


The contributions of this work are as follows:

• a 2D simulation environment for robot social navigation,

• a complete toolkit that includes robot simulation, hu-

man simulation, navigation stack, and simple baseline

behaviors,

• OpenAI gym integration to provide a standard interface

for many learning approaches,

• a benchmark based on multipolicy decision making for

robot social navigation, and

• evaluation results and analysis for several reinforcement

learning and learning from demonstration approaches

for use as baselines for future research.

II. RELATED WORK

Model-based approaches with application-specific engi-

neered behaviors have historically been applied to social

navigation [1], [3], [4], [5], [6]. More recently, approaches

have sought to leverage machine learning techniques to learn

general social navigation behaviors [7], [8], [9], [10], [11],

[12]. Prior work has explored the use of program synthesis

and learning from demonstration to learn social navigation

behaviors as symbolic programs [13], [14], [2].

Existing simulators and benchmarks are either at the

level of high-fidelity 3D simulation that focuses on the

raw perception problem of humans in the environment or

are simplified grid world models of navigation. In contrast,

SOCIALGYM provides sensor reading at the level of laser

scans and human detections.

Many general-purpose high-fidelity 3D simulators have

been developed for robotics. Of particular note is the Gazebo

simulator [15], a powerful and extensible simulator commonly

used with ROS. Other high-fidelity simulators have been

developed using gaming physics and graphics engines such

as Unity [16] or Unreal [17] with autonomous driving in

mind, some of which can simulate other agents in the

environment, such as AirSim [18] and CARLA [19]. In

addition to these more general-purpose simulators, some

solutions have been proposed specifically for the social

navigation problem. The Social Environment for Autonomous

Navigation (SEAN) [20] uses a similar Unity-based approach

to more general simulators while providing social navigation-

specific metrics and scenarios. While SEAN does not provide

any particular benchmark, SocNavBench [21] is designed

as a social benchmark that generates photo-realistic sensory

input directly from pre-recorded real-world datasets to strike

a balance between simulation and recorded datasets. In

addition to simulation-based benchmarks, a small number

of purely dataset-based benchmarks have been proposed,

including SocNav1 [22] and Social Robot Indoor Navigation

(SRIN) [23]. While datasets are a critical benchmark tool,

they often require an initial sensor processing step and are

not easily extensible. Alternatively, simplified grid-world type

environments, such as MiniGrid [24], can also be used to

approximate social navigation by modelling humans with

dynamic obstacles, although this is not commonly used for

benchmarking.

III. SOCIAL NAVIGATION IN ROBOTICS

We frame social navigation as a discounted-reward par-

tially observable Markov Decision Process (POMDP) M =
〈S,A, T,R,Ω, O, γ〉 consisting of the state space S where

s ∈ S 7→ 〈pr, vr, pg, H〉 and pr is the robot pose, vr is the

robot velocity, pg is the goal pose, and hi ∈ H 7→ 〈phivhi〉 is

a list of the human poses and velocities; actions A represented

either as discrete motion primitives [1] or continuous local

planning actions [25]; the world transition function

T (s, a, s′) = P (st+1 = s′ | st = s, at = a) (1)

for the probabilistic transition to states s′ when taking action

a at previous state s; the reward function R : S×A×S 7→ R ;

the set of observations o ∈ Ω; a set of conditional observation

probabilities O; and discount factor γ. The solution to this

POMDP is represented as a policy π : S × A 7→ A that

decides what actions to take based on the previous state-action

pair. The optimal social navigation policy π∗ maximizes the

expectation over the cumulative discounted rewards:

π∗ = argπ max Jπ,

Jπ = E

[

t=∞
∑

t=0

γtR(st, π(st, at), st+1)

]

(2)

We next describe how SOCIALGYM provides modules to

simulate the components of the POMDP and interfaces with

different approaches to learn π∗.

IV. SOCIALGYM SYSTEM ARCHITECTURE

SOCIALGYM is built from four modules that simulate dif-

ferent components of the POMDP for social robot navigation

and coordinate together to simulate the full POMDP. These

modules are the Gym module, the Environment module, the

Human module, and the Navigation module.

The Gym module is the top-level interface between the

agent and the simulator that handles simulation of the agent’s

action selection policy to select an action at ∈ A at each

timestep t based on the current observation ot ∈ Ω. The

Gym module then steps the simulation by passing at to the

Environment module, which returns a new state st+1 ∈ S

from which the Gym module calculates the reward rt and

derives a new observation ot+1 ∈ Ω. The Environment

module handles the representation of the state st ∈ S and

coordinates with the Human and Navigation modules to

simulate the transition function T given at at each timestep.

The Human module takes in st and at and controls the

components of T governed by the humans’ response to

the environment by sending updated human positions and

velocities to the Environment module. In turn, the Navigation

module controls the components of T related to robot

execution of at by providing a baseline navigation behavior

for evaluation and global and local planners for use in discrete

action spaces.

While our current implementation provides a single com-

plete benchmark scenario and extensions to enable various

others, it is essential to note that each module can be freely

replaced with any alternative that implements a prerequisite





the reader to the original work [3] and the PedsimROS

implementation [26].

D. Navigation

The Navigation module serves three purposes. For general

use, the navigation module provides a global planning

interface for use by the human module and implementations

of baseline deterministic behaviors that do not require

learning that can be used as comparisons. For our included

benchmark scenario, the navigation module further provides

implementations of actions that make up the discrete sub-

policies of our action space.

The global planning component of Navigation is responsi-

ble for planning an obstacle-free path from a start location to

a goal location. Global planning receives a request of the form

〈m, ps, pf 〉, where ps is a start position in the map m and

pf is the target position and returns a response of the form

〈{ps, pj , ...pj+n, pf}〉, where pj represents an intermediary

local goal along an obstacle-free path from ps to pf .

The local planner is responsible for avoiding obstacles

immediately visible to the robot and calculating control

commands to take the robot to the next waypoint on the

global plan. The local planner is only called as part of

the complete navigation solution that receives a request of

the form 〈m, ps, pf 〉, and returns a response of the form

〈vc〉, representing command velocity to be executed by the

Environment. For the local planner, we implement a trajectory

rollout planner [27] that interfaces with the global planner to

get the next local goal, and plans obstacle-free trajectories if

possible, and comes to a stop otherwise.

E. Social Action Selection Benchmark Scenario

As part of SOCIALGYM, we include a complete benchmark

for social navigation action selection in a multipolicy setting

similar to the one employed for [2], [1]. At each timestep,

the agent is responsible for choosing one action from a

discrete set of actions representing the existing sub-policies

of a navigation behavior. These sub-policies are designed as

robust behaviors built on the deterministic navigation module

presented in § IV-D.

A given benchmark in SOCIALGYM is defined by the

choice of module implementations, action space, observation

space, and reward function and can be additionally customized

for complexity and difficulty via the configuration parameters

of the underlying modules. Examples of these configurable

parameters include 1) the environment map as defined by

the environment module, 2) the parameters of the humans,

3) the robot motion model and kinematics, 4) the amount

of observation or execution noise in the simulation. In the

following, we will describe the observation, action, and reward

spaces for the Social Action Selection Benchmark. Other

benchmarks could be designed by replacing one or more

of the components described here. For more information on

the underlying configuration of the submodules, we refer the

reader to the supplementary material and implementation.

We define the discrete action space to contain four sub-

policies: stopping in place (Halt), navigating towards the next

goal (GoAlone), following a human (Follow), and passing a

human (Pass). The observation space 〈pg, pl, vr, Hr〉 consists

of the global and local goal poses pg and pl, respectively, the

robot velocity vr, and the relative poses and velocities of the

humans visible to the robot Hr, with all non-visible human

poses and velocities set to 0. As such, the observation function

needs to zero out the observations of all humans that are

not visible to the robot because they are occluded by static

obstacles in the environment. We choose this observation

space to minimize the environment-specific features in the

observation by using only local coordinates and velocities to

minimize the risk of overfitting to specific training examples.

Finally, the reward function is a weighted linear combi-

nation of three metrics from Multipolicy Decision Making

[1]: dg the distance gained towards the goal since the last

timestep, f the maximum force between the robot and a

human, and finally, b the maximum blame resulting from

the robot’s actions and the humans in the environment.

Additionally, the agent receives a bonus c if the goal is reached

during a timestep. This reward function can be represented

using weights wi as: r = (w1 ∗ dg + w2 ∗ f + w3 ∗ b) +
if (success) c else 0.0. The weights can be used

to specify user or task-specific preferences with respect to

the tradeoff between social compliance and time to goal.

V. BENCHMARK AND EVALUATION

To demonstrate results obtained with SOCIALGYM we

provide experimental results using the benchmark scenario

described in § IV-E, and a series of baseline learned and

engineered policies. Our reference implementations include

two Reinforcement Learning (RL) implementations from the

Stable-Baselines project [28], Proximal Policy Optimization

(PPO) and Deep Q-Networks (DQN), two Learning from

Demonstration (LfD) approaches, Behavior Cloning (BC) and

Generative Adversarial Imitation Learning (GAIL) from the

HumanCompatibleAI project [29], as well as two engineered

navigation solutions, trajectory rollout based navigation and a

social reference solution (Ref) and a symbolic learning from

demonstration approach called Physics Informed Program

Synthesis (PIPS) [2]. We evaluate the learned techniques on

three criteria in three sets of experiments. First we evaluate the

training efficiency of each technique by comparing the number

of steps and amount of data needed for learning reasonable

policies in § V-A. Then we evaluate the performance of each

policy in terms of the social metrics defined in § IV-A, and

compare the learned policies to the engineered policies in

§ V-B. Finally, we consider the generalizability of the learned

policies by transferring them to a new simulated environment

and comparing their performance in § V-C.

A. Data Efficiency and Learning Rates

The learning algorithms we evaluate fit into two major

categories that each require different learning procedures.

Reinforcement learning approaches learn via interactive inter-

action with the environment and Learning from Demonstration

approaches require apriori demonstrations of the desired

behavior. For each set of techniques, we evaluate and compare







VII. ACKNOWLEDGMENTS

This work is supported in part by NSF (CAREER2046955,

SHF-2006404), ARO (W911NF-19-20333, W911NF-21-

20217), and Northrop Grumman Mission Systems.

REFERENCES

[1] D. Mehta, G. Ferrer, and E. Olson, “Autonomous navigation in dynamic
social environments using multi-policy decision making,” in IROS, 2016,
pp. 1190–1197.

[2] J. Holtz, S. Andrews, A. Guha, and J. Biswas, “ Iterative Program
Synthesis for Adaptable Social Navigation ,” in IROS, 2022.

[3] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,”
Phys. Rev. E, vol. 51, pp. 4282–4286, May 1995.

[4] G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-
force based approach with human awareness-navigation in crowded
environments,” in IROS, 2013, pp. 1688–1694.

[5] J. Mumm and B. Mutlu, “Human-robot proxemics: Physical and
psychological distancing in human-robot interaction,” in HRI, 2011,
pp. 331–338.

[6] K. Charalampous, I. Kostavelis, and A. Gasteratos, “Robot navigation
in large-scale social maps: An action recognition approach,” Expert

Systems with Applications, vol. 66, pp. 261 – 273, 2016.
[7] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion

planning with deep reinforcement learning,” in IROS, 2017, pp. 1343–
1350.

[8] T. V. D. Heiden, C. Weiss, N. S. Nagaraja, and H. V. Hoof, “Social
navigation with human empowerment driven reinforcement learning,”
ICANN, vol. abs/2003.08158, 2020.

[9] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement
learning,” in ICRA, 2019, pp. 6015–6022.

[10] P. Ciou, Y. Hsiao, Z. Wu, S. Tseng, and L. Fu, “Composite rein-
forcement learning for social robot navigation,” in IROS, 2018, pp.
2553–2558.

[11] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant
navigation through raw depth inputs with generative adversarial
imitation learning,” in ICRA, 2018.

[12] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand):
A large-scale dataset of demonstrations for social navigation,” IEEE

Robotics and Automation Letters, pp. 1–8, 2022.
[13] J. Holtz, A. Guha, and J. Biswas, “ Interactive Robot Transition Repair

With SMT ,” in IJCAI, 2018, pp. 4905–4911.

[23] K. M. O. and A. B.R., “Srin: A new dataset for social robot indoor
navigation,” Glob J Eng Sci., 2020.

[14] ——, “ Robot Action Selection Learning via Layered Dimension
Informed Program Synthesis ,” in CORL, 2020.

[15] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, Sendai, Japan, Sep
2004, pp. 2149–2154.

[16] J. K. Haas, “A history of the unity game engine,” 2014.

[17] Epic Games, “Unreal engine.” [Online]. Available: https://www.
unrealengine.com

[18] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-
fidelity visual and physical simulation for autonomous vehicles,”
CoRR, vol. abs/1705.05065, 2017. [Online]. Available: http:
//arxiv.org/abs/1705.05065

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st

Annual Conference on Robot Learning, 2017, pp. 1–16.

[20] N. Tsoi, M. Hussein, J. Espinoza, X. Ruiz, and M. Vázquez, “Sean:
Social environment for autonomous navigation,” in Proceedings of the

8th International Conference on Human-Agent Interaction, ser. HAI ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
281–283. [Online]. Available: https://doi.org/10.1145/3406499.3418760

[21] A. Biswas, A. Wang, G. Silvera, A. Steinfeld, and H. Admoni,
“Socnavbench: A grounded simulation testing framework for evaluating
social navigation,” THRI, 2021.

[22] L. Manso, P. Trujillo, L. Calderita, D. R. Faria, and P. Bachiller, “Soc-
nav1: A dataset to benchmark and learn social navigation conventions,”
ArXiv, vol. abs/1909.02993, 2020.

[24] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic grid-
world environment for openai gym,” https://github.com/maximecb/
gym-minigrid, 2018.

[25] D. V. Lu, D. B. Allan, and W. D. Smart, “Tuning cost functions for
social navigation,” in Social Robotics, G. Herrmann, M. J. Pearson,
A. Lenz, P. Bremner, A. Spiers, and U. Leonards, Eds. Cham: Springer
International Publishing, 2013, pp. 442–451.

[26] Okal, Billy and Linder, Timm, “PedsimROS.” [Online]. Available:
https://github.com/srl-freiburg/pedsim_ros

[27] B. P. Gerkey, “Planning and control in unstructured terrain,” 2008.

[28] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto,
and N. Dormann, “Stable baselines3,” https://github.com/DLR-RM/
stable-baselines3, 2019.

[29] S. Wang, S. Toyer, A. Gleave, and S. Emmons, “The imitation

library for imitation learning and inverse reinforcement learning,” https:
//github.com/HumanCompatibleAI/imitation, 2020.


