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Abstract— Robots moving safely and in a socially compli-
ant manner in dynamic human environments is an essential
benchmark for long-term robot autonomy. However, it is not
feasible to learn and benchmark social navigation behaviors
entirely in the real world, as learning is data-intensive, and
it is challenging to make safety guarantees during training.
Therefore, simulation-based benchmarks that provide abstrac-
tions for social navigation are required. A framework for
these benchmarks would need to support a wide variety of
learning approaches, be extensible to the broad range of
social navigation scenarios, and abstract away the perception
problem to focus on social navigation explicitly. While there
have been many proposed solutions, including high fidelity 3D
simulators and grid world approximations, no existing solution
satisfies all of the aforementioned properties for learning and
evaluating social navigation behaviors. In this work, we propose
SOCIALGYM, a lightweight 2D simulation environment for
robot social navigation designed with extensibility in mind,
and a benchmark scenario built on SOCIALGYM. Further,
we present benchmark results that compare and contrast
human-engineered and model-based learning approaches to
a suite of off-the-shelf Learning from Demonstration (LfD)
and Reinforcement Learning (RL) approaches applied to social
robot navigation. These results demonstrate the data efficiency,
task performance, social compliance, and environment transfer
capabilities for each of the policies evaluated to provide a solid
grounding for future social navigation research.

1. INTRODUCTION

Deploying robot navigation safely alongside people such
that they move in a social manner is one of the ultimate
goals of robotics. However, training and evaluating in real-
world human environments present both safety concerns
and scalability challenges for many learning algorithms, and
this difficulty compounds the difficulty of developing robust
approaches to robot social navigation. As such, an extensible
benchmark for social navigation is a critical step along the
path to deploying socially compliant robots.

In order to accommodate the rapidly expanding pool of
promising machine learning techniques a framework for these
benchmarks should provide the infrastructure for integrating
approaches. In addition, the ability to adjust the reward,
observation space, and properties of the agent and environ-
ment are important for capturing social navigation scenarios
and enabling varied learning approaches. Finally, such a
framework should provide a representation with reasonable
simulation fidelity while also abstracting away the perception
task to focus on social navigation. Many different solutions
for simulating robots and humans in dynamic environments
have been proposed for social navigation research. However,
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Fig. 1: Diagram of interaction between modules in SO-
CIALGYM. Dashed boxes represent interchangeable modules,
while purple boxes contain configureable parameters. Blue
arrows represent requests between modules, and green arrows
represent responses.

to the best of our knowledge no existing solution satisfies all
of the desired properties for a benchmark framework.

Our proposed solution is SOCIALGYM, a 2D simulation
environment built on the Robot Operating System (ROS) to
provide a lightweight and configurable option for training and
evaluating social navigation behaviors: https:/github.com/ut-
amrl/social_gym . 2D simulation is chosen to provide an
option that abstracts away the perception problem to focus
on interactions between navigation and people in dynamic
human environments. To streamline integration in common
reinforcement learning workflows, SOCIALGYM implements
the OpenAl gym interface for training and evaluation. SO-
CIALGYM is modular such that modules can be exchanged
for others to increase the range of possible benchmarks,
an overview of module interactions and configurability is
shown in Fig. 1, and a visualization of the simulation
environment in Fig. 2. The included benchmark in SOCIAL-
GYM focuses on the action selection problem presented
in work on Multipolicy Decision Making [1] and program
synthesis for social navigation [2], where social navigation
is modelled as an action selection problem, and the optimal
action is selected from a set of discrete sub-policies. Using
this included benchmark, we compare and contrast a suite
of engineered approaches, model-based symbolic learning,
Learning from Demonstration (LfD), and Reinforcement
Learning (RL); to provide a baseline for future comparisons;
and highlight promising future directions for research. Our
results demonstrate the data efficiency, scenario performance,
social compliance, and generalizability of different policies,
and our analysis highlights the promising strengths and
weaknesses of different techniques. In addition to providing
the benchmark for multipolicy decision-making in social
navigation, SOCIALGYM is designed to be configurable and
extensible in the hopes of providing a stable base for a variety
of social navigation benchmarks.



The contributions of this work are as follows:

« a 2D simulation environment for robot social navigation,

« a complete toolkit that includes robot simulation, hu-
man simulation, navigation stack, and simple baseline
behaviors,

o OpenAl gym integration to provide a standard interface
for many learning approaches,

« a benchmark based on multipolicy decision making for
robot social navigation, and

« evaluation results and analysis for several reinforcement
learning and learning from demonstration approaches
for use as baselines for future research.

II. RELATED WORK

Model-based approaches with application-specific engi-
neered behaviors have historically been applied to social
navigation [1], [3], [4], [5], [6]. More recently, approaches
have sought to leverage machine learning techniques to learn
general social navigation behaviors [7], [8], [9], [10], [11],
[12]. Prior work has explored the use of program synthesis
and learning from demonstration to learn social navigation
behaviors as symbolic programs [13], [14], [2].

Existing simulators and benchmarks are either at the
level of high-fidelity 3D simulation that focuses on the
raw perception problem of humans in the environment or
are simplified grid world models of navigation. In contrast,
SOCIALGYM provides sensor reading at the level of laser
scans and human detections.

Many general-purpose high-fidelity 3D simulators have
been developed for robotics. Of particular note is the Gazebo
simulator [15], a powerful and extensible simulator commonly
used with ROS. Other high-fidelity simulators have been
developed using gaming physics and graphics engines such
as Unity [16] or Unreal [17] with autonomous driving in
mind, some of which can simulate other agents in the
environment, such as AirSim [18] and CARLA [19]. In
addition to these more general-purpose simulators, some
solutions have been proposed specifically for the social
navigation problem. The Social Environment for Autonomous
Navigation (SEAN) [20] uses a similar Unity-based approach
to more general simulators while providing social navigation-
specific metrics and scenarios. While SEAN does not provide
any particular benchmark, SocNavBench [21] is designed
as a social benchmark that generates photo-realistic sensory
input directly from pre-recorded real-world datasets to strike
a balance between simulation and recorded datasets. In
addition to simulation-based benchmarks, a small number
of purely dataset-based benchmarks have been proposed,
including SocNav1 [22] and Social Robot Indoor Navigation
(SRIN) [23]. While datasets are a critical benchmark tool,
they often require an initial sensor processing step and are
not easily extensible. Alternatively, simplified grid-world type
environments, such as MiniGrid [24], can also be used to
approximate social navigation by modelling humans with
dynamic obstacles, although this is not commonly used for
benchmarking.

III. SOCIAL NAVIGATION IN ROBOTICS

We frame social navigation as a discounted-reward par-
tially observable Markov Decision Process (POMDP) M =
(S, A, T, R,Q,0,~) consisting of the state space S where
s €S — (pr,vr,pg, H) and p, is the robot pose, v, is the
robot velocity, p, is the goal pose, and h; € H +— (privp,) is
a list of the human poses and velocities; actions A represented
either as discrete motion primitives [1] or continuous local
planning actions [25]; the world transition function

T(s,a,8') = P(sgy1 =58 | 8¢ = s,a; = a) (D)

for the probabilistic transition to states s’ when taking action
a at previous state s; the reward function R : SXx AxS — R ;
the set of observations o € €); a set of conditional observation
probabilities O; and discount factor «. The solution to this
POMDRP is represented as a policy m : S x A — A that
decides what actions to take based on the previous state-action
pair. The optimal social navigation policy 7* maximizes the
expectation over the cumulative discounted rewards:

7" = arg, max J,
t=00
Jr=E Z Y R(st, (51, 1), 5141) (2)
t=0
We next describe how SOCIALGYM provides modules to
simulate the components of the POMDP and interfaces with
different approaches to learn 7*.

IV. SOCIALGYM SYSTEM ARCHITECTURE

SOCIALGYM is built from four modules that simulate dif-
ferent components of the POMDP for social robot navigation
and coordinate together to simulate the full POMDP. These
modules are the Gym module, the Environment module, the
Human module, and the Navigation module.

The Gym module is the top-level interface between the
agent and the simulator that handles simulation of the agent’s
action selection policy to select an action a; € A at each
timestep ¢ based on the current observation o, € . The
Gym module then steps the simulation by passing a; to the
Environment module, which returns a new state s;11 € S
from which the Gym module calculates the reward r; and
derives a new observation 0,17 € (). The Environment
module handles the representation of the state s, € S and
coordinates with the Human and Navigation modules to
simulate the transition function 7' given a; at each timestep.
The Human module takes in s; and a; and controls the
components of 7' governed by the humans’ response to
the environment by sending updated human positions and
velocities to the Environment module. In turn, the Navigation
module controls the components of 7' related to robot
execution of a; by providing a baseline navigation behavior
for evaluation and global and local planners for use in discrete
action spaces.

While our current implementation provides a single com-
plete benchmark scenario and extensions to enable various
others, it is essential to note that each module can be freely
replaced with any alternative that implements a prerequisite
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Fig. 2: Visualization of one timestep of SOCIALGYM with
humans shown as green circles, the walls as black lines, the
laserscan as redlines, the robot as a blue box, and recent
trajectories as dotted lines.

ROS service. In this way, ROS services make our approach
accessible to a wide variety of existing approaches written in
ROS. The components of SOCIALGYM and their interactions
are shown in Fig. 1, and in the following sections, we
will describe the abstractions of each module and high-
level technical details, while in § IV-E, we will describe
the concrete instantiation used for our included benchmark.

A. Gym Integration

The Gym model builds on the OpenAl Gym framework
to interface between our ROS-based simulation framework
and the learning agent. This module has four responsibilities:
coordinating the generation and resetting of scenarios, receiv-
ing actions a € A from the agent that are used to coordinate
state transition of the environment, receiving states s € .S
from the environment and converting them into observations
o € {1, and evaluating performance by calculating metrics
and the value of the reward function R | s, a.

a) Generating scenarios: A scenario is described as a
tuple (m,t, ps, pg, H), where m is the map describing the
static obstacles in the scene, t is the timestep, ps is the start
pose of the robot, p, is the goal pose of the robot, and H
is a list of pairs {(p},p})} that describes the initial pose
p;, and the goal pose p; for each human, ¢, in the scene.
SOCIALGYM randomly generates new scenarios based on
several parameters that describe the range of possible initial
conditions and goals. These parameters are m, the maximum
and minimum number of humans A,z fpnin, the number
of iterations for a given scene N,, and the maximum total
iterations N,,. In addition, scenario generation requires a
list of poses G that describes the list of legal start and end
locations in the map. Given this configuration, a new scenario
is generated as follows: 1) m and G are configured by the
user, 2) a random p; and p, are selected from f7, 3) a random
n is chosen such that 7,,;, < n < Nyaz, 4) n humans are
generated by selecting a random p}, and pg from G such
that they do not overlap, 5) and finally, the environment is
initialized and the initial state is sent to the agent. Each
random scenario is run until it completes in either success
or failure N, times, and then a new scenario is generated
up to the maximum number of iterations NV,,. We define the
success state to be when |p, — g| < €5, and the failure state
to be when ¢t >t A [p, — g| > €.

b) Updating the environment and observation: The
Gym module controls the update loop of the simulation as
follows: 1) the Gym module receives an action a; from
the agent, 2) a; is sent as a request to the environment,
3) the Environment module executes T given a;, 4) the Gym
module receives a response state s;i1, 5) an observation
function f(s € S) — o € Q is employed to map sz to
an observation o;y1 where o0;41 is an observation vector
containing both discrete and continuous variables, 6) the
reward is calculated using R(s; 1) v 7, and finally 7) r;
and o;11 are passed to the agent for the next iteration. For
use with, and in addition to calculating reward, the Gym
module can optionally produce several metric values for
use in performance evaluation. The provided Gym module
supports the following metrics: 1) time to goal: £ when
the agent reaches p,; 2) distance from goal: |[psr, — gl;
3) distance traveled: Ziff |pt —pi—1]; 4) force: approximates
maximum force exerted between the robot and humans
argmax; elPr=Pil; 5) blame: takes into account velocity at
times of close encounters; penalizing robot velocities towards
humans. Let p. be the closest point on the line segment
from p, to p, + v, to pﬁ'L, then blame is calculated as:
argmax; ®(|p, —p5|); 6) human collision count, and 7) static
obstacle collision count.

B. Environment simulation

The Environment module is responsible for representing
the state s; € S and updating s; based on robot actions a;
and the state transition function 7.

The environment updates the robot state according to
the robot motion model and a;. For discrete actions, a;
must first be converted to continuous velocities by the
Navigation module. In addition to updating the robot pose,
the environment also needs to update all humans in the scene.
However, since a; does not provide velocities for the humans,
we need to describe how humans will move in response to
the environment. Here the Human module § IV-C utilizes the
updated state from the environment to calculate new positions
and velocities for each human in the scene.

C. Human simulation

The Human module is responsible for simulating the
components of 7' concerned with how humans behave. This
requires updating 7 based on some model of humans moving
through the environment towards a goal.

Each human A* in the scene moves back and forth between
a starting position A, and a goal pose h’, by planning
a global path of intermediary nodes between the two that
avoids static obstacles and employs a separate local planner to
handle dynamic obstacles. For global planning, we utilize the
Navigation module as described in § IV-D. The local planner
SOCIALGYM employs is PedsimROS [26], a ROS module
that models human behaviors according to the social force
model [3], [4]. In brief, the Social Force Model represents
each agent in the environment as exerting repelling force
on each agent, while goals exert attractive forces. We refer



the reader to the original work [3] and the PedsimROS
implementation [26].

D. Navigation

The Navigation module serves three purposes. For general
use, the navigation module provides a global planning
interface for use by the human module and implementations
of baseline deterministic behaviors that do not require
learning that can be used as comparisons. For our included
benchmark scenario, the navigation module further provides
implementations of actions that make up the discrete sub-
policies of our action space.

The global planning component of Navigation is responsi-
ble for planning an obstacle-free path from a start location to
a goal location. Global planning receives a request of the form
(m,ps,pr), where p is a start position in the map m and
py is the target position and returns a response of the form
({ps,Pjs---Dj+n,Pr}), Where p; represents an intermediary
local goal along an obstacle-free path from p, to py.

The local planner is responsible for avoiding obstacles
immediately visible to the robot and calculating control
commands to take the robot to the next waypoint on the
global plan. The local planner is only called as part of
the complete navigation solution that receives a request of
the form (m,p,,py), and returns a response of the form
(v.), representing command velocity to be executed by the
Environment. For the local planner, we implement a trajectory
rollout planner [27] that interfaces with the global planner to
get the next local goal, and plans obstacle-free trajectories if
possible, and comes to a stop otherwise.

E. Social Action Selection Benchmark Scenario

As part of SOCIALGYM, we include a complete benchmark
for social navigation action selection in a multipolicy setting
similar to the one employed for [2], [1]. At each timestep,
the agent is responsible for choosing one action from a
discrete set of actions representing the existing sub-policies
of a navigation behavior. These sub-policies are designed as
robust behaviors built on the deterministic navigation module
presented in § IV-D.

A given benchmark in SOCIALGYM is defined by the
choice of module implementations, action space, observation
space, and reward function and can be additionally customized
for complexity and difficulty via the configuration parameters
of the underlying modules. Examples of these configurable
parameters include 1) the environment map as defined by
the environment module, 2) the parameters of the humans,
3) the robot motion model and kinematics, 4) the amount
of observation or execution noise in the simulation. In the
following, we will describe the observation, action, and reward
spaces for the Social Action Selection Benchmark. Other
benchmarks could be designed by replacing one or more
of the components described here. For more information on
the underlying configuration of the submodules, we refer the
reader to the supplementary material and implementation.

We define the discrete action space to contain four sub-
policies: stopping in place (Halt), navigating towards the next

goal (GoAlone), following a human (Follow), and passing a
human (Pass). The observation space (pg, pi, vy, H;) consists
of the global and local goal poses p, and p;, respectively, the
robot velocity v,., and the relative poses and velocities of the
humans visible to the robot H,., with all non-visible human
poses and velocities set to 0. As such, the observation function
needs to zero out the observations of all humans that are
not visible to the robot because they are occluded by static
obstacles in the environment. We choose this observation
space to minimize the environment-specific features in the
observation by using only local coordinates and velocities to
minimize the risk of overfitting to specific training examples.
Finally, the reward function is a weighted linear combi-
nation of three metrics from Multipolicy Decision Making
[1]: dg4 the distance gained towards the goal since the last
timestep, f the maximum force between the robot and a
human, and finally, b the maximum blame resulting from
the robot’s actions and the humans in the environment.
Additionally, the agent receives a bonus c if the goal is reached
during a timestep. This reward function can be represented
using weights w; as: r = (wy * dg + wa * f + w3 * b) +
if (success) c else 0.0. The weights can be used
to specify user or task-specific preferences with respect to
the tradeoff between social compliance and time to goal.

V. BENCHMARK AND EVALUATION

To demonstrate results obtained with SOCIALGYM we
provide experimental results using the benchmark scenario
described in § IV-E, and a series of baseline learned and
engineered policies. Our reference implementations include
two Reinforcement Learning (RL) implementations from the
Stable-Baselines project [28], Proximal Policy Optimization
(PPO) and Deep Q-Networks (DQN), two Learning from
Demonstration (LfD) approaches, Behavior Cloning (BC) and
Generative Adversarial Imitation Learning (GAIL) from the
HumanCompatibleAlI project [29], as well as two engineered
navigation solutions, trajectory rollout based navigation and a
social reference solution (Ref) and a symbolic learning from
demonstration approach called Physics Informed Program
Synthesis (PIPS) [2]. We evaluate the learned techniques on
three criteria in three sets of experiments. First we evaluate the
training efficiency of each technique by comparing the number
of steps and amount of data needed for learning reasonable
policies in § V-A. Then we evaluate the performance of each
policy in terms of the social metrics defined in § IV-A, and
compare the learned policies to the engineered policies in
§ V-B. Finally, we consider the generalizability of the learned
policies by transferring them to a new simulated environment
and comparing their performance in § V-C.

A. Data Efficiency and Learning Rates

The learning algorithms we evaluate fit into two major
categories that each require different learning procedures.
Reinforcement learning approaches learn via interactive inter-
action with the environment and Learning from Demonstration
approaches require apriori demonstrations of the desired
behavior. For each set of techniques, we evaluate and compare
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Fig. 3: Progressive performance with more training iterations. The shaded regions represent the 90% confidence interval.

the training process, learning rate, and data efficiency during
learning procedures utilizing SOCIALGYM in the following
paragraphs.

a) Reinforcement Learning: Training new RL algo-
rithms is a plug-and-play process that enables the agent to
interact with SOCIALGYM and iteratively update its policy.
To evaluate the sample efficiency of the considered RL
approaches, we trained each model for 84000 total timesteps
and created a checkpoint of the learning progress every 2000
steps. For each model, we evaluate their performance on the
same 100 test scenarios and report their performance in terms
of the reward described in § IV-E in Fig. 3. Our evaluation
results show two key results, first, both RL algorithms require
84000 or more timesteps before peaking in performance, and
second the PPO approach is significantly more data efficient
than the DQN approach we evaluated. In general, the DQN
approach is particularly weak to the initial conditions, and
performs more poorly than the other evaluated approaches
on the small sample of 100 trials used for these experiments.

b) Learning from Demonstration: To evaluate the data
efficiency of the considered LfD approaches, we generated
a single demonstration set with 155483 timesteps from
our reference behavior and trained multiple policies with
decreasing quantities of data evaluating each model on 100
test scenarios, as shown in Fig. 4. We report the performance
in terms of the success rate and reward earned. Notably, PIPS
cannot learn policies with more than 3500 data points, as the
symbolic synthesis approach used by PIPS does not scale to
large numbers of demonstrations. Conversely, while the DNN-
based approaches can be trained with 3500 examples or less,
their performance decreases significantly as the amount of
data used for training is reduced. Only performing similarly
to the PIPS-based policies when 155400 samples are used.
There are two likely reasons for this improved data-efficiency.
First, the structure used for synthesis provides additional
constraints, and second, PIPS selectively subsamples the
data by windowing around transitions between actions, an
optimization that is not part of the more general purpose
neural approaches.

B. Performance of Learned Models

To evaluate and compare the learned behaviors, we evaluate
them on the same randomly generated set of 2000 trials. We
report the results in terms of four primary metrics, successful
trials, force, blame, and time to goal as described in § IV-A.
We report these metrics as opposed to the score or reward
to better compare between LfD and RL approaches, and to

Training Size BC GAIL PIPS
% r R r R r
155400 84 0.12 59  0.06 - -
116600 16 001 40 004 - -
77700 37 004 38 002 - -
38800 70 0.08 21 0.02 - -
3500 49 005 27 001 88  0.16

Fig. 4: Performance of LfD approaches with varying numbers
of demonstrations in terms of the success rate (%) and the
average timestep reward r.

better position the results with respect to task performance.
We report the percentage of successful trials as a table in
Fig. 7 and the metric results in Fig. 5.

In addition to the learned behaviors, Fig. 7 and Fig. 5
feature the engineered GoAlone behavior utilizing only
trajectory rollout as described in § IV-D, and the engineered
Reference behavior (Ref) used for comparison and generating
demonstrations for the LfD algorithms. In Fig. 7, a trial is
counted as successful if the goal is reached within a bounded
time without any collisions between the robot and humans or
walls in the environment. In terms of pure success rate, no
social behavior is as efficient as the GoAlone policy, likely
due to the halting robot problem, where the robot is often
left waiting for humans to pass long enough that the scenario
times out. When comparing the learned behaviors, we find
that the LfD behaviors have a better overall success rate
than the RL approaches, suggesting that continuous scenario
demonstrations better convey the delayed reward of reaching
the goal than the reward function. When we look at the
metric performance of each approach, we see the success
rates reflected in the time to goal, with the more successful
approaches featuring an overall lower time to goal, while
the less successful approaches are slower. An exception to
this is the GAIL policy, which was neither the most or least
successful while also being the slowest policy. As would
be expected, we see a tradeoff between time to goal and
social compliance reflected to some degree in both the force
and blame graphs, with the slower behaviors exhibiting lower
force and blame. In particular, BC and PIPS roughly match the
performance of the Ref behavior from which demonstrations
were drawn in terms of all three metrics, while in contrast,
GAIL, PPO, and DQN optimized for social compliance over
time to goal.

C. Environment Transfer Performance

To evaluate the ability of the learned policies to transfer
between environments, we introduce a new set of 2000
scenarios using a novel map with a significantly different
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Success Rates (%)

Policy
Test Transfer

GoAlone 97.5 973
Ref 89.4 92.4
BC 92.3 499
GAIL 83.3 18.9
PIPS 88.9 89.2
DQN 54.1 8.8
PPO 55.1 472

Fig. 7: Success rates in the training environment and after
transferring to a novel environment.
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Fig. 8: Environment used for training and evaluation on the
left, and new environment for transfer evaluation on the right.

configuration than the map used for policy training. This
new map consists of a different set of static obstacles and
a new set of possible start and goal locations for both the
robot and the humans. For comparison, the environment used
for the training and the evaluation environment used for this
experiment are shown in Fig. 8.

We evaluate each policy on the same 2000 random trials
drawn from the new environment and report the performance
in terms of force, blame, and time to goal in Fig. 6 and in
terms of the success rate in Fig. 7. The first key result is
that the engineered policies (Goalone, Ref) do not degrade in
success rate during the transfer between environments, while
all but the PIPS-learned policy degrade significantly. Similarly,

the time to goal metric reflects this, with more successful
behaviors achieving lower average times to goal and behaviors
more likely to fail achieving much slower average times to
goal. The new environment is less difficult for the engineered
policies, as the distribution of humans is sparser in the larger,
more open, map. This suggests that despite our efforts to
design an observation space and reward that are environment-
agnostic, the non-symbolic learning algorithms are still
making decisions that are highly environment-dependent. In
terms of the social metrics, the results for the learned policies
reflect what we stated about the engineered policies. The
new environment is more manageable with lower force and
blame achieved by all behaviors thanks to the more sparse
human distributions. These results demonstrate what we
would expect, that the model-based and symbolic approaches
perform better in environment transfers than black-box model-
free approaches.

VI. DISCUSSION AND FUTURE WORK

In this paper, we presented SOCIALGYM, a configurable
simulator and benchmarking tool for socially navigating
robots. SOCIALGYM provides an interface for easily inte-
grating learning algorithms with a 2D simulator designed
to abstract away perception and localization and focus on
the difficult task of learning robust robot behaviors for
navigating amongst humans in complex environments. Further,
we present empirical results from evaluating a suite of
baseline algorithms in our provided social action selection
benchmark that demonstrate the utility of SOCIALGYM.
While SOCIALGYM provides an extensible interface, it is
difficult to imagine that any one solution will perfectly fit the
needs of myriad researchers, and we provide only a single
initial benchmark evaluation case initially. It is our hope that
SociALGYM will reduce the barrier to entry for evaluating
learning algorithms for social robot navigation by allowing
other researchers to build on an extensible foundation for
social navigation learning and evaluation.
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