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Abstract
In clinical practice, well-aligned multi-modal im-
ages, such as Magnetic Resonance (MR) and
Computed Tomography (CT), together can provide
complementary information for image-guided ther-
apies. Multi-modal image registration is essential
for the accurate alignment of these multi-modal im-
ages. However, it remains a very challenging task
due to complicated and unknown spatial correspon-
dence between different modalities. In this paper,
we propose a novel translation-based unsupervised
deformable image registration approach to convert
the multi-modal registration problem to a mono-
modal one. Specifically, our approach incorporates
a discriminator-free translation network to facili-
tate the training of the registration network and a
patchwise contrastive loss to encourage the trans-
lation network to preserve object shapes. Further-
more, we propose to replace an adversarial loss,
that is widely used in previous multi-modal image
registration methods, with a pixel loss in order to
integrate the output of translation into the target
modality. This leads to an unsupervised method
requiring no ground-truth deformation or pairs of
aligned images for training. We evaluate four vari-
ants of our approach on the public Learn2Reg 2021
datasets [Hering et al., 2021]. The experimental
results demonstrate that the proposed architecture
achieves state-of-the-art performance. Our code is
available at https://github.com/heyblackC/DFMIR.

1 Introduction
Different medical image modalities, such as Magnetic Res-
onance Imaging (MRI) and Computed Tomography (CT),
show unique tissue features due to the acquisition with dif-
ferent scanners and protocols. Multiple image modalities can
be fused to provide combined information, which is known
as the process of multi-modal image fusion [Pielawski et al.,
2020]. A wide variety of clinical applications rely on the
fusion of multi-modal data, e.g., preoperative planning and
image-guided radiotherapy [Oh and Kim, 2017]. Since the
∗Corresponding Author

images need to be aligned first through registration for image
fusion, it is of great importance to establish anatomical cor-
respondences among images of different modalities by using
multi-modal image registration.

Learning-based registration seeks to predict deformation
fields directly from a pair of images by maximizing a prede-
fined similarity metric [Fan et al., 2019]. Supervised or semi-
supervised learning strategies use ground-truth deformation
fields or segmentation masks in the training phase, and may
suffer from the lack of data labeling [Uzunova et al., 2017;
Hu et al., 2018]. Since it is extremely time-consuming and
laborious to label registration data even for specialists, unsu-
pervised methods have been proposed to overcome this lim-
itation solely by maximizing the image similarity between
the target image and the source image. However, the per-
formance of unsupervised methods is highly dependent on
the choice of cross-modal similarity metrics. Generally,
widespread similarity metrics like the sum of squared differ-
ences (SSD) and normalized cross correlation (NCC), which
are well-suited for mono-modal registration problems [Bal-
akrishnan et al., 2019; de Vos et al., 2017], perform badly in
a multi-modal setting. Typically, unsupervised multi-modal
registration approaches use Normalized Mutual Information
(NMI) and Modality-Independent Neighbourhood Descriptor
(MIND) [Maes et al., 2003; Heinrich et al., 2012]. Since
NMI, as a global metric, only measures statistical dependence
between two entire images, it is difficult to use it for local im-
age alignment. MIND, on the other hand, is a patch-based
image similarity metric, which tends to suffer from severe
image deformations and cannot achieve global alignment.

Given the recent success of multi-modal image transla-
tion [Huang et al., 2018; Park et al., 2020], an alternative
solution for addressing multi-modal registration is to convert
the problem to a simpler unimodal task using an image-to-
image (I2I) translation framework [Qin et al., 2019]. Specif-
ically, translation-based methods use Generative Adversar-
ial Network (GAN) mode to translate images from source
modality to target modality. And the GAN consists of a
generator and a discriminator, where the generator learns
to generate plausible data and the discriminator penalizes
the generator for producing unrealistic results. With the
GAN mode, the registration network can be trained with
unimodal similarity metrics. However, this GAN-based im-
age translation tends to produce shape inconsistency and
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Figure 1: Method overview. Our translation-based registration
method learns a cross-modality translation, mapping between the
two modalities, which enables the training of the registration net-
work with a mono-modality metric. The source image is warped
to align with the target image by the deformation field. We use a
PatchNCE loss to encourage the translation network to preserve ob-
ject shapes and design a pixel loss as the mono-modality metric. The
pixel loss not only enables the appearance transfer but also measures
the image dissimilarity, which accounts for the training of both trans-
lation and registration networks simultaneously.

artificial anatomical features which will, in turn, deterio-
rate the performance of the registration [Arar et al., 2020;
Xu et al., 2020]. More specifically, different modalities have
very distinct geometric variances caused by the shape of the
imaging bed, the imaging protocols of the scanner, and the
field of view. We refer to these variances as “domain-specific
deformations” [Wang et al., 2021]. We argue that the incon-
sistency and artifacts are introduced by the discriminator that
mistakenly encodes domain-specific deformations as indis-
pensable appearance features and encourages the generator to
reproduce the deformations. This tends to create unnecessary
difficulty for registration tasks. This paper shows that we can
improve the performance of multi-modal image registration
by removing the discriminator in image-to-image translation.

In this work, we propose a novel translation-based unsuper-
vised registration approach for aligning multi-modal images.
Our main idea is to reduce the inconsistency and artifacts
of the translation by removing the discriminator as we dis-
cussed above. Specifically, we replace the GAN-based trans-
lation network with our discriminator-free translation net-
work (shown in Figure 1). The presented translation network
incorporates a patchwise contrastive loss (PatchNCE [Park et
al., 2020]) to maintain shape consistency during translation
and a pixel loss to integrate the output with the target appear-
ance. Additionally, two novel loss terms are also proposed,
one is local alignment loss and the other is global alignment
loss. The local alignment loss captures detailed local texture
information by modeling the detail-rich image patches. The
global alignment loss focuses on the overall shape for the
detail-missing generated images. The proposed translation-
based registration method coupled with these two losses can
achieve local and global alignment and yield more accurate
deformation fields.

The main contributions of our work can be summarized as
follows:

• We present a discriminator-free I2I translation mode to
replace the original GAN-based I2I mode and achieve
accurate registration.

• We design a contrastive PatchNCE loss in our
translation-based registration model as a shape-
preserving constraint.

• We also propose a local and a global alignment losses to
further improve the registration performance.

2 Related Work
In recent years, many translation-based multi-modal registra-
tion approaches have been proposed. They commonly fol-
low a registration-by-translation framework: an I2I transla-
tion network is first trained to synthesize fake images with
the target appearance, and then mono-modality metrics can be
used in the target domain. In unsupervised translation, cycle-
consistent generative adversarial networks (CycleGAN [Zhu
et al., 2017]) are widely adopted. However, cycle consistency
leads to multiple solutions, which means that the translated
images can not maintain the anatomical structure of source
images and may contain artifacts [Kong et al., 2021]. With
inaccurate image translation, the performance of multi-modal
registration tends to be degraded. To address this difficulty,
other approaches beyond CycleGAN have been proposed.

Qin et al. [2019] use image disentanglement to decompose
images into common domain-invariant latent shape features
and domain-specific appearance features. Then the latent
shape features of both modalities are used to train a registra-
tion network. But this method still relies on cycle consistency
and a GAN mode, which inevitably introduces inconsistency
and hampers the process of registration.

Arar et al. [2020] attempt to force the translation and the
registration steps to be commutative, which can implicitly
encourage the translation network to be structure-preserving.
The structure-preserving translation network allows the use
of simple mono-modality metrics for training a registration
network. However, their method is still GAN-based, which
means the structure consistency will be affected by the pres-
ence of the discriminator.

Closest to our work, Casamitjana et al. [2021] propose a
synthesis-by-registration method, which is different from the
previous registration-by-synthesis methods. Their approach
is made up of two stages: stage one is training a registration
network on pairs of images from the target domain with data
augmentation, and stage two is training an I2I network while
freezing the parameters of the registration network. However,
their registration network is first trained on the images from
the target modality instead of images from the two modalities,
which may guide the registration network to generate an un-
realistic deformation field. And both the registration network
and translation network are used in test time in their scheme.
On the contrary, our method is a joint framework with end-to-
end optimization and only the registration network is needed
in test time, which leads to a more reliable deformation field.

3 Method
In this work, we propose an end-to-end learning framework
for registering multi-modal image pairs in a fully unsuper-
vised manner. Our core idea is to replace GAN-based I2I
translation with our novel discriminator-free I2I translation,
shown in Figure 1. The PatchNCE loss maintains shape
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Figure 2: An overview of the proposed method. (a) Architecture overview. Our model consists of two components: a registration network R
and a discriminator-free translation network T . The two networks are jointly trained in an end-to-end manner. In our context, the pixel loss
Lappearance is the mono-modality metric computed in the target modality. Based on the architecture presented in Figure 1, we add two novel
loss terms Llocal and Lglobal to achieve local and global alignments between x(φ) and y. (b) Illustration of the PatchNCE loss.

consistency and the pixel loss enables the appearance trans-
fer. With the proposed discriminator-free I2I translation, the
multi-modal registration task is converted into a unimodal
one.

Our method consists of two components: (1) a deformable
registration network, and (2) a discriminator-free translation
network for mapping images from source domain to target
domain and reconstructing images from the target domain.
The two components are trained jointly, and only the registra-
tion network is used in test time. The pipeline of our method
is depicted in Figure 2(a).

We denote the registration network as R and the transla-
tion network as T , as in Figure 2. Let X and Y denote two
paired image domains, where X is source domain and Y is
target domain. Pairing means that each image x ∈ X has a
corresponding unaligned image y ∈ Y representing the same
anatomical structure. The process of registration is to find a
deformation field that aligns the source image x to the target
image y accurately. Given an image pair (x, y) as input, R
learns to predict a deformation field φ, which describes how
to non-rigidly align x to y. Meanwhile, T takes x and y as
the inputs and outputs target-modality images y′ and ŷ, where
y′ = T (x) and ŷ = T (y). y′ is the translated image, which
has similar appearance as images in domain Y . ŷ is the re-
constructed image of y. The PatchNCE loss LPatchNCE is
employed to force y′ and ŷ to keep the orginial structure of x
and y, respectively. x(φ) and y′(φ) are warped images from
the source image x and the translated image y′. The pixel loss
Lappearance enables the appearance transfer of network T be-
tween y′(φ) and y. In addition, local alignment loss Llocal

and global alignment loss Lglobal are employed to further im-
prove the registration performance.

3.1 Registration Network
The registration network R takes an image pair (x, y) as an
input and outputs a deformation field φ = R(x, y). The
warped image x(φ) is aligned with y. In a two-dimensional
setting, the deformation field is a matrix of 2D vectors, in-
dicating the moving direction for every pixel in the source

image x. To generate smooth deformation fields and penalize
the tendency of overly distorting the deformed image x(φ),
we adopt anL2-norm of the gradients of the deformation field
as the regularization term [Hoopes et al., 2021], which is de-
noted as Lsmooth. Formally, the loss at pixel v = (i, j) is
given by:

Lsmooth(φ, v) =
∑

u∈N(v)

‖φ(u)− φ(v)‖2 , (1)

where N(v) denotes a set of neighbor pixels of the v.

3.2 Discriminator-Free Translation Network
Our translation network T takes images from the source do-
main X and outputs translated images that have similar ap-
pearance as images in the target domain Y . We divide our
translation network T into two components, an encoder Tenc
followed by a decoder Tdec, shown in Figure 2(b). Tenc ex-
tracts shape-related features, while Tdec learns to perform
shape-preserving modality translation with those features.
Given the input x, Tenc and Tdec jointly generate the output
y′ = T (x) = Tdec (Tenc(x)).

A key task of our method is to train the I2I translation net-
work T to translate images without the discriminator. If the
output from T is shape-preserving, which implies T cannot
deform the anatomical structure, the alignment task will be
done solely by registration network R. Therefore, we pro-
pose the contrastive PatchNCE loss to enforce the shape con-
sistency and the pixel loss to enable the appearance transfer
from the source modality to the target modality.

PatchNCE Loss. The PatchNCE loss maximizes the mu-
tual information between input image patches and output im-
age patches, which is based on a noise contrastive estima-
tion framework [Oord et al., 2018]. It makes every output
patch similar to the corresponding input patch, while dif-
ferent from the other patches within the input. We use a
“query” to refer to an output patch and “positive” for the
corresponding input patch and “negatives” for the noncorre-
sponding input patches, shown in Figure 2(b). For similarity
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measurement, the encoder part Tenc of our translation net-
work with additional two-layer multi-layer perceptron (MLP)
is used to map image patches to embedded vectors. Specif-
ically, the query, positive, and N negatives are embedded to
K-dimensional vectors z, z+ ∈ RK and z− ∈ RN×K , re-
spectively. z−n ∈ RK denotes the n-th negative patch. We
convert the similarity measurement to an (N+1)-way classifi-
cation problem, where the similarity between the query and
other samples are expressed as logits. The cross-entropy loss
for multi-class classification is calculated, representing the
probability of the positive being selected over N negatives.
The formula is given by:

`
(
z, z+, z−

)
=

− log

[
exp (z · z+/τ)

exp (z · z+/τ) +
∑N

n=1 exp
(
z · z−n /τ

)] , (2)

where τ is the temperature parameter set to 0.07 in our exper-
iments.

Given an input image, the encoder part Tenc will gener-
ate multilayer hidden features, which form a feature stack.
A spatial location in a layer of the feature stack represents
a patch of the input image, with deeper layers correspond-
ing to bigger patches. Let L denote the number of ex-
tracted layers from the feature stack. A MLP Hl with two
layers is used to map the selected encoder features to em-
bedded representations {zl}L =

{
Hl

(
T l
enc(x)

)}
L

, where
T l
enc represents the features of the l-th selected layer and
l ∈ {1, 2, . . . , L}. Let s ∈ {1, . . . , Sl}, where Sl repre-
sents the number of spatial locations in each T l

enc. For each
spatial location s, the corresponding embedded code is re-
ferred to as zsl ∈ RK , and the features at any other loca-
tions are denoted by zS\sl ∈ R(Sl−1)×K . Similarly, the cor-
responding embedded representations of output image y′ are
{z′l}L =

{
Hl

(
T l
enc (G (x))

)}
L

.
With features from multiple layers of the encoder, patch-

wise noise contrastive estimation can be applied on multiple
scales. Multilayer PatchNCE loss is given by:

LPatchNCE(T,H,X) = Ex

L∑
l=1

Sl∑
s=1

`
(
z′

s
l , z

s
l , z

S\s
l

)
. (3)

In addition, LPatchNCE is also used on images from target
domain Y , which acts as reconstruction loss. Through the
loss LPatchNCE(T,H, Y ), network T outputs the reconstruc-
tion ŷ = T (y).

Pixel Loss. Contrastive loss is effective to preserve the
shape of the input image x. However, without adversarial
loss, we still need to maximize the appearance similarity be-
tween a translated image y′ and the target domain Y with a
pixel loss. We define the pixel loss with L1-norm as:

Lappearance(T,R) = ‖y′(φ)− y‖1 , (4)
where y′(φ) indicates the warped image of y′.
Lappearance explicitly penalize the absolute intensity dif-

ferences between y′(φ) and y′. The combination of
Lappearance and LPatchNCE leads to a discriminaotr-free and
shape-preserving translation. Note that by minimizing the
two losses, the registration network R is trained jointly to
predict a deformation field φ, which aligns y′ to y.

3.3 Local and Global Alignment
To enable R to learn the alignment at the local (patch) level,
we propose a variant of the PatchNCE loss. Similarly, we re-
fer to a patch of the warped source image x(φ) as a “query”,
while “positive” and “negatives” are corresponding and non-
corresponding patch(es) within the target image y, respec-
tively. The warped source image and the target image are
mapped to embedded vectors {ql}L =

{
Hl

(
T l
enc(x(φ))

)}
L

and {pl}L =
{
Hl

(
T l
enc(y)

)}
L

, respectively. The patch-
wise noise contrastive estimation is computed between the
embedded vectors {ql}L and {pl}L, which is different from
the original PatchNCE. For clarity, we denote this variant loss
as Llocal:

Llocal(R) = Ex,y

L∑
l=1

Sl∑
s=1

`
(
qsl , p

s
l , p

S\s
l

)
. (5)

Applied on the cross-modality image patches, Llocal en-
courages the registration network R to learn local alignment
as shown in Figure 3. Note that the images produced by our
discriminator-free translation network do not contain image
texture information. This is beneficial to the extraction of
global information, shown in Figure 3. Inspired by this, we
further propose a global alignment loss:

Lglobal(T,R) = ‖y′(φ)− ŷ‖1 . (6)

Minimizing Lglobal leads to similar style between the gen-
erated y′ and ŷ. Meanwhile, the registration networkR learns
a deformation field φ to best align y′ to ŷ.

3.4 Final Objective
Our final objective is as follows:

L = λP · LPatchNCE(T,H,X) + λP · LPatchNCE(T,H, Y )

+λA · Lappearance(T,R) + λL · Llocal(R)

+λG · Lglobal(T,R),
(7)

where we set λP = 0.25, λA = 1, λL = 0.25 and λG = 1 in
our experiments.

4 Experiments
4.1 Datasets
We evaluated our proposed method on two public datasets.
Both of them are obtained from MICCAI Learn2Reg 2021
challenge [Hering et al., 2021], which is a comprehensive
registration challenge covering different anatomical struc-
tures and modalities. Specifically, the first dataset is for the
task of CT-MR thorax-abdomen intra-patient registration, and
the other one is for the task of CT lung inspiration-expiration
registration.

Thorax-Abdomen CT-MR Dataset. This dataset contains
16 pairs of CT and MR abdomen scans. The annotations on
all scans are manual and automatic segmentations of multiple
organs. Each scan is a 3D volume in size of 192× 160× 192
with 2 mm voxel spacing. After preprocessing the data, e.g.,
coarse affine registration using the Elastix toolbox [Marstal et
al., 2016], we randomly split the dataset into 10/2/4 pairs for
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Figure 3: Illustration of local and global alignment losses. Local
information such as texture is provided by the detail-rich original
image patches (top row). The generated image pair (y′, ŷ) only re-
tains the basic shapes and ignores image texture and details, leading
to the focus on global information such as overall shape (bottom
row).

train/validation/test, and central 90 slices containing organs
in each scan are extracted for our experiments. All slices are
padded and resized into 256× 256.

Lung CT Inspiration-Expiration (Insp-Exp) Dataset.
The dataset consists of 30 pairs of CT lung scans. All lungs
are segmented automatically or manually. The challenge in
this dataset is to estimate the underlying breathing motion be-
tween inspiration and expiration. Each scan is a 3D volume
in size of 192 × 192 × 208 with resolution of 1.75 mm. In
our experiments, we randomly divide the 30 pairs into 20/4/6
for train/validation/test, and on each volume, we extract mid-
dle 100 slices. And each slice is resized into 256 × 256.
To simulate a multi-modal registration task with this single-
modal dataset, we synthesize a new modality using the inten-
sity transformation function cos (I · π/255), Gaussian blur-
ring with the kernel size of 3 × 3 and random elastic defor-
mation sequentially as proposed in [Qin et al., 2019]. Note
that the intensity transformation function is only applied to
the foreground of each slice. Deformation fields are predicted
between real CT inspiration slices and their corresponding
synthesized expiration slices.

4.2 Implementation Details
We implement our model based on the framework and imple-
mentation of CUT [Park et al., 2020]. The translation net-
work T is a Resnet-based architecture with 9 residual blocks.
Our encoder is defined as the first half of the translation net-
work, and five layers of features in the encoder are extracted.
The registration network adopts a U-net based architecture
with skip connections from contracting path to expanding
path [Ronneberger et al., 2015]. For the initialization of net-
works, we use the Xavier initialization method. Our net-
works are implemented in PyTorch and all the experiments
were conducted on GeForce RTX 2080 Ti. We use Adam
optimizer to train our model for 300 epochs with parameters
lr = 0.0002, β1 = 0.5 and β2 = 0.999. Linear learning rate
decay is activated after 200 epochs.

CT→MR MR→ CT

Method DSC ↑ HD95 ↓ DSC ↑ HD95 ↓
Affine 0.649(0.031) 14.141(2.126) 0.655(0.031) 14.009(2.082)
MIND 0.666(0.039) 14.102(2.446) 0.682(0.024) 14.124(2.320)
CGAN 0.698(0.027) 13.798(2.097) 0.695(0.018) 13.660(1.782)
RGPT 0.713(0.022) 15.844(2.284) 0.717(0.008) 14.706(1.635)
SbR 0.735(0.016) 12.761(1.851) 0.746(0.026) 12.672(2.090)

Ours 0.772(0.025) 12.137(2.392) 0.784(0.025) 11.889(2.207)
w/o Llocal 0.757(0.027) 12.361(2.609) 0.763(0.022) 12.405(2.045)
w/o Lglobal 0.763(0.026) 12.453(2.372) 0.770(0.023) 12.232(2.045)
w/o l & g 0.753(0.021) 12.742(2.384) 0.762(0.022) 12.378(1.952)
w/ dis 0.764(0.025) 12.470(2.311) 0.769(0.024) 12.132(2.076)

Table 1: Evaluation of bi-directional multi-modal registration on the
Thorax-Abdomen CT-MR dataset in terms of DSC, HD95 (and stan-
dard deviation in parentheses).

4.3 Evaluation
Metrics. For the thorax-abdomen dataset, we directly use
multi-organ segmentation masks to evaluate the registration
accuracy. Dice similarity coefficient (DSC [Dice, 1945]) and
95% percentile of Hausdorff distance (HD95 [Huttenlocher
et al., 1993]) are computed between multi-organ masks of a
warped source image and its target image. Similarly, DSC
and HD95 are calculated between the provided lung masks
for the evaluation of the lung CT dataset. DSC is used to
measure the accuracy of registration, while HD95 measures
reliability. A higher DSC and lower HD95 indicate a better
performance of the registration model.

Baselines. We compare our method against several recent
state-of-the-art multi-modal registration methods and some
other well-established methods. Specifically, the compet-
ing methods are: (1) Affine, affine registration based on
the normalized mutual information using the Elastix tool-
box; (2) MIND, a VoxelMorph architecture [Balakrishnan et
al., 2019] with similarity metric MIND; (3) CGAN, a Cy-
cleGAN, which is pre-trained on unpaired images, combines
with the VoxelMorph registration network using mono-modal
similarity metric NCC; (4) RGPT, a multi-modal registration
model via geometry preserving translation [Arar et al., 2020];
(5) SbR, a recent synthesis-by-registration model based on
contrastive learning [Casamitjana et al., 2021]. For ablation
study, we propose three variants of our model by removing
the loss terms one by one: ours w/o Llocal, ours w/o Lglobal,
and ours w/o Llocal and Lglobal (ours w/o l & g). To in-
vestigate if the inaccuracy is introduced by the discriminator,
we also study a variant with a discriminator plugged into the
translation network in our model (ours w/ dis).

4.4 Results
The quantitative results on the two datasets are summarized in
Table 1 and Table 2. We compare the proposed method with
the other five methods by measuring the registration accuracy
with the DSC and HD95. Our method consistently outper-
forms other competing methods. Our registration network
can predict more accurate deformation fields, even when
there exists significant shape deformation and style difference
between source images and target images. In addition, Fig-
ure 4 displays four examples of the warped source images
and their corresponding deformation fields. The deformation
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Figure 4: Visualization results of our method against other methods. The unaligned image pair (x, y) is shown in column 1-2 (on the left of
the dotted line). x denotes the source image and y denotes the target image. We show the registration results of three methods: Ours, RGPT
and SbR. RGPT and SbR are the most recent state-of-the-art methods. Each registration method occupies two columns, the first column
showing the warped source image x(φ) and the second showing the deformation field φ.

insp→ exp exp→ insp

Method DSC ↑ HD95 ↓ DSC ↑ HD95 ↓
Affine 0.850(0.050) 13.985(2.570) 0.848(0.053) 13.746(2.374)
MIND 0.899(0.057) 11.476(1.656) 0.934(0.047) 9.643(2.973)
CGAN 0.879(0.053) 12.989(1.730) 0.913(0.039) 12.038(2.298)
RGPT 0.914(0.034) 12.578(1.158) 0.947(0.030) 11.573(1.351)
SbR 0.924(0.049) 8.866(2.513) 0.946(0.037) 6.739(2.780)

Ours 0.938(0.025) 7.737(1.791) 0.966(0.019) 4.367(1.048)
w/o Llocal 0.930(0.024) 8.874(1.773) 0.963(0.015) 4.402(1.410)
w/o Lglobal 0.932(0.029) 8.789(1.936) 0.963(0.019) 5.382(2.409)
w/o l & g 0.910(0.031) 11.714(1.843) 0.957(0.022) 5.642(2.973)
w/ dis 0.929(0.032) 8.372(2.118) 0.959(0.017) 6.232(1.601)

Table 2: Evaluation of bi-directional multi-modal registration on the
Lung Insp-Exp dataset in terms of DSC, HD95 (and standard devia-
tion in parentheses).

fields generated by the RGPT method are corrupted by noise
and jitter (the red boxes in column 5-6 in Figure 4). This ex-
plains its inferior performance in HD95. Even though RGPT
can achieve a good boundary alignment, the image quality
is degraded after the registration. On the contrary, SbR pro-
duces relatively smooth deformation fields but fails to deal
with large-scale deformations (the red boxes in column 7-8
in Figure 4). This is because the registration network of SbR
is pre-trained on the images from the target modality with
randomly generated deformation fields and its parameters are
frozen once the pre-training is done. Different from the above
methods, ours achieves the most accurate boundary alignment
by capturing both local and global information without any

discriminator. (the red boxes in column 3-4 in Figure 4).

4.5 Ablation Study
The primary objective of our work is to achieve accurate
multi-modal registration. Therefore, we design three variants
of the proposed model to investigate the impact of Llocal and
Lglobal. The results in Table 1 and 2 show that, Llocal and
Lglobal are complementary, since the proposed method out-
perform the three ablated versions. What’s more, with only
one of the two losses, the registration performance still can
be improved. To investigate whether the discriminator will
introduce inconsistency and degrade the performance of the
registration, we design a variant, ours w/ dis. As can be seen
in the last row of Table 1 and 2, the registration performance
becomes worse than the proposed method.

4.6 Conclusion
We propose a novel discriminator-free and shape-preserving
translation network for multi-modal registration, taking ad-
vantage of contrastive learning. The registration network suc-
cessfully gets rid of inconsistency and artifacts introduced by
the discriminator. The contrastive loss ensures shape con-
sistency while the pixel loss enables the appearance trans-
fer. Furthermore, we leverage a local and a global align-
ment losses to achieve local and global alignment, improving
the registration accuracy. Finally, we evaluate the proposed
method on two open datasets, and show that it outperforms
the state-of-the-art methods.
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