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The BigCode project is an open-scientific collaboration working on the responsi-
ble development of large language models for code.! This tech report describes
the progress of the collaboration until December 2022, outlining the current state
of the Personally Identifiable Information (PII) redaction pipeline, the experi-
ments conducted to de-risk the model architecture, and the experiments investi-
gating better preprocessing methods for the training data. We train 1.1B param-
eter models on the Java, JavaScript, and Python subsets of The Stack (Kocetkov
et al., 2022) and evaluate them on the MultiPL-E text-to-code benchmark (Cas-
sano et al., 2023). We find that more aggressive filtering of near-duplicates can
further boost performance and, surprisingly, that selecting files from repositories
with 5+ GitHub stars deteriorates performance significantly. Our best model out-
performs previous open-source multilingual code generation models (InCoder-
6.7B and CodeGen-Multi-2.7B) in both left-to-right generation and infilling on
the Java, JavaScript, and Python portions of MultiPL-E, despite being a sub-
stantially smaller model. All models are released under an OpenRAIL license
athttps://hf.co/bigcode.

1 INTRODUCTION

Over the last two years, we have witnessed tremendous progress in the development of code generat-
ing Al assistants (Chen et al., 2021; Chowdhery et al., 2022; Nijkamp et al., 2022; Fried et al., 2022;
Li et al., 2022; Athiwaratkun et al., 2022). Machine learning models are now capable of assisting
professional developers through the synthesis of novel code snippets, not only from surrounding
code fragments, but also from natural language instructions. The models powering these code com-
pletion systems are usually referred to as Large Language Models for Code—or code LLMs—and
are created by training large transformer neural networks (Vaswani et al., 2017) on big corpora of
source code. However, with the exception of a few small-scale efforts (Xu et al., 2022b), there is
generally a lack of transparency on the development of code LLMs, in part due to their commercial
value and the legal uncertainty around distributing training data and models. Some groups have
released model weights (Fried et al., 2022; Nijkamp et al., 2022) or provided access to the model
through a paid API service (Chen et al., 2021; Athiwaratkun et al., 2022), but these works did not
release the full training data or the preprocessing methods that were used.

BigCode? is an open scientific collaboration working on the responsible development of large lan-
guage models for code, empowering the machine learning and open-source communities through
open governance. BigCode was inspired by the BigScience project, an open-scientific collaboration
which culminated in July 2022 with the release of a large multi-lingual language model (Scao et al.,
2022). As in BigScience, various BigCode working groups focus on relevant subtopics such as
collecting datasets, implementing methods for training code LLMs, developing an evaluation suite,
and discussing ethical best practices for these powerful models. For example, the Legal, Ethics, and
Governance working group has explored questions on data licensing, attribution of generated code to
original code, the redaction of Personally Identifiable Information (PII), and the risks of outputting
malicious code. In earlier work, the BigCode community released The Stack v1.1 (Kocetkov et al.,
2022), a 6.4 TB dataset of permissively licensed source code in 384 programming languages. That
work also introduced “Am I in The Stack”,’ a governance tool for developers to check whether their
source is part of the dataset, and an opt-out form for those who wish to have their code removed
from the dataset.*

In this tech report, we summarize the learnings of the BigCode community in developing the Santa
models, a set of 1.1B-parameter models trained on the Java, JavaScript, and Python subsets of The
Stack and evaluated on MultiPL-E (Cassano et al., 2023). We describe the first steps of the commu-
nity towards developing larger code models and report experiments to de-risk the model architecture
and the data processing pipeline. Specifically, the contributions of this report can be summarized as
follows:

'See https://www.bigcode—project.org

2See https://www.bigcode-project.org
*https://huggingface.co/spaces/bigcode/in-the-stack
‘nttps://www.bigcode-project.org/docs/about/the-stack/
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* We describe the current state of the PII redaction pipeline. We detail how we create a PII
benchmark of 400 code files, describe the filters for detecting emails, ip addresses, and
secret keys, and analyze its performance on the annotation benchmark. All experiments in
this work are conducted on the PII-redacted version of The Stack.

* We run ablations for Multi Query Attention (MQA) (Shazeer, 2019; Chowdhery et al.,
2022; Li et al., 2022) and Fill-in-the-Middle (FIM) (Fried et al., 2022; Bavarian et al.,
2022). MQA can significantly speed-up inference for larger batch sizes, while FIM en-
ables code models to do infilling tasks. We find that both changes only slightly deteriorate
downstream performance compared to baseline models.

* We investigate the impact of 4 preprocessing methods on the training data: filtering files
from repositories with 5+ GitHub stars, filtering files with a high comments-to-code ratio,
more aggressive filtering of near-duplicates, and filtering files with a low character-to-token
ratio. We observe modest impact of the new filters except for the stars filter, which deterio-
rates performance on text2code benchmarks significantly. This is an interesting result given
that previous work has explicitly filtered for GitHub Stars as a proxy for data quality (Gao
et al., 2020; Xu et al., 2022b).

 Using the findings from these experiments, we train a final 1.1B parameter model, dubbed
SantaCoder, on Python, JavaScript, and Java. This model obtains comparable or stronger
performance than previous open-source multilingual models, InCoder-6.7B and CodeGen-
Multi-2.7B, on code generation and infilling tasks on the MultiPL-E benchmark for these
three languages, despite being substantially smaller.

2 RELATED WORK

Code LLMs Recently, there has been an increasing amount of research on using large-scale trans-
former models to analyze or generate source code. Many studies have focused on using decoder-only
models with a causal language modeling objective (Hu et al., 2019; Chen et al., 2021; Austin et al.,
2021; Nijkamp et al., 2022; Christopoulou et al., 2022; Izadi et al., 2022; Xu et al., 2022b; Athi-
waratkun et al., 2022), while other studies have investigated encoder (Feng et al., 2020a; Kanade
et al., 2020) and encoder-decoder architectures (Li et al., 2022; Ahmad et al., 2021; Wang et al.,
2021; Roziere et al., 2021). Bavarian et al. (2022); Fried et al. (2022) propose to use decoder-only
models for code-infilling tasks using a causal masking mechanism, and Bavarian et al. (2022) argues
that training with such a fill-in-the middle (FIM) objective does not harm the model’s ability to do
left-to-right generation. Shazeer (2019) proposes Multi Query Attention (MQA), an architectural
change to the transformer neural network in which key and value embeddings are shared across at-
tention heads, resulting in lower memory requirements and faster inference for large batch settings.
Multi Query Attention was implemented in AlphaCode (Li et al., 2022) and PaLM (Chowdhery
et al., 2022).

Evaluating text-to-code The correctness of generated code can be tested using unit tests, a method
for approximating semantic equivalence. Textual similarity metrics have also been used to evaluate
code (Feng et al., 2020b; Ren et al., 2020); however, they have been shown to correlate only weakly
with code correctness (Austin et al., 2021; Chen et al., 2021).

Many single-language benchmarks for evaluating code completion exist (Kulal et al., 2019; Iyer
et al., 2018; Zhong et al., 2017; Yu et al., 2018; Austin et al., 2021; Hendrycks et al., 2021; Chen
etal., 2021; Austin et al., 2021; Athiwaratkun et al., 2022; Lai et al., 2022). Two of the most popular
benchmarks for Python are HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021), which
consist of a natural language description of a function and a set of unit tests.

MultiPL-E (Cassano et al., 2023) extends two popular benchmarks for code completion, MBPP
and HumanEval, to 18 additional languages. The doctests, function signatures, and unit tests for
each benchmark suite are automatically compiled to new languages. Python-specific terminology
in the prompt is automatically replaced with the equivalent terminology used for each programming
language. MBXP (Athiwaratkun et al., 2022) is a concurrent benchmark that uses a similar approach,
but differs in the details of type inference, prompt construction, and evaluation. In particular, MBXP
uses the same set of assertions in the prompt that it uses to test the correctness of generated solutions.
In contrast, MultiPL-E keeps the tests hidden from the model and only uses them to test correctness.
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Evaluating other tasks Code generation models have also been used to solve a variety of tasks
(Tufano et al., 2020; Feng et al., 2020b; Ahmed & Devanbu, 2022; Hellendoorn et al., 2018; Pradel
et al., 2020). CodeXGLUE (Lu et al., 2021) is a set of 14 datasets for evaluating code generation
models. The tasks include code-to-code tasks like clone detection, code repair, and code translation;
text-to-code tasks like code search and code generation; and code-to-text tasks like generating doc-
umentation. The programming languages included vary by task; the most common are Python and
Java.

3 OPT-OUT PROCESS

Developers who do not wish their source code to be used for training code LLMs are given the op-
portunity to opt-out of The Stack (Kocetkov et al., 2022). We received 9 opt-out requests before the
cut-off date for removing data (31 October 2022). These individuals accounted for 299 repositories.
Of these, 161 were already excluded from The Stack v1.0 (because they did not have a permissive
license), and 138 were in The Stack v1.0. We honored the requests to opt-out and removed these
repositories from The Stack v1.1. After the cut-off date (31 October 2022), we have received more
requests for requests and we will remove these repositories prior to releasing The Stack v1.2.

4 REDACTING PERSONALLY IDENTIFIABLE INFORMATION
We describe our first efforts to redact PII from The Stack.

4.1 PII BENCHMARK

We construct a PII benchmark by annotating the following entities on a small subset of The Stack:
names, emails, usernames, passwords, [P addresses, API keys, and SSH keys. We pre-filtered 400
samples from a total of 4000 code files that were likely to contain Personally Identifiable Information
(PII). We first select 4000 code files from 11 programming languages, with a total of 800 samples
for Python and C++, 400 samples for Java, JavaScript, TypeScript, and PHP, and 160 samples for
C, C#, Markdown, Go, and Ruby. To detect keys in these samples, we used the detect-secrets tool®
with all default plugins activated. In addition, we used regular expressions to detect emails, IPv4
and IPv6 addresses, see Appendix C.1. Twelve members of the BigCode community annotated the
files on the LightTag platform®, with one annotator assigned per file. After the annotation phase, one
member reviewed all the annotation tags. To further increase annotation quality, we ran our initial
PII detection tools on the annotated files and manually corrected any incorrect annotations identified
as false positives or false negatives.

4.2 PII DETECTION AND REDACTION

For the first iteration of the PII redaction pipeline, we focus on emails, IP addresses, and keys, and
leave the detection of names, usernames, and passwords for future work.

Emails We use a regular expression to detect emails, see Appendix C.1. We replace detected
emails with [random 5 character string] @example.com.

IP addresses We use regular expressions for IPv4 and IPv6 IP addresses, see Appendix C.1. In
addition, we check if the detected IP addresses have a valid format using the ipaddress python
package. We also do not select IP addresses of the format a.b.c.d where a, b, ¢ and d are single digit
numbers, except if the words “dns” or “server” appear in the neighboring context (100 characters
before or after). These detected addresses were mostly false positives, consisting of package and
release versions. Lastly, we do not anonymize private IP addresses’ and popular DNS servers, as we
don’t consider them sensitive information. See Appendix C.2 for the full list.

We replace detected IP addresses with one of 5 randomly generated IP addresses.

Shttps://github.com/Yelp/detect-secrets
*https://www.lighttag.io/
"They are non-internet facing IP addresses used in internal networks
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Figure 1: Precision and recall of PII de- Figure 2: Distribution of PII detected
tection tools. in The Stack for Python, Java and
JavaScript.

Keys We employed the detect-secrets tool to identify secret keys in the code files. To this
end, we kept all the regex and entropy based plugins, including the AWS key detector, the GitHub
Token detector, the Azure storage key detector, and the Base64 High Entropy String detector. You
can find the full list of plugins in Appendix C.4. We deactivated keyword detectors because they
were detecting commonly used words like ’password” rather than actual secret keys. To remove
false positives, we activated filters like UUIDs and string-like secret filtering, see the full list in
Appendix C.3. We also observed that entropy detectors sometimes detected human-readable text
like paths and URLS as secrets, even when adjusting the entropy threshold. To address this issue, we
added a gibberish® detector filter on top of detect-secrets to verify that the detected string was
actually gibberish. Additionally, we noticed that hashes were sometimes falsely detected as secret
keys. To mitigate this problem, we added a hash filter that verifies the size of the detected string
and checks for the presence of keywords like “sha”, “md5”, “hash”, and “byte” in the neighboring
context. Finally, to avoid corrupting any files, we prevent the removal of keys from files where
words like “sha” or “hash” are mentioned in more than 2% of the number of lines.

4.3 PERFORMANCE ANALYSIS

Evaluation on PII benchmark We evaluated our PII detection pipeline on the benchmark we
annotated. The 400 files contained 214 emails, 99 IP addresses and 34 secret keys. Figure 1 shows
the precision and recall for each PII entity. Email and IP address detection perform well, with a
precision and recall above 90% for emails and above 80% for IP addresses. While key detection
also achieves almost 80% precision, its recall is much lower (slightly above 50%). We found that
the key detection pipeline was especially sensitive to the precision-recall trade-off, as including more
plugins or disabling some filters detected more keys but also increased the number of false positives.

PII detection on The Stack We run the PII pipeline on the Python, Java and JavaScript subsets
of The Stack v1.1 (Kocetkov et al., 2022). Table 1 shows some statistics on the number of files
containing PII and the total number of secrets found. Some files containing PII are not modified if
they contain only private IP addresses or popular DNS servers, as explained in the previous section.
The number of files containing PII is significantly lower for JavaScript compared to Python and
Java, but this could be due to the fact that JavaScript files were filtered based on line length and
percentage of alphanumeric characters before running PII detection. We also observe that Python
and JavaScript have a higher number of secrets per file compared to Java.

To better understand these results, we computed the relevant percentiles in Table 2. We can see that
Java indeed has fewer secrets per file, and that almost 0.1% of the files contain a large number of
secrets (about 100). We found that some of these files contained multiple instances of PII, such as
emails stored in some form of database, or are files containing long encodings and key-like strings

8https://github.com/domanchi/gibberish-detector
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Language # files # files with PII  # secrets  # modified files
Python 15,148,604 1,224,632 3,255,053 1,040,809
Java 25,124,914 1,588,453 2,757,169 1,506,766
JavaScript* 23,670,848 835,198 2,468,183 744,842

Table 1: Statistics from running PII detection on The Stack. JavaScript files initially went through
line-length filtering. Modified files are those altered during PII redaction.

Language mean median 95th percentile 99th percentile  99.9th percentile

Python 2.7 1 6 23 135
Java 1.7 1 3 11 63
JavaScript 3.3 1 7 30 197

Table 2: Statistics of the number of detected PII per file in The Stack.

that are split into multiple keys. Finally, we also plot the distributions of detected secrets by entity
type in Figure 2. For this graph, we filtered out files with more than 100 secrets, but this did not
change the distribution of PII across languages. We observe that IP addresses are most often found
in Python, keys in JavaScript and emails in Java.

5 EXPERIMENTS

5.1 DATASET, MODEL, AND TRAINING DETAILS

Dataset The base training dataset for the experiments in this paper contains 268 GB of Python,
Java and JavaScript files from The Stack v1.1 (Kocetkov et al., 2022) after removing data from opt-
out requests, near-deduplication, PII-redaction (see Section 4), and filtering based on line-length
and percentage of alphanumeric characters. This dataset was also decontaminated by removing
files that contained test-samples from the following benchmarks: HumanEval (Chen et al., 2021),
APPS (Hendrycks et al., 2021), MBPP (Austin et al., 2021) and MultiPL-E (Cassano et al., 2023).

Tokenizer Seeing as the Santa models were the first models our community would train, our
design choices for the tokenizer were modulated by a conservative approach, partly based on in-
sights developed during the development of InCoder (Fried et al., 2022). We train a Hugging Face
Tokenizer (MOI et al., 2022) using the Byte-Pair Encoding (BPE) algorithm on raw bytes with a
vocabulary size of 49,152 tokens. This tokenizer was trained on 600,000 rows (Around 2.6 GB) of
data—200,000 for each language—which were pre-tokenized using a digit splitter and the default
GPT-2 pre-tokenizer regex before being converted to bytes.

Training details Our base model is a 1.1B-parameter decoder-only transformer with FIM and
MOQA trained in float16. It has 24 layers, 16 heads and a hidden-size of 2048. The model is
trained for 300K iterations with a global batch-size of 192 using Adam (Kingma & Ba, 2015) with
B1 = 0.9, By = 0.95, ¢ = 1072 and a weight-decay of 0.1. A total of 118B tokens are seen in
training. The learning-rate is set to 2 x 10~ and follows a cosine decay after warming up for 2% of
the training steps. Each training run takes 3.1 days to complete on 96 Tesla V100 GPUs for a total
of 1.05 x 102! FLOPs. The final model described in Section 6.2 uses twice the amount of compute.

5.2 ARCHITECTURE ABLATIONS

We perform ablation experiments to de-risk the model architecture and training objective. Specif-
ically, we investigate Fill-in-the-Middle (Bavarian et al., 2022) and Multi Query Attention
(MQA) (Shazeer, 2019).

FIM vs No-FIM Recent works (Fried et al., 2022; Bavarian et al., 2022) have shown that autore-
gressive language-models can learn to infill code snippets by random transformation of the training
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Language Base Stars Comments-to-code  Near-dedup  Tokenizer fertility
Python 75.6 GB  26.6 GB 65.6 GB 62.0 GB 72.5 GB
Java 110GB 35.8GB 92.7 GB 88.4 GB 105.5 GB
JavaScript 82.7GB  20.8 GB 575 GB 65.1 GB 76.4 GB

Table 3: Data volume after additional filtering of the Python, Java, JavaScript subsets of The Stack.

data. Bavarian et al. (2022) argue that such data transformations do not harm the left-to-right gen-
erative capabilities of the model. Following Bavarian et al. (2022), we implement FIM as a random
transformation of the input sequence and split each training document into three parts uniformly
at random: prefix, middle and suffix. Each part is prepended with a corresponding sentinel token,
then documents are rearranged to put the middle part at the end of the sequence. The autoregressive
training objective is unchanged. We use context-level FIM, apply transformations at the character
level, use a FIM-rate of 0.5 and SPM+PSM joint training. We compare our base model to a model
that was trained with the standard left-to-right objective only (No-FIM).

Multi Query Attention vs Multi Head Attention Shazeer (2019) proposes Multi Query Atten-
tion (MQA), an architectural change to transformer that shares key and value embeddings across
attention heads. Compared to Multi Head Attention (MHA), this lowers the memory bandwidth
requirements at generation time and results in faster inference. We compare our base model to a
similar model using MHA instead, with the same hyper-parameters otherwise. Note that the MHA
model has more parameters (1.3B) than the base model in this setting.

5.3 DATA FILTERING ABLATIONS

We experiment with a number of preprocessing methods applied to the base dataset, described in
Section 5.1. Note that the filters are applied on top of the other filters such as near-deduplication,
line length filtering, etc.

GitHub stars Do popular repositories contain good quality code? We use GitHub stars as a proxy
metric. We set the minimum threshold to 5 stars, as we believe that a lower number of stars would
not be an indicator of popularity. This filter removes more than 60% of the data (in terms of volume),
see Table 3. Note that more than 40% of the files do not have stars and that setting the threshold to
10 stars would remove an additional 5% of the data.

Comment-to-code ratio Good code should be well documented. With this assumption, we filter
files with a high comments-to-code ratio. We use the ast and tokenize modules to extract
docstrings and comments from Python files, and Pygments to extract comments from Java and
JavaScript files. We then analyze the comment-to-code character ratio. We find that about 20% of
Python and Java files and 45% of JavaScript files have no comments. We use a minimum threshold
of 1%, removing an additional 3% of files in each language. We also find that files with a ratio above
80% have poor quality, so we filter them out, eliminating 2% of data in all languages. Overall, this
comment-to-code filter removes 20% of the data in terms of volume.

More near-deduplication While exact-match deduplication is the most common preprocessing
step for code LLMs (see Table 4), Kocetkov et al. (2022) showed that near-deduplication leads to
additional performance gains. Their near-deduplication pipeline largely inherited the settings from
CodeParrot (Tunstall et al., 2022): MinHash (Broder, 2000) + Locality Sensitive Hashing (LSH)
based on datasketch® with unigrams (non-alphanumeric tokens) and a 0.85 Jaccard similarity
threshold. Additionally, it also recalculates the true unigram Jaccard similarity during the post-
processing stage to weed out any false positives. In this paper, we investigate whether different
deduplication settings can further improve performance.

To this end, we conduct ablation experiments on a 200K subset of the raw python dataset from
the Stack v1.1. We investigate the number of false positives and false negatives by comparing the
clustered files with their real Jaccard similarity. We find that: 1) Using unigrams during MinHash

‘https://github.com/ekzhu/datasketch
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Model Dataset Deduplication Method

InCoder Fried et al. (2022) Exact Match (alphanumeric token sequence)
CodeGen (Nijkamp et al., 2022) Exact Match (sha-256)

AlphaCode (Li et al., 2022) Exact Match (non-whitespace text)
PolyCoder (Xu et al., 2022a) Exact Match (hash)

PalLLM Coder (Chowdhery et al., 2022)  Near-deduplication (Levenshtein distance)
CodeParrot (Tunstall et al., 2022) Near-deduplication (MinHash)

Codex (Chen et al., 2021) Exact Match (“unique python files”)

Table 4: Various deduplication methods adopted for different model training data.

calculation leads to many false positives, around 20% at 0.85. Increasing the n-gram size reduces
false positives, but also increases false negatives. This is an expected trade-off between precision and
recall; 2) A lower threshold would cause more documents to be removed at the cost of processing
time. In our experiments, we have observed good duplicates occur with a similarity as low as 0.65,
even though the FP and FN rates don’t change much.

We find that combining 5-grams and a 0.7 threshold strikes a good balance between false positives
and false negatives while removing an additional 16%—20% files. In particular, the increased false
negatives occur mostly among documents with lower real Jaccard similarity bounds, whereas doc-
uments with higher similarities (> 0.85) even have a decreased false negative rate (from 35% to
24%). Due to time constraints, we apply such deduplication on the already deduplicated datasets
using the Stack v1 hyperparameters. We will refer to the final results as more near-deduplication or
near-deduplication alt.

Unlike other data preprocessing or filtering techniques that target one document at a time, near-
deduplication requires a centralized index that can be prohibitive for large data processing. We have
released the deduplication code used in this paper on GitHub!® and will release a distributed version
soon. For reference, it takes about 10 hours to deduplicate 42 million Java documents using plain
multiprocessing while it takes less than 40 minutes in a distributed (but comparable) environment.

Tokenizer fertility Can we use the tokenizer to remove low-quality files from the dataset? We
experiment with filtering files with a low character-to-token ratio'!. For each language, we find that
files with a ratio below the 5th percentile are usually of poor quality, but increasing the threshold may
eliminate some good-quality files. We therefore set the cutoff value for this ratio to the following
values: 2.5 for Python, 2.9 for Java, and 2.6 for JavaScript. This filters out roughly 4% to 5% of
data. Note that these values depend highly on the tokenizer and the data. This filter may also be
biased against files with non-English comments.

5.4 EVALUATION

Text2code evaluation The text2code task involves generating the body of a function from a
prompt that includes a function description, the function signature (its name and arguments), and
optionally a handful of example inputs and outputs. Every problem is accompanied by a set of
hidden test cases, which are used to determine if the generated function is correct. We use the
MultiPL-E text2code benchmark Cassano et al. (2023), which is derived from HumanEval Chen
et al. (2021) and MBPP Austin et al. (2021) (the “sanitized” subset of MBPP.). Whereas the latter
two benchmarks target Python, MultiPL-E has a suite of compilers that translate HumanEval and
MBPP to 18 other programming languages. Since our models are only trained on Java, JavaScript,
and Python, we only evaluate them on these three languages.

We use the methodology of Chen et al. (2021) and we calculate pass@Fk rates for (k = 1,10, 100)
for every problem. Intuitively, pass@1 estimates the likelihood a model will generate a correct
solution in a single attempt, whereas pass@ 10 and pass@ 100 estimate the likelihood that the model
will generate a correct solution given 10 and 100 attempts respectively. Following the literature,

Ohttps://github.com/bigcode-project /bigcode-dataset

"'We slightly abuse the term tokenizer fertility in this work as it usually refers to the average number of
subwords per token, where a token is determined by the true tokenizer of the programming language. See e.g.
(Rust et al., 2021)
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Language  Attention FIM HumanEval MBPP
Multi Query Attention v/ 0.35 0.54
Java Multi Head Attention v 0.36 0.55
Multi Query Attention X 0.37 0.55
Multi Query Attention v 0.33 0.64
JavaScript Multi Head Attention v 0.37 0.67
Multi Query Attention X 0.37 0.65
Multi Query Attention v/ 0.36 0.67
Python Multi Head Attention v 0.38 0.70
Multi Query Attention X 0.39 0.68

Table 5: Pass@ 100 results for the architecture ablations on HumanEval and MBPP.

Model Java JavaScript Python
Baseline 0.64 0.61 0.42
GitHub stars 0.54 0.57 0.37
Comments-to-code 0.62 0.59 0.44
More near deduplication 0.66 0.57 0.45
Tokenizer fertility 0.67 0.65 0.45
Final 0.62 0.60 0.44

Table 6: Fill-in-the-middle results for the data filtering ablations on MultiPL-HumanEval. Each
number reports the fraction of lines where the model exactly reproduces a single line of code that is
held out from the body of a function in a held out problem.

we sample 200 completions at temperatures 0.2 and 0.8 and use 0.2 to estimate pass@1 and 0.8 for
pass@10 and pass@100.

Fill-in-the-middle evaluation To evaluate fill-in-the-middle, we use the single-line exact match
metric, which was introduced by Fried et al. (2022) and also employed by Bavarian et al. (2022). For
every benchmark problem, we mask out a single line of text from the function body (i.e., not from
the function description or signature), and prompt the model to fill in that line of code. We exclude
blank lines and comments, and count the number of times the model produces exactly the masked out
line. This benchmark requires working solutions for problems, which MultiPL-E does not have. (A
text2code benchmark like MultiPL-E only needs hidden tests.) Instead, of writing solutions by hand,
we use solutions generated by a code generation model, which is the approach of Athiwaratkun et al.
(2022). Specifically, we use working solutions produced by code—davinci-002 at temperature
0.8. Note that this approach does not produce solutions to every problem, since not all problems
are solvable. Moreover, for uniformity, we use this approach for Python as well, even though hand-
written Python solutions exist for our benchmarks. We only report fill-in-the-middle evaluations for
the data filtering ablations.

6 RESULTS

6.1 ABLATIONS

For the architecture ablations, we report the results on text2code benchmarks in Table 5. For the
data filtering ablations, we show the text2code results in Figure 4 and report the fill-in-the middle
evaluations in Table 6. We show the HumanEval performance throughout all training runs in Figure
3. You can find the full results tables of the text2code experiments are Appendix A.

Slight drop in performance for MQA We see a small drop in performance for Multi Query
Attention (MQA) compared to Multi Head Attention (MHA). As shown in Table 5, the MHA model
improves pass@100 with 1-4% on HumanEval and with 1-3% on MBPP. We specifically observe
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Figure 3: HumanEval pass@ 100 performance throughout training for all models. Note that evalua-
tion shown here is based on OpenAl Python prompts and might differ (slightly) from the MultiPL-E
prompts used in the rest of this paper.

Left-to-right pass@100 Fill-in-the-middle ex. match
Model Size | Java JavaScript Python | Java JavaScript Python
InCoder 6.7B | 0.36 0.38 047 | 0.49 0.51 0.31
CodeGen-multi  2.7B | 0.42 0.39 0.39 X X X
CodeGen-mono  2.7B X X 0.57 X X X
Codex'? 25B | X X 0.60 X X X
SantaCoder L.1B | 0.41 0.47 0.49 | 0.62 0.60 0.44

Table 7: Comparing the performance of the final version of SantaCoder with InCoder (Fried et al.,
2022), CodeGen (Nijkamp et al., 2022), and Codex (Chen et al., 2021) on left-to-right (HumanEval
pass@100) and fill-in-the-middle benchmarks (HumanEval line filling, exact match).

noticeable improvements for the JavaScript versions of the text2code benchmarks. However, it
should be noted that the MHA model has more parameters (1.3B) than the MQA model (1.1B),
and a head-to-head comparison might, therefore, not be entirely fair. We think that the inference
speed-ups of MQA might outweigh the small drop in performance.

FIM for cheap We observe a minor drop in performance of the FIM model compared to the
No-FIM model. Specifically, we see that the pass@ 100 performance of the FIM model is 2-4%
lower on HumanEval and 1% lower on MBPP. While Bavarian et al. (2022) presented evidence
for the existence of a FIM-for-free property (i.e., arguing that autoregressive models can be trained
with FIM without harming left-to-right capabilities), we do find a small but consistent drop of FIM
models on left-to-right text2code benchmarks.

Modest impact of near-deduplication, comments, and fertility filter On text2code benchmarks,
we observe small gains for the near-deduplication and comment-to-code filters and a neutral effect
of the tokenizer filter. The near-deduplication filter improves HumanEval performance by 1-3% and
MBPP by 1-4% across the three programming languages. The comment-to-code filter improves
HumanEval performance by 0-2% but decreases MBPP performance in certain cases (Java). See
Appendix A for the full results table. On fill-in-the-middle benchmarks, we see that the tokenizer

2This is the performance of a Codex model reported by Chen et al. (2021). It is not clear if this model is
available via the OpenAl APL
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Figure 4: Pass @k rates on Multi-HumanEval and Multi-MBPP by model and language

fertility filter performs well, improving performance by 2-4% across the three languages. The near-
duplication and comments filters have a mixed effect, improving fill-in-the-middle performance for
Python but deteriorating performance for JavaScript.

GitHub stars deteriorate performance Surprisingly, we find that the GitHub stars filter performs
poorly. On HumanEval and MBPP, the pass@ 100 performance consistently drops by 3-6% across
the three languages. On the fill-in-the-middle benchmark, the performance drops by 5-11% (Table
6). Note that the stars filter removes the most data (over 60%) and, therefore, raises the question
whether the performance difference is due to the smaller dataset. However, as can be seen in Figure
3, HumanEval pass@ 100 diverged early on in training, indicating that the drop in performance is
not only due to data size but also data quality.

6.2 FINAL MODEL

Based on the insights from the architecture and dataset ablations, we train a final model, which we
call SantaCoder, with MQA and FIM and the two data filters that yielded the best results: more near-
deduplication and comments-to-code filter. We train this model for 600K iterations (236B tokens)
and keep all other hyper-parameters the same.

Improved text2code performance Doubling the training iterations leads to much stronger
text2code performance on MultiPL-E, significantly boosting performance across all benchmarks
and programming languages (see Figure 4). Looking at the performance throughout training (Figure

11
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3), it is likely that longer training can further increase performance. Surprisingly, we find that the
final training run did not improve the fill-in-the-middle evaluations (see Table 6), at least on these
single line infilling tasks.

Comparison to InCoder, CodeGen, and Codex Table 7 compares our SantaCoder model to
comparably-sized code generation models from previous work on the MultiPL-E benchmark, using
the methodology described in Section 5.4. We find that our model generally outperforms previ-
ous open-source multi-language code generation models despite being smaller, outperforming the
InCoder 6.7B (Fried et al., 2022) model on both left-to-right generation and single line fill-in-the-
middle infilling across languages, and obtaining comparable or stronger performance to CodeGen-
multi 2.7B (Nijkamp et al., 2022).

7 CONCLUSION

We described the progress of the BigCode project until December 2022. The community took its
first steps towards redacting PII and demonstrated that regular expressions are reasonably effective
at detecting emails and IP addresses. Future work should focus on increasing the precision and recall
of secret keys, as well as detecting other sensitive information such as names, usernames, and pass-
word. Using the PII-redacted version of The Stack, we conducted a series of architectural and data
filtering ablations. One of our main findings was that filtering for Github stars consistently decreased
performance across all benchmarks and programming languages. Using the findings of these abla-
tion studies, we trained a final 1.1B model—dubbed SantaCoder—for 236B tokens and showed it
is able to outperform previous multi-lingual code models (InCoder-6.7B and CodeGen-Multi-2.7B)
on both left-to-right generation and infilling tasks. We anticipate that larger architectures and more
training data will be able to produce stronger multilingual, infilling-capable models, and plan to
continue to scale the findings from our investigations here.
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A  FULL TEXT2CODE RESULTS

We report the full results of all experiments. Table 8 and 9 show the full results for the data filtering
ablations on HumanEval and MBPP, respectively. Table 10 and 11 reports the full results for the
architecture ablations on HumanEval and MBPP, respectively.

Language Model Pass@1 Pass@10 Pass@100
Baseline 0.1 0.19 0.35
GitHub stars 0.08 0.16 0.3
Java Comments-to-code ratio  0.11 0.2 0.35
More near deduplication 0.13 0.22 0.38
Tokenizer fertility 0.11 0.19 0.35
Baseline 0.12 0.19 0.33
GitHub stars 0.08 0.15 0.3
JavaScript Comments-to-code ratio  0.12 0.2 0.35
More near deduplication 0.14 0.2 0.37
Tokenizer fertility 0.1 0.19 0.35
Baseline 0.12 0.21 0.36
GitHub stars 0.1 0.18 0.31
Python Comments-to-code ratio  0.14 0.22 0.38
More near deduplication 0.13 0.22 0.37
Tokenizer fertility 0.14 0.21 0.36

Table 8: Full results for data filtering ablations on HumanEval
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Language  Model Pass@1 Pass@10 Pass@100
Baseline 0.23 0.37 0.54
GitHub stars 0.18 0.33 0.49
Java Comments-to-code ratio  0.22 0.37 0.52
More near deduplication 0.23 0.38 0.55
Tokenizer fertility 0.22 0.38 0.53
Baseline 0.25 0.43 0.64
GitHub stars 0.19 0.37 0.59
JavaScript Comments-to-code ratio  0.25 0.44 0.65
More near deduplication 0.26 0.45 0.66
Tokenizer fertility 0.24 0.43 0.65
Baseline 0.27 0.47 0.67
GitHub stars 0.24 0.41 0.63
Python Comments-to-code ratio 0.3 0.48 0.69
More near deduplication 0.31 0.49 0.71
Tokenizer fertility 0.28 0.47 0.68

Table 9: Full results for data filtering ablations on MBPP

Language Attention FIM Pass@1 Pass@l0 Pass@100
Multi Query Attention v 0.1 0.19 0.35

Java Multi Head Attention v/ 0.12 0.21 0.36
Multi Query Attention X 0.11 0.21 0.37
Multi Query Attention v 0.12 0.19 0.33

JavaScript Multi Head Attention v/ 0.13 0.21 0.37
Multi Query Attention X 0.14 0.21 0.37
Multi Query Attention v 0.12 0.21 0.36

Python Multi Head Attention v/ 0.13 0.24 0.38
Multi Query Attention X 0.14 0.23 0.39

Table 10: Full results for architecture ablations on HumanEval
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Language  Attention FIM Pass@1l Pass@l0 Pass@100
Multi Query Attention v 0.23 0.37 0.54
Java Multi Head Attention v/ 0.23 0.38 0.55
Multi Query Attention X 0.23 0.37 0.55
Multi Query Attention v 0.25 0.43 0.64
JavaScript Multi Head Attention v/ 0.26 0.46 0.67
Multi Query Attention X 0.23 0.44 0.65
Multi Query Attention v 0.27 0.47 0.67
Python Multi Head Attention v/ 0.31 0.49 0.7
Multi Query Attention X 0.28 0.47 0.68

Table 11: Full results for architecture ablations on MBPP

Model Family Variant BLEU
InCoder 6.7B 16.04
CodeGen-Mono 16B 20.56
SantaCoder Baseline 17.67
SantaCoder No-FIM 17.71
SantaCoder MHA 17.72
SantaCoder Bf16 17.67
SantaCoder GitHub Stars 18.04
SantaCoder Comments-to-code 17.81
SantaCoder More near deduplication 17.65
SantaCoder Tokenizer fertility 17.64
SantaCoder Final 18.13

Table 12: CodeXGLUE (Lu et al., 2021) Python Docstring generation smoothed 4-gram BLEU
scores using the same methodology as Fried et al. (2022) (L-R single). Models are evaluated zero-
shot, greedily and with a maximum generation length of 128.

B DOCSTRING GENERATION

In addition to code completion benchmarks, we also report results on docstring generation. To this
end, we evaluate our models on CodeXGLUE code-to-text Lu et al. (2021), which is a benchmark
constructed from CodeSearchNet Husain et al. (2019). We use the bigcode-evaluation-harness li-
brary Ben Allal et al. (2022), which is derived from Im-evaluation-harness Gao et al. (2021). Models
are prompted with a Python function signature and asked to output a corresponding docstring. Re-
sults are shown in Table 12.

Findings We find all BigCode Santa variants with 1.1B parameters to outperform the 6.7B In-
Coder model (Fried et al., 2022), which we attribute to differences in the training datasets. Among
BigCode models, variants trained on more Python perform better: The stars variant with 32% of
Python in its training corpus outperforms the fokenizer fertility variant with only 28.5% of Python
(see proportions in Table 3). The bfloat16 is the same as the no-fim variant, except for the lat-
ter being trained in £1oat16. There’s no notable performance difference between the two, likely
because at our small scale of 1.1B parameters we did not face any training instabilites.

Qualitative examples Below is an example prompt from CodeXGLUE. Model generations and
the correct solution are in Table 13.

14

def dailymotion_download (url, output_dir=’.’, merge=True,
info_only=False, *xkwargs):

mmn
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Model Family Variant Generation

InCoder 6.7B Download a video from Dailymotion.
CodeGen-Mono 16B Downloads Dailymotion videos by URL.
SantaCoder Baseline Download Dailymotion videos.

SantaCoder FIM Download a video from a dailymotion video.
SantaCoder MHA Download a video from a Dailymotion video.
SantaCoder bf16 Download video from dailymotion.com.
SantaCoder GitHub stars Download media from dailymotion.com
SantaCoder Comments-to-code Download a video from Dailymotion.
SantaCoder More near deduplication Download a dailymotion video.

SantaCoder Tokenizer fertility Download a video from Dailymotion.
Correct solution Downloads Dailymotion videos by URL.

Table 13: CodeXGLUE (Lu et al., 2021) Python Docstring generation examples.

C PII

C.1 REGULAR EXPRESSIONS

Email addresses We used the following regular expression to detect emails.

email_pattern = r’'’’
(?<= " | [\b\s@,2!;:) ("".\p{Han}<] )
(
“\b\s@2!;,:) (" "<]+

[
@
["\b\s@!?;,/]1~*

["\b\s@2!;,/:) ("">.]

\.

\p{L} \w{l,}

)

(2= $ | [\b\s@,2!;:) ("".\p{Han}>] )

rrs

We replace detected emails with [random 5 character string] @example.com.

IP addresses We used the following regular expressions to detect IPv4 and IPv6 addresses.

ipv4_pattern = r" (2:25[0-5]112[0-4][0-9]11[01]1?2[0-9]1[0-9]17)
(?2:\.(?:25[0-5]112[0-4][0-9]11[0112[0-9][0-9]12)){3}"

ipv6_pattern = r" (?2:[0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F
1{1,4Y ] (?2:[0-9a—-fA-F1{1,4}:){1,7}:]|(2:[0-9a-fA-F]1{1,4}:)
{1,6}:[0-9a-fA-F1{1,4}| (?2:[0-9a-fA-F]{1,4}:){1,5}(?::[0-9a-fA-
F1{1,4}){1,2}| (?2:[0-9a—-fA-F]1{1,4}:){1,4}(?::[0-9a-fA-F]{1,4})
{1,3}](?2:[0-9a-fA-F1{1,4}:){1,3}(?::[0-9a-fA-F]{1,4})
{1,4} ] (2:[0-9a—fA-F]1{1,4}:){1,2}(?::[0-9a-fA-F]{1,4})
{1,5}[0-9a-fA-F]1{1,4}:(?:(?2::[0-9a-fA-F]{1,4}){1,6})
[:(?2:(?2::[0-9a-fA-F]1{1,4}){1,7}|:)|fe80:(?::[0-%9a-fA-F]1{0,4})
{0,4}%[0-9a-2zA-Z]1{1,} | (2:££££(2::0{1,4}){0,1}:)
{0,1}(?2:(2:25[0-571(2:2[0-4711{0,1}[0-91){0,1}[0-9]1)\.)
{3,3}(?2:25[0-511(?2:2[0-47111{0,1}[0-9]1){0,1}[0-91) | (?:[0-9%9a—-fA-
Fl1{1,4}:){1,4}:(?2:(?2:25[0-5]1(?2:2[0-4]11{0,1}[0-9]1){0,1}[0-9])
\.){3,3}(25[0-5]1(?:2[0-4111{0,1}[0-9]){0,1}[0-9])"

ip_pattern = (
r" (?2: 7 [\b\s@?, !; :\"\") (.\p{Han}]) ("
+ r"|".join([ipv4_pattern, ipv6_pattern])
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+ ") (2:8 1 [\s@,2!; " \" (.\p{Han}])"

Data pre-filtering This is the regular expression we used to pre-filter the annotation dataset for
data containing emails.

email_pattern = r’ (["\s@,2!; :\"\"=) (J+@[",\s!?2;,\"\"=1{3,}[\.]1["\s
\b\"\"@,2!;:) (.14)7

For IP addresses, we used the same regular expression as the one used for PII detection.

C.2 LIST OF PRIVATE IP ADDRESSES AND POPULAR DNS SERVERS

* 8.8.8.8

* 8.8.4.4

* 1.1.1.1

* 1.0.0.1

* 76.76.19.19

* 76.223.122.150
* 9999

e 149.112.112.112
* 208.67.222.222
* 208.67.220.220
* 8.26.56.26

* 8.20.247.20

* 94.140.14.14

* 94.140.15.15

C.3 DETECT-SECRETS FILTERS

* detect_secrets.filters.heuristic.is_potential _uuid
¢ detect_secrets.filters.heuristic.is_likely_id_string
* detect_secrets.filters.heuristic.is_templated_secret

* detect_secrets.filters.heuristic.is_sequential _string

Implementation available at https://github.com/bigcode-project/
bigcode—-dataset/blob/6b3f54751b6e38eled70£2307331d6943ba39%eae/
pii/utils/keys_detection.py#L11.

C.4 DETECT-SECRETS PLUGINS

* ArtifactoryDetector

* AWSKeyDetector

* Base64HighEntropyString
* HexHighEntropyString

* AzureStorageKeyDetector
* CloudantDetector

* DiscordBotTokenDetector
* GitHubTokenDetector

21
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¢ IbmCloudlamDetector
* IbmCosHmacDetector
* JwtTokenDetector

* MailchimpDetector

e NpmDetector

* SendGridDetector

* SlackDetector

* SoftlayerDetector

* StripeDetector

* TwilioKeyDetector

Implementation available at https://github.com/bigcode-project/

bigcode-dataset/blob/6b3f54751b6e38eled70f2307331d6943ba39%eae/
pii/utils/keys_detection.py#L19.
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