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Abstract

Despite the predominant use of first-order methods for training deep learning mod-
els, second-order methods, and in particular, natural gradient methods, remain of
interest because of their potential for accelerating training through the use of cur-
vature information. Several methods with non-diagonal preconditioning matrices,
including KFAC [34], Shampoo [18], and K-BFGS [15], have been proposed and
shown to be effective. Based on the so-called tensor normal (TN) distribution
[31], we propose and analyze a brand new approximate natural gradient method,
Tensor Normal Training (TNT), which like Shampoo, only requires knowledge
of the shape of the training parameters. By approximating the probabilistically
based Fisher matrix, as opposed to the empirical Fisher matrix, our method uses
the block-wise covariance of the sampling based gradient as the pre-conditioning
matrix. Moreover, the assumption that the sampling-based (tensor) gradient follows
a TN distribution, ensures that its covariance has a Kronecker separable structure,
which leads to a tractable approximation to the Fisher matrix. Consequently, TNT’s
memory requirements and per-iteration computational costs are only slightly higher
than those for first-order methods. In our experiments, TNT exhibited superior
optimization performance to state-of-the-art first-order methods, and compara-
ble optimization performance to the state-of-the-art second-order methods KFAC
and Shampoo. Moreover, TNT demonstrated its ability to generalize as well as
first-order methods, while using fewer epochs.

1 Introduction

First-order methods are currently by far the most popular and successful optimization methods for
training deep learning models. Stochastic gradient descent (SGD) [39] uses the (stochastic) gradient
direction to guide its update at every iteration. Adaptive learning rate methods, including AdaGrad
[11], RMSprop [20], and Adam [23], scale each element of the gradient direction (possibly modified
to incorporate momentum) by the square root of the second moment of each element of the gradient.
These first-order methods use little curvature information to "pre-condition" the gradient direction;
SGD uses an identity pre-conditioning matrix, whereas the others use a diagonal matrix.

On the other hand, second-order methods attempt to greatly accelerate the optimization process by
exploring the rich curvature information of the problem. Traditional second-order methods such
as Newton’s method, BFGS [6, 13, 14, 41], and limited-memory BFGS (L-BFGS) [28], without
modification, are not practical in a deep learning setting, because these methods require enormous
amounts of memory and computational effort per iteration due to the huge number of parameters
such models have. Some second-order methods have been proposed to deal with the non-convexity
and stochasiticity of objective functions arising in machine learning (see e.g. [36, 7, 16, 44]), but
directly using these methods to train deep learning models still requires large amounts of memory
and computing resources.
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Recently, there has been considerable advancement in the development of second-order methods that
are suitable for deep learning models with huge numbers of parameters. These methods usually ap-
proach pre-conditioning of the gradient in a modular way, resulting in block-diagonal pre-conditioning
matrices, where each block corresponds to a layer or a set of trainable parameters in the model.
Inspired by the idea of the natural gradient (NG) method [1], [34] proposed KFAC, an NG method that
uses a Kronecker-factored approximation to the Fisher matrix as its pre-conditioning matrix that can
be applied to multilayer perceptrons, and which has subsequently been extended to other architectures,
such as convolutional neural networks [17] and recurrent neural networks [35]. Kronecker-factored
preconditioners [15, 38] based on the structure of the Hessian and quasi-Newton methods have also
been developed. Despite the great success of these efficient and effective second-order methods,
developing such methods requires careful examination of the structure of the preconditioning matrix
to design appropriate approximations for each type of layer in a model.

Another well-recognized second-order method, Shampoo [18, 3], extends the adaptive learning rate
method AdaGrad, so that the gradient is pre-conditioned along every dimension of the underlying
tensor of parameters in the model, essentially replacing the diagonal pre-conditioning matrix of the
adaptive learning rate methods by a block diagonal Kronecker-factored matrix which can be viewed
as an approximation to a fractional power of the empirical Fisher (EF) matrix. However, while
estimating the Fisher matrix, in a deep learning setting, by the EF matrix saves some computational
effort, it usually does not capture as much valuable curvature information as the Fisher matrix [26].

Variants of the normal distribution, i.e. the matrix-normal distribution [9] and the tensor-normal
distribution [31], have been proposed to estimate the covariance of matrix and higher-order tensor
observations, respectively. By imposing a Kronecker structure on the covariance matrix, the resulting
covariance estimate requires a vastly reduced amount of memory, while still capturing the interactions
between the various dimensions of the respective matrix or tensor. Iterative MLE methods for
estimating the parameters of matrix-normal and tensor-normal distributions have been examined in
e.g. [12, 31], and various ways to identify the unique representation of the distribution parameters
have been proposed in [43, 10]. However, to the best of our knowledge, this advanced statistical
methodology has not been used to develop optimization methods for deep learning. In this paper, we
describe a first attempt to do this and demonstrate its great potential.

Our Contributions. In this paper, we propose a brand new approximate natural gradient (NG)
method, Tensor-Normal Training (TNT), that makes use of the tensor normal distribution to approxi-
mate the Fisher matrix. Significantly, the TNT method can be applied to any model whose training
parameters are a collection of tensors without knowing the exact structure of the model.

To achieve this, we first propose a new way, that is suitable for optimization, to identify the covariance
parameters of tensor normal (TN) distributions, in which the average eigenvalues of the covariance
matrices corresponding to each of the tensor dimensions are required to be the same (see Section 3).

By using the Kronecker product structure of the TN covariance, TNT only introduces mild memory
and per-iteration computational overhead compared with first-order methods. Also, TNT’s memory
usage is the same as Shampoo’s and no greater than KFAC’s, while its per-iteration computational
needs are no greater than Shampoo’s and KFAC’s (see Section 5).

The effectiveness of TNT is demonstrated on deep learning models. Specifically, on standard
autoencoder problems, when optimization performance is compared, TNT converges faster than the
benchmark first-order methods and roughly the same rate as the benchmark second-order methods.
Moreover, on standard CNN models, when generalization is concerned, TNT is able to achieve
roughly the same level of validation accuracy as the first-order methods, but using far fewer epochs
(see Section 6).

We also prove that, if the statistics used in TNT can be estimated ideally, it converges to a stationary
point under mild assumptions (see Section 4).

2 Preliminaries

Supervised Learning. Throughout this paper, we consider the classic supervised learning setting

where we learn the parameters ✓ of a model, by minimizing Lp✓q “ 1

N

∞N

i“1
lpyi, fθpxiqq, where

tpxi, yiquNi“1
denotes a given dataset (xi being the input to the model and yi being the target), fθpxiq

denotes the output of the model when xi is provided as the input, and l denotes a loss function
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(e.g. least-squares loss for regression and cross entropy loss for classification) that measures the
discrepancy between the model output fθpxiq and the target yi.

Natural Gradient Method and the Fisher Matrix. In a first-order method, say SGD, the updating
direction is always derived from an estimate to the gradient direction rθLp✓q. In a natural gradient
(NG) method [1], however, the Fisher matrix is used as a pre-conditioning matrix that is applied to
the gradient direction. As shown in [34], the Fisher matrix is defined as

F “ Ex„Qx,y„pp¨|x,θq

”
rθ log ppy|x, ✓q prθ log ppy|x, ✓qqJ

ı
, (1)

where Qx is the data distribution of x and pp¨|x, ✓q is the density function of the conditional distribu-
tion defined by the model with a given input x.

In many cases, such as when p is associated with a Gaussian distribution and the loss function l
measures least-squares loss, or when p is associated with a multinomial distribution and l is cross-
entropy loss, log p is equivalent to l (see e.g. [33, 34]). Hence, if D✓ denotes the gradient of l w.r.t. ✓
for a given x and y, we have that F “ Ex„Qx,y„prD✓D✓Js. Consequently, one can sample x from
Qx and perform a forward pass of the model, then sample y from pp¨|x, ✓q, and perform a backward

pass to compute D✓, and then use D✓D✓J to estimate F . We call D✓ a sampling-based gradient, as
opposed to the empirical gradient rθlpyi, fθpxiqq where pxi, yiq is one instance from the dataset.

It is worth noting that the first moment of D✓ is zero. To see this, note that, with given x,

Ey„prrθ log ppy|x, ✓qs “

ª

rθ log ppy|x, ✓qppy|x, ✓qdy “

ª

rθppy|x, ✓qdy

“rθ

ˆ
ª

ppy|x, ✓qdy

˙
“ rθ1 “ 0.

Hence, Ex„Qx,y„prD✓s “ Ex„Qx
tEy„prrθ log ppy|x, ✓qs | xu “ 0. Thus, the Fisher matrix F can

be viewed as the covariance matrix of D✓. Note that the empirical Fisher CANNOT be viewed as the
covariance of the empirical gradient, because the first moment of the latter is, in general, NOT zero.

Tensor-Normal Distribution. The development of our new method makes use the so-called tensor-
normal distribution [31, 10]:

Definition 1. An arbitrary tensor G P R
d1ˆ¨¨¨ˆdk is said to follow a tensor normal (TN) distribution

with mean parameter M P R
d1ˆ¨¨¨ˆdk and covariance parameters U1 P R

d1ˆd1 , ..., Uk P R
dkˆdk if

and only if vecpGq „ NormalpvecpMq, U1 b ¨ ¨ ¨ b Ukq.

In the above definition, the vec operation refers to the vectorization of a tensor, whose formal
definition can be found in Sec A in the Appendix. Note that matrix-normal distribution can be viewed
as a special case of TN distribution, where k “ 2. Compared with a regular normal distribution,

whose covariance matrix has
±k

i“1
d2i elements, the covariance of a k-way tensor-normal distribution

is stored in k smaller matrices with a total number of elements equal to
∞k

i“1
d2i .

To estimate the covariance submatrices U1, . . . , Uk, the following property (e.g., see [10]) is used:

ErGpiqs “ Ui ¨
π

j‰i

trpUjq, (2)

where Gpiq :“ matipGqmatipGqJ P R
diˆdi denotes the contraction of G with itself along all but the

ith dimension and mati refers to matricization of a tensor (see Section A for the formal definitions).
By (2), we can sample G to obtain estimates of the Gpiq’s, and hence, estimates of the Ui’s. The

complexity of computing Gpiq is di
±k

j“1
dj , which is also far less than the complexity of computing

vecpGqvecpGqJ needed to estimate the covariance of a regular normal distribution.

3 Tensor-Normal Training

In this section, we propose Tensor-Normal Training (TNT), a brand new variant of the natural gradient
(NG) method that makes use of the tensor-normal distribution.
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3.1 Block Diagonal Approximation

In this paper, we consider the case where the parameters of the model ✓ consists of multiple tensor
variables W1, ...,WL, i.e. ✓ “ pvecpW1qJ, ..., vecpWLqJqJ. This setting is applicable to most
common models in deep learning such as multi-layer perceptrons, convolutional neural networks,
recurrent neural networks, etc. In these models, the trainable parameter Wl (l “ 1, . . . , L) come
from the weights or biases of a layer, whether it be a feed-forward, convolutional, recurrent, or
batch normalization layer, etc. Note that the index l of Wl refers to the index of a tensor variable, as
opposed to a layer.

To obtain a practical NG method, we assume, as in KFAC and Shampoo, that the pre-conditioning
Fisher matrix is block diagonal. To be more specific, we assume that each block corresponds to the
covariance of a tensor variable in the model. Hence, the approximate Fisher matrix is:

F « diagLl“1

 

Ex„Qx,y„p

“
vecpDWlqpvecpDWlqqJ

‰(
“ diagLl“1

tVarpvecpDWlqqu .

The remaining question is how should one approximate VarpvecpDWlqq for l “ 1, ..., L.

3.2 Computing the Approximate Natural Gradient Direction by TNT

We consider a tensor variable W P R
d1ˆ¨¨¨ˆdk in the model and assume that G :“ DW P R

d1ˆ¨¨¨ˆdk

follows a TN distribution with zero mean and covariance parameters U1, ..., Uk where Ui P R
diˆdi .

Thus, the Fisher matrix corresponding to W is FW “ Ex„Qx,y„prVarpvecpGqqs “ U1 b ¨ ¨ ¨ b Uk.
Loosely speaking, the idea of relating the Fisher matrix to the covariance matrix of some normal
distribution has some connections to Bayesian learning methods and interpretations of NG methods

(see e.g., [22]). Let rWL P R
d1ˆ¨¨¨ˆdk denote the gradient of L w.r.t. W . The approximate NG

updating direction for W is computed as

F´1

W vecprWLq “ pU´1

1
b ¨ ¨ ¨ b U´1

k qvecprWLq “ vec
`
rWL ˆ1 U

´1

1
ˆ2 ¨ ¨ ¨ ˆk U´1

k

˘
, (3)

where ˆi (i “ 1, ..., k) denotes a mode-i product (see Section A in the Appendix). Note that the last
equality of (3) makes use of the following proposition, which also appears in [18] (see Sec A in the
Appendix for a proof):

Proposition 1. Let G P R
d1ˆ¨¨¨ˆdk and Ui P R

diˆdi for i “ 1, ..., k. Then, we have
`
bk

i“1
Ui

˘
vecpGq “ vecpG ˆ1 U1 ˆ2 U2 ¨ ¨ ¨ ˆk Ukq. (4)

To summarize, the generic Tensor-Normal Training algorithm is:

Algorithm 1 Generic Tensor-Normal Training (TNT)

Require: Given batch size m, and learning rate ↵
1: for t “ 1, 2, . . . do
2: Sample mini-batch Mt of size m
3: Perform a forward-backward pass over Mt to compute the mini-batch gradient
4: Perform another backward pass over Mt with y sampled from the predictive distribution to

compute Gl “ DWl (l “ 1, ..., L) averaged across Mt

5: for l “ 1, ...L do

6: Estimate ErG
piq
l s (i “ 1, ..., kl) from Gl

7: Determine U
plq
1

, ..., U
plq
kl

from ErG
p1q
l s, ...,ErG

pklq
l s

8: Compute the inverses of U
plq
1

, ..., U
plq
kl

9: Compute the updating direction pl by (3)
10: Wl “ Wl ´ ↵ ¨ pl.
11: end for
12: end for

3.3 Identifying the Covariance Parameters of the Tensor Normal Distribution

By (2), Ui can be inferred from ErGpiqs up to a constant multiplier. However, different sets of
multipliers can generate the same F , i.e. the same distribution. This is less of a problem if one
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only cares about F . However, we need F´1 to compute the approximate natural gradient. That

is, we first must choose a representation of F “ cpŨ1 b ¨ ¨ ¨ b Ũkq (see below), and then compute

F´1 “ c´1ppŨ1 ` ✏Iq´1 b ¨ ¨ ¨ b pŨk ` ✏Iq´1q with a proper choice of ✏ ° 0, where ✏I plays a
damping role in the preconditioning matrix. In this case, different representations of F will lead to
different F´1.

The statistics community has proposed various representations for Ũi’s. For example, [43] imposed

that c “ 1 and the first element of Ũi to be one for i “ 1, ..., k ´ 1, whereas [10] imposed that

trpŨiq “ 1 for i “ 1, ..., k. Although these representations have nice statistical properties, they are
not ideal from the perspective of inverting the covariance for use in a NG method in optimization.

We now describe one way to determine Ũ1, ..., Ũk, and c from ErGp1qs, ...,ErGpkqs. In particular, we

first set c “ 1, so that F´1 has a constant upper bound ✏´kI . We then require that
trpŨiq
di

is constant

w.r.t i. In other words, the average of the eigenvalues of each of the Ũi’s is the same. This helps the

Ũi’s have similar overall "magnitude" so that a suitable ✏ can be found that works for all dimensions.
Moreover, this shares some similarity with how KFAC splits the overall damping term between KFAC
matrices, although KFAC adjusts the damping values, whereas TNT adjusts the matrices. A bit of
algebra gives the formula

Ũi “
ErGpiqs

ck´1

0

±

j‰i dj
, (5)

where c0 “
´

trpErGpiqsq
±

j
dj

¯1{k

.

3.4 Comparison with Shampoo and KFAC

Shampoo, proposed in [18], and later modified and extended in [3], is closely related to TNT. Both
methods use a block-diagonal Kronecker-factored preconditioner based on second-order statistics of
the gradient and are able to handle all sorts of tensors, and hence, can be applied to all sorts of deep
neural network models, easily and seamlessly. The major differences between them are:

(i) The TN distribution cannot be directly applied to EF, which is used in Shampoo, because the
empirical gradient does not have a zero mean; hence its covariance and second moment are different.
It is also believed that EF does not capture as much valuable curvature information as Fisher [26].

(ii) Using the statistics ErGpiqs’s, TNT approximates the Fisher matrix as the covariance of the
block-wise sampling-based gradients assuming that they are TN distributed. On the other hand,
Shampoo computes 1{2k-th power of the statistics of each direction of the tensor-structured empirical
gradient and forms a preconditioning matrix from the Kronecker product of them. It is unclear to
us how to interpret statistically such a matrix other than by its connection to EF. We further note
that Shampoo was developed as a Kronecker-factored approximation to the full-matrix version of
AdaGrad [11], whereas TNT was developed as a NG method using a TN-distributed approximation
to the Fisher matrix.
(iii) TNT computes the updating direction using the inverse (i.e. power of ´1) of the Kronecker
factors of the approximate Fisher matrix, whereas Shampoo uses the ´1{2k-th power1 of the
Kronecker factors of the EF matrix.

Another method related to TNT is KFAC [34, 17], which, like TNT, uses Fisher as its preconditioning
matrix. Their major differences are:

(i) KFAC develops its approximation based on the structure of the gradient and Fisher matrix for
each type of layer. Admittedly, this could lead to better approximations. But it is relatively hard
to implement (e.g. one need to store some intermediate variables to construct the KFAC matrices).
Also, if new types of layers with different structures are considered, one needs to develop suitable
Kronecker factorizations, i.e., KFAC matrices. On the contrary, TNT, like Shampoo, is a model-
agnostic method, in the sense that, TNT can be directly applied as long as the shape of the tensor
variables are specified.

1In [3], for autoencoder problems involving tensors of order 2, the power was set to ´α

2
, where α P r0, 1s

was treated as a hyper-parameter which required tuning, and was set to α “ 1 after tuning.
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Figure 1: Cosine similarity between the directions produced by the methods shown in the legend
and that of a block Fisher method. The algorithms were run on a 16 ˆ 16 down-scaled MNIST [27]
dataset and a small feed-forward NN with layer widths 256-20-20-20-20-20-10 described in [34]. As
in [34], we only show the middle four layers.

(ii) Each block of TNT corresponds to a tensor variable whose shape needs to be specified, whereas
each block of KFAC corresponds to all variables in a layer. For example, for a linear or convo-
lutional layer, the KFAC block would correspond to the Fisher of both its weights and bias (and
their correlation), whereas TNT would produce two blocks corresponding to the weights and bias,
respectively.

In order to gain more insight into how well TNT approximates the Fisher matrix compared with other
methods, we computed the cosine similarity between the direction produced by each method and that
by a block Fisher method, where each block corresponded to one layer’s full Fisher matrix in the
model (see Figure 1). For all methods shown in Figure 1, we always followed the trajectory produced
by the block Fisher method. In our implementation of the block Fisher method, both the gradient
and the block-Fisher matrices were estimated with a moving-average scheme, with the decay factors
being 0.9. In all of the other methods compared to the block Fisher method, moving averages were
also used, with the decay factors being 0.9, as described in Section D in the Appendix, to compute the
relevant gradients and approximate block-Fisher matrices used by them, based on values computed at
points generated by the block-Fisher method.

As shown in Figure 1, the cosine similarity for TNT is always around 0.7 to 0.8, which is similar to
(and sometimes higher) than the structure-aware method KFAC, and always better than Shampoo. To
provide more information, we also include SGD with momentum and Adam, whose similarity to the
block Fisher direction is usually lower that of the second-order methods.

4 Convergence

In this section, we present results on the convergence of an idealized version of TNT that uses the
actual covariance of D✓, rather than a statistical estimate of it (see Algorithm 2 in the Appendix).
In particular, our results show that Algorithm 2, with constant batch size and decreasing step size,
converges to a stationary point under some mild assumptions. For simplicity, we assume that the
model only contains one tensor variable W . However, our results can be easily extended to the case of
multiple tensor variables. To start with, our proofs, which are delayed to Section B in the Appendix,
require the following assumptions:

Assumption 1. L : Rn Ñ R is continuously differentiable. Lp✓q is lower bounded by a real number
Llow for any ✓ P R

n. rL is globally Lipschitz continuous with Lipschitz constant L; namely for any
✓, ✓1 P R

n, }rLp✓q ´ rLp✓1q} § L}✓ ´ ✓1}.

Assumption 2. For any iteration t, we have

aq Eξt rrlp✓t, ⇠tqs “ rLp✓tq bq Eξt

”
}rlp✓t, ⇠tq ´ rLp✓tq}2

ı
§ �2

where � ° 0 is the noise level of the gradient estimation, and ⇠t, t “ 1, 2, . . . , are independent
samples, and for a given t the random variable ⇠t is independent of t✓jutj“1

Assumption 3. Let G :“ D✓. For any ✓ P R
n, the norm of the Fisher matrix F “

Ex„Qx,y„prvecpGqvecpGqJs is bounded above.

Since F represents the curvature of the KL divergence of the model’s predictive distribution, As-
sumption 3 controls the change of predictive distribution when the model’s parameters change; hence,
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Table 1: Memory and per-iteration time complexity beyond that required by SGD

Name Memory Time (per-iteration)

TNT Op
∞k

i“1
d2i q Opp 1

T1

m `
∞k

i“1
diq

±k

i“1
di ` 1

T2

∞k

i“1
d3i q

Shampoo Op
∞k

i“1
d2i q Opp

∞k

i“1
diq

±k

i“1
di ` p 1

T2

∞k

i“1
d3i - if using SVDqq

Adam-like Op
±k

i“1
diq Op

±k

i“1
diq

Newton-like Op
±k

i“1
d2i q - depends on specific algorithm

it is a mild assumption for reasonable deep learning models. Essentially, we would like to prove that,
if the Fisher matrix is upper bounded, our approximated Fisher (by TNT) is also upper bounded.

We now present two lemmas and our main theorem; see Section B in the Appendix for proofs.

Lemma 1. }Ex„Qx,y„prGpiqs} §

´
1

di

±k

i1“1
di1

¯
}Ex„Qx,y„prvecpGqvecpGqJs}, @ i “ 1, . . . , k.

Lemma 2. Suppose Assumption 3 holds. Let FTNT :“ pŨ1 ` ✏Iq b ¨ ¨ ¨ b pŨk ` ✏Iq where Ũi’s are
defined in (5). Then, the norm of FTNT is bounded both above and below.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold for t✓tu generated by Algorithm 2 with batch

size mt “ m for all t. If we choose ↵t “ κ

Lκ̄2 t
´β , with � P p0.5, 1q, then

1

N

Nÿ

t“1

Etξju8
j“1

”
}rLp✓tq}2

ı
§

2L
`
ML ´ Llow

˘
̄2

2
Nβ´1 `

�2

p1 ´ �qm

`
N´β ´ N´1

˘
,

where N denotes the iteration number and the constant ML ° 0 depends only on L. Moreover, for

a given � P p0, 1q, to guarantee that 1

N

∞N

t“1
Etξju8

j“1

”
}rLp✓tq}2

ı
† �, N needs to be at most

O
´
�´ 1

1´β

¯
.

5 Implementation Details of TNT and Comparison on Complexity

Implementation Details of TNT. In practice, we compute G “ DW averaged over a minibatch

of data at every iteration, and use the value of G
piq

to update a moving average estimate yGpiq of

ErGpiqs. The extra work for these computations (as well as for updating the inverses of Ũi) compared
with a stochastic gradient descent method is amortized by only performing them every T1 (and T2)
iterations, which is also the approach used in KFAC and Shampoo, and does not seems to degrade the

overall performance of the TNT algorithm. Moreover, we compute ErGpiqs using the whole dataset
at the initialization point as a warm start, which is also done in our implementations of Shampoo and
KFAC. See Algorithm 3 in the Appendix for the detailed implementation of TNT.

A Comparison on Memory and Per-iteration Time Complexity. To compare the memory require-
ments and per-iteration time complexities of different methods, we consider the case where we
optimize one tensor variable of size d1 ˆ ¨ ¨ ¨ ˆ dk using minibatches of size m at every iteration. A

plain SGD method requires Op
±k

i“1
diq to store the model parameters and the gradient, whereas

its per-iteration time complexity is Opm
±k

i“1
diq. Table 1 lists the memory requirements and

per-iteration time complexities in excess of that required by SGD for different methods.

Compared with a classic Newton-like method (e.g. BFGS), TNT (as well as Shampoo) reduces the

memory requirement from Op
±k

i“1
d2i q to Op

∞k

i“1
d2i q, which is comparable to that of Adam-like

adaptive gradient methods. In fact, if the di’s are all equal to d and 3 § k †† d, the Kronecker-
factored TNT pre-conditioning matrix requires kd2 storage, which is less than that required by the
diagonal pre-conditioners used by Adam-like methods. On the other hand, in terms of per-iteration
time complexity, TNT (as well as Shampoo) only introduces a mild overhead for estimating the

statistics ErGpiqs’s, inverting the pre-conditioning matrices, and computing the updating direction.
Also, the first two of these operations can be amortized by only performing them every T1 and T2

iterations. Lastly, the extra work of Op 1

T1

m
±k

i“1
diq required by TNT relative to Shampoo is due to

the extra backward pass needed to estimate the true Fisher, as opposed to the EF.
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Moreover, although TNT and Shampoo both incur 1

T2

∞k

i“1
d3i amortized time to invert the pre-

conditioning matrices, the SVD operation in Shampoo can take much more time than the matrix
inverse operation in TNT, especially when the matrix size is large2.

The per-iteration computational complexity of KFAC is more complicated because it depends on the
type of the layer/variable. For linear layers, TNT and KFAC both uses two matrices, whose sizes are
the number of input nodes and output nodes, respectively. For convolutional layers, TNT uses three
matrices, whose sizes are the size of filter, number of input channels, and number of output channels,
whereas KFAC uses two matrices whose sizes are the size of filter times number of input channels,
and number of output channels. As a result, the first KFAC matrix requires much more memory. In
general, the per-iteration complexity of KFAC is no less than that of TNT.

6 Experiments

In this section, we compare TNT with some state-of-the-art second-order (KFAC, Shampoo) and
first-order (SGD with momentum, Adam) methods (see Section D.1 in the Appendix on how these
methods were implemented). The Hessian-based K-BFGS method [15, 38] is another state-of-the-art
Kronecker-factored second-order method for training deep learning models. Since our focus is on
optimizers that use Fisher or empirical Fisher as the preconditioning matrix, we did not include
K-BFGS in our comparison.

Our experiments were run on a machine with one V100 GPU and eight Xeon Gold 6248 CPUs using
PyTorch [37]. Each algorithm was run using the best hyper-parameters, determined by an appropriate
grid search (specified below), and 5 different random seeds. In Figures 2 and 3 the performance of
each algorithm is plotted: the solid curves give results obtained by averaging the 5 different runs,
and the shaded area depicts the ˘standard deviation range for these runs. Our code is available at
https://github.com/renyiryry/tnt_neurips_2021.

6.1 Optimization: Autoencoder Problems

a) MNIST autoencoder b) FACES autoencoder

Figure 2: Optimization performance of TNT, KFAC, Shampoo, Adam, and SGD-m on two autoen-
coder problems

We first compared the optimization performance of each algorithm on two autoencoder problems
[21] with datasets MNIST [27] and FACES3, which were also used in [32, 34, 5, 15] as benchmarks
to compare different algorithms. For each algorithm, we conducted a grid search on the learning rate
and damping value based on the criteria of minimal training loss. We set the Fisher matrix update
frequency T1 “ 1 and inverse update frequency T2 “ 20 for all of the second-order methods. Details
of our experiment settings are listed in Section D.2 in the Appendix. From Figure 2, it is clear that
TNT outperformed SGD with momentum and Adam, both in terms of per-epoch progress and process
time. Moreover, TNT performed (at least) as well as KFAC and Shampoo, with a particularly strong
performance on the FACES dataset. We repeated these experiments using a grid search on more
hyper-parameters, and obtained results (see Figure 6 in Sec D.5) that further support our observations
based on Figure 2.

2In [3] it is shown that replacing the SVD operation by a coupled Schur-Newton method saves time
for matrices of size greater than 1000 ˆ 1000. In our experiments, we used the coupled Newton method
implementation of Shampoo.

3https://cs.nyu.edu/~roweis/data.html
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6.2 Generalization: Convolutional Neural Networks

a) CIFAR-10, ResNet-32 b) CIFAR-100, VGG16

Figure 3: Generalization ability of TNT, KFAC, Shampoo, Adam, and SGD-m on two CNN models.
Upper row depicts the training loss whereas lower row depicts the validation classification error.

We then compared the generalization ability of each algorithm on two CNN models, namely, ResNet32
[19] (with CIFAR10 dataset [24]) and VGG16 [42] (with CIFAR100 dataset [24]). The first-order
methods were run for 200 epochs during which the learning rate was decayed by a factor of 0.1 every
60 epochs, whereas the second-order methods were run for 100 epochs during which the learning rate
was decayed by a factor of 0.1 every 40 epochs; (these settings are the same as in [45]). Moreover, as
indicated in [29, 45], weight decay, different from the L2 regularization added to the loss function,
helps improve generalization across different optimizers. Thus, for each algorithm, we conducted a
grid search on the initial learning rate and the weight decay factor based on the criteria of maximal
validation classification accuracy. The damping parameter was set to 1e-8 for Adam (following
common practice), and 0.03 for KFAC4. For TNT and Shampoo, we set ✏ “ 0.01. We set T1 “ 10
and T2 “ 100 for the three second-order methods (same as in [45]). Details of our experiment
settings and a further discussion of the choice of damping hyper-parameters can be found in Section
D.3 in the Appendix.

The results in Figure 3 indicate that, with a proper learning rate and weight decay factor, second-order
methods and Adam exhibit roughly the same generalization performance as SGD with momentum,
which corroborate the results in [29, 45]. In particular, TNT has a similar (and sometimes better)
generalization performance than the other methods. For example, comparing TNT with SGD-m, TNT
(SGD-m) achieves 93.08% (93.06%) validation accuracy with ResNet32 on CIFAR10 and 73.33%
(73.43%) validation accuracy with VGG16 on CIFAR-100, after 100 (200) epochs (see Table 3 in the
Appendix for the accuracy achieved by the other algorithms). Moreover, in terms of process time,
TNT is roughly twice (equally) as fast as SGD with momentum on ResNet32/CIFAR10 in Figure
3a (on VGG16 on CIFAR-100 in Figure 3b). This illustrates the fact that TNT usually requires only
moderately more computational effort per-iteration but fewer iterations to converge than first-order
methods. Also, as shown on the VGG16 model, KFAC seems to be much slower than TNT and
Shampoo on larger models. This is because the most recent version of KFAC, which we implemented,
uses SVD (i.e., eigenvalue decomposition) to compute inverse matrices (see Section D.1.2 in the
Appendix for a discussion of this). In contrast, TNT does not need to use SVD, and the most recent
version of Shampoo replaces SVD with a coupled Newton method in [3].

We also compared TNT with a variant of it that uses the empirical rather than the true Fisher as the
preconditioning matrix. The results of this comparison, which are presented in Section D.4 in the
Appendix, suggest that it is preferable to use Fisher rather than empirical Fisher as pre-conditioning
matrices in TNT.

4The value of 0.03 is suggested in https://github.com/alecwangcq/KFAC-Pytorch, a github repo by
the authors of [45].
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7 Conclusion and Further Discussions

In this paper, we proposed a new second-order method, and in particular, an approximate natural
gradient method TNT, for training deep learning models. By approximating the Fisher matrix
using the structure imposed by the tensor normal distribution, TNT only requires mild memory
and computational overhead compared with first-order methods. Our experiments on various deep
learning models and datasets, demonstrate that TNT provides comparable and sometimes better
results than the state-of-the-art (SOTA) methods, both from the optimization and generalization
perspectives.

Due to space and computational resource constraints, we did not run experiments on even larger
models such as ImageNet and advanced models for NLP tasks. However, the results in this paper
already show very strong evidence of the potential of the TNT method. We also did not explore
extending our method to a distributed setting, which has been shown to be a promising direction for
second-order methods such as KFAC and Shampoo [4, 3]. Since TNT already performs very well
on a single machine, we expect that it will continue to do so in a distributed setting. These issues
will be addressed in future research. We did not compare TNT with the SOTA Kronecker-based
quasi-Newton methods [15, 38], since they are not as closely related to TNT as are Shampoo and
KFAC. Their performance relative to TNT can be inferred from the comparisons here combined with
those reported in [15, 38, 3].

As a final note5, the preconditioning matrices of TNT (as well as those of Shampoo) are derived
from the specific shape of the (tensor) parameters of the particular deep learning model that is being
trained. One can, of course, reshape these parameters, e.g., by flattening the tensors into vectors,
which gives rise to very different preconditioning matrices.

The method proposed in this paper can be applied to any deep learning or machine learning model.
If the model and/or data has a flawed design or contains bias, this could potentially have negative
societal impacts. However, this possibility is beyond the scope of the work presented in this paper.

5We thank the program chair for pointing this out.
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