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Abstract
Biomedical interaction networks have incredible potential to be useful in the prediction of 
biologically meaningful interactions, identification of network biomarkers of disease, and the 
discovery of putative drug targets. Recently, graph neural networks have been proposed to 
effectively learn representations for biomedical entities and achieved state-of-the-art results in 
biomedical interaction prediction. These methods only consider information from immediate 
neighbors but cannot learn a general mixing of features from neighbors at various distances. In this 
paper, we present a higher-order graph convolutional network (HOGCN) to aggregate information 
from the higher-order neighborhood for biomedical interaction prediction. Specifically, HOGCN 
collects feature representations of neighbors at various distances and learns their linear mixing 
to obtain informative representations of biomedical entities. Experiments on four interaction 
networks, including protein-protein, drug-drug, drug-target, and gene-disease interactions, show 
that HOGCN achieves more accurate and calibrated predictions. HOGCN performs well on noisy, 
sparse interaction networks when feature representations of neighbors at various distances are 
considered. Moreover, a set of novel interaction predictions are validated by literature-based case 
studies.
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1 INTRODUCTION

A Biological system is a complex network of various molecular entities such as genes, 
proteins, and other biological molecules linked together by the interactions between these 
entities. The complex interplay between various molecular entities can be represented as 
interaction networks with molecular entities as nodes and their interactions as edges. Such 
a representation of a biological system as a network provides a conceptual and intuitive 
framework to investigate and understand direct or indirect interactions between different 
molecular entities in a biological system. Study of such networks lead to system-level 
understanding of biology [1] and discovery of novel interactions including protein-protein 
interactions (PPIs) [2], drug-drug interactions (DDIs) [3], drug-target interactions (DTIs) [4] 
and gene-disease associations (GDIs) [5].

Recently, the generalization of deep learning to the network-structured data [6] has shown 
great promise across various domains such as social networks [7], recommendation systems 
[8], chemistry [9], citation networks [10]. These approaches are under the umbrella of graph 
convolutional networks (GCNs). GCNs repeatedly aggregate feature representations of 
immediate neighbors to learn the informative representation of the nodes for link prediction. 
Although GCN based methods show great success in biomedical interaction prediction [3], 
[11], the issue with such methods is that they only consider information from immediate 
neighbors. SkipGNN [12] leverages a skip graph to aggregate feature representations from 
direct and second-order neighbors and demonstrated improvements over GCN methods 
in biomedical interaction prediction. However, SkipGNN cannot be applied to aggregate 
information from higher-order neighbors and thus fail to capture information that resides 
farther away from a particular interaction [13].

To address the challenge, we propose an end-to-end deep graph representation learning 
framework named higher-order graph convolutional networks (HOGCN) for predicting 
interactions between pairs of biomedical entities. HOGCN learns a representation for 
every biomedical entity using an interaction network structure G and/or features X. In 
particular, we adopt a higher-order graph convolution (HOGC) layer [13] where the feature 
representations from k-order neighbors are considered to obtain the representation of 
biomedical entities. The layer can thus learn to mix feature representations of neighbors 
at various distances for interaction prediction. Furthermore, we define a bilinear decoder to 
reconstruct the edges in the input interaction network G by relying on feature representations 
produced by HOGC layers. The encoder-decoder approach makes HOGCN an end-to-end 
trainable model for interaction prediction.

We compare HOGCN’s performance with that of state-of-the-art network similarity-based 
methods [14], network embedding methods [15], [16], and graph convolution-based methods 
[10], [12], [17] for biomedical link prediction. We experiment with various interaction 
datasets and show that our method makes accurate and calibrated predictions. HOGCN 
outperforms alternative methods based on network embedding by up to 30%. Furthermore, 
HOGCN outperforms graph convolution-based methods by up to 6%, alluding to the 
benefits of aggregating information from higher-order neighbors.

KC et al. Page 2

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2022 April 03.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



We perform a case study on the DDI network and observe that aggregating information from 
a higher-order neighborhood allows HOGCN to learn meaningful representation for drugs. 
Moreover, literature-based case studies illustrate that the novel predictions are supported by 
evidence, suggesting that HOGCN can identify interactions that are highly likely to be true 
positive.

In summary, our study demonstrates the ability of HOGCN to identify potential interactions 
between biomedical entities and opens up the opportunities to use the biological 
and physicochemical properties of biomedical entities for follow-up analysis of these 
interactions. Our code is available on https://github.com/kckishan/HOGCN-LP.

2 RELATED WORKS

With the increasing coverage of the interactome, various network-based approaches have 
been proposed to exploit already available interactions to predict missing interactions 
[14], [18]–[20]. These methods can be broadly classified into (1) network similarity-based 
methods (2) network embedding methods (3) graph convolution-based methods. We next 
summarize these categories of methods for biomedical interaction prediction.

Given a network of known interactions, various similarity metrics are used to measure the 
similarity between the biomedical entities [18] with an assumption that higher similarity 
indicates interaction. Triadic closure principle (TCP) has been explored in biomedical 
interaction prediction with the hypothesis that biomedical entities with common interaction 
partners are likely to interact with each other [19]. TCP relies on a common neighbor 
algorithm to count the number of shared neighbors between the nodes and is quantified 
by A2 where A is the adjacency matrix. Recently, L3 heuristic [14] shows the common 
neighbor hypothesis fails for most protein pairs in PPI prediction and proposes to consider 
nodes that are similar to the neighbors of the nodes and can be quantified by A3. This 
indicates that higher-order neighbors are important for interaction prediction.

Next, network embedding methods embed the existing networks to low-dimensional space 
that preserves the structural proximity such that the nodes in the original network can be 
represented as low-dimensional vectors. Deepwalk [15] is a popular approach that generates 
the truncated random walks in the network and defines a neighborhood for each node as a 
set of nodes within a window of size k in each random walk. Similarly, node2vec performs 
a biased random walk by balancing the breadth-first and depth-first search in the network. 
The random walks generated by these methods can be considered as a combination of 
nodes from various order of neighborhoods such as 1-hop to k-hop neighborhood. In other 
words, DeepWalk and node2vec learn the embeddings for the nodes in the network from the 
combination of A1,A2,A3, …,Ak where Ai is the ith power of the adjacency matrix. These 
embeddings can then be fed into a classifier to predict the interaction probability. These 
methods are only limited to the structure of the biomedical networks and cannot incorporate 
additional information about the biomedical entities. Also, they cannot learn the feature 
difference between nodes at various distances.
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Furthermore, graph convolution-based methods use a message-passing mechanism to 
receive and aggregate information from neighbors to generate representations for the 
nodes in the network. Graph convolutional networks (GCNs) [17] and variational graph 
convolutional autoencoder (VGAE) [10] aggregate feature representation from immediate 
neighbors to learn the representation of biomedical entities in an end-to-end manner 
using link prediction objective. These methods are only limited to the average pooling 
of the neighborhood features [13]. SkipGNN [12] therefore proposes to use skip similarity 
between the biomedical entities to aggregate information from second-order neighbors. 
Moreover, graph attention network (GAT) proposed the convolution operation based on 
weighted attention mechanism to learn different weights for the neighbors in the first-order 
neighborhood. Since the convolution operation is dependent on node features X, the lack of 
node features limits the applicability of GAT in interaction prediction task using network 
structure information only. Furthermore, a thorough empirical evaluation of GCN and GAT 
in [21] demonstrated that GCN performs better than GAT if hyperparameter and the training 
procedure are tuned fairly for all models. Thus, we have not been considered GAT for 
comparison.

Since the effect on a biological entity can be propagated to influence its neighbors at 
different distances in different ways and thus can determine system-level characteristics 
of the biological system, it is important to capture such influences at different distances. 
Although GCN-based methods can stack multiple GCN layers to aggregate information 
from neighbors at various distances, MixHop [13] theoretically demonstrated that GCN-
based methods cannot learn linear combination of features (that includes subtraction i.e. 

f(σ(AX) − σ(A2X)) between neighbors at various distances. Thus, we adopt a higher-order 
graph convolution (HOGC) layer from MixHop [13] to learn such feature differences and 
encode the higher-order network properties of biomedical networks. Next, we propose a 
novel bilinear decoder to model the interactions between biological entities using the feature 
representation learned by the encoder with the HOGC layer.

3 PRELIMINARIES

A biomedical network is defined as G = V, ε,X  where V denotes the set of nodes 
representing biomedical entities (e.g. proteins, genes, drugs, diseases) and V  denotes the 
number of nodes. ε ⊆ V × V  denotes a set of interactions between biomedical entities. 
X ∈ ℝ V × F  is the features of biomedical entities where F is the dimension of features.

Let A denote the adjacency matrix of G, where Aij indicates an edge between nodes υi and 
υj. We assume the case of binary adjacency matrix Aij ∈ {0,1}n×n where Aij represents the 
existence of edge between the nodes υi and υj, indicating the presence of the experimental 
evidence for their interaction (i.e. Aij = 1) or the absence of the experimental evidence for 
their interaction (i.e. Aij = 0). Note that the same notation of adjacency matrix can be used 
to represent weighted graphs such that Aij = 0, 1 . Table 1 shows the notations and their 
definitions used in the paper.
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Problem Statement.

(Biomedical interaction prediction) Given a biomedical interaction network G = V, ε,X
and the set of potential biomedical interactions ε′, we aim to learn a interaction prediction 
model f to predict the interaction probabilities of ε′, f :ε′ 0, 1 .

3.1 Message Passing

Given a biomedical network G, message passing algorithms learn the representation of 
biomedical entities in the network by aggregating information from immediate neighbors 
[9]. Additional information about biomedical entities can be used to initialize the feature 
matrix X. These algorithms involve the message passing step in which each biomedical 
entity sends its current representation to, and aggregates incoming messages from its 
immediate neighbors. Representation for each biomedical entity can be obtained after L 
steps of message passing and feature aggregation. However, such message passing operation 
is limited to average pooling of features from immediate neighbors and thus is unable to 
learn feature differences among neighbors at various distances [13].

Neighborhood nodes at various distances provide network structure information at different 
granularities [22]–[26]. Taking k-hop neighborhoods into consideration, we aim at 
aggregating information from various distances at every message passing step. Different 
powers of adjacency matrices such as A1,A2,A3, …,Ak provide information about the 
network structure at different scales. Higher-order message passing operations can therefore 
learn to mix their representations using various powers of the adjacency matrix at each 
message passing step.

3.2 Graph Convolutional Networks (GCNs)

Graph convolutional networks (GCNs) are the generalization of convolution operation from 
regular grids such as images or texts to graph structured data [6], [27]. The key idea 
of GCNs is to learn the function to generate the node’s representation by repeatedly 
aggregating information from immediate neighbors. The graph convolutional layer is defined 
as:

H(l) = σ(AH(l − 1)W(l)) (1)

where H l − 1  and H l  are the input and output activations, W l  is a trainable weight 
matrix of the layer l, σ is the element-wise activation, and A is a symmetrically normalized 

adjacency matrix with self-connections A = D− 1
2 A + IV D− 1

2 . A GCN model with L layers 
is then defined as:

H l =
X if l = 0

σ AH l − 1 W l if l ∈ 1, …,L

and H L  can be used to predict the probability of interactions between biomedical entities.
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4 HIGHER-ORDER GRAPH CONVOLUTION NETWORK (HOGCN)
In this work, we develop a higher-order graph convolutional network (HOGCN) that takes 
an interaction network G as input and reconstruct the edges in the interaction network (Fig. 
1). HOGCN has two main components:

• Encoder: a higher-order graph convolution encoder that operates on an 
interaction graph G and produces representations for biomedical entities by 
aggregating features from the neighborhood at various distances and

• Decoder: a bilinear decoder that relies on these representations to reconstruct the 
interactions in G.

4.1 Higher-Order Graph Encoder

We first describe the higher-order graph encoder, that operates on an undirected interaction 
graph G = V, ε,X  and learns the representations for biomedical entities.

We develop a higher-order graph encoder to capture higher-order features of the biological 
network. In particular, we adopt higher-order graph convolution layer (HOGC) [13] as 
a component of the encoder to capture such features and learn linear mixing of feature 
representations from neighbors at k-distances. HOGC layer is defined as:

H l = ∥
j ∈ ℙ

σ AjH l − 1 Wj
l

(2)

where ℙ is a set of integer adjacency powers, Aj denotes the adjacency matrix A multiplied 
j times, and ‖ denotes column-wise concatenation [13]. Graph convolutional network [17] 
only considers the 1st power of adjacency matrix and can be exactly recovered by setting 
ℙ = 1  in Equation (2). Similarly, SkipGNN [12] considers direct and skip similarity and 
can be recovered by setting ℙ = 1, 2  in Equation (2).

Fig. 2 shows a HOGC layer with ℙ = 0, 1, …, k  where k is maximum order of 
neighborhood considered in each HOGC layer. If k = 0, the HOGC layer only considers 
the features of the biomedical entities and can capture the feature similarity between 
various biological entities. This is equivalent to a fully connected network with features of 

biomedical entities as input. For the HOGC layer, A0 is the identity matrix IV  where V  is 
the number of nodes in the network. This allows the HOGC layer to learn the transformation 
of node features separately and mix it with feature representations from neighbors.

The maximum order of neighborhood k and the number of trainable weight matrices ℙ , 
one per each adjacency power, can vary across layers. However, we set the same k for 
neighborhood aggregation and the same dimension d for all the weight matrices across all 
layers.

Neighborhood features from different adjacency powers j ∈ 0, 1, …, k  at layer (l − 1) are 
column-wise concatenated to obtain feature representation H(l − 1). As shown in Fig 2, 
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weight W( ⋅ )
(l)  at layer l can learn the arbitrary linear combination of the concatenated 

features to obtain H(l). Specifically, the layer can assign different coefficients to different 
columns in the concatenated matrix. For instance, to learn feature differences between 
first order and second order neighbors using HOGCN with k = 2, the layer can assign 

positive coefficients to the columns produced by A and assign negative coefficients to A2

i.e f(σ(AX) − σ(A2X)). This allows the model to learn feature differences among neighbors 
at various distances. However, GCN-based models fail to preserve neighborhood-specific 
information and cannot learn those differences [13]. We thus use L HOGC layers to learn the 
latent representation Z ∈ ℝ V × d* for biomedical entities in the network, where d* = d × ℙ
and d is the dimension of node’s representation for each adjacency power.

4.2 Interaction Decoder

We introduced the encoder based on HOGC layers that learns feature representation Z for 
biomedical entities by mixing neighborhood information at multiple distances. Next, we 
discuss the decoder that reconstructs the interactions in G based on the representation Z.

We adopt a bilinear layer to fuse the representation of biomedical entities υi and υj and learn 
the edge representation eij. More precisely, we define a simple bilinear layer that takes the 
representation zi ∈ ℝd* × 1 and zj ∈ ℝd* × 1 as input:

eij = ELU ziTWbzj + b (3)

where Wb ∈ ℝd × d* × d* represents the learnable fusion matrix, eij is the representation 

of edge eij between nodes υi and υj, b denotes the bias of the bilinear layer. ELU is 
non-linearity. We stack ziT d times and obtain a matrix ∈ ℝd × 1 × d*. Similarly, we stack zj d 

times to obtain a matrix ∈ ℝd × d* × 1. The multiplication then results in eij ∈ ℝd.

The edge representation eij is then fed into 2-layered fully connected neural network to 
predict probability pij for edge eij:

pij = sigmoid (FC2(ELU(FC1(eij)))) (4)

So far, we have discussed the encoder and decoder of our proposed approach. Next, we 
describe the training procedure of our proposed HOGCN model. In particular, we explain 
how to optimize the trainable neural network weights in an end-to-end manner.

4.3 Training HOGCN

During HOGCN training, we employ binary cross entropy loss to optimize the model 
parameters

ℒ(υi, υj) = − Aij log(pij) − (1 − Aij) log (1 − pij) (5)
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a n d e n c o ur a g e t h e m o d el t o assi g n hi g h er pr o b a bilit y t o o bs er v e d i nt er a cti o ns ( υ i, υ j) t h a n 

t o r a n d o ml y s el e ct e d n o n-i nt er a cti o ns. p ij is t h e pr e di ct e d i nt er a cti o n pr o b a bilit y b et w e e n υ i 

a n d υ j a n d A ij d e n ot es t h e gr o u n d-tr ut h i nt er a cti o n l a b el b et w e e n t h es e n o d es. T h e fi n al l oss 

f u n cti o n c o nsi d eri n g all i nt er a cti o ns is

ℒ =
(i j) ε

ℒ( υ i υ j) ( 6)

We f oll o w a n e n d-t o- e n d a p pr o a c h t o j oi ntl y o pti mi z e o v er all tr ai n a bl e p ar a m et ers a n d 

b a c k pr o p a g at e t h e gr a di e nts t hr o u g h t h e e n c o d er a n d d e c o d er of H O G C N.

4. 3. 1 Al g orit h m — H O G C N l e v er a g es bi o m e di c al n et w or k str u ct ur e A  al o n g wit h 

a d diti o n al i nf or m ati o n a b o ut bi o m e di c al e ntiti es as t h e i niti al f e at ur e r e pr es e nt ati o n X . I n 

t his p a p er, w e i niti ali z e t h e i niti al f e at ur es X  t o b e o n e- h ot e n c o di n g i. e. I V . T h e f e at ur e 

m atri x X  c a n b e i niti ali z e d wit h pr o p erti es of bi o m e di c al e ntiti es or pr e-tr ai n e d e m b e d di n gs 

fr o m ot h er n et w or k- b as e d a p pr o a c h es s u c h as D e e p Wal k, n o d e 2 v e c.

Al g orit h m 1

Tr ai ni n g of H O G C N f or bi o m e di c al i nt er a cti o n pr e di cti o n

   1: I n p uts:  A , X , k

   2: H ( 0) = X

   3: f o r t = 1 t o T  d o

   4:  S a m pl e mi ni- b at c h of tr ai ni n g e d g es a n d t h eir i nt er a cti o n l a b els

   5:  f o r l = 1 t o L  d o

   6:   B  : = H (l− 1)

   7:   f o r j = 1 t o k  d o

   8:    B : = A B

   9:
   O j

(l)
: = B W j

(l)

1 0:   e n d f o r

1 1:
  H l : = ∥

j ∈ ℙ
O j

(l)

1 2:  e n d f o r

1 3:  Z  : = H (L )

1 4:  p ij : = I nt er a cti o n D e c o d er(Z )

1 5:  C o m p ut e l oss i n ( 6)

1 6:  U p d at e m o d el p ar a m et ers vi a gr a di e nt d es c e nt

1 7: e n d f o r

Gi v e n a n a dj a c e n c y m atri x A  a n d t h e i niti al n o d e r e pr es e nt ati o ns X , t h e hi g h er- or d er 

n ei g h b or h o o d i n di c at e d b y t h e hi g h er p o w er of t h e a dj a c e n c y m atri x is it er ati v el y c o m p ut e d 

w hi c h m a k es t h e m o d el m or e effi ci e nt. B y a d o pti n g ri g ht-t o-l eft m ulti pli c ati o n, f or i nst a n c e, 

w e c a n c al c ul at e A
3
H (i) as A (A (A

(i)
)) ( Li n e 8 i n Al g orit h m 1). R e pr es e nt ati o n O j

(l) l e ar n e d 
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for the neighborhood at j distances are concatenated to obtain the representation H(l) as 
shown in Fig. 2 (Line 11 in Algorithm 1). After passing through L HOGC layers, we obtain 
the final representation Z for biomedical entities. With the final representations Z and the 
mini-batch of training edges, we retrieve the embeddings for the nodes in training edges and 
feed them into the interaction decoder to compute their interaction probabilities.

The parameters of HOGCN are optimized with a binary cross-entropy loss (Equation (6)) in 
an end-to-end manner. Given two biomedical entities υi and υj, the trained model can predict 
the probability of their interactions.

5 EXPERIMENTAL DESIGN

We view the problem of biomedical interaction prediction as solving a link prediction 
task on an interaction network. We consider various interaction datasets and compare our 
proposed method with the state-of-the-art methods.

5.1 Datasets

We conduct interaction prediction experiments on four publicly-available biomedical 
network datasets:

• BioSNAP-DTI [28]: DTI network contains 15,139 drug-target interactions 
between 5,018 drugs and 2,325 proteins.

• BioSNAP-DDI [28]: DDI network contains 48,514 drug-drug interactions 
between 1,514 drugs extracted from drug labels and biomedical literature.

• HuRI-PPI [2]: HI-III human PPI network contains 5,604 proteins and 23,322 
interactions generated by multiple orthogonal high-throughput yeast two-hybrid 
screens.

• DisGeNET-GDI [29]: GDI network consists of 81,746 interactions between 
9,413 genes and 10,370 diseases curated from GWAS studies, animal models and 
scientific literature.

We consider binary interactions Aij ∈ 0, 1  for all four datasets in this paper where Aij = 
0 represents the absence of interactions and Aij = 1 represents the presence of interactions 
based on some evidences. Since we only have an adjacency matrix A representing the 
interaction information, we initialize feature matrix X = I. We plan to integrate features of 
biological entities such as expression data for genes [20], sequence features for proteins [30] 
to initialize X in the future. Table 2 provides summary of datasets used in our experiments. 
We provide the number of interactions used for training, validation, and testing for each 
interaction datasets. Also, the table includes the average number of interactions for each 

biomedical entity which can be computed as 2 ε
V .

5.2 Baselines

We compare our proposed model with the following network-based baselines for interaction 
prediction:
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• network similarity-based methods

– L3 [14] counts the number of paths with length-3 normalized by the 
degree for all the node pairs.

• Network embedding methods

– DeepWalk [15] performs truncated random walk exploring the network 
neighborhood of nodes and applies skip-gram model to learn the d-
dimensional embedding for each node in the network. Node features are 
concatenated to form edge representation and train a logistic regression 
classifier.

– node2vec [16] extends DeepWalk by running biased random walk 
based on breadth/depth-first search to capture both local and global 
network structure.

• Graph convolution-based methods

– VGAE [10] uses graph convolutional encoder with two GCN layers 
to learn representation for each node in the network and adopts inner 
product decoder to reconstruct adjacency matrix.

– GCN [17] uses normalized adjacency matrix to learn node 
representations. The representation for nodes are concatenated to form 
feature representation for the edges and fully connected layer use these 
edge representation to reconstruct edges, similar to HOGCN. Setting 
ℙ = 1  in our proposed HOGCN is equivalent to GCN.

– SkipGNN [12] learns the node embeddings by combining direct and 
skip similarity between nodes. Setting ℙ = 1, 2  in our proposed 
HOGCN is equivalent to SkipGNN.

5.3 Experimental setup

We split the interaction dataset into training, validation, and testing interactions in a ratio of 
7:1:2 as shown in Table 2. Since the available interactions are positive samples, the negative 
samples are generated by randomly sampling from the complement set of positive examples. 
Five independent runs of the experiments with different random splits of the dataset are 
conducted to report the prediction performance. We use (1) area under the precision-recall 
curve (AUPRC) and (2) area under the receiver operating characteristics (AUROC) as the 
evaluation metrics. With these evaluation metrics, we expect positive interactions to have 
higher interaction probability compared to negative interactions. So, the higher value of 
AUPRC and AUROC indicates better performance.

We implement HOGCN using PyTorch [31] and perform all experiments on a single 
NVIDIA GeForce RTX 2080Ti GPU. We construct a 2-layered HOGC network with k = 
3 for each layer. At each HOGC layer, the node mixes the feature representations from 
neighbors at distances ℙ = 0, 1, 2 and 3 . The dimension of all weight matrices in HOGC 
layers is set to d = 32. All the weight matrices are initialized using Xavier initialization 
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[32]. We train our model using mini-batch gradient descent with Adam optimizer [33] for 
a maximum of 50 epochs, with a fixed learning rate of 5 × 10−4. We set the mini-batch 
size to 256 and the dropout probability [34] to 0.1 for all layers. Early stopping is adopted 
to stop training if validation performance does not improve for 10 epochs. The dimension 
of the edge feature eij from the bilinear layer is 64 followed by linear layers to project the 
edge features to edge probabilities. For baseline methods, we follow the same experimental 
settings discussed in [12].

6 RESULTS

In this section, we investigate the performance and flexibility of HOGCN on interaction 
prediction using four different datasets. We further explore the robustness of HOGCN to 
sparse networks. Finally, we demonstrate the ability of HOGCN to make novel predictions 
with literature-based case studies.

6.1 Biomedical interaction prediction

We compare HOGCN against various baselines on biomedical interaction prediction tasks 
using four different types of interaction datasets including protein-protein interactions 
(PPIs), drug-target interactions (DTIs), drug-drug interactions (DDIs), and gene-disease 
associations (GDIs).

We randomly mask 20% of interactions from the network as a test set and 10% as a 
validation set. We train all models with 70% of interactions and evaluate their performances 
on test sets. The best set of hyperparameters is selected based on their performances on the 
validation dataset. Finally, the experiment is repeated for five independent random splits of 
the interaction dataset and the results with ± one standard deviation are reported in Table 3. 
All of our models used for the reported results are of same capacity (i.e. ℙ = 0, 1, 2, 3  and d 
= 32).

Table 3 shows that HOGCN achieves huge improvement over network embedding methods 
such as DeepWalk and node2vec across all datasets. Specifically, HOGCN outperforms 
Deepwalk on AUPRC by 24.44% in DTI, 28.51% in DDI, 30.07% in PPI, and 13.79% 
in GDI. Although node2vec achieves better performance compared to DeepWalk by 
adopting a biased random walk, HOGCN still outperforms node2vec by a significant 
margin. DeepWalk and node2vec consider different orders of neighborhood defined by 
the window size and learns similar representations for the nodes in that window. In 
contrast, HOGCN learns feature differences between neighbors at various distances to obtain 
feature representation for the node and thus achieves superior performance. The improved 
performance suggests that feature differences between different order neighbors provide 
important information for interaction prediction.

A network similarity-based method, L3 [14] outperforms network embedding methods 
across four datasets but is limited to a single aspect of network similarity i.e. the number of 
paths of length 3 connecting two nodes. So, L3 cannot be applied when other similarities 
between nodes such as similarity in features and common neighbors at various distances 
need to be considered. HOGCN overcomes these limitations and outperforms L3 across all 
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interaction datasets with huge gain. In particular, HOGCN gains 3.5% AUPRC and 7.09% 
AUROC on PPI over L3 [14], which recently outperformed 20 network science methods in 
the PPI prediction problem.

Graph convolution-based methods such as GCN and VGAE achieves significant 
improvements over network embedding approaches but achieves comparable performance 
with L3. SkipGNN shows improvement over all other methods by incorporating skip 
similarity to aggregate information from second-order neighbors. Moreover, HOGCN with 
k = 3 achieves an improvement over all graph convolution-based methods. Specifically, 
HOGCN achieves improvement in AUPRC over VGAE [10] by 6.3%, GCN [17] by 4.8% 
and SkipGNN [12] by 3.6% on DDI dataset.

As HOGCN can learn the linear combination of node features at multiple distances, it 
can extract meaningful representations from the interaction networks. The results in Table 
3 demonstrate that our approach with higher-order neighborhood mixing outperforms the 
state-of-the-art methods on real interaction datasets.

6.2 Exploration of HOGCN’s drug representations

Next, we evaluate if HOGCN learns meaningful representation when feature representations 
of higher-order neighbors are aggregated. To this aim, we train GCN, SkipGNN, and 
HOGCN models on the DDI network with training/validation/testing split provided in Table 
2 to obtain the drug representations Z. The learned drug representations are mapped to 2D 
space using t-SNE [35] and visualize them in Fig. 3.

Drugbank [36] provides information about drugs and their categories based on different 
characteristics such as involved metabolic enzymes, class of drugs, side effects of drugs, 
and the like. For this experiment, we collect drug categories from Drugbank and limit 
the selection of drug categories such that the training set doesn’t contain any interactions 
between the drugs in the same category. The selected drug categories are ACE Inhibitors 
and Diuretics (DBCAT002175), Penicillins (DBCAT000702), and Antineoplastic Agents 
(DBCAT000592) with 10, 24, and 16 drugs respectively. Although these drugs don’t have 
direct interactions in the training set, we assume that these drugs share neighborhoods at 
various distances and can be explored accordingly with HOGCN.

Fig. 3 shows the clustering structure in drugs’ representations as neighborhood information 
at multiple distances are considered. Examining the figure, we observe that drugs in 
the same category are embedded close to each other in the 2D space when the model 
aggregates information from farther neighbors. For example, 24 drugs in the Penicillins 
(DBCAT000702) category (marked with blue triangles in Fig. 3) are scattered in the 
representation space learned by GCN that only considers feature aggregation from 
immediate neighbors (Fig. 3a). Note that these drugs don’t have any direct interaction 
between themselves in the training set. Since GCN-based models can only average the 
representation from immediate neighbors, these drugs are mapped relatively farther to 
each other and closer to other interacting drugs. SkipGNN considers skip similarity to 
aggregate features from second-order neighbors and show relatively compact clusters 
compared to GCNs (Fig. 3b). On the other hand, HOGCN considers the higher-order 
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neighborhood and learns similar representations for drugs that belong to the same category 
demonstrated by compact clustering structure in Fig. 3c even though no information about 
categorical similarity is provided to the model. This analysis demonstrates that HOGCN 
learns meaningful representation for drugs by aggregating feature representations from the 
neighborhood at various distances.

Next, we test if the clustering pattern in Fig. 3 holds across many drug categories. With 
this aim, we consider all drug categories in DrugBank and compute the average Euclidean 
distance between each drug’s representation and representations of other drugs within the 
same drug category. We then perform 2-sample Kolmogorov-Smirnov tests and found that 
HOGCN learns significantly more similar representations of drugs than expected by chance 
(p-value = 4.93e – 106), GCNs (p-value = 5.05e – 56) and SkipGNN (1.29e – 12). Thus, this 
analysis indicates that HOGCN learns meaningful representations for drugs by aggregating 
neighborhood information at various distances.

6.3 Robustness to network sparsity

We next explore the robustness of network-based interaction prediction models to network 
sparsity. To this aim, we evaluate the performance with respect to the percentage of training 
edges varying from 10% to 70%. We make predictions on the rest of the interactions. We 
further use 10% of test edges for validation to select the best hyperparameter settings. 
For a fair comparison, we compare with graph convolution-based methods that aggregate 
information from direct and/or second-order neighbors.

Fig. 4 shows the robustness of HOGCN to network sparsity. HOGCN achieves strong 
performance in all tasks with different network sparsity. The performance of HOGCN 
steadily improves with the increase in training edges. The mixing of features from a 
higher-order neighborhood in HOGCN and SkipGNN shows improvement over GCN and 
VGAE that only consider direct neighbors. Since HOGCN can learn the linear combination 
of features from a 3-hop neighborhood for this experiment, it shows improvement over 
SkipGNN in almost all cases. This demonstrates that features from farther distances are 
informative for interaction prediction in sparse networks.

6.4 Calibrating model’s prediction

All graph convolution-based model proposed for biomedical link prediction predicts the 
confidence estimate pij for interaction between two biomedical entities υi and υj. We thus 
test if a predicted confidence pij represents the likelihood of being true interaction. In 
other words, we expect the confidence estimate pij to be calibrated, i.e. pij represents true 
interaction probability [37]. For example, given 100 predictions, each with the confidence of 
0.9, we expect that 90 interactions should be correctly classified as true interactions.

To evaluate the calibration performance, we use reliability diagrams [37] and Brier score 
[38]. In particular, the reliability diagram provides a visual representation of model 
calibration. These diagrams plot the expected fraction of positives as a function of predicted 
probability [37]. A model with perfectly calibrated predictions is represented by a diagonal 
in Fig. 5. In addition to reliability diagrams, it is more convenient to have scalar summary 
statistics of calibration. Brier score [38] is a proper scoring rule for measuring the accuracy 
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of predicted probabilities. A lower Brier score indicates better calibration of a set of 
predictions. It is computed as the mean squared error of a predicted probability pij and 
the ground-truth interaction label Aij. Mathematically, the Brier score can be computed as:

Brier score = 1
ε′ (i j) 1

ε
(pij Aij)2 (7)

where ε′  denotes the number of test edges.

Fig. 5 shows the calibration plots for GCN, SkipGNN and HOGCN (k = 3). For the 
DTI dataset, SkipGNN shows better calibration compared to GCN and HOGCN (Fig. 
5a), indicating that second-order neighborhood information is appropriate and aggregating 
features from farther away makes the model overconfident. For other datasets, GCNs are 
relatively overconfident for all predicted confidence. For example, approximately 20% – 
30% of interactions are true positives among the interactions with high predicted confidence 
0.8 in PPI (Fig. 5c) and GDI dataset (Fig. 5d). In contrast, HOGCN achieves a lower Brier 
score in comparison to the GCN and SkipGNN across DDI, PPI, and GDI datasets, alluding 
to the benefits of aggregating higher-order neighborhood features for calibrated prediction. 
This analysis demonstrates that HOGCN with higher-order neighborhood mixing makes 
accurate and calibrated predictions for biomedical interaction.

6.5 Impact of higher-order neighborhood mixing

In Section 6.3, we contrast HOGCN’s performance with that of alternative graph 
convolution-based methods in varying fraction of edges. In this experiment, we aim to 
observe the performance of HOGCN when the order k is increased to allow the model 
to aggregate neighborhood information from farther away. We follow a similar setup as 
discussed in 6.3.

Fig. 6 shows the comparison of HOGCN with higher-order neighborhood mixing k such that 
ℙ = 0, 1, 2, 3, 4, 5 . The prediction performance of HOGCN improves with the increase in 
the number of training interactions for all cases except k = 0. For HOGCN with k = 0, the 
model only considers the features of the biological entities i.e. identity matrix I and performs 
worse since the identity matrix is not informative about interactions. The results show 
that HOGCN’s performances are not sensitive to the hyperparameter settings of k for all 
datasets since for settings ℙ = 3, 4, 5 , there is no clear differences and achieve comparable 
performances across the datasets. This analysis indicates that the 3-hop neighborhood (k 
= 3) provides sufficient information for interaction prediction across all datasets and the 
performance remains stable even with a large value for k.

6.6 Investigation of novel predictions

Next, we perform the literature-based validation of novel predictions. Our goal is to evaluate 
the quality of HOGCN’s novel predictions compared to that of GCN and SkipGNN and 
show that HOGCN predicts novel interactions with higher confidence. For this evaluation, 
we consider DDIs and GDIs that have readily available databases.
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We first evaluate the potential of the HOGCN to make novel GDI predictions. We collect 
1,134,942 GDIs and their scores from DisGeNET [29]. The score corresponds to the 
number and types of sources and the number of publications supporting the associations. 
With the score threshold of 0.18, we obtain 17,893 new GDIs that are not in the training 
set. We make predictions on these 17,893 GDIs with GCN, SkipGNN, and HOGCN (k 
= 3). Out of 17,893 GDIs, HOGCN predicts a higher probability than GCN for 17,356 
(96.99%) GDIs and SkipGNN for 11,418 (63.8%) GDIs. Table 4 shows the top 5 GDIs 
with a significant increase in interaction probabilities when higher-order neighborhood 
mixing is considered. We also provide the number of evidence from DisGenNet [29] to 
support these predictions. Improvement in predicted probabilities by HOGCN models shows 
that aggregating feature representations from higher-order neighbors make HOGCN more 
confident about the potential interactions as discussed in Section 6.4.

We select two predicted GDIs with a large number of supporting evidence and investigate 
the reason for the improvement in predicted confidence with HOGCN. Specifically, we 
choose gene-disease pairs (a) ABO and Pancreatic carcinoma (26 pieces of evidence) and 
(b) GPC3 and Hepatoblastoma ((17 pieces of evidence). To explain the prediction, the 
subnetworks containing all shortest paths between these pairs are selected. In particular, 
there are 49 shortest paths of length 3 between ABO and Pancreatic carcinoma including 6 
diseases and 15 genes (Fig. 7a). Similarly, there are 20 shortest paths of length 3 between 
GPC3 and Hepatoblastoma including 6 diseases and 9 genes (Fig. 7b). Since these nodes 
are 3-hop away from each other and GCNs can only consider immediate neighbors, GCNs 
assign low confidence to these interactions.

Examining the subnetwork in Fig. 7a, we found that most of the diseases are related to 
a cancerous tumor in the pancreas and the prostate. Furthermore, pancreatic carcinoma 
is associated with other diseases such as Pancreatic neoplasm, malignant neoplasm of 
pancreas, and malignant neoplasm of prostate [29]. Since ABO is linked with diseases 
that are related to pancreatic carcinoma and other genes are related to these diseases as 
well, HOGCN captures such association (Fig 7a) even though they are farther away in the 
network. Similarly, HOGCN predicts association for GPC3 and Hepatoblastoma (Fig. 7b).

Next, we perform a similar case study for DDIs and evaluate the predictions against 
DrugBank [36]. For this experiment, we predict every drug pair with GCN, SkipGNN, 
and HOGCN and exclude the interactions that are already in the training set. Table 5 shows 
the top 5 interactions with an increase in interaction probabilities when higher orders of the 
neighborhood are considered. As discussed in Section 6.4, HOGCN makes predictions with 
higher confidence compared to GCN and SkipGNN for the interactions that are likely to be a 
true positive.

Moreover, we validate the false-positive DDI predictions of GCNs and investigate the 
subnetwork for these drugs in DDI networks to reason the predictions. Table 6 shows 
the top 5 interactions with a significant decrease in predicted confidence compared to 
GCN-based models. Since these DDIs are false positives [36], GCN-based models make 
overconfident predictions for such DDIs. In contrast, HOGCN significantly reduces the 
predicted confidence for these DDIs to be true positive, indicating that the higher-order 
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neighborhood allows HOGCN to identify false-positive predictions. In particular, HOGCN 
can identity false-positive DDI between Belimumab and Estazolam even though they are 
3-hop away from each other.

We select a subnetwork involving the drugs to investigate the reason for such predictions. 
Fig. 8 shows the subnetwork with all shortest paths between the drugs in Table 6. Examining 
the figure, we observe that the drugs in these false-positive DDIs have common immediate 
neighbors for all cases. GCN makes wrong predictions for these DDIs with high confidence. 
However, SkipGNN becomes less confident about the interaction being true positive by 
considering the skip similarity. HOGCN further reduces the predicted confidence for 
Tranylcypromine and Melphalan to 0.065, indicating that there is no association between 
these drugs.

These case studies show that HOGCN with higher-order neighborhood mixing not only 
provide information for the identification of novel interactions but also help HOGCN to 
reduce false-positive predictions.

7 CONCLUSION

We present a novel deep graph convolutional network (HOGCN) for biomedical interaction 
prediction. Our proposed model adopts a higher-order graph convolutional layer to learn 
to mix the feature representation of neighbors at various scales. Experimental results on 
four interaction datasets demonstrate the superior and robust performance of the proposed 
model. Furthermore, we show that HOGCN makes accurate and calibrated predictions by 
considering higher-order neighborhood information.

There are several directions for future study. Our approach only considers the known 
interactions to flag potential interactions. There are other sources of biomedical information 
such as various physicochemical and biological properties of biomedical entities that 
can provide additional information about the interaction and we plan to investigate 
the integration of such features into the model [20], [30]. As HOGCN aggregates the 
neighborhood information at various distances and can flag novel interactions, it would be 
interesting to provide interpretable explanations for the predictions in the form of a small 
subgraph of the input interaction network G that are most influential for the predictions [44].
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Fig. 1. 
Block diagram of proposed HOGCN model with L HOGC layers. Given a biomedical 
interaction network G with initial features X for biomedical entities, the encoder mixes the 
feature representation of neighbors at various distances and learn final representation Z. The 
decoder takes the representation zi and zj of nodes υi and υj to learn the representation eij for 
the edge (denoted by ?) and predict probability pij of its existence.
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Fig. 2. 
High-order graph convolution (HOGC) Layer with ℙ = 0, …, k . The feature representation 

H(l) is a linear combination of the neighbors AjH l − 1  at multiple distances j. Oj
l  represents 

feature representation of neighbors at j distances for layer l.
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Fig. 3. 
Visualization of learned representation for drugs with (a) GCN (b) SkipGNN (c) 
HOGCN. Drugs are mapped to the 2D space using t-SNE package [35] with learned 
drug representations. Drugs categories such as DBCAT002175, DBCAT000702 and 
DBCAT000592 are highlighted. The number of drugs in each categroy is reported in legend. 
Best viewed on screen.
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Fig. 4. 
AUPRC comparison of HOGCN’s performance with that of alternative approaches with 
respect to network sparsity. HOGCN consistently achieves better performance in various 
fraction of training edges.

KC et al. Page 24

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2022 April 03.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Fig. 5. 
Reliability diagrams for different graph convolution-based methods. The calibration 
performance is evaluated with Brier score, reported in the legend (lower is better).
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Fig. 6. 
AUPRC comparison for higher-order message passing with different fractions of training 
edges. The values of k for different HOGCN models are reported in the legend.
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Fig. 7. 
Subnetwork with predicted interactions (marked by bold dashed lines) between (a) ABO and 
Pancreatic carcinoma (b) GPC3 and Hepatoblastoma and all shortest paths between these 
pairs. The known interactions are presented as gray lines. Diseases are presented as dark 
circles and genes are presented as white circles.
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Fig. 8. 
Subnetwork containing false positive predictions (marked by dark dashed lines) and all 
shortest paths between (a) Tranylcypromine and Melphalan (b) Methotrimeprazine and 
Cloxacillin (c) Hydrocodone and Melphalan and (d) Ibrutinib and Mecamylamine. Other 
known interactions are presented as gray gray lines. Dark circles denotes drugs.
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TABLE 1

Terms and notations

Notation Definition

G: V, ε,X Graph with nodes V, edges ε and features X

ε′ Test edges

A ∈ ℝ V × V Adjacency matrix of graph G

D ∈ ℝ V × V Degree matrix with Dii = ∑i Aij

I ∈ ℝ V × V Identity matrix

A ∈ ℝ V × V Symmetrically normalized adjacency matrix

A ∈ ℝ V × F F-dimensional feature matrix

Aij ∈ {0, 1} Ground-truth interaction between nodes i and j

pij ∈ {0, 1} Probability of interaction between nodes i and j

Z ∈ ℝ V × d∗ Final node embeddings

W l
i

Weight matrix for ith adjacency power for layer l

L Number of HOGC layers

T Number of training epochs

k The order of neighborhood

ℙ A set of integer adjacency powers ℙ = 0, 1, …, k

Oj
l Representation of neighbors at distance j in layer l
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TABLE 3

Average AUPRC and AUROC with ± one standard deviation on biomedical interaction prediction

Dataset Method AUPRC AUROC

DTI

DeepWalk 0.753 ± 0.008 0.735 ± 0.009

node2vec 0.771 ± 0.005 0.720 ± 0.010

L3 0.891 ± 0.004 0.793 ± 0.006

VGAE 0.853 ± 0.010 0.800 ± 0.010

GCN 0.904 ± 0.011 0.899 ± 0.010

SkipGNN 0.928 ± 0.006 0.922 ± 0.004

HOGCN 0.937 ± 0.001 0.934 ± 0.001

DDI

DeepWalk 0.698 ± 0.012 0.712 ± 0.009

node2vec 0.801 ± 0.004 0.809 ± 0.002

L3 0.860 ± 0.004 0.869 ± 0.003

VGAE 0.844 ± 0.076 0.878 ± 0.008

GCN 0.856 ± 0.005 0.875 ± 0.004

SkipGNN 0.866 ± 0.006 0.886 ± 0.003

HOGCN 0.897 ± 0.003 0.911 ± 0.002

PPI

DeepWalk 0.715 ± 0.008 0.706 ± 0.005

node2vec 0.773 ± 0.010 0.766 ± 0.005

L3 0.899 ± 0.003 0.861 ± 0.003

VGAE 0.875 ± 0.004 0.844 ± 0.006

GCN 0.909 ± 0.002 0.907 ± 0.006

SkipGNN 0.921 ± 0.003 0.917 ± 0.004

HOGCN 0.930 ± 0.002 0.922 ± 0.001

GDI

DeepWalk 0.827 ± 0.007 0.832 ± 0.003

node2vec 0.828 ± 0.006 0.834 ± 0.003

L3 0.899 ± 0.001 0.832 ± 0.001

VGAE 0.902 ± 0.006 0.873 ± 0.009

GCN 0.909 ± 0.002 0.906 ± 0.006

SkipGNN 0.915 ± 0.003 0.912 ± 0.004

HOGCN 0.941 ± 0.001 0.936 ± 0.001
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TABLE 4

Novel prediction of GDIs with the number of evidence from DisGenNet [29] supporting the interaction. GCN, 
SkipGNN and HOGCN are denoted by 1, 2 and 3 respectively.

Gene Disease

Probability

No. of Evidence1 2 3

PTGER1 Gastric ulcer 0.087 0.519 0.721 1

ANGPT1 Gastric ulcer 0.173 0.583 0.657 2

ABO Pancreatic carcinoma 0.265 0.615 0.770 26

VCAM1 Endotoxemia 0.294 0.529 0.639 5

GPC3 Hepatoblastoma 0.307 0.540 0.598 17
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TABLE 5

Novel prediction of DDIs with the literature evidence supporting the interaction. GCN, SkipGNN and 
HOGCN are denoted by 1, 2 and 3 respectively.

Drug 1 Drug 2
Probability

Evidence1 2 3

Nelfinavir Acenocoumarol 0.192 0.318 0.417 [39]

Praziquantel Itraconazole 0.609 0.721 0.811 [40]

Cisapride Droperidol 0.618 0.725 0.823 [41]

Dapsone Warfarin 0.632 0.720 0.885 [42]

Levofloxacin Tobramycin 0.663 0.760 0.823 [43]
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TABLE 6

Predicted probability for negative DDIs. GCN, SkipGNN and HOGCN are denoted by 1, 2 and 3 respectively.

Drug 1 Drug 2
Probability with k

1 2 3

Tranylcypromine Melphalan 0.925 0.478 0.065

Belimumab Estazolam 0.912 0.477 0.178

Methotrimeprazine Cloxacillin 0.907 0.406 0.065

Hydrocodone Melphalan 0.905 0.193 0.012

Ibrutinib Mecamylamine 0.899 0.398 0.353
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