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Abstract— The NPM package repository contains over two
million packages and serves tens of billions of downloads per-
week. Nearly every single JavaScript application uses the NPM
package manager to install packages from the NPM repository.
NPM relies on a “semantic versioning” (‘semver’) scheme to
maintain a healthy ecosystem, where bug-fixes are reliably
delivered to downstream packages as quickly as possible, while
breaking changes require manual intervention by downstream
package maintainers. In order to understand how developers
use semver, we build a dataset containing every version of every
package on NPM and analyze the flow of updates throughout
the ecosystem. We build a time-travelling dependency resolver
for NPM, which allows us to determine precisely which versions
of each dependency would have been resolved at different times.
We segment our analysis to allow for a direct analysis of security-
relevant updates (those that introduce or patch vulnerabilities)
in comparison to the rest of the ecosystem. We find that when
developers use semver correctly, critical updates such as security
patches can flow quite rapidly to downstream dependencies
in the majority of cases (90.09%), but this does not always
occur, due to developers’ imperfect use of both semver version
constraints and semver version number increments. Our findings
have implications for developers and researchers alike. We make
our infrastructure and dataset publicly available under an open
source license.

Index Terms—NPM, dependency-management, JavaScript

I. INTRODUCTION

Modern software development relies inextricably on open

source package repositories on a massive scale. For example,

the NPM repository contains over two million packages and

serves tens of billions of downloads weekly, and practically

every JavaScript application uses the NPM package manager

to install packages from the NPM repository. As open source

package repositories grow in scale, the maintenance, updating,

and distribution of packages represents a growing attack

surface for malicious actors to target, and understanding the

properties of the software supply chain is vital.

One particular concern in open source ecosystems is the

technical lag [1]–[5] that packages experience between when

a new update is available for a dependency and when

that update is applied. NPM and other similarly-designed

ecosystems (PyPi, etc.) offer a potential solution in the

form of semantic versioning (“semver”) and flexible version
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constraints. In semver, versions are numbered in the form

major.minor.bug, where major denotes breaking API

changes, minor denotes a non-breaking change adding new

functionality, and bug denotes a backwards-compatible bug

fix1 [6]. Flexible version constraints allow developers of

downstream (i.e., dependent) packages to specify which types

of updates they are willing to automatically accept. Ideally,

semver helps developers to express constraints and version

numbers so that non-breaking important updates (such as

security patches) flow rapidly to downstream packages, while

breaking changes are delayed until developers choose to accept

them. For example, a developer may specify that they depend

on the package react, with constraint ˆ18.1.1, which

means that automatic updates are allowed until (excluding)

version 19.0.0. In essence, this constraint says “receive all

updates to React that are unlikely to be breaking changes”.

However, there are three significant complications with

semver in practice that can lead to technical lag [1]–[5].

First, the positive properties of semver are predicated on both

upstream developers labeling their updates with the correct

semver increment type, and on downstream developers using

constraints that are neither too flexible nor too strict. Second,

dependencies in the middle of a transitive dependency chain

affect the final received versions of dependencies. The down-

stream developer may list a constraint that allows the most

up-to-date version of a package, but if a transitive dependency

has a more restrictive constraint, the downstream developer

may not receive the up-to-date version. Third, allowing for

automatic (bug) updates to dependencies can be dangerous, as

it introduces an attack vector for malware.

In this work, we aim to understand how developers make

use of dependencies, semantic versioning, and flexible version

constraints at the ecosystem-scale, and how all these factors

intersect to affect developer experience and supply chain

security. Prior work on mining data from the NPM ecosystem

has primarily focused on answering questions about NPM at

a snapshot in time [7]–[10]. In this work, we first understand

how developers make use of semantic versioning by analyzing

flexible constraint type frequency and semver increment type

frequency over the entire history of NPM. Then, to understand

1In this paper we use “bug” rather than the standard “patch” semver
terminology, so as to disambiguate from the notion of security patches.



how updates flow in practice at the ecosystem scale, we run

large-scale experiments that resolve packages’ dependencies

at different snapshots in time, observing how long it takes for

updates to be received by downstream packages. To enable

these experiments, we built a tool that allows for accurate time-

travel dependency solving throughout the history of NPM.

This methodology allows for more precision in resolving

dependencies throughout time, as prior work [2], [4], [11]–

[13] approximated NPM’s behavioral semantics, which are not

well-specified [14].

In total, we have built the first dataset of NPM that includes

(as of October 31, 2022):

1) every package on NPM (2,663,681 packages)

2) every version of every package (28,941,927 versions)

3) metadata (≈ 40 GB compressed) and packaged code (≈
19 TB compressed) for every version of every package,

4) full data of security advisories issued for NPM packages,

downloaded from the GitHub Security Advisory database.

This dataset is indexed to allow for easy querying and large-

scale distributed computations. To gather this data, we de-

signed and implemented a distributed system for downloading,

archiving and retrieving packages from NPM. We release our

scraper and dataset under the BSD 3-Clause license2.

We use our dataset to answer several questions about the

NPM ecosystem, in particular how developers use semantic

versioning, and how this affects supply chain security:

• RQ1: Do developers specify dependency version con-

straints to allow for automated updates?

• RQ2: Do developers use semantic versioning in their

package releases to allow for automated updates to down-

stream packages?

• RQ3: Do packages frequently contain out-of-date depen-

dencies? And when updates are published, how long until

those updates are received by downstream packages?

• RQ4: Among the types of semver updates, what types

of high-level changes do developers tend to make? How

often do developers only update dependencies?

These results are impactful for both developers and re-

searchers. We show that, generally, the NPM ecosystem is

effective in terms of efficient distribution of non-breaking

updates, but most packages end up with out-of-date depen-

dencies anyways due to the sheer volume of dependencies and

updates to deal with. In addition, we found evidence that some

developers use semver non-optimally when releasing security

patches, and that minor and major semver updates appear to

have a higher risk of introducing security vulnerabilities.

II. RELATED WORK

Our research questions and methodology build on a large

body of related work examining semantic versioning and

technical lag.

2Please see https://dependencies.science for access to up-to-date metadata,
tarball data, and source code. The original artifact excluding tarball data is
available on Zenodo [15].

1) Semantic Versioning: While semantic versioning does

have a precise syntactic specification [6], the semantics of

what counts as backwards-compatible are not formally defined.

Tooling, including NPM, generally does not enforce how de-

velopers make use of semantic versioning in practice. Choices

of semantic versioning usage impact speed of distribution of

packages, technical lag, stability, developer frustration, and

more. Developer interviews in 2015 conducted by Bogart et

al. [16] in the NPM and CRAN ecosystems found that devel-

opers try to use semantic versioning, but are not always aware

of its implications and generally find dependency management

exhausting. More concretely, Raemaekers et al. [17] [17] found

that in 2006–2011, Maven developers often introduced binary

incompatible changes within supposedly non-breaking semver

updates. Wittern et al. [18] studied dependencies between

packages in NPM, and found that the number of dependencies

between packages is increasing over time, and observed the

frequencies of version constraint types in 2016. Dietrich et

al. [19] then observed how version constraint type frequencies

have changed over time, at the project level. Examining

version constraint evolution at the full-ecosystem level allows

for an evaluation based on “wisdom of the crowds.” Decan et

al. [20] perform an analysis of dependency constraints at the

ecosystem level for Cargo, NPM, Packagist and Rubygems.

Focusing only on a single ecosystem (NPM), we validate

Decan et al’s findings, and perform a much deeper analysis

of the dataset. Our study also examines the frequencies of

released update types, which enables us to draw important

implications about the diffusion of security updates.

2) Technical Lag: Many pieces of prior work attempt to

analyze the propagate of updates to downstream packages,

and how out-of-date the dependencies of a project typically

are. Gonzalez-Barahona et al. [1] define the measure of “tech-

nical lag”, which analyzes how far out-of-date a package’s

dependencies are relative to more recently released versions,

which has since been been further studied in the context of

NPM [2], [4], [5]. In addition, the concept of technical lag

is specialized to the analysis of the propagation of security

patches or vulnerabilities in further work [3], [11], [12].

Calculating technical lag is difficult, and prior works have

attempted to simulate the dependencies that would have been

resolved at different points in time. Some of these works do not

consider transitive dependencies [4], [11], which is concerning

as transitive dependencies typically represent the majority of a

package’s dependencies in NPM. Others have followed up by

considering transitive dependencies [2], [12]. Liu et al. [13]

introduce DTResolver, a custom dependency solving algorithm

that more closely matches the behavior of NPM. However,

the authors’ evaluation of DTResolver found that it only

matched NPM’s behavior when building dependency trees for

90.58% of 15,673 libraries [13]. Our recent evaluation of

NPM’s dependency resolution semantics showed a variety of

corner cases in which NPM’s algorithm will select unexpected

versions for dependencies in order to unify versions [14].

Particularly when resolving transitive dependencies, the error

introduced by an incorrect approximation of NPM’s resolution



semantics compounds. Compared to all prior work that we

are aware of in studying technical lag in the NPM ecosystem,

ours is the only study to use NPM itself to resolve historical

dependencies. We make our tools and dataset available to

allow others to employ this methodology [15].

3) Studies of NPM: Finally, other studies have looked

at more specific questions or applications of data analysis

from NPM, such as studying when developers downgrade

packages [21], analyzing the phenomenon of popular “micro”

packages in NPM [8]–[10], and developing methods to un-

derstand and prevent vulnerabilities or malware in NPM [7],

[22]–[24]. We will return to discuss how our findings may

guide future research applications in Section VI-C.

III. METHODOLOGY

At a high-level, we answer our four core research questions

using different aspects of our dataset and analysis systems.

RQ1 and RQ2 are answered purely via analysis of our scraped

metadata. Answering RQ3 is more challenging as it requires

reasoning about how dependencies are resolved across time,

which we answer by using our time-traveling dependency

resolver in large-scale experiments. Finally, to answer RQ4

we compute diffs between tarballs of package versions.

A. RQ1: Version Constraint Usage

Within NPM’s rich language for specifying version con-

straints on dependencies [14], [25], it is unclear which of the

many constraint types developers frequently make use of and

how loose or restrictive those constraints are.

We classify version constraints in the following mutually

exclusive categories:

1) Exact constraints ("=1.2.3") accept no versions other

than the specifically listed one;

2) Bug-flexible constraints ("˜1.2.3") accept any updates

to the bug semver component, so 1.2.4, etc.;

3) Minor-flexible constraints ("ˆ1.2.3") accept any up-

dates to the minor semver component, so 1.3.0, etc.;

4) Geq constraints (">=1.2.3") accept any versions

greater than or equal to the specified version;

5) Any constraints ("*") accept any versions; and

6) Other constraints, such as disjunction, conjunction,

GitHub URLs, etc.

We then examine frequencies of these constraint categories

across NPM, segmented by year so we can observe how

constraint usage has evolved historically. In addition, one chal-

lenge with analyzing data from NPM is that some packages

publish a massive number of versions (React has over 1,000

versions), so aggregating across all versions may produce

results that are biased towards packages with more versions. In

RQ1 we select only the most recent version of every package

that was uploaded within each year. This enables us to segment

by time while avoiding this bias.

B. RQ2: Semantic Versioning in Updates

We now turn to examine how developers increment their

semantic version numbers when publishing updates. We first

find all of the package updates that have occurred in NPM’s

history, and classify each as a bug (e.g. 5.4.8 → 5.4.9),

minor (e.g. 5.4.8 → 5.5.0), or major (e.g. 5.4.8 →
6.0.0) update.

One would expect that updates can trivially be identified

as consecutive versions of the same package. NPM however

allows versions to be published non-chronologically. This

feature allows for maintenance of parallel version branches.

For example, consider the following chronological order of

versions: 1.0.0, then 2.0.0, then 1.0.1, and then 2.0.1.

In this example, the mined updates should consist of: 1.0.0

→ 2.0.0, 1.0.0 → 1.0.1, and 2.0.0 → 2.0.1, as

these reflect updates that are most closely based on the source

version while being chronologically and numerically consis-

tent. We would not include the update 1.0.1 → 2.0.0

because it is not chronologically consistent, and thus 2.0.0

is unlikely to be a derivative of 1.0.1.

To determine the set of updates, we group versions by the

equivalence relation of same major component and assert that

groups are ordered within themselves chronologically. We then

have updates between versions within each group, and between

different groups. Continuing the above example, we have

two groups: {1.0.0, 1.0.1} and {2.0.0, 2.0.1}. From

intra-group ordering we obtain 1.0.0 → 1.0.1 and 2.0.0

→ 2.0.1, and from the inter-group ordering we obtain

1.0.0 → 2.0.0. We believe this algorithm reflects well

how developers publish updates, and we discuss alternatives

in Section VII. When computing these updates, we first filter

out all prerelease versions (e.g. 1.2.3-beta5), yielding

1,453,789 packages with at least one update (of 2,869,085

packages). We then filter out 52,279 packages that do not have

consistent intra-group chronological orders.

With all updates and version increment types identified,

we examine the distribution of the three update types across

the whole population, and then compare to the subgroups

of updates that introduce and patch vulnerabilities. Updates

that patch vulnerabilities are identified directly in the scraped

advisory database, while we identify versions that introduce

vulnerabilities as the minimal version containing that vulnera-

bility. To avoid the bias introduced by some packages having

a large number of updates, our top-level aggregation is among

packages rather than updates. For each package, we identify

the proportion of its updates of each type (segmenting by

security effect), and then visualize this percentage across all

the packages. This enables us to make conclusions about how

packages and package developers generally handle increment-

ing semver numbers during updates. In addition, note that

when segmenting by updates that introduce vulnerabilities,

we are not attempting to study malware, rather updates that

(probably inadvertently) introduce a vulnerability.

C. RQ3: Out-of-Date Dependencies and Update Flows

The properties examined thus far have been local properties

of each package, in that each package has been analyzed

individually. We now wish to answer how out-of-date NPM

packages typically are, and how long it takes updates to flow



Metadata

Database

Scraper

NPM Registry GHSA DB

Job Scheduler

Blob Lock

Scheduler

Index

Store

Worker

Pool

Blob

Storage

W2W1 ... Wn

Metadata Manager

Job Manager

Compute Cluster

Download Jobs

Compute Jobs

System Architecture
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to downstream packages. Both of these properties rely on

all the packages in the transitive dependency closure of a

downstream package. However, reasoning precisely about how

dependencies are solved is challenging both because NPM’s

dependency solving algorithm is complex (Section II-2), and

because we wish to parameterize this over time.

In order to compute solutions accurately and at different

points in time, we use vanilla NPM’s solver combined with

a proxy that emulates the world state at any given point in

history (described in Section IV-C). With this key tool, we

then perform two experiments: first we solve the dependencies

of the most recent version of every package in NPM and

observe how many packages have out-of-date dependencies;

we then explore how updates flow to downstream packages

by solving the dependencies of the downstream package at

different points in time until it receives the update.

D. RQ4: Analyzing Code Changes in Updates

After having examined how developers use constraints and

version numbers in isolation, we next align that with a high-

level characterization of what updates actually change. For

every identified update, we decompress the packaged code

from both versions, and look for file changes. We then

classify changes as modifying dependencies, code (.js,

.ts, .jsx, .tsx), both, or neither. We then examine the

distribution of these types of changes segmented by semver in-

crement type, again normalizing per-package to avoid biasing

towards packages with more updates.

Analyzing at a deeper level is possible with our dataset, but

is beyond the scope of this paper. Note that many packages

upload compiled or minified JavaScript code, which makes it

difficult to even look at simple line-by-line diffs. In addition,

we could have chosen to count other file types as code (.sh,

etc.), but we chose to focus on JavaScript code.

IV. SYSTEM ARCHITECTURE

In order to perform our methodology, we needed a system

that could scrape and store all metadata and tarball data, and

allow us to perform analyses and experiments on both the

metadata and tarball data. This system needs to be able to

run on our academic Slurm-backed [26], [27] HPC cluster. To

solve this problem, we designed our own system, organized

into 3 primary components (Figure 1):

1) The Metadata Manager, which continually scrapes data

from NPM and periodically from the GitHub Security

Advisory Database;

2) the Job Manager, which receives job requests (typically

tarball download or compute jobs) from the Metadata

Manager and then coordinates job execution and dis-

tributed file system locks; and

3) the Compute Cluster, in which we can spawn worker

nodes and access a networked file system.

We now explain how we accomplish the primary tasks

required by our methodology.

A. Metadata Acquisition

NPM stores metadata in a CouchDB database. CouchDB

is a document-oriented JSON database and is a good fit

for NPM because it is schemaless and allows for arbitrary

nesting of JSON objects, such as the package.json file.

For performing data analysis we find it to be a poor fit due to

the extremely loose structure. There is almost no validation of

the package.json files in the CouchDB, making it difficult

to use for analyses without first cleaning the data.

The Metadata Manager (top left of Figure 1) continu-

ally receives metadata changes from NPM via their changes

API [28], validates those changes, and inserts the data into

PostgreSQL [29]. Additionally, the Metadata Manager peri-

odically scrapes the GitHub Security Advisory Database and

imports the security metadata into PostgreSQL as well. RQ1

and RQ2 can be answered entirely via issuing PostgreSQL

queries to the Metadata Manager.

When metadata changes are received that contain URLs to

new package tarballs, the Metadata Manager enqueues a tarball

download job to then be handled by the Job Manager.

B. Tarball Data Acquisition and Compute Cluster

For scraping and storing package tarballs, we need to be

able to store tens of millions of tarballs, while allowing for

both concurrent writes to the storage since new tarballs are

downloaded continually, as well as concurrent reads from the

storage when performing analyses.

The worker nodes within the Compute Cluster are connected

via a networked file system. One interesting approach would

be to use a technology such as Hadoop [30] on top of the

networked file system to accomplish this. However, we did not

explore this approach out of concern of Hadoop’s scalability

with regards to storing many small files [31] (our use case). In

addition, we are are unsure if Hadoop can run correctly and

efficiently on top of a networked file system.



Instead, we store tarball data in a custom-built blob storage

system stored on the networked file system (bottom right of

Figure 1). The Job Manager (top right of Figure 1) controls

access to the blob storage, keeping track of byte offsets and

coordinating locks for writing, while individual worker nodes

in the Compute Cluster perform the networked disk I/O.

Tarballs are downloaded when the Job Manager receives a

download job request from the Metadata Manager, at which

point it assigns the download job to a worker node. Similarly,

the Metadata Manager may also send compute job requests,

which the Job Manager handles by distributing to many worker

nodes and optionally allowing each to perform lockless read-

only operations from the blob storage.

This system allows us to continually scrape and store tens

of millions of tarballs, and to efficiently retrieve them for

computation when answering RQ4. Additionally, while RQ3

does not read from the blob storage, it follows the same

compute workflow.

C. Time-Traveling Dependency Resolver

In order to carry out our experiments outlined in Section III

for RQ3, we needed to be able to observe how a package’s

dependencies would have been solved at arbitrary points in

NPM’s history. We built a proxy server that can be used with

vanilla NPM to enable time-travel dependency resolving.

NPM’s command line tool enables the user to specify a

custom package registry to use in place of npmjs.com. To

use our time-traveling resolver, we specify a registry base URL

pointing to our proxy server that includes in the URL the

timestamp to time-travel to. The proxy server then receives the

timestamp and can then rewrite responses from npmjs.com

to remove versions of packages after the timestamp. Since this

does not rely on the rest of our system, it is extremely easy

to setup and use. However, in order to scale the computation

across the dataset, we use the compute capabilities discussed

above in Section IV-B.

V. RESULTS

At a high level, we would consider a package ecosystem

to be healthy with regards to update distribution when up-

dates that are positive (performance improvements, bug fixes,

security patches, etc.) can be quickly and easily adopted by

downstream dependencies, while disruptive changes (security

vulnerabilities, malware, etc.) flow more slowly. In NPM,

the flow of updates is determined by two factors: how do

downstream developers tend to specify version constraints for

dependencies (RQ1), and how do upstream developers tend

to increment their version numbers when releasing updates

(RQ2). We start by explaining the overall structure and general

properties of the dataset. Then we move on to discuss RQ1

and RQ2 separately, and finally we consider how RQ1 and

RQ2 intersect in practice in the ecosystem (RQ3), and how

they are related to the actual contents of the updates (RQ4).

A. Dataset Structure and General Properties

As discussed in Section I our collected data is split into

two parts: 1) Ecosystem Metadata: This includes the full list

of packages (2,663,681 packages), versions of every package

(28,941,927 versions), and metadata for every version in-

cluding version upload times, version numbers, dependencies,

descriptions, links to repositories, and more. We also have

a full scrape of all security advisories for NPM packages,

including data on which versions are vulnerable and which

version(s) patch the vulnerability. 2) Tarballs of published

packages: The full source tarball of every version of every

package3 has been downloaded by our system.

Before diving into the core research questions, we first

discuss general properties of the dataset. Figure 2 displays

three distributions regarding our main objects of interest:

updates and dependencies.

Figure 2a displays an ECDF (empirical cumulative dis-

tribution function) of the distribution of the time between

updates of packages, computed across 1,401,510 packages

and 16,547,653 mined updates (Section III-B). A surprising

finding is how quickly updates are pushed out in many cases,

with 25% of updates spanning only 39.87 minutes or less, and

50% of updates spanning 22.71 hours or less. However, a long

tail of updates exists, with the top 25% of updates spanning

7.78 days or longer, and 10% spanning 40.12 days or longer.

On average, updates span 21.03 days. A manual inspection

of the data suggests that update behavior is quite bursty,

with developers releasing multiple updates in rapid succession,

and then going silent for long periods of time; however, this

hypothesis should be investigated more thoroughly.

Figures 2b and 2c display ECDFs of the distributions of

the numbers of (transitive) dependencies and downstream

packages (i.e. transitive reverse dependencies), respectively.

We selected the most recent non-prerelease version of every

package with at least one update (to filter out abandoned

packages), yielding 1,401,510 packages. We then used our

time-traveling variant of NPM to resolve their dependencies

and collect transitive dependency relations between packages,

disregarding versions. Solving dependencies failed on some

packages, due to both true solving failures with NPM (e.g.

missing dependencies) and transient system failures (discussed

more in Section VII) in the compute cluster. In total, our ex-

periments include successful executions of NPM’s dependency

solver on 696,419 packages. The data shows that on average

packages have 167.87 dependencies, and 95% of packages

have solution sizes of 636 or fewer dependencies, with the

largest solutions reaching up to 1,641 dependencies.

When turning to downstream packages however (Figure 2c),

the situation is quite asymmetrical, as there is a vastly longer

tail of packages with massive amounts of downstream pack-

ages. The top 3 depended-upon packages that we observed

were: 1) supports-color (does a terminal support color?,

624,883 downstream packages), 2) debug (logging library,

571,547 downstream packages), and 3) ms (time conversion

library, 515,684 downstream packages). On the other hand,

a large amount of packages are unused except by a handful

of downstream packages, with 50% of packages having 2 or

3excluding deleted content, which we describe in Section VII



(a) An ECDF of the time in days between
the publication of two versions of a pack-
age. Note that this plot specifically ex-
cludes updates for non-prerelease versions
of packages.
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(b) An ECDF of the number of (transitive)
dependencies of each package. This was
collected by resolving the latest version
of every package on NPM as part of the
experiment in Figure 5.
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(c) An ECDF of the number of reverse
(transitive) dependencies of each package.
Note that the x-axis is log-scaled. This was
collected by resolving the latest version
of every package on NPM as part of the
experiment in Figure 5.

Fig. 2: ECDF plots of general properties of the NPM ecosystem with regards to versioning and dependencies.
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across time. Percentages are not cumulative over past years,

reflecting only published dependencies within each year.

fewer downstream packages, and 90% only being used by 30

or fewer downstream packages.

B. RQ1: Version Constraint Usage

As described in Section III-A, developers can specify ver-

sion constraints in different ways, which controls the installa-

tion of newer versions of those dependencies. Figure 3 shows

the frequency of each main type of version constraint pub-

lished in each year since 2010, the year that NPM launched.

For each year, we include only packages that had at least one

release published, and if a package released multiple versions

in that year, we include only the most recently published non-

prerelease version that year. In 2022, there were a total 429,265

packages with at least one release, and across all the years

1,678,681 distinct packages.

There are several interesting trends in constraint usage

over time. First, about 78.36% of all initial dependencies

were specified as accepting any versions greater than some

particular version (Geq, purple bars), such as "react" :

">= 1.2.3". Developers then abandoned using Geq con-

straints within the first 3-4 years of NPM, likely because

they became unmaintainable as libraries began to introduce

breaking changes that would be automatically applied by Geq

constraints. Second, even though constraints that are flexible in

the minor component (Minor, green bars) currently represent

a majority of dependencies, the phenomenon of using minor

flexible constraints only started in 2014, and then rapidly

expanded after. The expansion of minor flexible constraints

coincides with the decreased usage of bug component flexible

constraints (Bug, blue bars). Third, developers have recently

gravitated towards using only two types of constraints almost

exclusively: exact version constraints (Exact, red bars) and

minor component flexible constraints. Together, those types

represent over 94.85% of constraints in 2022. Finally, the

percentage of dependencies that are potentially able to auto-

matically receive updates (everything below the red bars) has

stayed relatively stable throughout the entire life of NPM, and

is currently about 87.32% of all dependencies.

C. RQ2: Semantic Versioning in Updates

While RQ1 examined the usage of semantic versioning

when specifying dependencies, RQ2 examines the usage of se-

mantic versioning in deploying releases of those dependencies.

Figure 4 displays boxplots where each observation represents

what percentage of a package’s updates are one of the three

semver increment types, normalized across security effect.

This analysis includes 1,401,510 packages and 16,547,653

updates, as described in Section III-B.

We find that in the no security effect category (the vast

majority of updates), the most common updates by far are

bug semver increments, with 75% of packages having 66% or

more (lower quartile of left-most red box). Next most popular



Fig. 4: A boxplot visualizing the distribution of percentages

of packages’ updates by semver increment type, segmented

across security effects. Within each security effect the per-

centages across semver increment types are normalized.

are minor semver increments, and finally least most popular

are major semver increments.

However, when we consider updates that introduce vulner-

abilities, we see a different story. Most packages introduce

vulnerabilities via major semver increments, indicating that

vulnerabilities are often introduced when packages developers

release major new versions possibly consisting of many new

features and significant structural changes to the code base.

We did however find 29 outlier packages that introduced

a vulnerability in at least one bug update. A particularly

interesting example is an update to the ssri package (a cryp-

tographic subresource integrity checking library, 23M weekly

downloads) from version 5.2.1 to 5.2.2. The update attempted

to patch a regular expression denial of service vulnerability,

but inadvertently increased the severity of the vulnerabil-

ity by changing the worst-case behavior from quadratic to

exponential complexity [32]. This highlights the challenge

package developers face in needing to quickly release patches

to vulnerabilities, while needing to be extremely careful when

working on security-relevant code and releasing it through bug

updates that will be easily distributed to downstream packages.

Finally, in the case of vulnerabilities being patched, almost

all patches are released as bug semver increments, which

means that the 87.32% of non-exact constraints shown in

Figure 3 would potentially be able to receive them automat-

ically. However, a handful of outlier packages have released

vulnerability patches as non-bug updates (we found 358 such

updates across 298 packages). From manual inspection, it

appears that many of these updates include the fix for the

security vulnerability mixed in with many other changes,

rather than the vulnerability fix being released independently.

For example, update 1.6.0 to 1.7.0 of the xmlhttprequest

package (1.2M weekly downloads) fixed a high-severity code

injection vulnerability [33]. The security-relevant part of the

update is only 1 line, but 892 lines were modified in the

update. Without further investigation we do not know why

some developers have chosen to include security patches as

part of larger updates rather than as standalone updates.

D. RQ3: Out-of-Date Dependencies and Update Flows

1) How out-of-date are packages’ dependencies?: Version

constraints and semver update types work in tandem to control

the flow of updates to downstream packages, across many

chains of transitive dependencies. Whether a downstream

package receives up-to-date dependencies depends not only

on the constraints at the downstream package and the type

of semver increment at the reverse dependency, but also on

packages in the middle of a transitive dependency chain.

In this experiment, we select the latest version of every

package with at least one update (1,401,510 packages). We

then use our time-traveling variant of NPM to solve the pack-

age’s dependencies at the time the latest version was uploaded

(TP ). We then observe which of its installed dependencies

are out-of-date, where a dependency with version VD and

upload time TD is out-of-date if another version V ′

D
of the

dependency has an upload time T ′

D
such that TD < T ′

D
< TP

and VD < V ′

D
. We then define the out-of-date time as T ′

D
−TD

for the largest such T ′

D
. After accounting for transient system

failures, 696,419 packages were solved successfully.

Figure 5a displays an ECDF of the distribution of the per-

centage of each package’s dependencies that are out-of-date.

There is a group of packages, about 17.08%, that have fully

up-to-date dependencies. However, almost all of these have

very few dependencies, only 3.17 dependencies on average

compared to 167.87 dependencies for the whole sample. In

other words, these fully up-to-date packages are packages that

live primarily on the far left side of the ECDF in Figure 2b.

Moving beyond the spike of up-to-date packages, most

packages have at least some out-of-date dependencies, with

62.94% of packages having 25% or more of their dependencies

out-of-date. Not only are packages often out-of-date, but they

are often out-of-date for quite a while. Among packages with

at least one out-of-date dependency, Figure 5b displays an

ECDF of on average how out-of-date each package’s depen-

dencies are. Half of all packages with out-of-date dependencies

have on average dependencies that are 173.87 days old or

older, with a long tail of 5% of packages with dependencies

that are on average 527.38 days old or older. In contrast,

updates are released within 21.03 days on average, and 50%

are released within only 22.71 hours (Figure 2a).

There can be a variety of reasons why packages have out-

of-date dependencies, some of which are intentional, such as

developers choosing to stay on older versions of libraries rather

than rewrite code to handle breaking changes.

2) How rapidly do updates flow downstream?: We now

wish to understand how updates flow to downstream packages,

and how developers respond when manual intervention is

required. For the most recent update prior to 2021 of every

package, we randomly selected 50 downstream packages that
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Fig. 7: An ECDF plot of how long it takes for an update flow

that is blocked to be resolved.

downstream package specified a flexible enough constraint to

allow for the intervention of the package in the middle to

be adopted. Since this type of flow happens very rarely, this

indicates that downstream packages typically have constraints

that are equally or more restrictive than their (transitive)

dependencies. This makes sense from a software engineering

perspective, as the deeper packages (those closer to libraries

rather than applications) have more incentive to use flexible

constraints as they are likely to be reused in contexts with

otherwise conflicting constraints.

The final type of flow is when the out-of-date dependency is

eventually deleted rather than updated (· · · → intervention →
deleted dependency). This occurs in only 0.29% of all ana-

lyzed update flows, indicating that developers do not generally

delete dependencies. More investigation could be done to

understand why developers choose to delete dependencies in

a small number of cases.

Among the update flows that are blocked due to restrictive

constraints, almost all update flows are unblocked via manual

intervention quite rapidly. Figure 7 shows an ECDF of the

distribution of how many days it takes for each update flow to

be unblocked. The majority of blocked update flows (91.74%)

are unblocked within 1 day, with a tail trailing off to 25 days

or more. The surprising speed of update flows being unblocked

is due largely to the fact that many packages that depend on

each other are developed by the same contributors, and they

will often bump version numbers and update dependencies of

their packages nearly simultaneously.

Our results suggest that most updates effectively flow to

downstream packages, while Figure 5 suggests that most

downstream packages have at least some out-of-date depen-

dencies. More investigation should be carried out on this

phenomenon, but we suspect this is due in part to the number

of dependencies per-package (Figure 2b) and the rate of

updates (Figure 2a). With packages having an average of 167

dependencies, and updates being released on average every

Fig. 8: A boxplot displaying the distribution of the percentage

of packages’ updates grouped by semver increment type

that change only code (.js, .ts, .jsx, .tsx), only

dependencies, both, or neither.

21 days, we would expect that for an average package every

day multiple dependencies release updates and potentially go

out-of-date. Even with many updates being adopted instantly

or quickly, some dependencies will become stale. This phe-

nomena might also be explained by our methodology for this

experiment, as we selected only packages that were already

up-to-date at the time of our analysis.

E. RQ4: Analyzing Code Changes in Updates

We now turn to inspecting the contents of package updates

rather than metadata analysis. Semantic versioning can only

be useful if package developers release updates that are in

accordance with what downstream packages expect from bug,

minor, or major semver increments. In this paper, we focus

on providing a high-level characterization of what updates

generally consist of in the NPM ecosystem, across the different

update types. While more fine-grained analyses and related

applications would be interesting and useful, it is beyond

the scope of this paper, and we defer discussion of ongoing

and future work to Section VI. However, we believe that our

dataset may be a useful building block for evaluation within

the active research area of update analysis systems.

Figure 8 displays a boxplot where each observation is

the percentage of a package’s updates within each semver

increment type that change only code (.js, .ts, .jsx,

.tsx), only dependencies, both, or neither. Note that updates

categorized as neither may include other changes such as

modifications to other file types (README, CSS, etc.) or

other metadata changes besides dependencies. This uses the

same set of packages and updates as from Figure 4, intersected

with those we were able to successfully download tarballs for,

giving in total 1,339,684 packages and 14,903,021 updates.

First, we see that bug updates often contain no changes to

code files, or to dependencies. 50% of packages change neither



code nor dependencies in about 20% or more of their bug

updates, while 25% of packages change neither in a majority

(64%) of their bug updates. A manual inspection of the data

suggests that some of these updates consist of changes to

metadata (listed contributors, descriptions, READMEs) or to

configuration files (.json, .yaml, etc.), while other updates

truly change nothing. However, more investigation on our data

could be done to quantify this more precisely. Second, while

it is not common to do so, 25% of packages do occasionally

release bug updates which only modify dependencies (11% or

more of bug updates). Looking at minor and major updates,

the frequency of packages modifying neither or only one or

the other decreases, and when looking at major updates, most

packages modify both code and dependencies simultaneously.

VI. DISCUSSION

Considering the results that we presented in Section V,

we find a number of implications for software developers,

ecosystem maintainers and researchers. Developers consum-

ing dependencies face persistent trade-offs between security,

reliability, and technical lag. We identify opportunities for

ecosystem maintainers to reduce some of this friction and point

towards longer-term research directions to address some of the

underlying challenges in package ecosystems.

A. For Developers

Our findings for RQ1 indicate that NPM has largely con-

solidated around using either exact or minor-flexible (ˆ) con-

straints, with the greatest proportion of dependencies specified

as minor-flexible. In practice this means that minor updates

will flow to downstream packages nearly as easily as bug

updates, which we confirmed experimentally in RQ3.2, with

95.42% of sampled bug updates and 86.55% of sampled minor

updates flowing automatically to downstream packages. This

finding is important for library maintainers, who might expect

that downstream packages will manually inspect minor updates

for compatibility.

Overall, there is a misalignment between the way that

versions are released and the way that they are depended

on, as versions that are released as minor vs. bug updates

commonly have distinct characteristics (Figures 4 and 8),

while dependencies in downstream packages rarely distinguish

between minor or bug updates (Figure 3). Specifically, we

find that 81.19% of updates are released as bug updates,

but 84.01% of dependency constraints accept bug and minor

updates. While both bug and minor updates are supposed to

maintain backwards compatibility, since minor updates may

be more likely to include (inadvertent) breaking changes,

developers may benefit in stability by using bug-flexible (∼)

constraints rather than minor-flexible constraints, which would

still receive 81.19% of updates. This motivation may be even

stronger for security-cautious developers as our results suggest

that minor updates introduce vulnerabilities more often than

bug updates, however they must remain careful as even bug

updates occasionally introduce vulnerabilities.

B. For Ecosystem Maintainers

Our findings in RQ2 indicated that some developers release

security patches with minor and sometimes, even major ver-

sion increments. This finding is concerning as it makes it more

difficult for downstream packages to receive the security fixes.

This suggests that ecosystems may benefit from ecosystem

maintainers attempting to have tighter communication with

package developers around security patches, and help ensure

that security patches are released in a timely manner, with

minimal changes, and as semver bug updates.

Our findings in RQ3.2 show a small fraction of update

flows that are blocked by dependencies in the middle. This

is perhaps the most frustrating case for developers, as it is

difficult to remedy the situation. One option is to use NPM’s

overrides feature [34], which allows the downstream package

to forcefully override versions of transitive dependencies, even

if this breaks version constraints. While this can be effective

in the short-term, one challenge is that the developer now has

the maintenance burden of removing the override when it is

no longer necessary, or else face broken builds in the future.

To improve the developer experience, ecosystem maintainers

could 1) reduce the frequency of update propagation blockage

by combining our analysis with centrality analysis to find

critical packages that often block update flows, and work

with them to address the situation; and 2) improve ecosystem

tooling around overrides to help developers automate the

removal of overrides when no longer necessary.

C. For Researchers

Our findings in RQ2 indicate that while NPM developers

generally try to follow semver conventions, they do not

always do so consistently, and thus developers of downstream

packages can not be entirely confident about what exactly

they will receive when updating dependencies (particularly if

malicious developers release malware!). This suggests a useful

and broad design space of static or dynamic program analysis

tooling that could help give insight on what actually changes

in an update. Such tools could aim to check for semver com-

pliance [35], [36], check that an update actually patches the

claimed vulnerability correctly, check for likely buggy changes

in behavior [37], or detect malware. It may be particularly

interesting to examine trends in semver compliance over time,

as our analysis shows clear trends in the changing popularity

of dependency constraints between 2010–2022.

There is already promising ongoing work in some of these

directions, particularly malware detection [7], [22], [38] via

metadata and lightweight syntactic features. In RQ4 we found

that a significant portion of packages publish bug updates that

change neither js, ts, jsx, tsx files, nor dependencies,

which suggests that a sizeable portion of updates may be

changing other types of files, and such changes may be an

effective place for bad actors to hide malicious changes.

Whether the aim of this work is malware detection, bug

detection, or other analyses, our results suggest that such

tooling should aim to handle multiple file types, such as code,

config files, embedded binaries, shell scripts, etc.



The analysis in RQ3.1 finds that there is a substantial

amount of technical lag in NPM packages, so tooling to help

developers reduce technical lag could be quite impactful. In

our prior work we built a tool, MAXNPM [14], which allows

developers to solve dependencies in a way that minimizes

technical lag (or other objectives) while still satisfying cur-

rent version constraints, but does not help when constraints

themselves are out-of-date. Complementary future research,

such as what Jayasuriya suggests [39], could assist developers

in performing these manual updates by helping with code

migration in response to breaking changes.

VII. THREATS TO VALIDITY

A. External Validity

We were unable to reliably scrape packages that have been

deleted (for malware, copyright violations, etc.) or unpublished

(voluntarily by the developer) from NPM, and thus we ex-

cluded these in our analyses. For this reason our results might

not generalize to malware or other types of packages that are

often deleted.

Other than deleted packages, we consider the entire ecosys-

tem, including so called “trivial” packages [8], [9] and pack-

ages that seem unimportant (e.g. few reverse dependencies).

We believe that it is difficult to tell if a package truly is

irrelevant, as even a package with very few reverse dependen-

cies may in fact be an application that has been published on

NPM. Furthermore, “low-impact” developers are nevertheless

important as their experience with NPM matters for the future

of the ecosystem.

We only obtain packages from NPM, and do not consider

GitHub or other sources. As such, this study may not gener-

alize to JavaScript applications (rather than libraries), as only

some developers choose to publish their applications on NPM.

In addition, some developers may include dependencies by

directly copying source files into their packages, which we do

not detect. Finally, it is important to be careful when general-

izing our results about security vulnerabilities, as we are only

able to obtain information about known vulnerabilities, which

is likely a small subset of all vulnerabilities.

B. Internal Validity

Our system described in Section IV has a lot of moving

parts, and it is possible that there are bugs in our system that

could affect the results of our experiments. For example, we

may have missed some packages in our scraping process, or we

may have incorrectly downloaded some packages. We believe

that this is unlikely, as we have written unit tests for our system

and have tested it on a small subset of packages, and have not

found any bugs.

While running millions of package installations for RQ3

(Section V-D) we caused intermittent failures on our compute

cluster by overflowing /tmp. Since these failures were a

function of system state and not of packages, we do not believe

this biased our results. To check this, we computed the mean

and median of the number of direct dependencies of successful

and failed packages, and found that successful packages have

a mean of 9.91 direct dependencies and a median of 5, while

the failed packages have a mean 10.93 direct dependencies

and a median of 6. This suggests that failed packages were

a bit larger, but not enough to make our successful packages

unrepresentative. Outliers with a large number of dependencies

existed with both failed and successful packages.

C. Construct Validity

Throughout RQ2–RQ4 we use our algorithm for computing

updates as described in Section III-B. Since there is no ground

truth for correctly mined updates, one may wish to consider

refinements to this algorithm. In particular, one may wish to

have fine-grained equivalence classes by considering minor

components as well. However, this would not change the

results where our algorithm already succeeds, and since the

rejection rate is already quite low (1.8%) we did not believe

a more complex algorithm justified the risk of analysis bugs.

In RQ4 we defined code changes to mean files with exten-

sions .js, .ts, .jsx, or .tsx. This is because we wanted

to focus on JavaScript and TypeScript code, but this may have

caused us to miss some JavaScript or TypeScript code with

other extensions. Depending on the purpose, future work might

want to consider a broader definition of what counts as code,

such as shell scripts.

VIII. CONCLUSION

We present a large-scale analysis of semantic versioning

in NPM, and a full, reusable dataset of complete package

metadata and tarball data from NPM. We find that there is a

higher risk of security vulnerabilities being introduced through

minor rather than bug (i.e. patch) semver updates, suggesting

a motivation for developers to use bug-flexible constraints (∼),

even while the NPM ecosystem has largely abandoned them

in favor of minor-flexible constraints (ˆ). While we find that

most security patches are introduced in bug updates, we find

a disturbing set of outliers that are released as minor or even

major updates, potentially causing slower adoption of security

patches. Future work examining the NPM ecosystem might

build on our dataset and tooling, examining the contents of

updates for bugs and/or vulnerabilities, along with mechanisms

to mitigate technical lag.

IX. DATA AVAILABILITY

Our artifact permanently archived on Zenodo [15] con-

tains our tools and the metadata from our dataset. At https:

//dependencies.science we post: 1) continually updating snap-

shots of our data (including the contents of all packages), and

2) the full implementations of both our scraping systems and

our data analysis scripts. We intend the site to be a useful

resource for other researchers looking at NPM.
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