcher, R. (1970), ‘A new approach to variable metric

algorithms’, The computer journal 13(3), 317–322.

George, T., Laurent, C., Bouthillier, X., Ballas, N. & Vin-

cent, P. (2018), ‘Fast approximate natural gradient de-

scent in a kronecker-factored eigenbasis’, arXiv preprint

arXiv:1806.03884 .

Glorot, X. & Bengio, Y. (2010), Understanding the diffi-

culty of training deep feedforward neural networks, in

‘Proceedings of the thirteenth international conference on

artificial intelligence and statistics’, pp. 249–256.

Goldfarb, D. (1970), ‘A family of variable-metric methods

derived by variational means’, Mathematics of computa-

tion 24(109), 23–26.

Goldfarb, D., Ren, Y. & Bahamou, A. (2020), Practical

quasi-newton methods for training deep neural networks,

in H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan &

H. Lin, eds, ‘Advances in Neural Information Processing

Systems’, Vol. 33, Curran Associates, Inc., pp. 2386–

2396.

Gower, R., Goldfarb, D. & Richtárik, P. (2016), Stochastic

block bfgs: Squeezing more curvature out of data, in ‘In-

ternational Conference on Machine Learning’, pp. 1869–

1878.

Grosse, R. & Martens, J. (2016), A kronecker-factored ap-

proximate fisher matrix for convolution layers, in ‘In-

ternational Conference on Machine Learning’, PMLR,

pp. 573–582.

Gupta, V., Koren, T. & Singer, Y. (2018), Shampoo: Pre-

conditioned stochastic tensor optimization, in J. Dy &

A. Krause, eds, ‘Proceedings of the 35th International

Conference on Machine Learning’, Vol. 80 of Proceed-

ings of Machine Learning Research, PMLR, pp. 1842–

1850.

He, H., Zhao, S., Tang, Z., Ho, J. C., Saad, Y. & Xi,

Y. (2022), ‘An efficient nonlinear acceleration method

that exploits symmetry of the hessian’, arXiv preprint

arXiv:2210.12573 .

He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep residual

learning for image recognition, in ‘Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion’, pp. 770–778.

Heskes, T. (2000), ‘On "natural" learning and pruning in

multilayered perceptrons’, Neural Computation 12.

Hinton, G. E. & Salakhutdinov, R. R. (2006), ‘Reducing

the dimensionality of data with neural networks’, science

313(5786), 504–507.

Hinton, G., Srivastava, N. & Swersky, K. (2012), ‘Neural

networks for machine learning lecture 6a overview of

mini-batch gradient descent’, Cited on 14(8).

ichi Amari, S., Karakida, R. & Oizumi, M. (2018), ‘Fisher

information and natural gradient learning of random deep

networks’.

Kingma, D. & Ba, J. (2014), ‘Adam: A method for stochas-

tic optimization’, International Conference on Learning

Representations .

Kipf, T. N. & Welling, M. (2016), ‘Semi-supervised classifi-

cation with graph convolutional networks’, arXiv preprint

arXiv:1609.02907 .

Krizhevsky, A., Hinton, G. et al. (2009), ‘Learning multiple

layers of features from tiny images’.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), ‘Im-

agenet classification with deep convolutional neural net-

works’, Advances in neural information processing sys-

tems 25, 1097–1105.

Kunstner, F., Hennig, P. & Balles, L. (2019), Limitations

of the empirical fisher approximation for natural gradient

descent, in H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox & R. Garnett, eds, ‘Advances in

Neural Information Processing Systems’, Vol. 32, Curran

Associates, Inc.

Achraf Bahamou, Donald Goldfarb, Yi Ren

LeCun, Y., Cortes, C. & Burges, C. (2010), ‘MNIST hand-

written digit database’, ATT Labs [Online]. Available:

http://yann.lecun.com/exdb/mnist 2.

Liu, D. C. & Nocedal, J. (1989), ‘On the limited memory

bfgs method for large scale optimization’, Mathematical

programming 45(1-3), 503–528.

Loshchilov, I. & Hutter, F. (2019), Decoupled weight decay

regularization, in ‘International Conference on Learning

Representations’.

Martens, J. (2010), Deep learning via hessian-free optimiza-

tion., in ‘ICML’, Vol. 27, pp. 735–742.

Martens, J. (2020), ‘New insights and perspectives on the

natural gradient method’, Journal of Machine Learning

Research 21(146), 1–76.

Martens, J. & Grosse, R. (2015), Optimizing neural net-

works with kronecker-factored approximate curvature, in

‘International conference on machine learning’, PMLR,

pp. 2408–2417.

Nesterov, Y. (1998), ‘Introductory lectures on convex pro-

gramming volume i: Basic course’, Lecture notes 3(4), 5.

Ollivier, Y. (2015), ‘Riemannian metrics for neural networks

i: feedforward networks’.

Ortega, J. & Rheinboldt, W. (1970), Iterative Solution of

Nonlinear Equations in Several Variables, Classics in

Applied Mathematics, Society for Industrial and Ap-

plied Mathematics (SIAM, 3600 Market Street, Floor

6, Philadelphia, PA 19104).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-

son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,

L., Bai, J. & Chintala, S. (2019), Pytorch: An imper-

ative style, high-performance deep learning library, in

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox & R. Garnett, eds, ‘Advances in Neural

Information Processing Systems 32’, Curran Associates,

Inc., pp. 8024–8035.

Polyak, B. (1964), ‘Some methods of speeding up the

convergence of iteration methods’, Ussr Computational

Mathematics and Mathematical Physics 4, 1–17.

Povey, D., Zhang, X. & Khudanpur, S. (2014), ‘Parallel

training of dnns with natural gradient and parameter aver-

aging’, arXiv preprint arXiv:1410.7455 .

Ren, Y. & Goldfarb, D. (2019), ‘Efficient subsampled gauss-

newton and natural gradient methods for training neural

networks’, arXiv preprint arXiv:1906.02353 .

Ren, Y. & Goldfarb, D. (2021a), ‘Kronecker-factored quasi-

Newton methods for convolutional neural networks’,

arXiv preprint arXiv:2102.06737 .

Ren, Y. & Goldfarb, D. (2021b), Tensor normal training for

deep learning models, in A. Beygelzimer, Y. Dauphin,

P. Liang & J. W. Vaughan, eds, ‘Advances in Neural

Information Processing Systems’.

Robbins, H. & Monro, S. (1951), ‘A stochastic approxi-

mation method’, The annals of mathematical statistics

pp. 400–407.

Roux, N., Manzagol, P.-a. & Bengio, Y. (2008), Top-

moumoute online natural gradient algorithm, in J. Platt,

D. Koller, Y. Singer & S. Roweis, eds, ‘Advances in

Neural Information Processing Systems’, Vol. 20, Curran

Associates, Inc.

Schmidt, R. M., Schneider, F. & Hennig, P. (2021), ‘De-

scending through a crowded valley - benchmarking deep

learning optimizers’.

Scieur, D., Liu, L., Pumir, T. & Boumal, N. (2021), Gen-

eralization of quasi-newton methods: Application to ro-

bust symmetric multisecant updates, in A. Banerjee &

K. Fukumizu, eds, ‘Proceedings of The 24th Interna-

tional Conference on Artificial Intelligence and Statistics’,

Vol. 130 of Proceedings of Machine Learning Research,

PMLR, pp. 550–558.

URL: https://proceedings.mlr.press/v130/scieur21a.html

Scieur, D., Oyallon, E., d’Aspremont, A. & Bach, F.

(2018), ‘Nonlinear acceleration of cnns’, arXiv preprint

arXiv:1806.00370 .

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.

& Eliassi-Rad, T. (2008), ‘Collective classification in

network data’, AI magazine 29(3), 93–93.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,

Frostig, R. & Dahl, G. E. (2019), ‘Measuring the effects

of data parallelism on neural network training’.

Shanno, D. F. (1970), ‘Conditioning of quasi-newton meth-

ods for function minimization’, Mathematics of computa-

tion 24(111), 647–656.

Simonyan, K. & Zisserman, A. (2014), ‘Very deep convolu-

tional networks for large-scale image recognition’, arXiv

preprint arXiv:1409.1556 .

Soori, S., Can, B., Mu, B., Gürbüzbalaban, M. & Dehnavi,

M. M. (2021), ‘Tengrad: Time-efficient natural gradi-

ent descent with exact fisher-block inversion’, CoRR

abs/2106.03947.

Thomas, V., Pedregosa, F., van Merriënboer, B., Manzagol,

P.-A., Bengio, Y. & Roux, N. L. (2020), On the interplay

between noise and curvature and its effect on optimiza-

tion and generalization, in S. Chiappa & R. Calandra, eds,

‘Proceedings of the Twenty Third International Confer-

ence on Artificial Intelligence and Statistics’, Vol. 108

of Proceedings of Machine Learning Research, PMLR,

pp. 3503–3513.

Vinyals, O. & Povey, D. (2012), Krylov subspace descent

for deep learning, in ‘Artificial Intelligence and Statistics’,

pp. 1261–1268.

A Mini-Block Fisher Method for Deep Neural Networks

Wang, M., Fang, E. X. & Liu, B. (2017), ‘Stochastic com-

positional gradient descent: Algorithms for minimizing

compositions of expected-value functions’, Mathematical

Programming 161(1-2), 419–449.

Xiao, H., Rasul, K. & Vollgraf, R. (2017), ‘Fashion-mnist: a

novel image dataset for benchmarking machine learning

algorithms’, arXiv preprint arXiv:1708.07747 .

Xu, P., Roosta, F. & Mahoney, M. W. (2019), ‘Newton-

type methods for non-convex optimization under inexact

hessian information’, Mathematical Programming pp. 1–

36.

Yao, Z., Gholami, A., Shen, S., Keutzer, K. & Mahoney,

M. W. (2021), ‘Adahessian: An adaptive second order

optimizer for machine learning’, AAAI (Accepted) .

Zhang, G., Martens, J. & Grosse, R. (2019), ‘Fast conver-

gence of natural gradient descent for overparameterized

neural networks’, arXiv preprint arXiv:1905.10961 .

Zhang, G., Wang, C., Xu, B. & Grosse, R. (2019), Three

mechanisms of weight decay regularization, in ‘Interna-

tional Conference on Learning Representations’.

Achraf Bahamou, Donald Goldfarb, Yi Ren

Supplementary Materials for "A Mini-Block Fisher Method for Deep Neural
Networks"

8 MBF Full implementation

We present below pseudo-code for the full detailed implementation of our MBF algorithm that we used to generate the

results in the main text.

Algorithm 2 Mini-Block Fisher method (MBF)

Require: Given batch size m, learning rate {⌘k}k�1, weight decay factor �, damping value �, statistics update frequency

T1, inverse update frequency T2

1: µ = 0.9, � = 0.9

2: Initialize dGl,b = E[Gl,b] (l = 1, .., k, mini-blocks b) by iterating through the whole dataset, \DWl,b = 0 (l = 1, .., k,

mini-blocks b)

3: for k = 1, 2, . . . do

4: Sample mini-batch Mt of size m

5: Perform a forward-backward pass over Mt to compute the mini-batch gradient DWl,b

6: for l = 1, ...L do

7: for mini-block b in layer l, in parallel do

8: \DWl,b = µ\DWl,b +DWl,b

9: if k ⌘ 0 (mod T1) then

10: If Layer l is convolutional: [Gl,j,i = �[Gl,j,i + (1� �)DWl,j,i

�
DWl,j,i

�>

11: If Layer l is fully-connected: cGl = �cGl +
1��
O

PO
j=1 DWl,j

�
DWl,j

�>
12: end if

13: if k ⌘ 0 (mod T2) then

14: Recompute and store (dGl,b + �I)�1

15: end if

16: pl,b = (dGl,b + �I)�1\DWl,b + �Wl,b

17: Wl,b = Wl,b � ⌘kpl,b
18: end for

19: end for

20: end for

9 Proof of Convergence of Algorithm MBF and Associated Lemmas

We follow the framework used in Zhang, Martens & Grosse (2019) to prove linear convergence of NG descent, to provide

similar convergence guarantees for our idealized MBF Algorithm, that uses exact gradients (i.e. full batch case with m = n)

and the mini-block version of the true Fisher as the underlying preconditioning matrix. 2

Proof of Theorem 1. If Assumption 6.2 holds, then one can obtain a lower bound on the minimum eigenvalue of the

mini-block Fisher matrix FMB(W (k)) = 1
nJMB(k)

>JMB(k) at each iteration.

In fact, if kW (k) � W (0)k2  3p
�0

ky � u(0)k2, then, by Assumption 6.2, there exists 0 < C  1
2 that satisfies

2in Soori et al. (2021), a similar extension of the proof in Zhang, Martens & Grosse (2019) is used to analyse the convergence of a
layer-wise block Fisher method.

A Mini-Block Fisher Method for Deep Neural Networks

kJ(W (k))� J(W (0))k2  C
3

p
�0, and therefore, we have that

kJMB(k)� JMB(0)k2  C
p
�0

3


p
�0

3
.

On the other hand, based on the inequality �min(A+B) � �min(A)� �max(B), where � denotes singular value, we have

�min(JMB(k)) � �min(JMB(0))� �min(JMB(k)� (JMB(k)))

� �min(JMB(0))� kJMB(k)� JMB(0)k2 �
p
�0 �

p
�0

3
=

2
p
�0

3
.

Therefore

�min(GMB(W (k))) � 4
p
�0

9
,

where GMB(W (k)) := JMB(W (k))JMB(W (k))> is the mini-block Gram matrix. We prove Theorem 1 by induction.

Assume || u(W (k))�y||22  (1�⌘)k|| u(W (0))� y||22. One can see that the relationship between the Jacobian J(W (k))
and the mini-Block Jacobian JMB(W (k)) is:

J>(W (k)) = JMB(W (k))>K,

where the matrix K = [In, . . . , In]
>

| {z }
K

2 R
Kn⇥n, In is the identity matrix of dimension n, the number of samples, and K is

the total number of mini-blocks. We define

Wk(s) = sW (k + 1) + (1� s)W (k)

= W (k)� s
⌘

n
(FMB(W (k)) + �I)

�1
J(W (k))>(u(W (k))� y))� u(W (k)),

we have:

u(W (k + 1))� u(W (k))

= u(W (k)� ⌘

n
(FMB(W (k)) + �I)

�1
J(W (k))>(u(W (k))� y))� u(W (k))

= �
Z 1

s=0

D@u(Wk(s))

@W> ,
⌘

n
(FMB(W (k)) + �I)

�1
J(W (k))>(u(W (k))� y))

E
ds

= �
Z 1

s=0

D@u(W (k))

@W> ,
⌘

n
(FMB(W (k)) + �I)

�1
J(W (k))>(u(W (k))� y))

E
ds

| {z }
A

+

Z 1

s=0

D@u(W (k))

@W> � @u(Wk(s))

@W> ,
⌘

n
(FMB(W (k)) + �I)

�1
J(W (k))>(u(W (k))� y))

E
ds

| {z }
B

.

In what follows, to simplify the notation, we drop W (k) whenever the context is clear. Thus, we have

A =
⌘

n
J (FMB + �I)

�1
J>(y � u(k)). (3)

Achraf Bahamou, Donald Goldfarb, Yi Ren

Now, we bound the norm of B :

|| B ||2  ⌘

n

����
Z 1

s=0

J(Wk(s))� J(W (k))ds

����
2

���(FMB + �I)
�1

J>(u(k)� y)
���
2

(1)

 ⌘2C

3n
�

1

2

0

�����

✓
1

n
J>
MBFMB + �I

◆�1

F>
MBK(u(k)� y))

�����
2

 ⌘2C

3n
�

1

2

0

�����

✓
1

n
J>
MBJMB + �I

◆�1

J>
MB

�����
2

kK(u(k)� y))k2

(2)

 ⌘C

3
p
�n

p
�0 kK(u(k)� y))k2

(3)
=

⌘C
p
�0K

3
p
�n

k(u(k)� y))k2 , (4)

where in (1) we used Assumption 6.2, which implies

����
Z 1

s=0

J(Wk(s))� J(W (k))ds

����
2

 kJ(W (k))� J(W (0))k2 + kJ(W (k + 1))� J(W (0))k2

 2C

3

p
�0.

The inequality (2) follows from the fact that

�����

✓
1

n
J>
MBJMB + �I

◆�1

J>
MB

�����
2

= �max

 ✓
1

n
J>
MBJMB + �I

◆�1

J>
MB

!

=

vuut�max

JMB

✓
1

n
J>
MBJMB + �I

◆�2

J>
MB

!
,

and that

�max

JMB

✓
1

n
J>
MBJMB + �I

◆�2

J>
MB

!
= max

µ eigenvalue of GMB

µ

(µn + �)2
 n�

(n�n + �)2
=

n

4�
.

and in the equality (3), we have used the fact that kK(u(k)� y))k2 =
p
K k(u(k)� y))k2. Finally, we have:

||u(k + 1)� y||22 = ||u(k)� y + u(k + 1)� u(k)||22

= ||u(k)� y||22 � 2 (y � u(k))
>
(u(k + 1)� u(k)) + ||u(k + 1)� u(k)||22

 ||u(k)� y||22 �
2⌘

n
(y � u(k))

>
J(k) (FMB + �I)

�1
J(k)> (y � u(k))| {z }

1

+
2⌘C

p
�0K

3
p
�n

k(u(k)� y))k22 + ||u(k + 1)� u(k)||22| {z }
2

 ||u(k)� y||22 �
2⌘K�0

�0 +
9
4n�

||u(k)� y||22

+
2⌘C

p
�0K

3
p
�n

k(u(k)� y))k22 + ⌘2
✓
K +

C
p
�0K

3
p
�n

◆2

k(u(k)� y))k22

 (1� ⌘) k(u(k)� y))k22

+ ⌘ k(u(k)� y))k22

⌘

✓
K +

C
p
�0K

3
p
�n

◆2

�
✓

2K�0

�0 +
9
4n�

� 2C
p
�0K

3
p
�n

� 1

◆!
.

A Mini-Block Fisher Method for Deep Neural Networks

Part 1 is lower bounded as follows:

1 � �min

JMB

✓
1

n
J>
MBJMB + �I

◆�1

J>
MB

!
kK(u(k)� y)k22

= K�min

JMB

✓
1

n
J>
MBJMB + �I

◆�1

J>
MB

!
ku(k)� yk22

= nKku(k)� yk22
�min(GMB(k))

�min(GMB(k)) + n�

� nK�0

�0 +
9
4n�

ku(k)� yk22.

Part 2 is upper bounded, on the other hand, using equality (3) and inequality (4). More specifically, we have:

||u(k + 1)� u(k)||2  ⌘

n

���J(k) (FMB + �I)
�1

J(k)>(y � u(k)))
���+ || B ||2

 ⌘K

n

���JMB(k) (FMB + �I)
�1

JMB(k)
>
��� k(u(k)� y))k2 +

⌘C
p
�0K

3
p
�n

k(u(k)� y))k2

 ⌘

✓
K +

C
p
�0K

3
p
�n

◆
k(u(k)� y))k2 .

The last inequality follows from the fact that if (µ, v) is an (eigenvalue, eigenvector) pair for GMB = JMBJ
>
MB , then

(µ,J>
MBv) and (1

µ
n
+�

,J>
MBv) are such pairs for FMB and (1nFMB + �I)�1, respectively, and it follows that

���JMB(k) (FMB + �I)
�1

JMB(k)
>
���
2
= �max

⇣
JMB(k) (FMB + �I)

�1
JMB(k)

>
⌘

= max
µ eigenvalue of GMB(k)

nµ

µ+ n�
 n.

Let us consider the function �
f! f(�) :=

⇣
2K�0

�0+
9

4
n�

� 2C
p
�0K

3
p
�n

� 1
⌘

. We have that

f(
4�0

9n
) = K � C

p
K � 1 � K � 1

2

p
K � 1 > 0 for K � 3.

Thereforem by continuity of the function f(.), there exists an interval [�,�], such as 4�0

9n 2 [�,�], and for all damping

values � in [�,�], the function f(.) is positive. For such choice of damping value � (for example � = 4�0

9n), and for a small

enough learning rate, i.e:

⌘ 
2K�0

�0+
9

4
n�

� 2C
p
�0K

3
p
�n

� 1
⇣
K + C

p
�0K

3
p
�n

⌘2 := ⌘�.

We Hence, we get that

||u(k + 1)� y||22  (1� ⌘) k(u(k)� y))k22 ,

which concludes the proof.

10 Motivation for kernel-wise mini-blocks choice in convolutional layers

We recall from the main manuscript the following assumptions and notation for a single convolutional layer from the CNN

with trainable parameters (i.e. weights W and biases b) :

Achraf Bahamou, Donald Goldfarb, Yi Ren

1. the convolutional layer is 2-dimensional;

2. the layer has J input channels indexed by j = 1, ..., J , I output channels indexed by i = 1, ..., I;

3. there are I ⇥ J filters, each of size (2R+ 1)⇥ (2R+ 1), with spatial offsets from the centers of each filter indexed by

� 2 ∆ := {�R, ..., R}⇥ {�R, ..., R};

4. the stride is of length 1, and the padding is equal to R, so that the sets of input and output spatial locations (t 2 T ⇢ R
2)

are the same.3;

The weights W , corresponding to the elements of all of the filters in this layer, can be viewed as a 3-dimensional tensor of

size I ⇥ J ⇥∆, where ∆ = (2R+ 1)2. We shall use I , J and ∆ to denote both sets of indices and the cardinalities of these

sets. Each element of W is denoted by Wi,j,�, where the first two indices i, j are the output/input channels, and the third

index � specifies the spatial offset within a filter as indicated in item 3 above. The bias b is a vector of length I .

For the weights and biases, we define the vectors

wi :=
�
wi,1,�1 , ..., wi,J,�|∆|

, bi
�> 2 R

J|∆|+1,

for i = 1, ..., I , and from them the matrix

W := (w1, ...,wI)
> 2 R

I⇥(J|∆|+1). (1)

We shall also express the vectors wi as

wi :=
�
ŵ

>
i,1, ..., ŵ

>
i,J , bi

�> 2 R
J∆+1, 8 i 2 I,

where

ŵi,j := (wi,1,j , . . . ,wi,∆,j)
> 2 R

∆, 8 i 2 I, j 2 J.

Let the vector a := {a1,t, . . . , aJ,t}, where aj,t, denotes the input from channel j of the previous layer to the current layer

after padding is added, where t denotes the spatial location of the padded input. Note that the index pairs t 2 T ⇢ R
2 can

be ordered, for example, lexicographically, into a one dimensional set of ∆ indices.

It is useful to expand each component aj,t of a to a ∆-dimensional vector âj,t, that includes all components in the input a

covered by the filter centered at t, yielding the following vectors defined for all locations t 2 T :

at :=
�
â
>
1,t, ..., â

>
J,t, 1

�> 2 R
J∆+1,

where

âj,t := (aj,1,t, . . . ,aj,∆,t)
> 2 R

∆, 8 j 2 J ;

hence

at :=
�
a1,t+�1 , ..., aJ,t+�|∆|

, 1
�> 2 R

J|∆|+1.

Note that a single homogeneous coordinate is concatenated at the end of at. Expressing the pre-activation output for the

layer at spatial location t 2 T as a vector of length equal to the number of output channels, i.e.,

ht := (h1,t, ..., hI,t)
> 2 R

I ,

for all spatial locations t 2 T . We note that, given inputs a and W , the pre-activation outputs h can be computed, for all

locations t 2 T , as

hi,t =
JX

j=1

X

�2∆

wi,j,�aj,t+� + bi, t 2 T , i = 1, ..., I. (5)

or equivalently, ht = Wat, whose i-th component hi,t we can write as

hi,t =
X

j2J

ŵ
>
i,j âj,t + bi. (2)

3The derivations in this paper can also be extended to the case where stride is greater than 1.

A Mini-Block Fisher Method for Deep Neural Networks

Expressing the input-output relationship in a CNN this way, we see that it is analogous to the input-output relationship in a

fully connected feed-forward NN, except that the role of input and output node sets J and I are taken on by the input and

output channels and the affine mapping of the vector of inputs a to the vector of outputs h,

hi =
X

j2J

wi,jaj + bi, 8 i 2 I,

where the terms wi,jaj are the products of two scalars becomes in (2) the inner product of two ∆-dimensional vectors, and

this mapping is performed for all locations t.

Hence, MBF is analaous to using the squares of the components of the gradient in a ff-cc network, and hence is analagous to

a "squared" version of an adaptive first-order method.

11 Experiment Details

11.1 Comparison Algorithms

11.1.1 SGD-m

In SGD with momentum, we updated the momentum mt of the gradient using the recurrence

mt = µ ·mt�1 + gt

at every iteration, where gt denotes the mini-batch gradient at current iteration and µ = 0.9. The gradient momentum is also

used in the second-order methods, in our implementations. For the CNN problems, we used weight decay with SGD-m, as it

is used in SGDW in Loshchilov & Hutter (2019).

11.1.2 Adam

For Adam, we followed exactly the algorithm in Kingma & Ba (2014) with �1 = 0.9 and �2 = 0.999, updating the

momentum of the gradient at every iteration by the recurrence

mt = �1 ·mt� 1 + (1� �1) · gt.

The role of �1 and �2 is similar to that of µ and � in Algorithms 2 and 3, as we will describe below. For the CNN problems,

we used weight decay with Adam, as it is used in AdamW in Loshchilov & Hutter (2019).

11.1.3 Shampoo

We implemented Shampoo as described below in Algorithm 3 following the description given in Gupta et al. (2018), and

include major improvements, following the suggestions in Anil et al. (2021). These improvements are (i) using a moving

average to update the estimates
d
G

(i)
l and (ii) using a coupled Newton method to compute inverse roots of the preconditioning

matrices,

Achraf Bahamou, Donald Goldfarb, Yi Ren

Algorithm 3 Shampoo

Require: Given batch size m, learning rate {⌘k}k�1, weight decay factor �, damping value ✏, statistics update frequency

T1, inverse update frequency T2

1: µ = 0.9, � = 0.9

2: Initialize
d
G

(i)
l = E[G

(i)
l] (l = 1, .., k, i = 1, ..., kl) by iterating through the whole dataset, \rWl

L = 0 (l = 1, ..., L)

3: for k = 1, 2, . . . do

4: Sample mini-batch Mk of size m

5: Perform a forward-backward pass over the current mini-batch Mk to compute the minibatch gradient rL
6: for l = 1, ...L do

7: \rWl
L = µ\rWl

L+rWl
L

8: if k ⌘ 0 (mod T1) then

9: Update
d
G

(i)
l = �

d
G

(i)
l + (1� �)Gl

(i)
for i = 1, ..., kl where Gl = rWl

L
10: end if

11: if k ⌘ 0 (mod T2) then

12: Recompute

✓
d
G

(1)
l + ✏I

◆�1/2kl

, ...,

✓
[
G

(kl)
l + ✏I

◆�1/2kl

with the coupled Newton method

13: end if

14: pl = \rWl
L⇥1

✓
d
G

(1)
l + ✏I

◆�1/2kl

⇥2 · · ·⇥k

✓
[
G

(kl)
l + ✏I

◆�1/2kl

15: pl = pl + �Wl

16: Wl = Wl � ⌘k · pl
17: end for

18: end for

11.1.4 KFAC

In our implementation of KFAC, the preconditioning matrices that we used for linear layers and convolutional layers are

precisely those described in Martens & Grosse (2015) and Grosse & Martens (2016), respectively. For the parameters in the

BN layers, we used the gradient direction, exactly as in https://github.com/alecwangcq/KFAC-Pytorch. We

did a warm start to estimate the pre-conditioning KFAC matrices in an initialization step that iterated through the whole data

set, and adopted a moving average scheme to update them with � = 0.9 afterwards. As in the implementation described in

Ren & Goldfarb (2021a), for autoencoder experiments, we inverted the damped KFAC matrices and used them to compute

the updating direction, where the damping factors for both A and G were set to be
p
�, where � is the overall damping

value; and for the CNN experiments, we employed the SVD (i.e. eigenvalue decomposition) implementation suggested

in https://github.com/alecwangcq/KFAC-Pytorch, which, as we verified, performs better than splitting the

damping value and inverting the damped KFAC matrices (as suggested in Martens & Grosse (2015), Grosse & Martens

(2016)). Further, for the CNN problems, we implemented weight decay exactly as in MBF (Algorithm 2) and Shampoo

(Algorithm 3).

11.1.5 MBF, other details

In Tables 3 and 4, we compare the space and computational requirements of the proposed MBF method with KFAC,

Shampoo and Adam for a fully connected layer, with di inputs and do outputs. Note that these tables are the fully-connected

analogs to Table 1 in Section 5, which compare the storage and computational requirements for MBF, KFAC, Shampoo

and Adam for a convolutional layer. Here, m denotes the size of the minibatches, and T1 and T2 denote, respectively, the

frequency for updating the preconditioners and inverting them for KFAC, Shampoo and MBF.

For the parameters in the BN layers, we used the direction used in Adam, which is equivalent to using mini-blocks of size 1,

dividing each stochastic gradient component by that blocks square root. We did a warm start to estimate the pre-conditioning

mini-block matrices in an initialization step that iterated through the whole data set, and adopted a moving average scheme

to update them with � = 0.9 afterwards as described in Algorithm 2.

A Mini-Block Fisher Method for Deep Neural Networks

Table 3: Storage Requirements for fully connected layer

Algorithm DW Pl

MBF O(dido) O(d2i)
KFAC O(dido) O(d2i + d2o + dido)
Shampoo O(dido) O(d2i + d2o)
Adam O(dido) O(dido)

Table 4: Computation per iteration beyond that required for the minibatch stochastic gradient for fully connected layer

Algorithm Additional pass Curvature Step ∆Wl

MBF — O(
dod

2

i

T1

+
dod

3

i

T2

) O(dod
2
i)

KFAC O(mdido

T1

) O(
md2

i+md2

o

T1

+
d3

i+d3

o

T2

) O(d2i do + d2odi)

Shampoo — O(
d2

i+d2

o

T1

+
d3

i+d3

o

T2

) O((di + do)dido)

Adam — O(dido) O(dido)

11.2 Experiment Settings for the Autoencoder Problems

Table 5 describes the model architectures of the autoencoder problems. The activation functions of the hidden layers are

always ReLU, except that there is no activation for the very middle layer.

Table 5: DNN architectures for the MLP autoencoder problems

Layer width

MNIST [784, 1000, 500, 250, 30, 250, 500, 1000, 784]

FACES [625, 2000, 1000, 500, 30, 500, 1000, 2000, 625]

CURVES [784, 400, 200, 100, 50, 25, 6, 25, 50, 100, 200, 400, 784]

MNIST4, FACES5, and CURVES6 contain 60,000, 103,500, and 20,000 training samples, respectively, which we used in

our experiment to train the models and compute the training losses.

We used binary entropy loss (with sigmoid) for MNIST and CURVES, and squared error loss for FACES. The above settings

largely mimic the settings in Martens (2010), Martens & Grosse (2015), Botev et al. (2017), Ren & Goldfarb (2021b). Since

we primarily focused on optimization rather than generalization in these tasks, we did not include L2 regularization or

weight decay.

In order to obtain Figure 8, we first conducted a grid search on the learning rate (lr) and damping value based on the criteria

of minimizing the training loss. The ranges of the grid searches used for the algorithms in our tests are specified in Table 6.

The best hyper-parameter values determined by our grid searches are listed in Table 5.

11.3 Experiment Settings for the CNN Problems

The ResNet32 model refers to the one in Table 6 of He et al. (2016), whereas the VGG16 model refers to model D of

Simonyan & Zisserman (2014), with the modification that batch normalization layers were added after all of the convolutional

layers in the model. For all algorithms, we used a batch size of 128 at every iteration.

We used weight decay for all the algorithms that we tested, which is related to, but not the same as L2 regularization added

to the loss function, and has been shown to help improve generalization performance across different optimizers Loshchilov

& Hutter (2019), Zhang, Wang, Xu & Grosse (2019). The use of weight decay for MBF and Shampoo is implemented in

4http://yann.lecun.com/exdb/mnist/
5http://www.cs.toronto.edu/~jmartens/newfaces_rot_single.mat
6http://www.cs.toronto.edu/~jmartens/digs3pts_1.mat

Achraf Bahamou, Donald Goldfarb, Yi Ren

Table 6: Grid of hyper-parameters for autoencoder problems

Algorithm learning rate damping �

SGD-m 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2 damping: not applicable

Adam 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2 1e-8, 1e-4, 1e-2

Shampoo 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3 1e-4, 3e-4, 1e-3, 3e-3, 1e-2

MBF 1e-7, 3e-7, 1e-6, 3e-6, 1e-5, 3e-5, 1e-4 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2

KFAC 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-2, 3e-2 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1

Table 7: Hyper-parameters (learning rate, damping) used to produce Figure 8

Name MNIST FACES CURVES

MBF (1e-5, 3e-4) ! 51.49 (1e-6, 3e-3) ! 5.17 (1e-5, 3e-4) ! 55.14

KFAC (3e-3, 3e-1) ! 53.56 (1e-1, 1e1) ! 5.55 (1e-2, 1e0) ! 56.47

Shampoo (3e-4, 3e-4) ! 53.80 (3e-4, 3e-4) ! 7.21 (1e-3, 3e-3) ! 54.86

Adam (3e-4, 1e-4) ! 53.67 (1e-4, 1e-4) ! 5.55 (3e-4, 1e-4) ! 55.23

SGD-m (3e-3, -) ! 55.63 (1e-3, -) ! 7.08 (1e-2, -) ! 55.49

lines 16 and 17 in Algorithm 2 and in lines 15 and 16 in Algorithm 3, respectively, and is similarly applied to SGD-m ,

Adam, and KFAC.

For MBF, we set � = 0.003. We also tried values around 0.003 and the results were not sensitive to the value of �. Hence,

� can be set to 0.003 as a default value. For KFAC, we set the overall damping value to be 0.03, as suggested in the

implementation in https://github.com/alecwangcq/KFAC-Pytorch. We also tried values around 0.03 for

KFAC and confirmed that 0.03 is a good default value.

In order to obtain Figure 7, we first conducted a grid search on the initial learning rate (lr) and weight decay (wd) factor

based on the criteria of maximizing the classification accuracy on the validation set. The range of the grid searches for the

algorithms in our tests are specified in Table 8.

Table 8: Grid of hyper-parameters for CNN problems

Algorithm learning rate weight decay �

SGD-m 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1, 1e0 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1

Adam 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1

Shampoo 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1

MBF 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1

KFAC 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2 1e-2, 3e-2, 1e-1, 3e-1, 1e0, 3e0, 1e1

The best hyper-parameter values, and the validation classification accuracy obtained using them, are listed in Table 9.

Table 9: Hyper-parameters (initial learning rate, weight decay factor) used to produce Figure 7 and the average validation

accuracy across 5 runs with different random seeds shown in Figure 7

Name CIFAR-10 + ResNet32 CIFAR-100 + VGG16 SVHN + VGG11

MBF (1e-4, 3e0) ! 93.42% (3e-5, 1e1) ! 74.80% (1e-3, 3e-1) ! 96.59%

KFAC (3e-3, 1e-1) ! 93.02% (1e-3, 3e-1) ! 74.38% (3e-3, 1e-1) ! 96.37%

Shampoo (1e-2, 1e-1) ! 92.97% (1e-3, 3e-1) ! 73.37% (3e-3, 1e-1) ! 96.15%

Adam (3e-3, 1e-1) ! 93.34% (3e-5, 1e1) ! 72.95% (3e-4, 1e0) ! 96.34%

SGD-m (1e-1, 1e-2) ! 93.23% (3e-2, 1e-2) ! 73.99% (3e-2, 1e-2) ! 96.63%

A Mini-Block Fisher Method for Deep Neural Networks

11.4 More on MBF Implementation Motivations

11.4.1 Details on the Cosine similarity experiment

We provide in Algorithm 4 the full implementation of MBF-True for completeness. Note that, in MBF-True, the only

difference between it and MBF is that we are using the mini-batch gradient D2Wl,b (denoted by D2) of the model on

sampled labels yt from the model’s distribution (see lines 10-13 in Algorithm 4) to update the estimate of mini-block

preconditioners, using a moving average (lines 12, 13), with a rank one outer-product, which is different from computing the

true Fisher for that mini-block.

Algorithm 4 MBF-True

Require: Given batch size m, learning rate {⌘k}k�1, weight decay factor �, damping value �, statistics update frequency

T1, inverse update frequency T2

1: µ = 0.9, � = 0.9

2: Initialize dGl,b = E[Gl,b] (l = 1, .., k, mini-blocks b) by iterating through the whole dataset, \DWl,b = 0 (l = 1, .., k,

mini-blocks b)

3: for k = 1, 2, . . . do

4: Sample mini-batch Mt of size m

5: Perform a forward-backward pass over Mt to compute the mini-batch gradient DWl,b

6: for l = 1, ...L do

7: for mini-block b in layer l, in parallel do

8: \DWl,b = µ\DWl,b +DWl,b

9: if k ⌘ 0 (mod T1) then

10: Sample the labels yt from the model’s distribution

11: Perform a backward pass over yt to compute the mini-batch gradients D2Wl,b

12: If Layer l is convolutional: [Gl,j,i = �[Gl,j,i + (1� �)D2Wl,j,i

�
D2Wl,j,i

�>

13: If Layer l is fully-connected: cGl = �cGl +
1��
O

PO
j=1 D2Wl,j

�
D2Wl,j

�>
14: end if

15: if k ⌘ 0 (mod T2) then

16: Recompute and store (dGl,b + �I)�1

17: end if

18: pl,b = (dGl,b + �I)�1\DWl,b + �Wl,b

19: Wl,b = Wl,b � ⌘kpl,b
20: end for

21: end for

22: end for

As mentioned in the main manuscript, we explored how close MBF’s direction is to the one obtained by a block-diagonal full

EFM method (that we call BDF). We provide here a detailed implementation of the procedure that we used for completeness.

More specifically, for any algorithm X, we reported the cosine similarity between the direction given by X and that obtained

by BDF in the procedure described in Algorithm 5.

The algorithms were run on a 16⇥ 16 down-scaled MNIST LeCun et al. (2010) dataset and a small feed-forward NN with

layer widths 256-20-20-20-20-20-10 described in Martens & Grosse (2015). For all methods, we followed the trajectory

obtained using the BDF method as described in Algorithm 5.

11.4.2 Comparison between MBF and MBF-True on Autoencoder and CNN problems

The cosine similarity results reported in the main manuscript (see Figure 6 and related discussion) on the down-scaled

MNIST suggest that the direction obtained by MBF and MBF-True behave similarly with respect the direction obtained

by BDF. In this section, we compare the performance of MBF-True to MBF on the same Autoencoder problems (MNIST,

FACES, CURVES) described in 11.2 and the same CNN problems (CIFAR-10 + ResNet32, CIFAR-100 + VGG16, and

SVHN + VGG11) described in 11.3. We used the same grid of parameters to tune MBF-True as the one described in 11.2

and 11.3. We report in Figures 10 and 11 the training and validation errors obtained on these problems, as well as the

best hyper-parameters for both methods in the legends. It seems that using the symmetric outer product of the empirical

A Mini-Block Fisher Method for Deep Neural Networks

As Figure 14 shows, AdaBelief outperformed both AdamW and Adagrad on MNIST and CIFAR-100 (but only slightly

so in the comparison to AdamW on MNIST). However, crucially, Adabelief was still outperformed by MBF on these two

problems. In our experiments reported in the main body of the paper, we chose to compare MBF (with weight decay, which

was included in all of the methods in our tests) against AdamW rather than AdaBelief, since to be fai,r if we used the latter

variant, we would need to test "belief" versions of MBF, Shampoo and KFAC by incorporating a "belief" term in updating

the EMA (Exponential Moving Average) of the preconditioning matrices. This is an interesting research direction for future

work.

11.4.6 Additional inverse EFM heatmap illustrations

As mentioned in the main manuscript, we include here additional examples that illustrate that most of the weight in the

inverse of the empirical Fisher matrix resides in the mini-blocks used in MBF. For convolutional layers, we trained a simple

convolutional neural network, Simple CNN, on Fashion MNIST (Xiao et al. 2017). The model is identical to the base model

described in Shallue et al. (2019). It consists of 2 convolutional layers with max pooling with 32 and 64 filters each and

5⇥ 5 filters with stride 1, “same” padding, and ReLU activation function followed by 1 fully connected layer. Max pooling

uses a 2⇥ 2 window with stride 2. The fully connected layer has 1024 units. It does not use batch normalization.

Figure 16 shows the heatmap of the absolute value of the inverse empirical Fisher corresponding to the second convolutional

layer for channels 1, 16 and 32, which all use 64 filters of size 5⇥ 5 (thus 64 mini-blocks of size 25⇥ 25 per channel). One

can see that the mini-block (by filter) diagonal approximation is reasonable.

Figure 15: Absolute inverse EFM, second fully connected layer 20-20

As mentioned in the main manuscript, we illustrate the mini-block structure of the empirical Fisher matrix on a 7-layer

(256-20-20-20-20-20-10) feed-forward DNN using tanh activations, partially trained (after 50 epochs using SGD-m) to

classify a 16⇥ 16 down-scaled version of MNIST that was also used in (Martens & Grosse 2015). Figure 15 shows the

heatmap of the absolute value of the inverse empirical FIM for the second fully connected layers (including bias). One can

see that the mini-block (by neuron) diagonal approximation is reasonable.

Achraf Bahamou, Donald Goldfarb, Yi Ren

(a) Absolute inverse EFM for channel 1 (b) Zoom on the 20th to 30th blocks

(c) Absolute inverse EFM for channel 16 (d) Zoom on the 20th to 30th blocks

(e) Absolute inverse EFM for channel 32 (f) Zoom on the 20th to 30th blocks

Figure 16: Absolute inverse of the empirical EFM after 10 epochs for the second convolutional layer of the Simple-CNN.

