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Simulating turbulence is critical for many societally important applications in aerospace engineering, environ-
mental science, the energy industry, and biomedicine. Large eddy simulation (LES) has been widely used as an
alternative to direct numerical simulation (DNS) for simulating turbulent flows due to its reduced computa-
tional cost. However, LES is unable to capture all of the scales of turbulent transport accurately. Reconstructing
DNS from low-resolution LES is critical for many scientific and engineering disciplines, but it poses many
challenges to existing super-resolution methods due to the spatio-temporal complexity of turbulent flows.
In this work, we propose a new physics-guided neural network for reconstructing the sequential DNS from
low-resolution LES data. The proposed method leverages the partial differential equation that underlies the
flow dynamics in the design of spatio-temporal model architecture. A degradation-based refinement method
is also developed to enforce physical constraints and further reduce the accumulated reconstruction errors
over long periods. The results on two different types of turbulent flow data confirm the superiority of the
proposed method in reconstructing the high-resolution DNS data and preserving the physical characteristics
of flow transport.
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1 INTRODUCTION
Understanding and simulating turbulence is a key element to our comprehension of many natural
and technological processes in science and engineering. Direct numerical simulation (DNS) of the
Navier-Stokes equations is a brute-force method and is commonly regarded as the most high-fidelity
method for capturing turbulence dynamics [16]. The computation cost of such simulations can
be very expensive for complex turbulence, i.e., flows with high Reynolds numbers. Large eddy
simulation (LES) is the most widely used alternative, concentrating on the larger scale energy-
containing eddies and filtering the small scales of transport [32]. By this filtering, LES can be
conducted on coarser grids as compared to those required by DNS, but the fidelity of the LES data
is generally lower than DNS [29].
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Machine learning, including super-resolution (SR) methods [30], provides the unrealized potential
for reconstructing high-fidelity DNS from LES data at a coarser resolution. These techniques have
already shown tremendous success in reconstructing high-resolution data in various commercial
applications. Most existing SR models use convolutional network layers (CNNs) [3] to extract
representative spatial features and transform them through complex non-linear mappings to
recover high-resolution images. From the end-to-end convolutional SRCNN model [12], researchers
have explored adding other structural components such as skip-connections [2, 10, 13, 13, 43, 44]
and channel attention [43], and using adversarial training objectives [8, 9, 22, 26, 34–36, 38].
Given their success in computer vision, SR methods are increasingly used in turbulence re-

construction [11, 14, 15, 27, 36, 42]. Although these methods have shown promise in simple and
isolated benchmark data, they are faced with several major challenges before they can be employed
for reconstructing various types of turbulent flows over long periods. Existing SR models are
not designed for modeling complex spatio-temporal evolution and interactions amongst multiple
physical variables in turbulence. Besides, high-fidelity DNS samples are often limited for training
the SR models due to the computational cost of the brute-force method. Moreover, existing SR
models and temporal models are limited in representing continuous flow dynamics using data
samples at discrete time steps. As a result, these models can learn spurious patterns between sparse
observations, and such patterns are often not generalizable.

We develop a novel method, termed Continuous Networks Using Differential Equation (CNDE),
to improve the turbulent flow reconstruction in spatial and temporal fields. This development is
by leveraging underlying physical relationships to guide the learning of generalizable spatial and
temporal patterns in the reconstruction process. In particular, our proposed method consists of
three components, Runge-Kutta Transition Unit (RKTU), Temporally-Enhancing Layer (TEL), and
degradation-based refinement. The RKTU structure is designed based on the underlying partial
differential equations (PDE) and is used for capturing continuous spatial and temporal dynamics of
turbulent flows. The TEL is designed based on the LSTM model and is responsible for capturing
long-term temporal dependencies. In addition, we propose a degradation-based refinement method
to adjust the reconstructed data over time by enforcing consistency with the LES data and known
physical constraints.

Our evaluations on the Forced Isotropic Turbulence (FIT) dataset [1] and the Taylor-Green Vortex
(TGV) dataset [5] have shown the superiority of the proposed CNDE in terms of the reconstruction
performance over space and time. We also demonstrate the effectiveness of each component of our
design by showing the improvement both qualitatively and quantitatively. Moreover, we verify
that the proposed method can preserve important physical characteristics of turbulent flows.

2 RELATEDWORK
2.1 Overview of Super Resolution Method
Researchers have developed many deep learning-based methods for single image super resolution
(SISR) in computer vision. The power of these methods comes mainly from the use of convolutional
network layers [3], which can extract the spatial texture features and transform them through
complex non-linear mappings to recover high-resolution data. The earliest SRmethod that uses deep
convolutional networks for the SISR problem is SRCNN [12], which directly learns the end-to-end
mapping between coarse-resolution and high-resolution images using a series of convolutional
layers. After that, Residual Channel Attention Network (RCAN) [43] uses a very deep trainable
structure with additional skip-connection layers to bypass the abundant low-frequency information
and focus more on the relevant information. The functionality of skip connections is also known
to improve the stability of the optimization process for deep neural networks. Recently, there are
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also other popular methods based on residual structures such as HDRN [13], SAN [10], RDN [44],
CARN [2], and DRRN [33].

Another popular super-resolution model is the SRGAN model [26], which employs a generative
adversarial network (GAN) for the SISR problem. SRGAN model not only stacks the deep residual
network to build a deeper generative network for image super resolution, but also introduces
a discriminator network to distinguish between reconstructed images and real images using an
adversarial loss function. The ultimate goal is to train the generative network such that the
reconstructed images cannot be easily distinguished by the discriminator. Compared with other
models, one major advantage of the SRGAN model is that the discriminator can help extract
representative features from high-resolution data and enforce such features in the reconstructed
images. Recently, there are also other extensions to the SRGAN method that further improve the
performance [8, 9, 22, 34–36, 38].

2.2 Super Resolution Method for Reconstructing Flow Data
Given the importance of simulating high-resolution flows, there is a surge of interest in using
super-resolution techniques for reconstructing high-resolution flow data. Fukami et al. [14, 15, 27]
propose an improved CNN-based hybrid DSC/MS model to explore multiple scales of turbulence
and capture the spatial-temporal turbulence dynamics. Similarly, Liu et al. [27] also propose another
CNN-based model MTPC to simultaneously handle spatial and temporal information in turbulent
flow simultaneously to fully capture features in different time ranges. Here are also other approaches
that are inspired by GAN. For example, Xie et al. [42] introduce tempoGAN, which augments a
generative adversarial network with an additional discriminator network along with additional loss
function terms that preserve temporal coherence in the generation of physics-based simulations
of fluid flow. Deng et al. [11] demonstrate that both SRGAN and ESRGAN [36] can produce a
good reconstruction of high-resolution turbulent flow in their datasets. However, these existing
SR methods face several challenges when reconstructing turbulent flows. Such flows involve
multiple physical variables and often exhibit complex dynamic patterns, i.e., multiple physical
variables evolve and interact at different scales. In the absence of underlying physical processes,
pure data-driven SR methods require a large number of training samples to capture the correct
physics.
Hence, researchers have also explored integrating physics into the SR models. Chen et al. [7]

propose a PGSRN method to enforce divergence-free properties in incompressible flows, but this
method remains limited in capturing the temporal flow dynamics. Bao et al. [4] use the Navier-
Stokes equation in a recurrent network to predict DNS data from historical DNSbut this method
does not fully leverage the LES data and also has accumulated errors in long-term prediction.

2.3 Physics-Guided Machine Learning
Recent research has shown immense success in integrating physics knowledge into machine
learning models to improve predictive performance and solve general scientific problems [41]. A
majority of these methods enforce physics in the loss function. For example, Hanson et al. [17]
introduced ecological principles as physical constraints into the loss function to improve the lake
surface water phosphorus prediction. Karpatne et al. [21] proposed a hybrid machine learning
and physics model to guarantee that the density of water at a lower depth is always greater than
the density of water at any depth above. Then, Jia et al. [19] and Read et al. [31] further extended
this idea by including an additional penalty for the violation of the law of energy conservation.
Despite the promise of these methods, they may lead to slow convergence in optimization and
performance degradation, especially when the physical relationships are complex or have uncertain
parameters. To address this issue, an alternative direction is to build new model structures using
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physics [4, 23, 28]. These models naturally encode known physical relationships while also allowing
the flexibility to adjust the model using training data.

3 PROBLEM DEFINITION
We consider a general three-dimensional turbulent flow over space and time Q(𝑥,𝑦, 𝑧, 𝑡), where
(𝑥,𝑦, 𝑧) denotes the spatial coordinates, 𝑡 represents the time step, and Q(𝑥,𝑦, 𝑧, 𝑡) consists of
multiple variables that describe turbulent transport, including the three components of the velocity
along the 𝑥 , 𝑦, and 𝑧 axes, denoted by 𝑢, 𝑣 and 𝑤 , and the thermodynamic pressure, denoted by
𝑝 . The flow variables in Q(𝑥,𝑦, 𝑧, 𝑡) also follow the Navier-Stokes equation, which governs the
transport of these variables in space (𝑥,𝑦, 𝑧) and time 𝑡 . In the training process, we are provided
with the available DNS data at a regular time interval 𝛿 , as Q𝑑 = {Q𝑡

𝑑
} within the time {𝑡0, 𝑡0 +

𝛿, ..., 𝑡0 + 𝐾𝛿}. Our objective is to predict high-resolution DNS data after the historical data, at time
{𝑡0 + (𝐾 + 1)𝛿, ..., 𝑡0 +𝑀𝛿}. We also use Q𝑙 (𝑥,𝑦, 𝑧, 𝑡) to represent the low-resolution LES data at
time step 𝑡 . Since the LES data can be created at a lower computational cost, they can be available
for both training and testing periods and at a higher frequency. We use Q𝑙 = {Q𝑡

𝑙
} to represent LES

data within the time range [𝑡0, 𝑡0 +𝑀𝛿].

4 METHOD

Fig. 1. The overall structure of proposed Continuous Networks Using Differential Equation (CNDE) method.

Our proposed CNDE framework consists of two structural components: RKTU and TEL, and
two learning processes, supervised super-resolution training and degradation-based refinement, as
shown in Fig. 1. In the following, we will describe the structural components RKTU and TEL, as
well as the degradation-based refinement process.

4.1 Runge-Kutta Transition Unit (RKTU)
4.1.1 Overall RKTU Structure. The complex turbulent flow data Q involve multiple physical vari-
ables (e.g., velocity, pressure) that interact with each other and evolve at different speeds for different
locations. The traditional temporal models, e.g., long-short term memory (LSTM) [18], rely on large
and consecutive training samples to capture the underlying temporal patterns over time. However,
high-fidelity DNS data are often limited and less frequent because simulating high-resolution
DNS data is computationally expensive. We propose the RKTU structure for reconstructing flow
variables in a long period given an initial DNS sample Q𝑑 at 𝑡 and frequent low-resolution LES
data samples Q𝑙 . The prediction follows an auto-regressive process, in which the predicted DNS
Q̂
𝑑 (𝑥,𝑦, 𝑧, 𝑡) at time 𝑡 and frequent LES data Q𝑙 in time [𝑡 ,𝑡 + 𝛿] are used to predict the DNS at

next time step Q̂
𝑑 (𝑥,𝑦, 𝑧, 𝑡 + 𝛿). Here we assume LES can be conducted more frequently due to its

reduced computational cost.
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The central idea of the RKTUmethod is to leverage the continuous physical relationship described
by the underlying PDE to bridge the gap between discrete data samples and continuous flow
dynamics. The RKTU can also be generally applied to many dynamical systems with governing
PDEs. In particular, most PDEs can be expressed as:

Q𝑡 = f(𝑡,Q;𝜃 ), (1)

where Q𝑡 is the temporal derivative of Q, and f(𝑡,Q;𝜃 ) is a non-linear function (parameterized by
coefficient 𝜃 ) that summarizes the current value of Q and its spatial context. The turbulence data
follows Navier-Stoke PDE. In particular, for incompressible flows, the Navier-Stokes equations for
the velocity field can be described as follows:

f(Q) = −1
𝜌
∇𝑝 + 𝜈ΔQ − (Q · ∇)Q, (2)

where 𝜌 , 𝑝 , and 𝜈 denote the fluid density, the thermodynamic pressure, and the viscosity, respec-
tively, and ΔQ and ∇ · Q denote the Laplacian and divergence of Q, respectively. We omit the
independent variable 𝑡 in the function f(·) because f(Q) in the Navier-Stokes equation is for a
specific time 𝑡 (same with 𝑡 in Q𝑡 ). We consider 𝑝 as a known variable, and 𝜃 = {𝜌, 𝜈}.

Fig. 2. The proposed Runge-Kutta Transition Unit (RKTU) based on Naiver Stoke equation for reconstructing
turbulent flow data in the spatio-temporal field.

The RKTU is inspired by the classical numerical Runge–Kutta (RK) method [6], which has been
widely used in temporal discretization for the approximate solutions of differential equations.
Fig. 2 shows the overall structure of the RKTU. The RKTU enhances capturing the continuous
dynamics by creating smaller intervals between 𝑡 and 𝑡 + 𝛿 and interpolating virtual intermediate
state variables and creating smaller intervals between time step 𝑡 and 𝑡 + 𝛿 . As shown in Fig. 2,
starting from Q(𝑡, 0) = Q(𝑡), RKTU estimates the temporal gradient of this point as Q𝑡,0, and then
move Q(𝑡) towards the gradient direction to create the next intermediate state Q(𝑡, 1). Then RKTU
iteratively repeats this process until it obtains temporal gradients at 𝑁 intermediate states.

Specifically, for the starting data point Q(𝑡), we adopt an augmentation mechanism combining
the DNS data with LES data, as Q(𝑡) =𝑊 𝑑Q𝑑 (𝑡) +𝑊 𝑙Q𝑙 (𝑡), where𝑊 𝑑 and𝑊 𝑙 are trainable model
parameters, and Q𝑙 (𝑡) is the up-sampled LES data in the same resolution as DNS. Then, RKTU
estimates the first temporal gradientQ𝑡,0 = f(Q(𝑡)) using the Navier-Stokes equation and computes
the next intermediate state variable Q(𝑡, 1) by moving the flow data Q(𝑡) along the direction of
obtained temporal derivatives. We will discuss more details about the function f(·) later.
Given frequent LES data, we also augment the Q(𝑡, 𝑛) using LES data Q𝑙 (𝑡, 𝑛), as Q(𝑡, 𝑛) =

𝑊 𝑑Q(𝑡, 𝑛) +𝑊 𝑙Q𝑙 (𝑡, 𝑛), and move the Q(𝑡, 𝑛) to compute the next intermediate states Q(𝑡, 𝑛 + 1).
In our test, we follow the most popular 4𝑡ℎ order (𝑁 = 3) RK method for computing the next three
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intermediate state variables, as follows:

Q(𝑡, 1) = Q(𝑡) + 𝛿
Q𝑡,0
2
,

Q(𝑡, 2) = Q(𝑡) + 𝛿
Q𝑡,1
2
,

Q(𝑡, 3) = Q(𝑡) + 𝛿Q𝑡,2 .

(3)

The temporal derivative Q𝑡,3 is then computed from the last intermediate state by f(Q(𝑡, 3)). The
4𝑡ℎ order RK method has the total accumulated error of𝑂 (𝛿4). According to Eq. 3, the intermediate
LES dataQ𝑙 (𝑡, 𝑛) are selected asQ𝑙 (𝑡, 1) = Q𝑙 (𝑡+𝛿/2),Q𝑙 (𝑡, 2) = Q𝑙 (𝑡+𝛿/2), andQ𝑙 (𝑡, 3) = Q𝑙 (𝑡+𝛿).
Finally, RKTU combines all the intermediate temporal derivatives as a composite gradient to
calculate the next step flow data Q̂RKTU(𝑡 + 𝑑), which can be expressed as:

Q̂RKTU (𝑡 + 𝛿) = Q(𝑡) +
𝑁∑︁
𝑛=0

𝑤𝑛Q𝑡,𝑛, (4)

where {𝑤𝑛}𝑁𝑛=1 are the trainable model parameters.
In the following, we will describe how to compute the spatial and temporal derivative of the

function f(·). We will also investigate the boundary conditions of the function f(·) and the stability
of RKTU for long-term prediction.

4.1.2 Spatial and Temporal Derivative. The RKTU estimates the temporal derivatives through the
function f(·). According to Eq. 2, the evaluation of f(·) requires explicitly estimating the first-order
and second-order spatial derivatives. One of the most popular approaches for evaluating spatial
derivatives is through finite difference methods (FDMs) [39]. However, the discretization in FDMs
can cause larger errors for locations with complex dynamics. Thus, we design convolutional neural
network layers (CNNs) in RKTU structure to replace the FDMs, shown in Fig. 2. The main power
of CNNs is used to learn extra non-linear relationships from data and capture the spatial derivative
to be used in the Navier-Stokes equation. After estimating the first-order and second-order spatial
derivatives, we can use them to calculate the divergence and Laplacian in Eq. 2, and finally the
temporal derivative Q𝑡,𝑛 .

4.1.3 Boundary Padding and Stability. Boundary conditions of turbulent flow describe how the flow
data interact with the external environment. How preserve the boundary condition of flow data is
critical for flow data reconstruction. In this study, we consider the periodic boundary conditions,
which are defined in a specified periodic domain indicating that it repeats its own values in all
directions. The formal definition of a cubic periodic boundary condition can be represented by:

Q(𝐿𝑥 , 𝑦, 𝑧, 𝑡) = Q(𝑅𝑥 , 𝑦, 𝑧, 𝑡),
Q(𝑥, 𝐿𝑦, 𝑧, 𝑡) = Q(𝑥, 𝑅𝑦, 𝑧, 𝑡),
Q(𝑥,𝑦, 𝑅𝑧 , 𝑡) = Q(𝑥,𝑦, 𝑅𝑧 , 𝑡),

(5)

where 𝐿𝑥 , 𝐿𝑦, 𝐿𝑧 are the three left boundaries with respect with 𝑥,𝑦, 𝑧 coordinates and 𝑅𝑥 , 𝑅𝑦, 𝑅𝑧
are the three right boundaries with respect with 𝑥,𝑦, 𝑧 coordinates. We make a periodic data
augmentation for each of the 6 faces (of the 3D cubic data) with an additional two layers of data
before feeding it to the SR model.
We also consider the stability issue of the classical 4𝑡ℎ order RK method. This RK method will

encounter a stability issue if the step size is not properly chosen. To illustrate this problem, we
consider a simple scalar example 𝑄𝑡 = 𝜆𝑄 . The 4𝑡ℎ order RK for this equation can be written as

𝑄 ((𝑛 + 1)𝛿) ≈ (1 + 𝜆𝛿 + 𝜆𝛿
2

2
+ 𝜆𝛿

3

6
+ 𝜆𝛿

4

24
)𝑄 (𝑛𝛿) . (6)
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We indicate that 𝑅(𝛿)=1 + 𝛿 + 𝛿2

2 + 𝛿3

6 + 𝛿4

24 , and we have 𝑄 ((𝑛 + 1)𝛿) = 𝑅(𝛿)𝑄 (𝑛𝛿). Hence, the
analytical solution can be expressed as 𝑄 ((𝑛 + 1)𝑑𝛿) = exp(𝜆𝛿)𝑄 (𝑛𝛿), and the accumulated error
is 𝑒𝑟𝑟𝑛+1 = (exp(𝜆𝛿) − 𝑅(𝛿))𝑒𝑟𝑟𝑛 . This indicates that 𝑒𝑟𝑟𝑛+1 = 𝑂 (𝛿5)𝑒𝑟𝑟𝑛 according to the Taylor
expansion.

(a) Enhancing Method

(b) Residual Learning Method

Fig. 3. The details of proposed Continuous Networks Using Differential Equation (CNDE) for reconstructing
turbulent flows Q. (a) and (b) show the two different approaches to incorporating the TEL component,
respectively.

4.2 Temporally-Enhancing Layer (TEL)
The RKTU can capture the flow data in the spatial and temporal field between a pair of consecutive
data points but it may cause large reconstruction errors in the long-time prediction if the time
interval 𝛿 is large enough. Temporal models, such as long-short-term memory (LSTM) [18], and
temporal convolutional network (TCN) [25] arewidely used for capturing long-term dependencies in
time series prediction. In this case, we incorporate the LSTMmodel in a Temporally-Enhancing Layer
(TEL) to further enhance the ability of the RKTU in capturing long-term temporal dependencies.
This TEL model structure can be replaced by other existing temporal models such as TCN. Figs. 3
show two different approaches for integrating the TEL structure with the RKTU structure.
In the first enhancing method shown in Fig. 3(a), we feed the RKTU output flow data Q̂RKTU to

the TEL structure, which is essentially an LSTM layer. After further processing through the TEL
structure, the model produces the reconstructed flow data Q̂d (𝑡), Given true DNS data Q𝑑 (𝑡) in the
training set, the reconstructed loss Lrecon can be expressed using the mean squared error (MSE)
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loss, as

Lrecon =
∑︁
𝑡

MSE(Q̂𝑑 (𝑡),Q𝑑 (𝑡)) . (7)

The second method aims to use the TEL structure to complement the output of the RKTU
structure, i.e., learning the residual of the RKTU output, as shown in Fig. 3(b). In the training
process, we use both true DNS data Q𝑑 at time {𝑡, ...𝑡 + (𝐾 − 1)𝛿} and RKTU output Q̂RKTU to
produce the corresponding temporal output feature Q̂TEL at time {𝑡+𝛿, ..., 𝑡+𝐾𝛿}. Then in the testing
process, we will use only the initial true DNS data Q𝑑 in time 𝑡 +𝐾𝛿 and the next series of predicted
DNS data Q̂𝑑 as the DNS input to generate Q̂TEL. Finally, we adopts a linear combination to combine
the RKTU output Q̂RKTU and corresponding TEL output Q̂TEL to obtain the final reconstructed
output Q̂𝑑 , which can be represented as

Q̂𝑡
𝑑 = 𝑤𝑡

𝑟 Q̂
𝑡
RKTU +𝑤𝑡

𝑡 Q̂
𝑡
TEL, (8)

where 𝑤𝑡
𝑟 and 𝑤𝑡

𝑡 are trainable parameters. Finally, the reconstructed loss Lrecon can also be
represented by Eq. (7).

4.3 Physical Constraints and Refinement
4.3.1 Physical Constraints. To ensure reconstructed flow data following known physical laws, we
leverage additional physical constraints to regularize the reconstructed data Q̂𝑑 . In this work, we
consider the physical constraints on the mean flow value and the Kinetic Energy for incompressible
flows. More details about the flow dataset will be provided in Section 5.1.

Firstly, we aim to ensure that the mean value of reconstructed flow variables is consistent with
that of the true flow variables, which is referred to as the equal-mean property. To preserve the
equal-mean property of the flow data, we create an equal-mean loss function Lmean between
reconstructed data Q̂𝑑 and true DNS data Q𝑑 . This loss can be expressed as

Lmean = |Q𝑑 − Q̂𝑑 |, (9)

where Q𝑑 and Q̂
𝑑 denote the mean value of Q𝑑 and Q̂

𝑑 .
Second, the kinetic energy of turbulent flow E is known as one of the most important flow

characteristics and is defined as

E =
1
2
(𝑢2 + 𝑣2 +𝑤2). (10)

To preserve the kinetic energy property of reconstructed flow data Q̂𝑑 , we design a kinetic energy
loss Lkinetic, as:

Lkinetic = |E(Q𝑑 ) − E(Q̂𝑑 ) |, (11)

where E(Q𝑑 ) and E(Q̂𝑑 ) denote the kinetic energy of Q𝑑 and Q̂
𝑑 , respectively. Hence, the final

loss function L of the complete CNDE method is:

L = 𝛼0Lrecon + 𝛼1Lmean + 𝛼2Lkinetic, (12)

where 𝛼0, 𝛼1 and 𝛼2 represent the hyperparameters to control the balance amongst Lrecon, Lmean
and Lkinetic.
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4.3.2 Degradation-based Refinement. As shown in Fig. 3, we not only preserve the underlying
physical rules of flow data in the training process but also employ these two physical constraints
in the testing phase as a degradation-based refinement process. The objective is to mitigate ac-
cumulated errors and structural distortions over long-term prediction by enforcing the physical
consistency. In this refinement process, we include the same set of three components of the loss
function: degradation loss Ldeg, equal-mean loss L′

mean and optional kinetic energy loss L′

kinetic
loss. Since we cannot access true DNS data in the testing phase, we adjust the loss functions as
described below.

First, because true DNS data are not available in the testing phase, we cannot directly minimize
the difference between true DNS data Q𝑑 and reconstructed data Q̂𝑑 . Thus, in order to protect the
overall structure of flow data from the explosion in the long prediction, we introduce a reverse
degradation process, by using a separate convolutional network, for mapping reconstructed data
Q̂
𝑑 to corresponding low-resolution LES data Q̂𝑙 . We then calculate the loss Ldeg between Q̂

𝑙 and
real LES data Q𝑙 , as:

Ldeg = MSE(Q̂𝑙
,Q𝑙 ). (13)

Second, as we do not have access to true DNS in the testing phase, we cannot use the mean value
of true DNS as a reference in the equal-mean loss function. Instead, we consider using the mean
value of LES data to approximate the mean value of DNS data. Hence, we can directly minimize the
equal-mean loss L′

mean between reconstructed flow data Q̂𝑑 and true LES data Q𝑙 , which can be
described as:

L
′
mean = |Q𝑙 − Q̂𝑑 |, (14)

Next, the exact kinetic energy of flow data also cannot be computed as true DNS data are not
available in the testing phase. However, the kinetic energy is constant for many incompressible
flows (e.g., the Forced Isotropic Turbulence dataset [1] used in this work) and thus can be calculated
from available DNS training data as Ẽ. We then represent the kinetic energy loss as

L
′
kinetic = |E(Q̂𝑑 ) − Ẽ |. (15)

It is also possible that the kinetic energy changes over time for some flow data, but the dynamics
of kinetic energy are often simple (e.g., linear decay over time) and can be approximated by a
separate function. We will keep this as future work.

The final refinement loss function is in the same format L ′ = 𝛼0Ldeg + 𝛼1L ′
mean + 𝛼2L ′

kinetic. In
our test, we adopt L′ to directly adjust the state of reconstructed data for 10 epochs and achieve
improved reconstruction performance.

5 EXPERIMENT
In this section, we compare the performance of the proposed methods with the proposed methods
in both the Forced Isotropic Turbulence (FIT) dataset [1] and Taylor-Green vortex (TGV) [5] dataset.
We first introduce the datasets used in the experiments and the experimental settings. Then we
will provide experimental results and analysis.

5.1 Dataset
The Taylor-Green vortex (TGV) [5] is created by the solution of the constant density Navier-Stokes
equation:

𝜕V
𝜕𝑡

+ (V.∇)V =
−1
𝜌
∇𝑝 + 𝜈ΔV, (16)
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Table 1. Reconstruction performance (measured by SSIM, and Laplacian difference) on (𝑢, 𝑣,𝑤) channels by
different methods in the FIT dataset. The performance is measured by the average results of the first 10 time
steps

Method SSIM Laplacian difference
SRCNN (0.859, 0.851, 0.851) (0.301, 0.303, 0.303)
RCAN (0.861, 0.859, 0.859) (0.299, 0.301, 0.300)
DCS/MS (0.861, 0.862, 0.862) 0.298, 0.295, 0.294)
SRGAN (0.862, 0.861, 0.863) (0.296, 0.294, 0.294)
CTN (0.881, 0.880, 0.881) (0.253, 0.254, 0.254)
RKTU (0.898, 0.899, 0.898) (0.260, 0.261, 0.259)
CNDEp-E (0.909, 0.909, 0.907) (0.244, 0.243, 0.245)
CNDEp-R (0.904, 0.905, 0.905) (0.249, 0.248, 0.248)
CNDE-E (0.945, 0.944, 0.943) (0.171, 0.172, 0.172)
CNDE-R (0.943, 0.942, 0.941) (0.172, 0.174, 0.174)

where 𝜌 (x, 𝑡) and 𝑝 (x, 𝑡) denote the fluid density and the thermodynamic pressure, respectively.
The evolution of the TGV includes the enhancement of vorticity stretching and the consequent
production of small-scale eddies. Initially, large vortices are placed in a cubic periodic domain of
[−𝜋, 𝜋] (in all three directions), with initial conditions:

𝑢 (𝑥,𝑦, 𝑧, 0) = sin(𝑥) cos(𝑦) cos(𝑧),
𝑣 (𝑥,𝑦, 𝑧, 𝑡) = − cos(𝑥) sin(𝑦) cos(𝑧),
𝑤 (𝑥,𝑦, 𝑧, 𝑡) = 0.

(17)

Then the value of the Reynolds number is set to 𝑅𝑒 = 1600. We have both LES and DNS data in
several times steps with a time interval of 1s. In each time step, we consider the three components
of the velocity along the 𝑥 , 𝑦, and 𝑧 axis, denoted by 𝑢, 𝑣 , and 𝑤 , respectively, and also consider
the thermodynamic pressure of DNS data denoted by 𝑝 . In particular, both LES and DNS data are
produced along 65 grid points along the 𝑧 axis under equal intervals. The grid of LES and DNS are
32-by-32 and 128-by-128 grid points, respectively, along the 𝑥𝑦 directions. Hence, the DNS data are
of 4 times higher resolution compared to LES data.
The Forced Isotropic Turbulence (FIT) [1] is also created by the same solution of the constant

density Navier-Stokes equation in Eq. 16. This dataset only contains the DNS of forced isotropic
turbulence on a 1024-1024-1024 periodic grid, using a pseudo-spectral parallel code. Time integration
of the viscous term is done analytically using an integrating scale of 1.364. The simulation is de-
aliased using phase-shift and a 2

√
2
√
3 truncation. Energy is injected by keeping constant the total

energy in modes such that their wave-number magnitude is less or equal to 2. In particular, this
DNS data contains 5024 time steps with time intervals of 0.002s and includes the three components
of the velocity (𝑢, 𝑣 ,𝑤 ) and the thermodynamic pressure 𝑝 , respectively. The original grid of DNS is
1024-1024-1024. But we use the grid 64-64-64, directly downsampling from the original grid, in our
test. Then, we use average filter [20] to convert the DNS data into LES data with the gird 16-16-16.
Hence, the DNS data are 4 times the higher resolution compared to LES data. We do not use the
loss L ′

kinetic in the refinement process as the kinetic energy varies over time.

5.2 Experimental Settings
5.2.1 Baselines. We evaluate the performance of the proposed CNDE method with several existing
methods that have been widely used for image super-resolution and turbulent flow downscaling.
Specifically, we implement our proposed methods: CNDE-E (Enhancing-based TEL Method), CNDE-
R (Residual Learning-based TELMethod)1.We also implement SRCNN [12], RCAN [43], SRGAN [26],
1The source code is at https://drive.google.com/drive/folders/15PhF_q1HcJpXZIvxnR1mMbd8hbkxBbT_?usp=share_link
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Table 2. Reconstruction performance (measured by SSIM, and Laplacian difference) on (𝑢, 𝑣,𝑤) channels by
different methods in the TGV dataset. The performance is measured by the average results of the first 10
time steps

Method SSIM Laplacian difference×10
SRCNN (0.602, 0.603, 0.626) (0.083, 0.087, 0.079)
RCAN (0.627, 0.622, 0.631) (0.073, 0.074, 0.071)
DSC/MS (0.647, 0.649, 0.649) 0.070, 0.071, 0.065)
SRGAN (0.661, 0.658, 0.666) (0.068, 0.067,0.058)
CTN (0.623, 0.624, 0.627) (0.093, 0.096, 0.087)
RKTU (0.708, 0.708, 0.688) (0.049, 0.046, 0.043)
CNDEp-E (0.724, 0.723, 0.708) (0.046, 0.041, 0.039)
CNDEp-R (0.720, 0.719, 0.701) (0.046, 0.045, 0.040)
CNDE-E (0.937, 0.938, 0.941) (0.017, 0.018, 0.015)
CNDE-R (0.931, 0.932, 0.936) (0.017, 0.018, 0.014)

and a popular dynamic fluid downscaling method, DCS/MS [14], as baselines. To better verify the
effectiveness of each proposed component, i.e., RKTU, TEL, and the degradation-based refinement
approach, we further implement three extra baselines: Convolutional Transition Network (CTN),
RKTU, CNDEp-E, and CNDEp-R. In particular, CTN is created by combining SRCNN and LSTM [18].
CNDEp-based methods are created by removing the refinement process from the CNDE method.
We aim to show the advantage of the RKTU in spatio-temporal DNS reconstruction by comparing
CTN with the RKTU. And CNDEp-based methods are created for demonstrating the effectiveness
of the TEL structure and refinement process.

(a) 𝑢 Channel. (b) 𝑣 Channel. (c) 𝑤 Channel.

Fig. 4. Change of SSIM values produced by different models from 1st (7s) to 20th (7.4s) time step in the FIT
dataset.

(a) 𝑢 Channel. (b) 𝑣 Channel. (c) 𝑤 Channel.

Fig. 5. Change of Laplacian difference by different models from 1st (7s) to 20th (7.4s) time step in the FIT
dataset.

5.2.2 Experimental Designs. We test the proposed methods and baselines in both the FIT and the
TGV datasets. We train the models using the FIT data from a consecutive 1 second period with a
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(a) 𝑢 Channel. (b) 𝑣 Channel. (c) 𝑤 Channel.

Fig. 6. Change of SSIM values produced by different models from 1st (80s) to 20th (120s) time step in the
TGV dataset.

(a) 𝑢 Channel. (b) 𝑣 Channel. (c) 𝑤 Channel.

Fig. 7. Change of Laplacian difference produced by different models from 1st (80s) to 20th (120s) time step in
the TGV dataset.

time interval 𝛿 = 0.02𝑠 (the original was 0.002s), total 50 time steps, and then apply the trained
model into the next 0.4 second period, total 20 time steps, for performance evaluation. For the TGV
dataset, we use a consecutive 40-second period with a time interval 𝛿 = 2𝑠 (the original was 1s) for
training and the next 40 seconds of data for testing.
We evaluate the performance of DNS reconstruction using two different metrics, structural

similarity index measure (SSIM) [37], and Laplacian [40]. SSIM is used to appraise the similarity
between reconstructed data and target DNS on three aspects, luminance, contrast, and overall
structure. The higher value of SSIM indicates better reconstruction performance. The Laplacian
operator is used to assess the performance of capturing the flow gradients. The Laplacian of each of
the three components of the velocity vector (𝑥 , 𝑦, and 𝑧 directions) will be evaluated. The Laplacian
operator of Q is:

Lap = ( 𝜕Q
𝜕𝑥

)2 + ( 𝜕Q
𝜕𝑦

)2 + ( 𝜕Q
𝜕𝑧

)2 . (18)

we use Lap to measure the difference in flow gradient between true DNS and generated data. The
Laplacian difference metric can be represented as |Lap(Q𝑑 ) − Lap(Q̂𝑑 ) |. The lower value of the
Laplacian difference indicates better performance.

5.2.3 Environmental Settings and Implementation Details. We implement our proposed method
using Tensorflow 2.x with a GTX3080 GPU. The model is firstly trained in 500 epochs with ADAM
optimizer [24] from an initial learning rate of 0.001. In the refinement step, we lower the learning
rate to 0.0005 and only iterate the training by 10 epochs. All the hidden variables and gating
variables are in 32 dimensions. The values of 𝛼0, 𝛼1, and 𝛼2 are set as 1, 0.1, and 0.1, respectively.
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(a) LES Upsampling. (b) DCS/MS. (c) CTN. (d) CNDE-E. (e) CNDE-R. (f) Target DNS.

(g) LES Upsampling. (h) DCS/MS. (i) CTN. (j) CNDE-E. (k) CNDE-R. (l) Target DNS.

(m) LES Upsampling. (n) DCS/MS. (o) CTN. (p) CNDE-E. (q) CNDE-R. (r) Target DNS.

(s) LES Upsampling. (t) DCS/MS. (u) CTN. (v) CNDE-E. (w) CNDE-R. (x) Target DNS.

Fig. 8. Reconstructed𝑤 channel by each method on a sample testing slice along the 𝑧 dimension in the FIT
dataset. We show the reconstruction results at 1st (7s), 5th (7.1s) 10th (7.2s) and 20th (7.4s) in (a)-(f), (g)-(l),
(m)-(r) and (s)-(x), respectively.

5.3 Reconstruction Performance
Quantitative Results.We compare our proposed CNDE-based methods with baseline methods.
Table 1 and Table 2 summarize the average performance over the first 10 time steps in the testing
phase on both the FIT dataset and the TGV dataset. Compared with baselines, CNDE-based methods
perform the best in both evaluation ways, obtaining the highest SSIM value and lowest Laplacian
difference. According to Table 1 and Table 2, the CNDE-based methods in general outperform other
baselines for velocity components {𝑢, 𝑣 ,𝑤 }. We also have several observations from these tables: (1)
When comparing the CNDE-based methods with SR baselines and DCS/MS model, we observe that
these baseline methods cannot recover turbulent flow well and get the worse performance in terms
of SSIM and Laplacian difference. (2) Compared with the SRCNN, the CTN, which uses the LSTM
model, shows a significant improvement in both evaluation metrics. It confirms the effectiveness of
a temporal model (e.g, LSTM) in capturing temporal dependency. (3) When we see the comparison
amongst CTN, RKTU, CNDEp-based methods, and CNDE-based methods, we can see significant
improvements by incorporating each component (RKTU, TEL, and refinement) of the proposed
method. In particular, the refinement method brings the most significant improvement in terms of
SSIM and Laplacian difference.
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(a) LES Upsampling. (b) DCS/MS. (c) CTN. (d) CNDE-E. (e) CNDE-R. (f) Target DNS.

(g) LES Upsampling. (h) DCS/MS. (i) CTN. (j) CNDE-E. (k) CNDE-R. (l) Target DNS.

(m) LES Upsampling. (n) DCS/MS. (o) CTN. (p) CNDE-E. (q) CNDE-R. (r) Target DNS.

(s) LES Upsampling. (t) DCS/MS. (u) CTN. (v) CNDE-E. (w) CNDE-R. (x) Target DNS.

Fig. 9. Reconstructed𝑤 channel by each method on a sample testing slice along the 𝑧 dimension in the TGV
dataset. We show the reconstruction results at 1st (80s), 5th (90s), and 10th (100s) in (a)-(f), (g)-(l), and (m)-(r),
respectively.

Temporal Analysis. In the temporal analysis from the FIT dataset, we show the change in
performance as we reconstruct DNS data over 20 time steps after the training data. The performance
change using SSIM and Laplacian difference is shown in Fig. 4 and Fig. 5, respectively. Several
observations are highlighted from these results: (1) With larger time intervals between training
data and prediction data, the performance becomes worse. In general, our CNDE-based methods are
more stable over a long prediction period and show much better performance than other baselines.
(2) We also observe that the temporal model (e.g. LSTM) can bring significant improvement in long-
term prediction by comparing DCS/MS with CTN. (3) By comparing CNDEp-based methods and
CNDE-based methods, the CNDE-based methods using refinement outperform the CNDEp-based
methods without using this adjustment over time. It demonstrates that the refinement method can
adjust the state bias in the long-term prediction of flow data. (4) We also find that CNDEp-based
methods achieve better performance after the 5th time steps compared with the temporal baseline
CTN model. It proves the advantage of the proposed RKTU structure in the long-term prediction.
(5) By comparing two versions of CNDEp-based methods, we observe that CNDEp-E slightly
outperforms the CNDEp-R in the long-term prediction. We can obtain a similar conclusion from
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two versions of CNDE-based methods. We will investigate the selection of temporal enhancing
methods in future works.
In Fig. 6 and Fig. 7, we present the performance of temporal prediction on the TGV dataset.

It also shows that our proposed method can achieve a better performance in terms of SSIM and
Laplacian difference. Some observations are highlighted: (1) By comparing DCS/MS, CNDEp-based
methods, and CNDE-based methods, the CNDE-based methods using refinement perform much
better than CNDEp-based methods and DCS/MS. Moreover, the performance of the CNDEp-based
methods becomes worse than the baseline DCS/MS after the 5th time step. This is because the TGV
data varies dynamically in large time intervals (𝛿 is 2s) and the testing data are very different from
the initial data point, which causes the CNDEp-based methods to fail to capture the correct flow
dynamic without refinement. It also proves the advantages of the refinement method for adjusting
the state of flow data in the long-term prediction. (2) The CTN almost fails to capture the flow
dynamics after the 5th time step, which indicates that the CTN is not suitable for the TGV dataset.

Visual Results. In Fig. 8, we show the reconstructed data at multiple time steps (1st, 5th, 10th,
and 20th time steps) after the training period. For each time step, we only show the slice of the𝑤
component at a specified 𝑧 value. At the 1st step, both the CNDE-based methods and the baseline
CTN model can obtain ideal reconstruction results. This is because the test data are similar to the
training data At the last time step. Second, although the baseline DSC/MS [14] was developed in
the context of turbulent flow downscaling, it does not work well in capturing the complex pattern
of DNS data of the FIT dataset. The reconstructed image is more similar to LES data.

Beginning at the 5th time step, our proposed CNDE-based methods perform better than baselines.
We can see a more significant difference at the 20th time step. All the baselines almost fail to capture
the correct pattern of flow data. In contrast, our proposed CNDE-based methods can still effectively
accurately fine-level capture textures and patterns, reduce color amplitude difference, and thus
achieve much better performance. These observations demonstrate the advantages of our proposed
method in long-term prediction.

Similar results on the TGV dataset are presented in Fig. 9, and we have similar observations. These
results demonstrate that our proposed method can achieve a better reconstruction performance in
prediction over time.

Validation based on Physical Metrics.We also compare the performance of long-term predic-
tion in terms of kinetic energy, which is considered an important metric for studying the property
of turbulence. In Fig. 10, we show the kinetic energy of the target DNS and the kinetic energy of
reconstructed flow data by baselines and the proposed CNDE-based methods in both the FIT and
the TGV datasets. Here are some observations from Fig. 10(a) provided by the FIT dataset: (1) The
CNDE-based methods in general can perform much better than baseline method DCS/MS and
CTN. The change of kinetic energy from CNDE-based methods is close to the target DNS. Even
without using the refinement process, the CNDEp-based methods still outperform DCS/MS and
CTN models. It shows that our proposed method can follow the underlying physical rule well in
the long-term prediction. This is because our method is designed based on underlying PDEs. We
also incorporate the underlying physical constraints to adjust the state of flow data. All of these
designs bring the improvement for the CNDE-based methods to accurately capture the underlying
dynamics of physical variables. (2) CNDEp-based methods perform worse and worse after the 8th
time step. This is because the accumulated error gets amplified in every time step, leading to an
error explosion. It also justifies the effectiveness of using the refinement process for adjusting the
bias of reconstructed data. We present the results on the TGV dataset in Fig. 10(b), from which we
also draw similar conclusions.
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(a) FIT data. (b) TGV data.

Fig. 10. Change of Kinetic Energy produced by the reference DNS and different models in both the FIT and
the TGV datasets, respectively.

6 CONCLUSION
We propose a novel method to reconstruct high-resolution flow data in spatial and temporal
fields. The proposed method has several components. The RKTU structure leverages the physical
knowledge embodied in the Navier-Stokes equation to capture the spatial resolution and temporal
dynamic of turbulent flow from frequent LES data. We also use TEL to capture long-term temporal
dynamics. We further develop a degradation-based refinement method to adjust the reconstructed
data over time by enforcing the consistency with LES data and known physical constraints. We
have demonstrated the superiority of the proposed method in the spatio-temporal reconstruction
of turbulent flow. More importantly, the proposed CNDE method can be easily applicable to many
scientific problems with similar properties, e.g., complex temporal dynamics, and high computa-
tional cost for creating high-resolution and high-fidelity simulations. The components in CNDE,
e.g., RKTU and the refinement method, can also be used as a building block to enhance existing
deep learning models for modeling complex dynamics with the guidance of known governing PDEs.
For example, simulations of cloud-resolving models (CRM) at sub-kilometer horizontal resolution
are critical for effectively representing boundary-layer eddies and low clouds. However, it is not
feasible to generate simulations at such fine resolution even with the most powerful commuters
expected to be available in the near future. Hence, the method developed in this paper can provide
great potential for reconstructing high-resolution simulations.

ACKNOWLEDGMENTS
The material presented in this paper is based upon work supported by the National Science
Foundation (NSF) through Grant OAC-2203581. Computational resources are provided, in part, by
the University of Pittsburgh Center for Research Computing (CRC).

REFERENCES
[1] 2019. Forced Isotropic Turbulence Dataset (Extended). https://doi.org/10.7281/T1KK98XB.
[2] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. 2018. Fast, Accurate, and Lightweight Super-Resolution with

Cascading Residual Network. arXiv:1803.08664 [cs.CV]
[3] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. Understanding of a convolutional neural network. In

2017 international conference on engineering and technology (ICET). Ieee, 1–6.
[4] Tianshu Bao, Shengyu Chen, Taylor T Johnson, Peyman Givi, Shervin Sammak, and Xiaowei Jia. 2022. Physics Guided

Neural Networks for Spatio-temporal Super-resolution of Turbulent Flows. In The 38th Conference on Uncertainty in
Artificial Intelligence.

[5] Marc E Brachet, D Meiron, S Orszag, B Nickel, R Morf, and Uriel Frisch. 1984. The Taylor-Green vortex and fully
developed turbulence. Journal of Statistical Physics 34, 5 (1984), 1049–1063.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.7281/T1KK98XB
https://arxiv.org/abs/1803.08664


Reconstructing Turbulent Flows Using Physics-Aware Spatio-Temporal Dynamics and Test-Time Refinement 111:17

[6] John Butcher. 2007. Runge-kutta methods. Scholarpedia 2, 9 (2007), 3147.
[7] Shengyu Chen, Shervin Sammak, Peyman Givi, Joseph P Yurko, and Xiaowei Jia. 2021. Reconstructing High-resolution

Turbulent Flows Using Physics-Guided Neural Networks. arXiv preprint arXiv:2109.03327 (2021).
[8] Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen, and Jian Yang. 2017. FSRNet: End-to-End Learning Face Super-

Resolution with Facial Priors. arXiv:1711.10703 [cs.CV]
[9] Wenlong Cheng, Mingbo Zhao, Zhiling Ye, and Shuhang Gu. 2021. MFAGAN: A Compression Framework for Memory-

Efficient On-Device Super-Resolution GAN. arXiv:2107.12679 [cs.AR]
[10] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. 2019. Second-Order Attention Network for Single

Image Super-Resolution. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 11057–11066.
https://doi.org/10.1109/CVPR.2019.01132

[11] Zhiwen Deng, Chuangxin He, Yingzheng Liu, and Kyung Chun Kim. 2019. Super-resolution reconstruction of turbulent
velocity fields using a generative adversarial network-based artificial intelligence framework. Physics of Fluids 31, 12
(2019), 125111.

[12] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a deep convolutional network for image
super-resolution. In European conference on computer vision. Springer, 184–199.

[13] Vinh Van Duong, Thuc Nguyen Huu, Jonghoon Yim, and Byeungwoo Jeon. 2021. A Fast and Efficient Super-Resolution
Network Using Hierarchical Dense Residual Learning. In 2021 IEEE International Conference on Image Processing (ICIP).
1809–1813. https://doi.org/10.1109/ICIP42928.2021.9506786

[14] Kai Fukami, Koji Fukagata, and Kunihiko Taira. 2019. Super-resolution reconstruction of turbulent flows with machine
learning. Journal of Fluid Mechanics 870 (2019), 106–120.

[15] Kai Fukami, Koji Fukagata, and Kunihiko Taira. 2020. Machine-learning-based spatio-temporal super resolution
reconstruction of turbulent flows. Journal of Fluid Mechanics 909 (Dec 2020). https://doi.org/10.1017/jfm.2020.948

[16] P. Givi. 1994. Spectral and Random Vortex Methods in Turbulent Reacting Flows. In Turbulent Reacting Flows, P. A.
Libby and F. A. Williams (Eds.). Academic Press, London, England, Chapter 8, 475–572.

[17] Paul C Hanson et al. 2020. Predicting lake surface water phosphorus dynamics using process-guided machine learning.
Ecological Modelling 430 (2020), 109136.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (1997), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

[19] Xiaowei Jia, Jared Willard, Anuj Karpatne, Jordan Reed, Jacob Zwart, Michael Steinbach, and Vipin Kumar. 2019.
Physics Guided RNNs for Modeling Dynamical Systems: A Case Study in Simulating Lake Temperature Profiles. In
Proceedings of the 2017 SIAM International Conference on Data Mining. SIAM.

[20] Cai Jing, Yang Jinsheng, and Ding Runtao. 2000. Fuzzy weighted average filter. In WCC 2000-ICSP 2000. 2000 5th
International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000, Vol. 1. IEEE, 525–528.

[21] Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar. 2017. Physics-guided Neural Networks (PGNN): An
Application in Lake Temperature Modeling. arXiv preprint arXiv:1710.11431 (2017).

[22] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive Growing of GANs for Improved Quality,
Stability, and Variation. arXiv:1710.10196 [cs.NE]

[23] Ankush Khandelwal, Shaoming Xu, Xiang Li, Xiaowei Jia, Michael Stienbach, Christopher Duffy, John Nieber, and
Vipin Kumar. 2020. Physics guided machine learning methods for hydrology. arXiv preprint arXiv:2012.02854 (2020).

[24] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

[25] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. 2016. Temporal convolutional networks: A unified approach
to action segmentation. In European conference on computer vision. Springer, 47–54.

[26] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, ZehanWang, et al. 2017. Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4681–4690.

[27] Bo Liu, Jiupeng Tang, Haibo Huang, and Xi-Yun Lu. 2020. Deep learning methods for super-resolution reconstruction
of turbulent flows. Physics of Fluids 32, 2 (2020), 025105.

[28] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh Tafti, and Anuj Karpatne. 2020. PhyNet:
Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. In Proceedings of the 2020 SIAM
International Conference on Data Mining. SIAM, 559–567.

[29] A. G. Nouri, M. B. Nik, P. Givi, D. Livescu, and S. B. Pope. 2017. Self-Contained Filtered Density Function. Physical
Review Fluids 2 (Sep 2017), 094603. Issue 9. https://doi.org/10.1103/PhysRevFluids.2.094603

[30] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. 2003. Super-resolution image reconstruction: a technical overview.
IEEE Signal Processing Magazine 20, 3 (2003), 21–36.

[31] Jordan S Read, Xiaowei Jia, Jared Willard, Alison P Appling, Jacob A Zwart, Samantha K Oliver, Anuj Karpatne,
Gretchen JA Hansen, Paul C Hanson, William Watkins, et al. 2019. Process-guided deep learning predictions of lake

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://arxiv.org/abs/1711.10703
https://arxiv.org/abs/2107.12679
https://doi.org/10.1109/CVPR.2019.01132
https://doi.org/10.1109/ICIP42928.2021.9506786
https://doi.org/10.1017/jfm.2020.948
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1710.10196
https://doi.org/10.1103/PhysRevFluids.2.094603


111:18

water temperature. Water Resources Research 55, 11 (2019), 9173–9190.
[32] P. Sagaut. 2005. Large Eddy Simulation for Incompressible Flows. Springer-Verlag, New York, NY.
[33] Ying Tai, Jian Yang, and Xiaoming Liu. 2017. Image Super-Resolution via Deep Recursive Residual Network. In 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2790–2798. https://doi.org/10.1109/CVPR.2017.298
[34] Uddeshya Upadhyay and Suyash P. Awate. 2019. Robust Super-Resolution Gan, with Manifold-Based and Perception

Loss. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). 1372–1376. https://doi.org/10.1109/
ISBI.2019.8759375

[35] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. 2018. Recovering Realistic Texture in Image Super-resolution
by Deep Spatial Feature Transform. arXiv:1804.02815 [cs.CV]

[36] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. 2018. Esrgan:
Enhanced super-resolution generative adversarial networks. In ECCV Workshops.

[37] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing 13, 4 (2004), 600–612.

[38] Zhang Wenlong, Liu Yihao, Chao Dong, and Yu Qiao. 2021. RankSRGAN: Generative Adversarial Networks with
Ranker for Image Super-Resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021), 1–1.
https://doi.org/10.1109/TPAMI.2021.3096327

[39] Wikipedia contributors. 2022. Finite difference method — Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/w/index.php?title=Finite_difference_method&oldid=1126400243 [Online; accessed 25-January-2023].

[40] Wikipedia contributors. 2022. Laplace operator — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/
index.php?title=Laplace_operator&oldid=1127277109 [Online; accessed 23-January-2023].

[41] Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. 2020. Integrating physics-based
modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919 (2020).

[42] You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. tempogan: A temporally coherent, volumetric gan for
super-resolution fluid flow. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–15.

[43] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. 2018. Image super-resolution using
very deep residual channel attention networks. In Proceedings of the European conference on computer vision (ECCV).
286–301.

[44] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018. Residual Dense Network for Image Super-
Resolution. arXiv:1802.08797 [cs.CV]

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1109/CVPR.2017.298
https://doi.org/10.1109/ISBI.2019.8759375
https://doi.org/10.1109/ISBI.2019.8759375
https://arxiv.org/abs/1804.02815
https://doi.org/10.1109/TPAMI.2021.3096327
https://en.wikipedia.org/w/index.php?title=Finite_difference_method&oldid=1126400243
https://en.wikipedia.org/w/index.php?title=Finite_difference_method&oldid=1126400243
https://en.wikipedia.org/w/index.php?title=Laplace_operator&oldid=1127277109
https://en.wikipedia.org/w/index.php?title=Laplace_operator&oldid=1127277109
https://arxiv.org/abs/1802.08797

	Abstract
	1 Introduction
	2 Related Work
	2.1 Overview of Super Resolution Method
	2.2 Super Resolution Method for Reconstructing Flow Data
	2.3 Physics-Guided Machine Learning

	3 Problem Definition
	4 Method
	4.1 Runge-Kutta Transition Unit (RKTU)
	4.2 Temporally-Enhancing Layer (TEL)
	4.3 Physical Constraints and Refinement

	5 Experiment
	5.1 Dataset
	5.2 Experimental Settings
	5.3 Reconstruction Performance

	6 Conclusion
	Acknowledgments
	References

