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Abstract

We follow up on recent work demonstrating clear advantages of
lexical-to-sublexical feedback in the TRACE model of spoken
word recognition. The prior work compared accuracy and recog-
nition times in TRACE with feedback on or off as progressively
more noise was added to inputs. Recognition times were faster
with feedback at every level of noise, and there was an accuracy
advantage for feedback with noise added to inputs. However,
a recent article claims that those results must be an artifact of
converting activations to response probabilities, because feed-
back could only reinforce the “status quo.” That is, the claim
is that given noisy inputs, feedback must reinforce all inputs
equally, whether driven by signal or noise. We demonstrate
that the feedback advantage replicates with raw activations. We
also demonstrate that lexical feedback selectively reinforces
lexically-coherent input patterns – that is, signal over noise –
and explain how that behavior emerges naturally in interactive
activation.

Keywords: computational modeling; interactive activation;
spoken word recognition; speech perception

Introduction

Feedback from lexical to sublexical levels in interactive acti-

vation models (e.g., McClelland & Rumelhart, 1981) provides

an intuitive explanation of lexical influences on sublexical

processing – so-called top-down effects. A classic example is

shown in Figure 1, where an identical visual pattern is inter-

preted as “H” in the context of “T E” but as “A” in the context

of “C T”. Lexical contexts implied by neighboring letters seem

to influence the perception of the ambiguous form. Top-down

feedback (from lexical to letter representations) would appear

to provide an explanation of this and many other top-down

effects in visual and spoken word recognition and perception

(e.g., Elman & McClelland, 1988; Ganong, 1980; Luthra et

al., 2021; Reicher, 1969; Rubin, Turvey, & Van Gelder, 1976;

Samuel, 1997; Wheeler, 1970) and perception more generally

(e.g., Fenske, Aminoff, Gronau, & Bar, 2006).

Figure 1: A variant of a famous example (Selfridge, 1955)

of apparent top-down modulation of perception. Identical

forms are interpreted as “H” between “T” and “E” but as “A”

between “C” and “T”.

Figure 2: Interactive (left) vs. modular/autonomous architec-

tures (right), exemplified by TRACE (McClelland & Elman,

1986) and Merge (Norris et al., 2000). Black outlines and

connections are key in both TRACE and Merge; grey boxes

and connections are either not implemented in either model

(supralexical) or Merge (input to sublexical). Red elements

highlight differences between approaches. The dashed red

arrow from the grey supralexical box back to the lexical level

highlights a key difference that would be included in an exten-

sion of interactive activation beyond the lexical level.

Norris et al. (2000) argue that intuition misleads us in such

cases, and that top-down effects are not evidence for top-

down feedback during processing. They claim that any such

effect can be explained by modular or autonomous architec-

tures where feedback is absent from perceptual pathways and

top-down knowledge and other constraints are integrated post-

perceptually. The differences between interactive and modu-

lar/autonomous approaches are schematized in Figure 2. In the

interactive architecture, direct top-down feedback from the lex-

ical level modulates sublexical activations. This leads naturally
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to lexical representations influencing sublexical processing.

For example, suppose that the ambiguous H/A form in Figure 1

activates “H” and “A” equally. Because “TAE” rarely occurs

(e.g., AORTAE) but “THE” is a high-frequency pattern, “H”

will receive strong feedback in that context. Because “CHT”

would receive little support (only from low-frequency words

like YACHT or WATCHTOWER) but CAT is a high-frequency

word (and many words contain the pattern “CAT”), “A” would

receive strong feedback in that context.

In the modular/autonomous approach, direct feedback is

posited to be unnecessary, and detrimental. (The claim is that

once top-down and bottom-up inputs are mixed, the system

risks hallucinating, since it can no longer distinguish activa-

tions driven by bottom-up inputs vs. top-down influences.)

The reason feedback is argued not to be necessary is that deci-

sions could be made outside the primary processing pathway,

as depicted on the right side of Figure 2. Here, as in the

Merge model (Norris et al., 2000), the Sublexical layer is du-

plicated as a special-purpose set of sublexical decision nodes

that receive input from both bottom-up and top-down sources.

Crucially, the activations in the Sublexical and Lexical layers

only send and receive activation in the feedforward direction,

protecting lower levels from top-down contamination. The ul-

timate claim is that such an architecture can simulate anything

a feedback (interactive) architecture can, with special-purpose

decision paths generating context-specific metalinguistic de-

cisions. Norris et al. (2000) argued that a system without

feedback is simpler than a system with feedback (a claim we

will revisit in the Conclusions), and therefore one should pre-

fer the modular/autonomous architecture if the two systems

are equally capable of simulating human performance.

Furthermore, Norris et al. (2000) have argued that feedback

cannot possibly improve a system’s performance in any way.

They argue that the best that a spoken word recognition system

can possibly do is activate the sublexical forms (phonemes)

that best correspond to the input and then the lexical forms

that best correspond to the activated phonemes. This idea is

related to the data processing inequality theorem, which holds

that the information in a signal cannot be increased through

subsequent manipulation. However, while it is certainly the

case that the information in the signal cannot be increased, it

is possible for systems to use information differently (e.g., via

different implicit or explicit decision policies) or for systems

to perform noise reduction, which would have clear benefits.

So: is it possible that feedback allows a system to make quali-

tatively different use of information or effectively to reduce

noise (possibly by enhancing coherent patterns in signals)?

Magnuson, Mirman, Luthra, Strauss, and Harris (2018)

found support for such possibilities in the form of compre-

hensive demonstration proofs that feedback improves word

recognition. They measured word recognition accuracy and

recognition time for words presented to TRACE with or with-

out feedback enabled, with clear inputs and then progressively

noisier inputs. With clear or noisy inputs, recognition times

were faster on average with feedback than without. Accuracy

dolEtæk

LOADTELLCAT

Figure 3: Interactive activation example. Arrows denote exci-

tatory connections (7 input phonemes feed forward to 3 words,

which send feedback to constituent phonemes). Edges with

bulb connectors indicate lateral inhibition links within layers.

was also substantially higher with feedback than without as

noise was added to inputs.

While recognition times were faster with feedback than

without for most words at each level of noise (including zero

noise), some items were recognized more quickly without feed-

back. (Note that such comparisons can only include words

meeting the recognition definition both with and without feed-

back.) Whether a word was recognized more quickly or more

slowly with feedback depended on a variety of factors, such

as the makeup of a word’s similarity neighborhood. But what

drives the propensity for faster, more accurate processing with

feedback than without?

Consider Figure 3, which provides a schematic of a very

simple interactive activation network for modeling spoken

word recognition with just seven phonemes and three words

(CAT, TELL, LOAD). In this simple network, with no ability to

encode temporal order, the input /kæt/ would strongly activate

CAT and also weakly activate TELL (since /t/ connects to both

words). Now consider what happens when noise is added to the

initial input. Feedback will not simply reinforce the original

feedforward pattern (of signal plus noise). For example, given

the input /kæt/ + noise, noise will likely provide more bottom-

up input to TELL than the signal alone did. However, noise will

not be reinforced by feedback to the same extent as coherent

input patterns that map onto words. Even slightly greater

activation of CAT relative to TELL from the coherent input

pattern to which noise has been added will allow CAT to

inhibit TELL significantly (depending on exact parameters;

sufficient noise will overwhelm the signal). Over iterations,

this will lead CAT to send increasingly more feedback to its

constituent phonemes relative to the feedback TELL sends to

its constituent phonemes; coherent patterns in the input will

be reinforced to the detriment of nodes activated primarily by

noise, rather than simple “reinforcement of the status quo.” In

other words, the joint probability of {k, æ, t} embodied in the

lexicon drives selective reinforcement of coherent lexical (and

sublexical, phonotactically probable) patterns in the input.

This will also drive faster and stronger activation of words

consistent with the input, as Magnuson et al. (2018) reported.
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However, Norris and Cutler (2021) claim that the apparent

advantages for feedback reported by Magnuson et al. (2018)

are due to an artifact: “The effect of noise was simulated by

adding a constant amount of noise to a decision process – the

Luce choice rule – operating on the output of the network ...

In other words, because of a workaround in the model, simula-

tions using TRACE can give the impression that feedback can

improve performance” (Norris & Cutler, 2021, p. 3). We note,

however, Magnuson et al. (2018) specify (p. 3) that they added

Gaussian noise independently to each input element (follow-

ing the procedure of McClelland, 1991). They subsequently

converted activations to response probabilities in accordance

with the procedures used by Frauenfelder and Peters (1998) to

simulate lexical decisions (pp. 118-119), which were based

on procedures used by McClelland and Rumelhart (1981) and

McClelland and Elman (1986) for letter and phoneme recog-

nition. While it seems unlikely that converting to response

probabilities could change the rank ordering of recognition

times, we confirm this by replicating the results of Magnu-

son et al. (2018) with raw activations. We go beyond their

analyses and examine whether phoneme activations indicate

that feedback selectively reinforces lexically-coherent input

patterns.

Simulations

We use the same approach as Magnuson et al. (2018) to

compare word recognition accuracy and recognition time in

TRACE under increasing levels of noise with and without

feedback – with the important difference that we use raw acti-

vations rather than response probabilities.

Procedure

We conducted simulations using jsTRACE, a recent re-

implementation of TRACE in JavaScript (Magnuson, Curtice,

Grubb, Crinnion, & Sossounov, in preparation). We used the

default slex TRACE lexicon, consisting of 212 words (as well

as the “silence” word used to represent a state of no input; the

silence word was not included in analyses). We used three

levels of feedback (0.00, 0.015, and 0.03, the last being the de-

fault level with small lexicons in TRACE). Inputs were default

TRACE inputs (distributed representations of pseudo-spectral

transformations of acoustic-phonetic features over time). We

combined each level of feedback with seven levels of Gaus-

sian noise (with mean of zero and standard deviation ranging

from 0.0 to 1.5 in steps of 0.25). A value sampled from the

distribution was added independently to each cell of the in-

put matrix prior to the simulation. Any negative input values

were replaced with zero. To ensure that results under noise

were robust, we conducted 10 simulations of every word in

the lexicon at all levels of noise greater than zero. We allowed

simulations to run for 100 time steps (cycles) in TRACE.

Decision policy Note that the proposal that the best a word

recognition system can do is choose the word with highest

activation (Norris & Cutler, 2021) does not specify when a de-

cision should be made. We cannot simply take the time of peak

activation, as a target’s activation may continue increasing for

some time after it has become the dominantly activated item

(potentially resulting in longer recognition times for words

that are more strongly activated, relative to a word that might

have an earlier but lower peak). A further complication is

that if we were to present the model with nonword (or novel

word) inputs, simply taking the word with maximum activa-

tion as the winner would lead to erroneous “recognition.” We

followed the example of Magnuson et al. (2018) and used a

simple threshold-based policy, where a correct identification is

defined as the target reaching or exceeding that threshold and

no other item reaching it. Recognition time is the cycle where

the target’s activation first reaches or exceeds the threshold.

We first identified the activation threshold that would maxi-

mize accuracy for zero feedback without noise; this was 0.4.

We then applied that threshold to every simulation (that is, at

every level of feedback and noise). Note that any potential bias

in this policy favors simulations without feedback, since the

threshold optimizes accuracy with zero noise and zero feed-

back. Crucially, all analyses were applied to raw activations.

We did not transform activations to response probabilities.

Results

In Figure 4, we see a clear replication of the results of Magnu-

son et al. (2018) based on raw activations. Recognition time

(left panel, only including recognized words) is faster with

feedback than without at every level of noise (up to sd = 1.25

or 1.5, where there were too few correct trials with feedback

off to make meaningful comparisons). Feedback also yields

higher accuracy (right panel) once noise is added.

In Figure 5, we plot recognition times at each noise level

for words that were correctly recognized with feedback at

the default value of 0.03 and without feedback. Again, we

repeated the simulation of each word 10 times at each level

of noise greater than zero. A clear, consistent advantage is

observed for the majority of words at each level of noise.

Contra assertions by Norris and Cutler (2021), feedback

promotes more robust word recognition performance. Thus,

the results of Magnuson et al. (2018) were not an artifact of us-

ing response probabilities rather than raw activations. TRACE

recognized words more quickly with feedback than without

at every level of noise (including no noise), and feedback pro-

moted higher accuracy as more noise was added. How would

this be possible if feedback simply reflected signal and noise

equally, as Norris and Cutler (2021) claim? We can explore

this by examining how phoneme and word activations change

as noise is added with and without feedback.

First, consider phoneme activations. In Figure 6, we plot

the mean activation of each input phoneme (solid red lines)

averaged over all items (all words in slex) along with the

mean activation of the next-most-activated phoneme at that

position (dashed blue lines). Although the maximum word

length is 9, the number of words contributing to means for

later phonemes decreases, since most words are shorter. There

is a clear pattern: with feedback (right panels), there is greater

separation between Target phonemes and Next phonemes than
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Figure 6: Phoneme activations over time for words at two levels of feedback and three levels of noise averaged over all 212 words

in the slex lexicon. In each plot, the activations of the phoneme corresponding to the input (solid red lines) and the next-most

activated phoneme (dashed blue lines) are plotted. Later phonemes are based on fewer words (those up to nine phonemes in

length). Target phoneme activations are generally higher and Next activations generally lower with feedback on.

without (left panels). This is a result both of greater Target

phoneme activation with feedback vs. without and modestly

lower activation of Next phonemes with feedback vs. without

(mainly observable as sharper, lower peaks for Next phonemes

with feedback, indicative of greater lateral inhibition from

Target phonemes). If signal and noise were equally reinforced

by feedback, we would expect to see similar amplification of

both Target and Next phonemes with feedback. Consistent

with our discussion of Figure 3, feedback selectively boosts

those phonemes that constitute lexically-coherent patterns –

that is, series of phonemes that constitute words.

Discussion

The simulations we presented demonstrate clear benefits of

feedback in the interactive framework. Feedback promotes

faster recognition time and makes the model robust against

noise, as demonstrated by preservation of accuracy with feed-

back as compared to without. Contra assertions made by

Norris and Cutler (2021), this is not an artifact of using re-

sponse probabilities rather than raw activations. Magnuson et

al. (2018) used the standard approach of using response prob-

abilities, but here we used raw activations. Our results were

extremely similar (see Figures 4 and 5), with faster recog-

nition with feedback than without at every noise level and

substantially higher accuracy with feedback than without with

moderate to high levels of noise (SD ≥ 0.5).

We extended the earlier work by tracking phoneme ac-

tivations. In Figure 6, we plotted the mean activations of

position-specific phonemes from target words and the next-

most-activated phonemes at those positions. Relative to the no-

feedback simulations, feedback promoted greater differences

between target phonemes and next-most-activated phonemes.
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Feedback drives selective reinforcement of lexically-

probable patterns, which leads to faster recognition times as

well as higher accuracy with feedback than without at multi-

ple levels of noise added to inputs. Examining the impact of

feedback on the phoneme level (Figure 6) reveals that feed-

back drives a greater separation between input phonemes and

next-most-activated phonemes when noise is added to inputs.

Feedback provides an effective and efficient mechanism to

distinguish signal from noise.

Conclusions

To return to the larger theoretical issues we touched on in the

Introduction, let us consider again the claims that feedback (a)

cannot improve perceptual processing, (b) entails hallucina-

tion, (c) is more complex than a system without feedback, and

(d) is not necessary. We have shown here that feedback does

improve perceptual processing,1 replicating Magnuson et al.

(2018) and extending their results with our new examination

of selective reinforcement of lexically-probable signals over

noise. Previous papers have addressed hallucination, begin-

ning with the original TRACE paper (McClelland & Elman,

1986), where feedback was set to a level that promotes bottom-

up priority.

The final two claims are closely linked: We agree that many

apparent top-down effects can be simulated by special-purpose,

non-perceptual pathways (as in the right side of Figure 2).

However, if the two architectures can both account for relevant

data (though note that this has not been fully established), then

it only matters that feedback is not necessary if there is a reason

to prefer a system without feedback. Thus, a crucial issue is

whether an interactive framework (as in Figure 2) is more

complex than an analogous modular/autonomous system.

Ironically, one of the criticisms Norris et al. (2000) lev-

eled against feedback in TRACE is that it appears only to be

there to simulate top-down effects, while serving no functional

purpose. This assertion was based on the finding that moti-

vated the Magnuson et al. (2018) simulations: a report from

Frauenfelder and Peters (1998) that in simulations comparing

TRACE with feedback on vs. off, using 21 carefully selected

words, about half the words were recognized more quickly

with feedback, and about half were recognized more quickly

without feedback. While Frauenfelder and Peters (1998) had

good reasons for selecting their items, their results do not

generalize beyond those items (as our simulations and those

of Magnuson et al., 2018, demonstrate, while including their

words and many more). The irony is that the sublexical deci-

sion cul-de-sac in the modular/autonomous architecture serves

no functional purpose. While Norris et al. (2000) argue that it

serves a necessary role as a readout or decision layer, this is

simply a stipulation. An unspecified process still must “read”

the activations and apply a decision policy. We can make the

same stipulation about any layer in any model (i.e., we can

1A reviewer pointed out that our RT analyses use a decision
threshold. However, top-down impact on raw activations is clear in
Figure 6.

stipulate that a layer is accessible to decision processes).

The interactive architecture is intuitively simpler; it requires

one layer fewer than the modular/autonomous architecture.

As Magnuson et al. (2018) discuss, this also implies that the

modular/autonomous system would require more nodes and

connections than a corresponding interactive system. Thus,

there is no basis for claiming that a system with feedback is

more complex than one without feedback.

Of course, these issues have been argued extensively with-

out apparent progress by proponents of interactive frameworks

(e.g., Magnuson, McMurray, Tanenhaus, & Aslin, 2003a,

2003b; McClelland, 1991, 2013; Samuel, 1997; Samuel &

Pitt, 2003) and proponents of modular/autonomous frame-

works (e.g., McQueen, 2003; Norris & Cutler, 2021; Norris

et al., 2000; Norris, McQueen, & Cutler, 2016). Our goal

here has been to address the key issue of how feedback im-

proves perception, in direct response to claims made by Norris

and Cutler (2021). In light of the demonstration proof that

feedback promotes accuracy and speed under noise and the

computational case we have made for how feedback achieves

this, we have advanced the theoretical debate. A challenge is

how to resolve the debate using experimental results.

Notably, empirical support for feedback is growing. This

includes neural evidence consistent with feedback (e.g., Getz

& Toscano, 2019; Gow & Olson, 2015; Gow, Segawa, Ahlfors,

& Lin, 2008; Myers & Blumstein, 2008; Noe & Fischer-Baum,

2020) as well as new findings using the classic lexically-

mediated compensation for coarticulation (LCfC) paradigm of

Elman and McClelland (1988). The two camps have accepted

LCfC as a crucial test for feedback (e.g., McQueen, Jesse,

& Norris, 2009; Pitt & McQueen, 1998). While McQueen

et al. (2009) failed to replicate the findings of Magnuson et

al. (2003b) using their original materials, Luthra et al. (2021)

noted that a precondition for observing LCfC is having ma-

terials that can drive both robust phoneme restoration and ro-

bust compensation for coarticulation – but few previous LCfC

studies had actually established that their materials elicited

these effects separately before combining them for the LCfC

paradigm. When Luthra et al. (2021) first pretested items to

ensure that they yielded both effects separately, they found ro-

bust LCfC results (with an initial sample of 40 participants and

a direct replication with a second sample of 40 participants).

Theoretical, computational, neural, and behavioral findings

are all converging towards the conclusion that feedback pro-

vides an efficient mechanism for using prior probabilities (em-

bodied in lexical knowledge, in the case of word recognition)

to promote fast, noise-resistant processing.
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