A Large Scale Analysis of Semantic Versioning in
NPM

Federico Cassano
Northeastern University
Boston, USA

Donald Pinckney
Northeastern University
Boston, USA
pinckney.d @northeastern.edu

Abstract— The NPM package repository contains over two
million packages and serves tens of billions of downloads per-
week. Nearly every single JavaScript application uses the NPM
package manager to install packages from the NPM repository.
NPM relies on a “semantic versioning” (‘semver’) scheme to
maintain a healthy ecosystem, where bug-fixes are reliably
delivered to downstream packages as quickly as possible, while
breaking changes require manual intervention by downstream
package maintainers. In order to understand how developers
use semver, we build a dataset containing every version of every
package on NPM and analyze the flow of updates throughout
the ecosystem. We build a time-travelling dependency resolver
for NPM, which allows us to determine precisely which versions
of each dependency would have been resolved at different times.
We segment our analysis to allow for a direct analysis of security-
relevant updates (those that introduce or patch vulnerabilities)
in comparison to the rest of the ecosystem. We find that when
developers use semver correctly, critical updates such as security
patches can flow quite rapidly to downstream dependencies
in the majority of cases (90.09%), but this does not always
occur, due to developers’ imperfect use of both semver version
constraints and semver version number increments. Our findings
have implications for developers and researchers alike. We make
our infrastructure and dataset publicly available under an open
source license.

Index Terms—NPM, dependency-management, JavaScript

I. INTRODUCTION

Modern software development relies inextricably on open
source package repositories on a massive scale. For example,
the NPM repository contains over two million packages and
serves tens of billions of downloads weekly, and practically
every JavaScript application uses the NPM package manager
to install packages from the NPM repository. As open source
package repositories grow in scale, the maintenance, updating,
and distribution of packages represents a growing attack
surface for malicious actors to target, and understanding the
properties of the software supply chain is vital.

One particular concern in open source ecosystems is the
technical lag [1]-[5] that packages experience between when
a new update is available for a dependency and when
that update is applied. NPM and other similarly-designed
ecosystems (PyPi, etc.) offer a potential solution in the
form of semantic versioning (‘“semver”) and flexible version

This work is partially supported by the National Science Foundation grants
CCF-2102288, CCF-2100037 and CNS-2100015.

cassano.f@northeastern.edu

Arjun Guha Jonathan Bell
Northeastern and Roblox Northeastern University
Boston, USA Boston, USA

a.guha@northeastern.edu j.bell@northeastern.edu

constraints. In semver, versions are numbered in the form
major.minor.bug, where major denotes breaking API
changes, minor denotes a non-breaking change adding new
functionality, and bug denotes a backwards-compatible bug
fix! [6]. Flexible version constraints allow developers of
downstream (i.e., dependent) packages to specify which types
of updates they are willing to automatically accept. Ideally,
semver helps developers to express constraints and version
numbers so that non-breaking important updates (such as
security patches) flow rapidly to downstream packages, while
breaking changes are delayed until developers choose to accept
them. For example, a developer may specify that they depend
on the package react, with constraint “18.1.1, which
means that automatic updates are allowed until (excluding)
version 19.0.0. In essence, this constraint says “receive all
updates to React that are unlikely to be breaking changes”.

However, there are three significant complications with
semver in practice that can lead to technical lag [1]-[5].
First, the positive properties of semver are predicated on both
upstream developers labeling their updates with the correct
semver increment type, and on downstream developers using
constraints that are neither too flexible nor too strict. Second,
dependencies in the middle of a transitive dependency chain
affect the final received versions of dependencies. The down-
stream developer may list a constraint that allows the most
up-to-date version of a package, but if a transitive dependency
has a more restrictive constraint, the downstream developer
may not receive the up-to-date version. Third, allowing for
automatic (bug) updates to dependencies can be dangerous, as
it introduces an attack vector for malware.

In this work, we aim to understand how developers make
use of dependencies, semantic versioning, and flexible version
constraints at the ecosystem-scale, and how all these factors
intersect to affect developer experience and supply chain
security. Prior work on mining data from the NPM ecosystem
has primarily focused on answering questions about NPM at
a snapshot in time [7]-[10]. In this work, we first understand
how developers make use of semantic versioning by analyzing
flexible constraint type frequency and semver increment type
frequency over the entire history of NPM. Then, to understand

'In this paper we use “bug” rather than the standard “patch” semver
terminology, so as to disambiguate from the notion of security patches.

how updates flow in practice at the ecosystem scale, we run
large-scale experiments that resolve packages’ dependencies
at different snapshots in time, observing how long it takes for
updates to be received by downstream packages. To enable
these experiments, we built a tool that allows for accurate time-
travel dependency solving throughout the history of NPM.
This methodology allows for more precision in resolving
dependencies throughout time, as prior work [2], [4], [11]-
[13] approximated NPM’s behavioral semantics, which are not
well-specified [14].

In total, we have built the first dataset of NPM that includes
(as of October 31, 2022):

1) every package on NPM (2,663,681 packages)

2) every version of every package (28,941,927 versions)

3) metadata (= 40 GB compressed) and packaged code (=~
19 TB compressed) for every version of every package,

4) full data of security advisories issued for NPM packages,
downloaded from the GitHub Security Advisory database.

This dataset is indexed to allow for easy querying and large-
scale distributed computations. To gather this data, we de-
signed and implemented a distributed system for downloading,
archiving and retrieving packages from NPM. We release our
scraper and dataset under the BSD 3-Clause license?.

We use our dataset to answer several questions about the
NPM ecosystem, in particular how developers use semantic
versioning, and how this affects supply chain security:

« RQ1: Do developers specify dependency version con-
straints to allow for automated updates?

¢« RQ2: Do developers use semantic versioning in their
package releases to allow for automated updates to down-
stream packages?

« RQ3: Do packages frequently contain out-of-date depen-
dencies? And when updates are published, how long until
those updates are received by downstream packages?

« RQ4: Among the types of semver updates, what types
of high-level changes do developers tend to make? How
often do developers only update dependencies?

These results are impactful for both developers and re-
searchers. We show that, generally, the NPM ecosystem is
effective in terms of efficient distribution of non-breaking
updates, but most packages end up with out-of-date depen-
dencies anyways due to the sheer volume of dependencies and
updates to deal with. In addition, we found evidence that some
developers use semver non-optimally when releasing security
patches, and that minor and major semver updates appear to
have a higher risk of introducing security vulnerabilities.

II. RELATED WORK

Our research questions and methodology build on a large
body of related work examining semantic versioning and
technical lag.

ZPlease see https:/dependencies.science for access to up-to-date metadata,
tarball data, and source code. The original artifact excluding tarball data is
available on Zenodo [15].

1) Semantic Versioning: While semantic versioning does
have a precise syntactic specification [6], the semantics of
what counts as backwards-compatible are not formally defined.
Tooling, including NPM, generally does not enforce how de-
velopers make use of semantic versioning in practice. Choices
of semantic versioning usage impact speed of distribution of
packages, technical lag, stability, developer frustration, and
more. Developer interviews in 2015 conducted by Bogart et
al. [16] in the NPM and CRAN ecosystems found that devel-
opers try to use semantic versioning, but are not always aware
of its implications and generally find dependency management
exhausting. More concretely, Raemaekers et al. [17] [17] found
that in 2006-2011, Maven developers often introduced binary
incompatible changes within supposedly non-breaking semver
updates. Wittern et al. [18] studied dependencies between
packages in NPM, and found that the number of dependencies
between packages is increasing over time, and observed the
frequencies of version constraint types in 2016. Dietrich et
al. [19] then observed how version constraint type frequencies
have changed over time, at the project level. Examining
version constraint evolution at the full-ecosystem level allows
for an evaluation based on “wisdom of the crowds.” Decan et
al. [20] perform an analysis of dependency constraints at the
ecosystem level for Cargo, NPM, Packagist and Rubygems.
Focusing only on a single ecosystem (NPM), we validate
Decan et al’s findings, and perform a much deeper analysis
of the dataset. Our study also examines the frequencies of
released update types, which enables us to draw important
implications about the diffusion of security updates.

2) Technical Lag: Many pieces of prior work attempt to
analyze the propagate of updates to downstream packages,
and how out-of-date the dependencies of a project typically
are. Gonzalez-Barahona et al. [1] define the measure of “tech-
nical lag”, which analyzes how far out-of-date a package’s
dependencies are relative to more recently released versions,
which has since been been further studied in the context of
NPM [2], [4], [5]. In addition, the concept of technical lag
is specialized to the analysis of the propagation of security
patches or vulnerabilities in further work [3], [11], [12].

Calculating technical lag is difficult, and prior works have
attempted to simulate the dependencies that would have been
resolved at different points in time. Some of these works do not
consider transitive dependencies [4], [11], which is concerning
as transitive dependencies typically represent the majority of a
package’s dependencies in NPM. Others have followed up by
considering transitive dependencies [2], [12]. Liu et al. [13]
introduce DTResolver, a custom dependency solving algorithm
that more closely matches the behavior of NPM. However,
the authors’ evaluation of DTResolver found that it only
matched NPM’s behavior when building dependency trees for
90.58% of 15,673 libraries [13]. Our recent evaluation of
NPM’s dependency resolution semantics showed a variety of
corner cases in which NPM’s algorithm will select unexpected
versions for dependencies in order to unify versions [14].
Particularly when resolving transitive dependencies, the error
introduced by an incorrect approximation of NPM’s resolution

semantics compounds. Compared to all prior work that we
are aware of in studying technical lag in the NPM ecosystem,
ours is the only study to use NPM itself to resolve historical
dependencies. We make our tools and dataset available to
allow others to employ this methodology [15].

3) Studies of NPM: Finally, other studies have looked
at more specific questions or applications of data analysis
from NPM, such as studying when developers downgrade
packages [21], analyzing the phenomenon of popular “micro”
packages in NPM [8]-[10], and developing methods to un-
derstand and prevent vulnerabilities or malware in NPM [7],
[22]-[24]. We will return to discuss how our findings may
guide future research applications in Section VI-C.

[II. METHODOLOGY

At a high-level, we answer our four core research questions
using different aspects of our dataset and analysis systems.
RQ1 and RQ2 are answered purely via analysis of our scraped
metadata. Answering RQ3 is more challenging as it requires
reasoning about how dependencies are resolved across time,
which we answer by using our time-traveling dependency
resolver in large-scale experiments. Finally, to answer RQ4
we compute diffs between tarballs of package versions.

A. RQI: Version Constraint Usage

Within NPM’s rich language for specifying version con-
straints on dependencies [14], [25], it is unclear which of the
many constraint types developers frequently make use of and
how loose or restrictive those constraints are.

We classify version constraints in the following mutually
exclusive categories:

1) Exact constraints ("=1.2.3") accept no versions other
than the specifically listed one;

2) Bug-flexible constraints (" ~1.2.3") accept any updates
to the bug semver component, so 1.2 .4, etc.;

3) Minor-flexible constraints ("~ 1.2.3") accept any up-
dates to the minor semver component, so 1.3.0, etc.;

4) Geq constraints (">=1.2.3") accept any versions
greater than or equal to the specified version;

5) Any constraints (" +") accept any versions; and

6) Other constraints, such as disjunction, conjunction,
GitHub URLs, etc.

We then examine frequencies of these constraint categories
across NPM, segmented by year so we can observe how
constraint usage has evolved historically. In addition, one chal-
lenge with analyzing data from NPM is that some packages
publish a massive number of versions (React has over 1,000
versions), so aggregating across all versions may produce
results that are biased towards packages with more versions. In
RQ1 we select only the most recent version of every package
that was uploaded within each year. This enables us to segment
by time while avoiding this bias.

B. RQ2: Semantic Versioning in Updates

We now turn to examine how developers increment their
semantic version numbers when publishing updates. We first

find all of the package updates that have occurred in NPM’s
history, and classify each as a bug (e.g. 5.4.8 — 5.4.9),
minor (e.g. 5.4.8 — 5.5.0), or major (e.g. 5.4.8 —
6.0.0) update.

One would expect that updates can trivially be identified
as consecutive versions of the same package. NPM however
allows versions to be published non-chronologically. This
feature allows for maintenance of parallel version branches.
For example, consider the following chronological order of
versions: 1.0.0,then2.0.0,then1.0.1,andthen2.0.1.
In this example, the mined updates should consist of: 1.0.0
—2.0.0, 1.0.0 - 1.0.1,and 2.0.0 — 2.0.1, as
these reflect updates that are most closely based on the source
version while being chronologically and numerically consis-
tent. We would not include the update 1.0.1 — 2.0.0
because it is not chronologically consistent, and thus 2.0.0
is unlikely to be a derivative of 1.0.1.

To determine the set of updates, we group versions by the
equivalence relation of same major component and assert that
groups are ordered within themselves chronologically. We then
have updates between versions within each group, and between
different groups. Continuing the above example, we have
two groups: {1.0.0,1.0.1} and {2.0.0, 2.0.1}. From
intra-group ordering we obtain 1.0.0 -+ 1.0.1and 2.0.0
— 2.0.1, and from the inter-group ordering we obtain
1.0.0 = 2.0.0. We believe this algorithm reflects well
how developers publish updates, and we discuss alternatives
in Section VII. When computing these updates, we first filter
out all prerelease versions (e.g. 1.2.3-betab), yielding
1,453,789 packages with at least one update (of 2,869,085
packages). We then filter out 52,279 packages that do not have
consistent intra-group chronological orders.

With all updates and version increment types identified,
we examine the distribution of the three update types across
the whole population, and then compare to the subgroups
of updates that introduce and patch vulnerabilities. Updates
that patch vulnerabilities are identified directly in the scraped
advisory database, while we identify versions that introduce
vulnerabilities as the minimal version containing that vulnera-
bility. To avoid the bias introduced by some packages having
a large number of updates, our top-level aggregation is among
packages rather than updates. For each package, we identify
the proportion of its updates of each type (segmenting by
security effect), and then visualize this percentage across all
the packages. This enables us to make conclusions about how
packages and package developers generally handle increment-
ing semver numbers during updates. In addition, note that
when segmenting by updates that introduce vulnerabilities,
we are not attempting to study malware, rather updates that
(probably inadvertently) introduce a vulnerability.

C. RQ3: Out-of-Date Dependencies and Update Flows

The properties examined thus far have been local properties
of each package, in that each package has been analyzed
individually. We now wish to answer how out-of-date NPM
packages typically are, and how long it takes updates to flow

Job Manager
Index @
Store f
Blob Lock
Scheduler

Job Scheduler

System Architecture

Metadata Manager

Metadata
Database

Scraper
il

Download Jobs
Compute Jobs

Compute Cluster

Blob™
—>|
| Storage

(wi) (we] (-] (wn)

‘Worker
NPM Registry GHSA DB Pool

Fig. 1: Overview of our system architecture.

to downstream packages. Both of these properties rely on
all the packages in the transitive dependency closure of a
downstream package. However, reasoning precisely about how
dependencies are solved is challenging both because NPM’s
dependency solving algorithm is complex (Section II-2), and
because we wish to parameterize this over time.

In order to compute solutions accurately and at different
points in time, we use vanilla NPM’s solver combined with
a proxy that emulates the world state at any given point in
history (described in Section IV-C). With this key tool, we
then perform two experiments: first we solve the dependencies
of the most recent version of every package in NPM and
observe how many packages have out-of-date dependencies;
we then explore how updates flow to downstream packages
by solving the dependencies of the downstream package at
different points in time until it receives the update.

D. RQ4: Analyzing Code Changes in Updates

After having examined how developers use constraints and
version numbers in isolation, we next align that with a high-
level characterization of what updates actually change. For
every identified update, we decompress the packaged code
from both versions, and look for file changes. We then
classify changes as modifying dependencies, code (. js,
.ts, .Jjsx, .tsx),both, or neither. We then examine the
distribution of these types of changes segmented by semver in-
crement type, again normalizing per-package to avoid biasing
towards packages with more updates.

Analyzing at a deeper level is possible with our dataset, but
is beyond the scope of this paper. Note that many packages
upload compiled or minified JavaScript code, which makes it
difficult to even look at simple line-by-line diffs. In addition,
we could have chosen to count other file types as code (. sh,
etc.), but we chose to focus on JavaScript code.

IV. SYSTEM ARCHITECTURE

In order to perform our methodology, we needed a system
that could scrape and store all metadata and tarball data, and
allow us to perform analyses and experiments on both the
metadata and tarball data. This system needs to be able to
run on our academic Slurm-backed [26], [27] HPC cluster. To
solve this problem, we designed our own system, organized
into 3 primary components (Figure 1):

1) The Metadata Manager, which continually scrapes data
from NPM and periodically from the GitHub Security
Advisory Database;

2) the Job Manager, which receives job requests (typically
tarball download or compute jobs) from the Metadata
Manager and then coordinates job execution and dis-
tributed file system locks; and

3) the Compute Cluster, in which we can spawn worker
nodes and access a networked file system.

We now explain how we accomplish the primary tasks
required by our methodology.

A. Metadata Acquisition

NPM stores metadata in a CouchDB database. CouchDB
is a document-oriented JSON database and is a good fit
for NPM because it is schemaless and allows for arbitrary
nesting of JSON objects, such as the package. json file.
For performing data analysis we find it to be a poor fit due to
the extremely loose structure. There is almost no validation of
the package. json files in the CouchDB, making it difficult
to use for analyses without first cleaning the data.

The Metadata Manager (top left of Figure 1) continu-
ally receives metadata changes from NPM via their changes
API [28], validates those changes, and inserts the data into
PostgreSQL [29]. Additionally, the Metadata Manager peri-
odically scrapes the GitHub Security Advisory Database and
imports the security metadata into PostgreSQL as well. RQ1
and RQ2 can be answered entirely via issuing PostgreSQL
queries to the Metadata Manager.

When metadata changes are received that contain URLs to
new package tarballs, the Metadata Manager enqueues a tarball
download job to then be handled by the Job Manager.

B. Tarball Data Acquisition and Compute Cluster

For scraping and storing package tarballs, we need to be
able to store tens of millions of tarballs, while allowing for
both concurrent writes to the storage since new tarballs are
downloaded continually, as well as concurrent reads from the
storage when performing analyses.

The worker nodes within the Compute Cluster are connected
via a networked file system. One interesting approach would
be to use a technology such as Hadoop [30] on top of the
networked file system to accomplish this. However, we did not
explore this approach out of concern of Hadoop’s scalability
with regards to storing many small files [31] (our use case). In
addition, we are are unsure if Hadoop can run correctly and
efficiently on top of a networked file system.

Instead, we store tarball data in a custom-built blob storage
system stored on the networked file system (bottom right of
Figure 1). The Job Manager (top right of Figure 1) controls
access to the blob storage, keeping track of byte offsets and
coordinating locks for writing, while individual worker nodes
in the Compute Cluster perform the networked disk I/O.

Tarballs are downloaded when the Job Manager receives a
download job request from the Metadata Manager, at which
point it assigns the download job to a worker node. Similarly,
the Metadata Manager may also send compute job requests,
which the Job Manager handles by distributing to many worker
nodes and optionally allowing each to perform lockless read-
only operations from the blob storage.

This system allows us to continually scrape and store tens
of millions of tarballs, and to efficiently retrieve them for
computation when answering RQ4. Additionally, while RQ3
does not read from the blob storage, it follows the same
compute workflow.

C. Time-Traveling Dependency Resolver

In order to carry out our experiments outlined in Section III
for RQ3, we needed to be able to observe how a package’s
dependencies would have been solved at arbitrary points in
NPM’s history. We built a proxy server that can be used with
vanilla NPM to enable time-travel dependency resolving.

NPM’s command line tool enables the user to specify a
custom package registry to use in place of npmjs.com. To
use our time-traveling resolver, we specify a registry base URL
pointing to our proxy server that includes in the URL the
timestamp to time-travel to. The proxy server then receives the
timestamp and can then rewrite responses from npmjs.com
to remove versions of packages after the timestamp. Since this
does not rely on the rest of our system, it is extremely easy
to setup and use. However, in order to scale the computation
across the dataset, we use the compute capabilities discussed
above in Section I'V-B.

V. RESULTS

At a high level, we would consider a package ecosystem
to be healthy with regards to update distribution when up-
dates that are positive (performance improvements, bug fixes,
security patches, etc.) can be quickly and easily adopted by
downstream dependencies, while disruptive changes (security
vulnerabilities, malware, etc.) flow more slowly. In NPM,
the flow of updates is determined by two factors: how do
downstream developers tend to specify version constraints for
dependencies (RQ1), and how do upstream developers tend
to increment their version numbers when releasing updates
(RQ2). We start by explaining the overall structure and general
properties of the dataset. Then we move on to discuss RQl
and RQ2 separately, and finally we consider how RQ1 and
RQ2 intersect in practice in the ecosystem (RQ3), and how
they are related to the actual contents of the updates (RQ4).

A. Dataset Structure and General Properties

As discussed in Section I our collected data is split into
two parts: 1) Ecosystem Metadata: This includes the full list

of packages (2,663,681 packages), versions of every package
(28,941,927 versions), and metadata for every version in-
cluding version upload times, version numbers, dependencies,
descriptions, links to repositories, and more. We also have
a full scrape of all security advisories for NPM packages,
including data on which versions are vulnerable and which
version(s) patch the vulnerability. 2) Tarballs of published
packages: The full source tarball of every version of every
package® has been downloaded by our system.

Before diving into the core research questions, we first
discuss general properties of the dataset. Figure 2 displays
three distributions regarding our main objects of interest:
updates and dependencies.

Figure 2a displays an ECDF (empirical cumulative dis-
tribution function) of the distribution of the time between
updates of packages, computed across 1,401,510 packages
and 16,547,653 mined updates (Section III-B). A surprising
finding is how quickly updates are pushed out in many cases,
with 25% of updates spanning only 39.87 minutes or less, and
50% of updates spanning 22.71 hours or less. However, a long
tail of updates exists, with the top 25% of updates spanning
7.78 days or longer, and 10% spanning 40.12 days or longer.
On average, updates span 21.03 days. A manual inspection
of the data suggests that update behavior is quite bursty,
with developers releasing multiple updates in rapid succession,
and then going silent for long periods of time; however, this
hypothesis should be investigated more thoroughly.

Figures 2b and 2c display ECDFs of the distributions of
the numbers of (transitive) dependencies and downstream
packages (i.e. transitive reverse dependencies), respectively.
We selected the most recent non-prerelease version of every
package with at least one update (to filter out abandoned
packages), yielding 1,401,510 packages. We then used our
time-traveling variant of NPM to resolve their dependencies
and collect transitive dependency relations between packages,
disregarding versions. Solving dependencies failed on some
packages, due to both true solving failures with NPM (e.g.
missing dependencies) and transient system failures (discussed
more in Section VII) in the compute cluster. In total, our ex-
periments include successful executions of NPM’s dependency
solver on 696,419 packages. The data shows that on average
packages have 167.87 dependencies, and 95% of packages
have solution sizes of 636 or fewer dependencies, with the
largest solutions reaching up to 1,641 dependencies.

When turning to downstream packages however (Figure 2c),
the situation is quite asymmetrical, as there is a vastly longer
tail of packages with massive amounts of downstream pack-
ages. The top 3 depended-upon packages that we observed
were: 1) supports—-color (does a terminal support color?,
624,883 downstream packages), 2) debug (logging library,
571,547 downstream packages), and 3) ms (time conversion
library, 515,684 downstream packages). On the other hand,
a large amount of packages are unused except by a handful
of downstream packages, with 50% of packages having 2 or

3excluding deleted content, which we describe in Section VII

100% 4

Cumulative percent of updates
g

0% =

(I) l(I)O 2(‘)0 3('10
Length of update period in days
(a) An ECDF of the time in days between
the publication of two versions of a pack-
age. Note that this plot specifically ex-
cludes updates for non-prerelease versions
of packages.

100% 4

b3

Cumulative percentage of packages
15 2

T T T T
0 500 1000 1500
Number of installed dependencies

(b) An ECDF of the number of (transitive)
dependencies of each package. This was
collected by resolving the latest version
of every package on NPM as part of the
experiment in Figure 5.

100% =

75% <

Cumulative percentage of packages
2

i A A pA
Number of reverse dependencies (log scale)

(c) An ECDF of the number of reverse
(transitive) dependencies of each package.
Note that the x-axis is log-scaled. This was
collected by resolving the latest version
of every package on NPM as part of the
experiment in Figure 5.

Fig. 2: ECDF plots of general properties of the NPM ecosystem with regards to versioning and dependencies.

100%

Constraint type

B et =123
B Buc-123)

B Minor (71.23)
||
|

75%

50%
Geq (>=1.2.3)
Any (*)

25% Other

Percentage of dependencies

0%
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Year

Fig. 3: The relative popularity of each version constraint type
across time. Percentages are not cumulative over past years,
reflecting only published dependencies within each year.

fewer downstream packages, and 90% only being used by 30
or fewer downstream packages.

B. RQI: Version Constraint Usage

As described in Section III-A, developers can specify ver-
sion constraints in different ways, which controls the installa-
tion of newer versions of those dependencies. Figure 3 shows
the frequency of each main type of version constraint pub-
lished in each year since 2010, the year that NPM launched.
For each year, we include only packages that had at least one
release published, and if a package released multiple versions
in that year, we include only the most recently published non-
prerelease version that year. In 2022, there were a total 429,265
packages with at least one release, and across all the years
1,678,681 distinct packages.

There are several interesting trends in constraint usage
over time. First, about 78.36% of all initial dependencies
were specified as accepting any versions greater than some
particular version (Geq, purple bars), such as "react"
">= 1.2.3". Developers then abandoned using Geq con-
straints within the first 3-4 years of NPM, likely because
they became unmaintainable as libraries began to introduce
breaking changes that would be automatically applied by Geq
constraints. Second, even though constraints that are flexible in
the minor component (Minor, green bars) currently represent
a majority of dependencies, the phenomenon of using minor
flexible constraints only started in 2014, and then rapidly
expanded after. The expansion of minor flexible constraints
coincides with the decreased usage of bug component flexible
constraints (Bug, blue bars). Third, developers have recently
gravitated towards using only two types of constraints almost
exclusively: exact version constraints (Exact, red bars) and
minor component flexible constraints. Together, those types
represent over 94.85% of constraints in 2022. Finally, the
percentage of dependencies that are potentially able to auto-
matically receive updates (everything below the red bars) has
stayed relatively stable throughout the entire life of NPM, and
is currently about 87.32% of all dependencies.

C. RQ2: Semantic Versioning in Updates

While RQ1 examined the usage of semantic versioning
when specifying dependencies, RQ2 examines the usage of se-
mantic versioning in deploying releases of those dependencies.
Figure 4 displays boxplots where each observation represents
what percentage of a package’s updates are one of the three
semver increment types, normalized across security effect.
This analysis includes 1,401,510 packages and 16,547,653
updates, as described in Section III-B.

We find that in the no security effect category (the vast
majority of updates), the most common updates by far are
bug semver increments, with 75% of packages having 66% or
more (lower quartile of left-most red box). Next most popular

100% . Co — @
P
g 75% L
=
=%
s e o
S
] ° Semver Increment Type
9
&
a E Bug
= 50 . e o
S BE Minor
3
= B Major
o .
en
s e o
8
5 25% e o
~ °
e o
o o
.
.
0% 5 — — —

Intro vuln Patch vuln

Update Security Effect

No security effect

Fig. 4: A boxplot visualizing the distribution of percentages
of packages’ updates by semver increment type, segmented
across security effects. Within each security effect the per-
centages across semver increment types are normalized.

are minor semver increments, and finally least most popular
are major semver increments.

However, when we consider updates that introduce vulner-
abilities, we see a different story. Most packages introduce
vulnerabilities via major semver increments, indicating that
vulnerabilities are often introduced when packages developers
release major new versions possibly consisting of many new
features and significant structural changes to the code base.
We did however find 29 outlier packages that introduced
a vulnerability in at least one bug update. A particularly
interesting example is an update to the ssri package (a cryp-
tographic subresource integrity checking library, 23M weekly
downloads) from version 5.2.1 to 5.2.2. The update attempted
to patch a regular expression denial of service vulnerability,
but inadvertently increased the severity of the vulnerabil-
ity by changing the worst-case behavior from quadratic to
exponential complexity [32]. This highlights the challenge
package developers face in needing to quickly release patches
to vulnerabilities, while needing to be extremely careful when
working on security-relevant code and releasing it through bug
updates that will be easily distributed to downstream packages.

Finally, in the case of vulnerabilities being patched, almost
all patches are released as bug semver increments, which
means that the 87.32% of non-exact constraints shown in
Figure 3 would potentially be able to receive them automat-
ically. However, a handful of outlier packages have released
vulnerability patches as non-bug updates (we found 358 such
updates across 298 packages). From manual inspection, it
appears that many of these updates include the fix for the
security vulnerability mixed in with many other changes,
rather than the vulnerability fix being released independently.
For example, update 1.6.0 to 1.7.0 of the xmlhttprequest
package (1.2M weekly downloads) fixed a high-severity code

injection vulnerability [33]. The security-relevant part of the
update is only 1 line, but 892 lines were modified in the
update. Without further investigation we do not know why
some developers have chosen to include security patches as
part of larger updates rather than as standalone updates.

D. RQ3: Out-of-Date Dependencies and Update Flows

1) How out-of-date are packages’ dependencies?: Version
constraints and semver update types work in tandem to control
the flow of updates to downstream packages, across many
chains of transitive dependencies. Whether a downstream
package receives up-to-date dependencies depends not only
on the constraints at the downstream package and the type
of semver increment at the reverse dependency, but also on
packages in the middle of a transitive dependency chain.

In this experiment, we select the latest version of every
package with at least one update (1,401,510 packages). We
then use our time-traveling variant of NPM to solve the pack-
age’s dependencies at the time the latest version was uploaded
(Tp). We then observe which of its installed dependencies
are out-of-date, where a dependency with version Vp and
upload time Tp is out-of-date if another version V}, of the
dependency has an upload time 77, such that Tp < T, < Tp
and Vp < V},. We then define the out-of-date time as T, —Tp
for the largest such T7,. After accounting for transient system
failures, 696,419 packages were solved successfully.

Figure 5a displays an ECDF of the distribution of the per-
centage of each package’s dependencies that are out-of-date.
There is a group of packages, about 17.08%, that have fully
up-to-date dependencies. However, almost all of these have
very few dependencies, only 3.17 dependencies on average
compared to 167.87 dependencies for the whole sample. In
other words, these fully up-to-date packages are packages that
live primarily on the far left side of the ECDF in Figure 2b.

Moving beyond the spike of up-to-date packages, most
packages have at least some out-of-date dependencies, with
62.94% of packages having 25% or more of their dependencies
out-of-date. Not only are packages often out-of-date, but they
are often out-of-date for quite a while. Among packages with
at least one out-of-date dependency, Figure 5b displays an
ECDF of on average how out-of-date each package’s depen-
dencies are. Half of all packages with out-of-date dependencies
have on average dependencies that are 173.87 days old or
older, with a long tail of 5% of packages with dependencies
that are on average 527.38 days old or older. In contrast,
updates are released within 21.03 days on average, and 50%
are released within only 22.71 hours (Figure 2a).

There can be a variety of reasons why packages have out-
of-date dependencies, some of which are intentional, such as
developers choosing to stay on older versions of libraries rather
than rewrite code to handle breaking changes.

2) How rapidly do updates flow downstream?: We now
wish to understand how updates flow to downstream packages,
and how developers respond when manual intervention is
required. For the most recent update prior to 2021 of every
package, we randomly selected S0 downstream packages that

100% o

75%

50% =

25% -

Cumulative percent of packages

0%

T T T T T
0% 25% 50% 75% 100%

Percent of out—of—date installed dependencies

(a) ECDF of percentage of each package’s dependencies that
are out-of-date.

100%

75%

50%

25% A

Cumulative percentage of
out—of—date packages

0% =

T T T
0 1000 2000 3000
Average time dependencies are out—of—date (days)

(b) ECDF of average amount in days that dependencies are
out-of-date by for each package with at least one-out-of-date
dependency.

Fig. 5: ECDF plots of technical lag distributions across the NPM ecosystem.

introduces _ deleted dependency
(0.02%) -
o)

patches
(0.36%

delayed update

no intervention
instant update

Security Effect Update Type Resolution

Developer Intervention

Fig. 6: Visualization of update flow paths.

were up-to-date with the upstream package just prior to the
update. Using our time-traveling resolver we then solve the
downstream package immediately after the update, and in 1
day increments afterwards until the dependency on the old
version of the dependency has been updated or deleted. In
total, 888,294 update flows were successfully solved after
accounting for transient system failures.

Figure 6 visualizes the process of how updates flow to
downstream packages and how often developer intervention is
required. An update flow has multiple steps. First, the upstream
(dependency) developer publishes the update with a certain
semver increment type (major, minor, or bug). Once the update
is marked as bug, minor, or major and uploaded to NPM, it
can then be received by downstream packages that depend on
it, possibly transitively. This can happen either automatically,

by the downstream developer manually updating or removing
the dependency, or a developer in the middle of the transitive
dependency chain updating or removing the dependency.

Most commonly, downstream packages receive the update
instantly and with no human intervention needed (--- —
no intervention — instant update). This occurs when the
package that declares the constraint on the updated package
uses a constraint that is at least as flexible as the type of semver
increment. Note that the package declaring the constraint, and
thus responsible for allowing or inhibiting the update flow,
could be either the final downstream package or a package in
the middle of the dependency chain. This type of flow occurs
for the majority of bug and minor updates, which is induced
by the distribution of constraint types (Figure 3). As this type
of flow is 90.09% of all analyzed update flows, it is by far the
most common, indicating overall positive health among our
random sample of update flows through the NPM ecosystem.

The second most common update flow consists of updates
that require intervention from the developer of the downstream
package (and possibly developers of other packages as well),
and thus is delayed (--- — intervention — delayed update).
This occurs in 9.01% of all analyzed update flows, and
involves a major update 28.11% of the time, a minor update
40.27% of the time, and a bug update 31.62% of the time.
Updates requiring intervention are due to constraints that are
more restrictive than the semver increment type. Intervention
thus involves developers either switching to a more flexible
constraint type or incrementing the constraint.

A small fraction (0.60%) of updates are resolved not by
the developer of the downstream package performing an
intervention, but by a developer(s) in the middle (--- —
no intervention — delayed update). For this to occur, the
developer of the package in the middle must have specified
a constraint that is too restrictive, while the developer of the

100% =

75%

50% A

25% A

Cumulative percentage of flows

0% +—

0 25 50 75
Days for downstream to receive update

Fig. 7: An ECDF plot of how long it takes for an update flow
that is blocked to be resolved.

downstream package specified a flexible enough constraint to
allow for the intervention of the package in the middle to
be adopted. Since this type of flow happens very rarely, this
indicates that downstream packages typically have constraints
that are equally or more restrictive than their (transitive)
dependencies. This makes sense from a software engineering
perspective, as the deeper packages (those closer to libraries
rather than applications) have more incentive to use flexible
constraints as they are likely to be reused in contexts with
otherwise conflicting constraints.

The final type of flow is when the out-of-date dependency is
eventually deleted rather than updated (- - - — intervention —
deleted dependency). This occurs in only 0.29% of all ana-
lyzed update flows, indicating that developers do not generally
delete dependencies. More investigation could be done to
understand why developers choose to delete dependencies in
a small number of cases.

Among the update flows that are blocked due to restrictive
constraints, almost all update flows are unblocked via manual
intervention quite rapidly. Figure 7 shows an ECDF of the
distribution of how many days it takes for each update flow to
be unblocked. The majority of blocked update flows (91.74%)
are unblocked within 1 day, with a tail trailing off to 25 days
or more. The surprising speed of update flows being unblocked
is due largely to the fact that many packages that depend on
each other are developed by the same contributors, and they
will often bump version numbers and update dependencies of
their packages nearly simultaneously.

Our results suggest that most updates effectively flow to
downstream packages, while Figure 5 suggests that most
downstream packages have at least some out-of-date depen-
dencies. More investigation should be carried out on this
phenomenon, but we suspect this is due in part to the number
of dependencies per-package (Figure 2b) and the rate of
updates (Figure 2a). With packages having an average of 167
dependencies, and updates being released on average every

100% L] 1

b
2

Contents of Update
ES Neither

ES Dependencies
BE s/ jsx/ s/ asx
E3 Both

b3

Percentage of each packages' updates
|

il 0

Bug Minor Major
Semver Increment Type

Fig. 8: A boxplot displaying the distribution of the percentage
of packages’ updates grouped by semver increment type
that change only code (.js, .ts, .tsx), only
dependencies, both, or neither.

. Jsx,

21 days, we would expect that for an average package every
day multiple dependencies release updates and potentially go
out-of-date. Even with many updates being adopted instantly
or quickly, some dependencies will become stale. This phe-
nomena might also be explained by our methodology for this
experiment, as we selected only packages that were already
up-to-date at the time of our analysis.

E. RQ4: Analyzing Code Changes in Updates

We now turn to inspecting the contents of package updates
rather than metadata analysis. Semantic versioning can only
be useful if package developers release updates that are in
accordance with what downstream packages expect from bug,
minor, or major semver increments. In this paper, we focus
on providing a high-level characterization of what updates
generally consist of in the NPM ecosystem, across the different
update types. While more fine-grained analyses and related
applications would be interesting and useful, it is beyond
the scope of this paper, and we defer discussion of ongoing
and future work to Section VI. However, we believe that our
dataset may be a useful building block for evaluation within
the active research area of update analysis systems.

Figure 8 displays a boxplot where each observation is
the percentage of a package’s updates within each semver
increment type that change only code (.js, .ts, .jsx,
. tsx), only dependencies, both, or neither. Note that updates
categorized as neither may include other changes such as
modifications to other file types (README, CSS, etc.) or
other metadata changes besides dependencies. This uses the
same set of packages and updates as from Figure 4, intersected
with those we were able to successfully download tarballs for,
giving in total 1,339,684 packages and 14,903,021 updates.

First, we see that bug updates often contain no changes to
code files, or to dependencies. 50% of packages change neither

code nor dependencies in about 20% or more of their bug
updates, while 25% of packages change neither in a majority
(64%) of their bug updates. A manual inspection of the data
suggests that some of these updates consist of changes to
metadata (listed contributors, descriptions, READMESs) or to
configuration files (. json, .yaml, etc.), while other updates
truly change nothing. However, more investigation on our data
could be done to quantify this more precisely. Second, while
it is not common to do so, 25% of packages do occasionally
release bug updates which only modify dependencies (11% or
more of bug updates). Looking at minor and major updates,
the frequency of packages modifying neither or only one or
the other decreases, and when looking at major updates, most
packages modify both code and dependencies simultaneously.

VI. DISCUSSION

Considering the results that we presented in Section V,
we find a number of implications for software developers,
ecosystem maintainers and researchers. Developers consum-
ing dependencies face persistent trade-offs between security,
reliability, and technical lag. We identify opportunities for
ecosystem maintainers to reduce some of this friction and point
towards longer-term research directions to address some of the
underlying challenges in package ecosystems.

A. For Developers

Our findings for RQ1 indicate that NPM has largely con-
solidated around using either exact or minor-flexible () con-
straints, with the greatest proportion of dependencies specified
as minor-flexible. In practice this means that minor updates
will flow to downstream packages nearly as easily as bug
updates, which we confirmed experimentally in RQ3.2, with
95.42% of sampled bug updates and 86.55% of sampled minor
updates flowing automatically to downstream packages. This
finding is important for library maintainers, who might expect
that downstream packages will manually inspect minor updates
for compatibility.

Overall, there is a misalignment between the way that
versions are released and the way that they are depended
on, as versions that are released as minor vs. bug updates
commonly have distinct characteristics (Figures 4 and 8),
while dependencies in downstream packages rarely distinguish
between minor or bug updates (Figure 3). Specifically, we
find that 81.19% of updates are released as bug updates,
but 84.01% of dependency constraints accept bug and minor
updates. While both bug and minor updates are supposed to
maintain backwards compatibility, since minor updates may
be more likely to include (inadvertent) breaking changes,
developers may benefit in stability by using bug-flexible (~)
constraints rather than minor-flexible constraints, which would
still receive 81.19% of updates. This motivation may be even
stronger for security-cautious developers as our results suggest
that minor updates introduce vulnerabilities more often than
bug updates, however they must remain careful as even bug
updates occasionally introduce vulnerabilities.

B. For Ecosystem Maintainers

Our findings in RQ2 indicated that some developers release
security patches with minor and sometimes, even major ver-
sion increments. This finding is concerning as it makes it more
difficult for downstream packages to receive the security fixes.
This suggests that ecosystems may benefit from ecosystem
maintainers attempting to have tighter communication with
package developers around security patches, and help ensure
that security patches are released in a timely manner, with
minimal changes, and as semver bug updates.

Our findings in RQ3.2 show a small fraction of update
flows that are blocked by dependencies in the middle. This
is perhaps the most frustrating case for developers, as it is
difficult to remedy the situation. One option is to use NPM’s
overrides feature [34], which allows the downstream package
to forcefully override versions of transitive dependencies, even
if this breaks version constraints. While this can be effective
in the short-term, one challenge is that the developer now has
the maintenance burden of removing the override when it is
no longer necessary, or else face broken builds in the future.
To improve the developer experience, ecosystem maintainers
could 1) reduce the frequency of update propagation blockage
by combining our analysis with centrality analysis to find
critical packages that often block update flows, and work
with them to address the situation; and 2) improve ecosystem
tooling around overrides to help developers automate the
removal of overrides when no longer necessary.

C. For Researchers

Our findings in RQ2 indicate that while NPM developers
generally try to follow semver conventions, they do not
always do so consistently, and thus developers of downstream
packages can not be entirely confident about what exactly
they will receive when updating dependencies (particularly if
malicious developers release malware!). This suggests a useful
and broad design space of static or dynamic program analysis
tooling that could help give insight on what actually changes
in an update. Such tools could aim to check for semver com-
pliance [35], [36], check that an update actually patches the
claimed vulnerability correctly, check for likely buggy changes
in behavior [37], or detect malware. It may be particularly
interesting to examine trends in semver compliance over time,
as our analysis shows clear trends in the changing popularity
of dependency constraints between 2010-2022.

There is already promising ongoing work in some of these
directions, particularly malware detection [7], [22], [38] via
metadata and lightweight syntactic features. In RQ4 we found
that a significant portion of packages publish bug updates that
change neither js, ts, jsx, tsx files, nor dependencies,
which suggests that a sizeable portion of updates may be
changing other types of files, and such changes may be an
effective place for bad actors to hide malicious changes.
Whether the aim of this work is malware detection, bug
detection, or other analyses, our results suggest that such
tooling should aim to handle multiple file types, such as code,
config files, embedded binaries, shell scripts, etc.

The analysis in RQ3.1 finds that there is a substantial
amount of technical lag in NPM packages, so tooling to help
developers reduce technical lag could be quite impactful. In
our prior work we built a tool, MAXNPM [14], which allows
developers to solve dependencies in a way that minimizes
technical lag (or other objectives) while still satisfying cur-
rent version constraints, but does not help when constraints
themselves are out-of-date. Complementary future research,
such as what Jayasuriya suggests [39], could assist developers
in performing these manual updates by helping with code
migration in response to breaking changes.

VII. THREATS TO VALIDITY
A. External Validity

We were unable to reliably scrape packages that have been
deleted (for malware, copyright violations, etc.) or unpublished
(voluntarily by the developer) from NPM, and thus we ex-
cluded these in our analyses. For this reason our results might
not generalize to malware or other types of packages that are
often deleted.

Other than deleted packages, we consider the entire ecosys-
tem, including so called “trivial” packages [8], [9] and pack-
ages that seem unimportant (e.g. few reverse dependencies).
We believe that it is difficult to tell if a package truly is
irrelevant, as even a package with very few reverse dependen-
cies may in fact be an application that has been published on
NPM. Furthermore, “low-impact” developers are nevertheless
important as their experience with NPM matters for the future
of the ecosystem.

We only obtain packages from NPM, and do not consider
GitHub or other sources. As such, this study may not gener-
alize to JavaScript applications (rather than libraries), as only
some developers choose to publish their applications on NPM.
In addition, some developers may include dependencies by
directly copying source files into their packages, which we do
not detect. Finally, it is important to be careful when general-
izing our results about security vulnerabilities, as we are only
able to obtain information about known vulnerabilities, which
is likely a small subset of all vulnerabilities.

B. Internal Validity

Our system described in Section IV has a lot of moving
parts, and it is possible that there are bugs in our system that
could affect the results of our experiments. For example, we
may have missed some packages in our scraping process, or we
may have incorrectly downloaded some packages. We believe
that this is unlikely, as we have written unit tests for our system
and have tested it on a small subset of packages, and have not
found any bugs.

While running millions of package installations for RQ3
(Section V-D) we caused intermittent failures on our compute
cluster by overflowing /tmp. Since these failures were a
function of system state and not of packages, we do not believe
this biased our results. To check this, we computed the mean
and median of the number of direct dependencies of successful
and failed packages, and found that successful packages have

a mean of 9.91 direct dependencies and a median of 5, while
the failed packages have a mean 10.93 direct dependencies
and a median of 6. This suggests that failed packages were
a bit larger, but not enough to make our successful packages
unrepresentative. Outliers with a large number of dependencies
existed with both failed and successful packages.

C. Construct Validity

Throughout RQ2-RQ4 we use our algorithm for computing
updates as described in Section III-B. Since there is no ground
truth for correctly mined updates, one may wish to consider
refinements to this algorithm. In particular, one may wish to
have fine-grained equivalence classes by considering minor
components as well. However, this would not change the
results where our algorithm already succeeds, and since the
rejection rate is already quite low (1.8%) we did not believe
a more complex algorithm justified the risk of analysis bugs.

In RQ4 we defined code changes to mean files with exten-
sions . js, .ts, .Jjsx, or .tsx. This is because we wanted
to focus on JavaScript and TypeScript code, but this may have
caused us to miss some JavaScript or TypeScript code with
other extensions. Depending on the purpose, future work might
want to consider a broader definition of what counts as code,
such as shell scripts.

VIII. CONCLUSION

We present a large-scale analysis of semantic versioning
in NPM, and a full, reusable dataset of complete package
metadata and tarball data from NPM. We find that there is a
higher risk of security vulnerabilities being introduced through
minor rather than bug (i.e. patch) semver updates, suggesting
a motivation for developers to use bug-flexible constraints (~),
even while the NPM ecosystem has largely abandoned them
in favor of minor-flexible constraints (*). While we find that
most security patches are introduced in bug updates, we find
a disturbing set of outliers that are released as minor or even
major updates, potentially causing slower adoption of security
patches. Future work examining the NPM ecosystem might
build on our dataset and tooling, examining the contents of
updates for bugs and/or vulnerabilities, along with mechanisms
to mitigate technical lag.

IX. DATA AVAILABILITY

Our artifact permanently archived on Zenodo [15] con-
tains our tools and the metadata from our dataset. At https:
//dependencies.science we post: 1) continually updating snap-
shots of our data (including the contents of all packages), and
2) the full implementations of both our scraping systems and
our data analysis scripts. We intend the site to be a useful
resource for other researchers looking at NPM.

ACKNOWLEDGMENTS

We thank Northeastern Research Computing, especially
Greg Shomo, for computing resources and technical support.

[1]

[3]

[4]

[5]

[6]
[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

J. M. Gonzalez-Barahona, P. Sherwood, G. Robles, and D. Izquierdo,
“Technical lag in software compilations: Measuring how outdated a
software deployment is,” in Open Source Systems: Towards Robust
Practices, F. Balaguer, R. Di Cosmo, A. Garrido, F. Kon, G. Robles,
and S. Zacchiroli, Eds. Cham: Springer International Publishing, 2017,
pp. 182-192.

A. Zerouali, T. Mens, J. Gonzalez-Barahona, A. Decan, E. Constantinou,
and G. Robles, “A formal framework for measuring technical lag in

component repositories — and its application to npm,” Journal of

Software: Evolution and Process, vol. 31, no. 8, p. €2157, 2019, e2157
smr.2157. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.2157

B. Chinthanet, R. G. Kula, S. Mclntosh, T. Ishio, A. Ihara, and
K. Matsumoto, “Lags in the release, adoption, and propagation of
npm vulnerability fixes,” Empirical Software Engineering, vol. 26,
no. 3, p. 47, Mar 2021. [Online]. Available: https://doi.org/10.1007/
$10664-021-09951-x

A. Decan, T. Mens, and E. Constantinou, “On the evolution of technical
lag in the npm package dependency network,” in 2018 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
2018, pp. 404-414.

A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. Gonzailez-
Barahona, “An empirical analysis of technical lag in npm package
dependencies,” in New Opportunities for Software Reuse, R. Capilla,
B. Gallina, and C. Cetina, Eds. Cham: Springer International Publish-
ing, 2018, pp. 95-110.

T. Preston-Werner and Contributors, “Semantic versioning 2.0.0,” https:
/lsemver.org. Accessed Mar 9 2023, 2023.

N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila,
and L. Williams, “What are weak links in the npm supply chain?”
in Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice, ser. ICSE-SEIP ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
331-340. [Online]. Available: https://doi.org/10.1145/3510457.3513044
R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “On the impact of
micro-packages: An empirical study of the npm javascript ecosystem,”
2017. [Online]. Available: https://arxiv.org/abs/1709.04638

M. A. R. Chowdhury, R. Abdalkareem, E. Shihab, and B. Adams, “On
the untriviality of trivial packages: An empirical study of npm javascript
packages,” IEEE Transactions on Software Engineering, vol. 48, no. 8,
pp. 2695-2708, 2022.

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 385-395. [Online].
Available: https://doi.org/10.1145/3106237.3106267

A. Decan, T. Mens, and E. Constantinou, “On the impact of
security vulnerabilities in the npm package dependency network,” in
Proceedings of the 15th International Conference on Mining Software
Repositories, ser. MSR ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 181-191. [Online]. Available:
https://doi.org/10.1145/3196398.3196401

A. Zerouali, T. Mens, A. Decan, and C. De Roover, “On the impact
of security vulnerabilities in the npm and rubygems dependency
networks,” Empirical Software Engineering, vol. 27, no. 5, p. 107, May
2022. [Online]. Available: https://doi.org/10.1007/s10664-022-10154-1
C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying
the vulnerability propagation and its evolution via dependency trees
in the npm ecosystem,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 672-684.
[Online]. Available: https://doi.org/10.1145/3510003.3510142

D. Pinckney, F. Cassano, A. Guha, J. Bell, M. Culpo, and T. Gamblin,
“Flexible and optimal dependency management via max-smt,” in Pro-
ceedings of the 2023 International Conference on Software Engineering,
ser. ICSE, 2023.

D. Pinckney, F. Cassano, A. Guha, and J. Bell, “Artifact For A Large
Scale Analysis of Semantic Versioning in NPM,” Jan. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.7552551

C. Bogart, C. Kistner, and J. Herbsleb, “When it breaks, it breaks: How
ecosystem developers reason about the stability of dependencies,” in

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

(30]
(31]

[32]

(33]
[34]

[35]

(36]

2015 30th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW), 2015, pp. 86-89.

S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the maven repository,” in 20714
IEEE 14th International Working Conference on Source Code Analysis
and Manipulation, 2014, pp. 215-224.

E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
351-361. [Online]. Available: https://doi.org/10.1145/2901739.2901743
J. Dietrich, D. J. Pearce, J. Stringer, A. Tahir, and K. Blincoe,
“Dependency versioning in the wild,” in Proceedings of the 16th
International Conference on Mining Software Repositories, ser.
MSR °’19. IEEE Press, 2019, p. 349-359. [Online]. Available:
https://doi.org/10.1109/MSR.2019.00061

A. Decan and T. Mens, “What do package dependencies tell us about
semantic versioning?” [EEE Transactions on Software Engineering,
vol. 47, no. 6, pp. 1226-1240, 2021.

F. R. Cogo, G. A. Oliva, and A. E. Hassan, “An empirical study of
dependency downgrades in the npm ecosystem,” IEEE Transactions on
Software Engineering, vol. 47, no. 11, pp. 2457-2470, 2021.

A. Sejfia and M. Schifer, “Practical automated detection of malicious
npm packages,” in Proceedings of the 44th International Conference
on Software Engineering, ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1681-1692. [Online].
Available: https://doi.org/10.1145/3510003.3510104

M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Smallworld
with high risks: A study of security threats in the npm ecosystem,” in
Proceedings of the 28th USENIX Conference on Security Symposium,
ser. SEC’19. USA: USENIX Association, 2019, p. 995-1010.

M. Ohm, F. Boes, C. Bungartz, and M. Meier, “On the feasibility of
supervised machine learning for the detection of malicious software
packages,” in Proceedings of the 17th International Conference on
Availability, Reliability and Security, ser. ARES ’22. New York, NY,
USA: Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3538969.3544415

“package.json,” https://docs.npmjs.com/cli/v9/configuring-npm/
package-json#dependencies. Accessed Jan 20 2023, 2023.

SchedMD and Contributors, “Slurm workload manager — documenta-
tion,” https://slurm.schedmd.com. Accessed Mar 12 2023, 2023.

A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44—60.
NPM and Contributors, “registry-follower-tutorial,” https://github.com/
npm/registry-follower-tutorial. Accessed Mar 12 2023, 2023.

T. P. G. D. Group, “Postgresql: The world’s most advanced open source
relational database,” https://www.postgresql.org. Accessed Mar 12 2023,
2023.

T. A. S. Foundation, “Apache hadoop,” https://hadoop.apache.org. Ac-
cessed Mar 13 2023, 2023.

S. Balint, “The small files problem,” https://blog.cloudera.com/
the-small-files-problem/. Accessed Mar 13 2023, 2009.

B. Caller, “Security advisory: Regular expression denial of service
(redos) in npm/ssri,” 2021. [Online]. Available: https://doyensec.com/
resources/Doyensec_Advisory_ssri_redos.pdf

“Cve-2020-28502 detail,” 2021. [Online]. Available: https://nvd.nist.
gov/vuln/detail/CVE-2020-28502

NPM and Contributors, “package.json,” https://docs.npmjs.com/cli/v9/
configuring-npm/package-json#overrides. Accessed Mar 10 2023, 2023.
P. Lam, J. Dietrich, and D. J. Pearce, “Putting the semantics into
semantic versioning,” in Proceedings of the 2020 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, ser. Onward! 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 157-179.
[Online]. Available: https://doi.org/10.1145/3426428.3426922

L. Ochoa, T. Degueule, and J.-R. Falleri, “Breakbot: Analyzing the
impact of breaking changes to assist library evolution,” in Proceedings of
the ACM/IEEE 44th International Conference on Software Engineering:
New Ideas and Emerging Results, ser. ICSE-NIER ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 26-30.
[Online]. Available: https://doi.org/10.1145/3510455.3512783

[37]

[38]

[39]

J. Yang and D. Evans, “Automatically inferring temporal properties
for program evolution,” in 15th International Symposium on Software
Reliability Engineering, 2004, pp. 340-351.

“Snyk open source,” https://snyk.io/product/
open-source-security-management/. Accessed Jan 20 2023, 2023.

D. Jayasuriya, “Towards automated updates of software dependencies,”
in Companion Proceedings of the 2022 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications:
Software for Humanity, ser. SPLASH Companion 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 29-33.
[Online]. Available: https://doi.org/10.1145/3563768.3565548

