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Abstract

We follow up on recent work demonstrating clear advantages of
lexical-to-sublexical feedback in the TRACE model of spoken
word recognition. The prior work compared accuracy and recog-
nition times in TRACE with feedback on or off as progressively
more noise was added to inputs. Recognition times were faster
with feedback at every level of noise, and there was an accuracy
advantage for feedback with noise added to inputs. However,
a recent article claims that those results must be an artifact of
converting activations to response probabilities, because feed-
back could only reinforce the “status quo.” That is, the claim
is that given noisy inputs, feedback must reinforce all inputs
equally, whether driven by signal or noise. We demonstrate
that the feedback advantage replicates with raw activations. We
also demonstrate that lexical feedback selectively reinforces
lexically-coherent input patterns — that is, signal over noise —
and explain how that behavior emerges naturally in interactive
activation.

Keywords: computational modeling; interactive activation;
spoken word recognition; speech perception

Introduction

Feedback from lexical to sublexical levels in interactive acti-
vation models (e.g., McClelland & Rumelhart, 1981) provides
an intuitive explanation of lexical influences on sublexical
processing — so-called fop-down effects. A classic example is
shown in Figure 1, where an identical visual pattern is inter-
preted as “H” in the context of “T_E” but as “A” in the context
of “C_T”. Lexical contexts implied by neighboring letters seem
to influence the perception of the ambiguous form. Top-down
feedback (from lexical to letter representations) would appear
to provide an explanation of this and many other top-down
effects in visual and spoken word recognition and perception
(e.g., Elman & McClelland, 1988; Ganong, 1980; Luthra et
al., 2021; Reicher, 1969; Rubin, Turvey, & Van Gelder, 1976;
Samuel, 1997; Wheeler, 1970) and perception more generally
(e.g., Fenske, Aminoff, Gronau, & Bar, 2006).

TAECAT

Figure 1: A variant of a famous example (Selfridge, 1955)
of apparent top-down modulation of perception. Identical
forms are interpreted as “H” between “T”” and “E” but as “A”
between “C” and “T"".
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Figure 2: Interactive (left) vs. modular/autonomous architec-
tures (right), exemplified by TRACE (McClelland & Elman,
1986) and Merge (Norris et al., 2000). Black outlines and
connections are key in both TRACE and Merge; grey boxes
and connections are either not implemented in either model
(supralexical) or Merge (input to sublexical). Red elements
highlight differences between approaches. The dashed red
arrow from the grey supralexical box back to the lexical level
highlights a key difference that would be included in an exten-
sion of interactive activation beyond the lexical level.

Norris et al. (2000) argue that intuition misleads us in such
cases, and that top-down effects are not evidence for top-
down feedback during processing. They claim that any such
effect can be explained by modular or autonomous architec-
tures where feedback is absent from perceptual pathways and
top-down knowledge and other constraints are integrated post-
perceptually. The differences between interactive and modu-
lar/autonomous approaches are schematized in Figure 2. In the
interactive architecture, direct top-down feedback from the lex-
ical level modulates sublexical activations. This leads naturally
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to lexical representations influencing sublexical processing.
For example, suppose that the ambiguous H/A form in Figure 1
activates “H” and “A” equally. Because “TAE” rarely occurs
(e.g., AORTAE) but “THE” is a high-frequency pattern, “H”
will receive strong feedback in that context. Because “CHT”
would receive little support (only from low-frequency words
like YACHT or WATCHTOWER) but CAT is a high-frequency
word (and many words contain the pattern “CAT”), “A” would
receive strong feedback in that context.

In the modular/autonomous approach, direct feedback is
posited to be unnecessary, and detrimental. (The claim is that
once top-down and bottom-up inputs are mixed, the system
risks hallucinating, since it can no longer distinguish activa-
tions driven by bottom-up inputs vs. top-down influences.)
The reason feedback is argued not to be necessary is that deci-
sions could be made outside the primary processing pathway,
as depicted on the right side of Figure 2. Here, as in the
Merge model (Norris et al., 2000), the Sublexical layer is du-
plicated as a special-purpose set of sublexical decision nodes
that receive input from both bottom-up and top-down sources.
Crucially, the activations in the Sublexical and Lexical layers
only send and receive activation in the feedforward direction,
protecting lower levels from top-down contamination. The ul-
timate claim is that such an architecture can simulate anything
a feedback (interactive) architecture can, with special-purpose
decision paths generating context-specific metalinguistic de-
cisions. Norris et al. (2000) argued that a system without
feedback is simpler than a system with feedback (a claim we
will revisit in the Conclusions), and therefore one should pre-
fer the modular/autonomous architecture if the two systems
are equally capable of simulating human performance.

Furthermore, Norris et al. (2000) have argued that feedback
cannot possibly improve a system’s performance in any way.
They argue that the best that a spoken word recognition system
can possibly do is activate the sublexical forms (phonemes)
that best correspond to the input and then the lexical forms
that best correspond to the activated phonemes. This idea is
related to the data processing inequality theorem, which holds
that the information in a signal cannot be increased through
subsequent manipulation. However, while it is certainly the
case that the information in the signal cannot be increased, it
is possible for systems to use information differently (e.g., via
different implicit or explicit decision policies) or for systems
to perform noise reduction, which would have clear benefits.
So: is it possible that feedback allows a system to make quali-
tatively different use of information or effectively to reduce
noise (possibly by enhancing coherent patterns in signals)?

Magnuson, Mirman, Luthra, Strauss, and Harris (2018)
found support for such possibilities in the form of compre-
hensive demonstration proofs that feedback improves word
recognition. They measured word recognition accuracy and
recognition time for words presented to TRACE with or with-
out feedback enabled, with clear inputs and then progressively
noisier inputs. With clear or noisy inputs, recognition times
were faster on average with feedback than without. Accuracy

Figure 3: Interactive activation example. Arrows denote exci-
tatory connections (7 input phonemes feed forward to 3 words,
which send feedback to constituent phonemes). Edges with
bulb connectors indicate lateral inhibition links within layers.

was also substantially higher with feedback than without as
noise was added to inputs.

While recognition times were faster with feedback than
without for most words at each level of noise (including zero
noise), some items were recognized more quickly without feed-
back. (Note that such comparisons can only include words
meeting the recognition definition both with and without feed-
back.) Whether a word was recognized more quickly or more
slowly with feedback depended on a variety of factors, such
as the makeup of a word’s similarity neighborhood. But what
drives the propensity for faster, more accurate processing with
feedback than without?

Consider Figure 3, which provides a schematic of a very
simple interactive activation network for modeling spoken
word recognition with just seven phonemes and three words
(CAT, TELL, LOAD). In this simple network, with no ability to
encode temporal order, the input /kaet/ would strongly activate
CAT and also weakly activate TELL (since /t/ connects to both
words). Now consider what happens when noise is added to the
initial input. Feedback will not simply reinforce the original
feedforward pattern (of signal plus noise). For example, given
the input /keet/ + noise, noise will likely provide more bottom-
up input to TELL than the signal alone did. However, noise will
not be reinforced by feedback to the same extent as coherent
input patterns that map onto words. Even slightly greater
activation of CAT relative to TELL from the coherent input
pattern to which noise has been added will allow CAT to
inhibit TELL significantly (depending on exact parameters;
sufficient noise will overwhelm the signal). Over iterations,
this will lead CAT to send increasingly more feedback to its
constituent phonemes relative to the feedback TELL sends to
its constituent phonemes; coherent patterns in the input will
be reinforced to the detriment of nodes activated primarily by
noise, rather than simple “reinforcement of the status quo.” In
other words, the joint probability of {k, &, t} embodied in the
lexicon drives selective reinforcement of coherent lexical (and
sublexical, phonotactically probable) patterns in the input.
This will also drive faster and stronger activation of words
consistent with the input, as Magnuson et al. (2018) reported.
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However, Norris and Cutler (2021) claim that the apparent
advantages for feedback reported by Magnuson et al. (2018)
are due to an artifact: “The effect of noise was simulated by
adding a constant amount of noise to a decision process — the
Luce choice rule — operating on the output of the network ...
In other words, because of a workaround in the model, simula-
tions using TRACE can give the impression that feedback can
improve performance” (Norris & Cutler, 2021, p. 3). We note,
however, Magnuson et al. (2018) specify (p. 3) that they added
Gaussian noise independently to each input element (follow-
ing the procedure of McClelland, 1991). They subsequently
converted activations to response probabilities in accordance
with the procedures used by Frauenfelder and Peters (1998) to
simulate lexical decisions (pp. 118-119), which were based
on procedures used by McClelland and Rumelhart (1981) and
McClelland and Elman (1986) for letter and phoneme recog-
nition. While it seems unlikely that converting to response
probabilities could change the rank ordering of recognition
times, we confirm this by replicating the results of Magnu-
son et al. (2018) with raw activations. We go beyond their
analyses and examine whether phoneme activations indicate
that feedback selectively reinforces lexically-coherent input
patterns.

Simulations

We use the same approach as Magnuson et al. (2018) to
compare word recognition accuracy and recognition time in
TRACE under increasing levels of noise with and without
feedback — with the important difference that we use raw acti-
vations rather than response probabilities.

Procedure

We conducted simulations using jsTRACE, a recent re-
implementation of TRACE in JavaScript (Magnuson, Curtice,
Grubb, Crinnion, & Sossounov, in preparation). We used the
default slex TRACE lexicon, consisting of 212 words (as well
as the “silence” word used to represent a state of no input; the
silence word was not included in analyses). We used three
levels of feedback (0.00, 0.015, and 0.03, the last being the de-
fault level with small lexicons in TRACE). Inputs were default
TRACE inputs (distributed representations of pseudo-spectral
transformations of acoustic-phonetic features over time). We
combined each level of feedback with seven levels of Gaus-
sian noise (with mean of zero and standard deviation ranging
from 0.0 to 1.5 in steps of 0.25). A value sampled from the
distribution was added independently to each cell of the in-
put matrix prior to the simulation. Any negative input values
were replaced with zero. To ensure that results under noise
were robust, we conducted 10 simulations of every word in
the lexicon at all levels of noise greater than zero. We allowed
simulations to run for 100 time steps (cycles) in TRACE.

Decision policy Note that the proposal that the best a word
recognition system can do is choose the word with highest
activation (Norris & Cutler, 2021) does not specify when a de-
cision should be made. We cannot simply take the time of peak

activation, as a target’s activation may continue increasing for
some time after it has become the dominantly activated item
(potentially resulting in longer recognition times for words
that are more strongly activated, relative to a word that might
have an earlier but lower peak). A further complication is
that if we were to present the model with nonword (or novel
word) inputs, simply taking the word with maximum activa-
tion as the winner would lead to erroneous “recognition.” We
followed the example of Magnuson et al. (2018) and used a
simple threshold-based policy, where a correct identification is
defined as the target reaching or exceeding that threshold and
no other item reaching it. Recognition time is the cycle where
the target’s activation first reaches or exceeds the threshold.
We first identified the activation threshold that would maxi-
mize accuracy for zero feedback without noise; this was 0.4.
We then applied that threshold to every simulation (that is, at
every level of feedback and noise). Note that any potential bias
in this policy favors simulations without feedback, since the
threshold optimizes accuracy with zero noise and zero feed-
back. Crucially, all analyses were applied to raw activations.
We did not transform activations to response probabilities.

Results

In Figure 4, we see a clear replication of the results of Magnu-
son et al. (2018) based on raw activations. Recognition time
(left panel, only including recognized words) is faster with
feedback than without at every level of noise (up to sd = 1.25
or 1.5, where there were too few correct trials with feedback
off to make meaningful comparisons). Feedback also yields
higher accuracy (right panel) once noise is added.

In Figure 5, we plot recognition times at each noise level
for words that were correctly recognized with feedback at
the default value of 0.03 and without feedback. Again, we
repeated the simulation of each word 10 times at each level
of noise greater than zero. A clear, consistent advantage is
observed for the majority of words at each level of noise.

Contra assertions by Norris and Cutler (2021), feedback
promotes more robust word recognition performance. Thus,
the results of Magnuson et al. (2018) were not an artifact of us-
ing response probabilities rather than raw activations. TRACE
recognized words more quickly with feedback than without
at every level of noise (including no noise), and feedback pro-
moted higher accuracy as more noise was added. How would
this be possible if feedback simply reflected signal and noise
equally, as Norris and Cutler (2021) claim? We can explore
this by examining how phoneme and word activations change
as noise is added with and without feedback.

First, consider phoneme activations. In Figure 6, we plot
the mean activation of each input phoneme (solid red lines)
averaged over all items (all words in slex) along with the
mean activation of the next-most-activated phoneme at that
position (dashed blue lines). Although the maximum word
length is 9, the number of words contributing to means for
later phonemes decreases, since most words are shorter. There
is a clear pattern: with feedback (right panels), there is greater
separation between Target phonemes and Next phonemes than

2968



. 1.0
2] - .
© 704 Feedback I 0.9 S ;
> x
@) - 8.015 P = g 0.8
EJ) = 0.03 E 0.7+
< = x '
7 > n )
& 60- 7 gos W\
0 L < 3 %7 =
£ 7 £ 04 \
c iz
kel 7= 0.3 N
= 501 s
g) 0.2 1 =
3 o 0.1 I
g | == N
= 0.0 ==

0.00 0.25 050 0.75 1.00 1.25 1
Noise (SD)

0.00 025 050 075 1.00 1.25 1.50
Noise (SD)

.50

Figure 4: Replication of Magnuson et al. (2018) using activations instead of response probabilities. Each point represents the
outcome of simulating every word in the 212-word slex lexicon, with 10 simulations conducted with each word at each noise
level greater than zero. The threshold was set to 0.4, which maximized accuracy without feedback and with noise set to zero.
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simulation per word with and without feedback. At noise levels greater than 0, there were 2120 simulations (10 repetitions of
each word with Gaussian noise added to input). Items classified as “faster” were recognized more quickly (reached the threshold
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Figure 6: Phoneme activations over time for words at two levels of feedback and three levels of noise averaged over all 212 words
in the slex lexicon. In each plot, the activations of the phoneme corresponding to the input (solid red lines) and the next-most
activated phoneme (dashed blue lines) are plotted. Later phonemes are based on fewer words (those up to nine phonemes in
length). Target phoneme activations are generally higher and Next activations generally lower with feedback on.

without (left panels). This is a result both of greater Target
phoneme activation with feedback vs. without and modestly
lower activation of Next phonemes with feedback vs. without
(mainly observable as sharper, lower peaks for Next phonemes
with feedback, indicative of greater lateral inhibition from
Target phonemes). If signal and noise were equally reinforced
by feedback, we would expect to see similar amplification of
both Target and Next phonemes with feedback. Consistent
with our discussion of Figure 3, feedback selectively boosts
those phonemes that constitute lexically-coherent patterns —
that is, series of phonemes that constitute words.

Discussion

The simulations we presented demonstrate clear benefits of
feedback in the interactive framework. Feedback promotes
faster recognition time and makes the model robust against

noise, as demonstrated by preservation of accuracy with feed-
back as compared to without. Contra assertions made by
Norris and Cutler (2021), this is not an artifact of using re-
sponse probabilities rather than raw activations. Magnuson et
al. (2018) used the standard approach of using response prob-
abilities, but here we used raw activations. Our results were
extremely similar (see Figures 4 and 5), with faster recog-
nition with feedback than without at every noise level and
substantially higher accuracy with feedback than without with
moderate to high levels of noise (SD > 0.5).

We extended the earlier work by tracking phoneme ac-
tivations. In Figure 6, we plotted the mean activations of
position-specific phonemes from target words and the next-
most-activated phonemes at those positions. Relative to the no-
feedback simulations, feedback promoted greater differences
between target phonemes and next-most-activated phonemes.
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Feedback drives selective reinforcement of lexically-
probable patterns, which leads to faster recognition times as
well as higher accuracy with feedback than without at multi-
ple levels of noise added to inputs. Examining the impact of
feedback on the phoneme level (Figure 6) reveals that feed-
back drives a greater separation between input phonemes and
next-most-activated phonemes when noise is added to inputs.
Feedback provides an effective and efficient mechanism to
distinguish signal from noise.

Conclusions

To return to the larger theoretical issues we touched on in the
Introduction, let us consider again the claims that feedback (a)
cannot improve perceptual processing, (b) entails hallucina-
tion, (c¢) is more complex than a system without feedback, and
(d) is not necessary. We have shown here that feedback does
improve perceptual processing,! replicating Magnuson et al.
(2018) and extending their results with our new examination
of selective reinforcement of lexically-probable signals over
noise. Previous papers have addressed hallucination, begin-
ning with the original TRACE paper (McClelland & Elman,
1986), where feedback was set to a level that promotes bottom-
up priority.

The final two claims are closely linked: We agree that many
apparent top-down effects can be simulated by special-purpose,
non-perceptual pathways (as in the right side of Figure 2).
However, if the two architectures can both account for relevant
data (though note that this has not been fully established), then
it only matters that feedback is not necessary if there is a reason
to prefer a system without feedback. Thus, a crucial issue is
whether an interactive framework (as in Figure 2) is more
complex than an analogous modular/autonomous system.

Ironically, one of the criticisms Norris et al. (2000) lev-
eled against feedback in TRACE is that it appears only to be
there to simulate top-down effects, while serving no functional
purpose. This assertion was based on the finding that moti-
vated the Magnuson et al. (2018) simulations: a report from
Frauenfelder and Peters (1998) that in simulations comparing
TRACE with feedback on vs. off, using 21 carefully selected
words, about half the words were recognized more quickly
with feedback, and about half were recognized more quickly
without feedback. While Frauenfelder and Peters (1998) had
good reasons for selecting their items, their results do not
generalize beyond those items (as our simulations and those
of Magnuson et al., 2018, demonstrate, while including their
words and many more). The irony is that the sublexical deci-
sion cul-de-sac in the modular/autonomous architecture serves
no functional purpose. While Norris et al. (2000) argue that it
serves a necessary role as a readout or decision layer, this is
simply a stipulation. An unspecified process still must “read”
the activations and apply a decision policy. We can make the
same stipulation about any layer in any model (i.e., we can

A reviewer pointed out that our RT analyses use a decision
threshold. However, top-down impact on raw activations is clear in
Figure 6.

stipulate that a layer is accessible to decision processes).

The interactive architecture is intuitively simpler; it requires
one layer fewer than the modular/autonomous architecture.
As Magnuson et al. (2018) discuss, this also implies that the
modular/autonomous system would require more nodes and
connections than a corresponding interactive system. Thus,
there is no basis for claiming that a system with feedback is
more complex than one without feedback.

Of course, these issues have been argued extensively with-
out apparent progress by proponents of interactive frameworks
(e.g., Magnuson, McMurray, Tanenhaus, & Aslin, 2003a,
2003b; McClelland, 1991, 2013; Samuel, 1997; Samuel &
Pitt, 2003) and proponents of modular/autonomous frame-
works (e.g., McQueen, 2003; Norris & Cutler, 2021; Norris
et al., 2000; Norris, McQueen, & Cutler, 2016). Our goal
here has been to address the key issue of how feedback im-
proves perception, in direct response to claims made by Norris
and Cutler (2021). In light of the demonstration proof that
feedback promotes accuracy and speed under noise and the
computational case we have made for how feedback achieves
this, we have advanced the theoretical debate. A challenge is
how to resolve the debate using experimental results.

Notably, empirical support for feedback is growing. This
includes neural evidence consistent with feedback (e.g., Getz
& Toscano, 2019; Gow & Olson, 2015; Gow, Segawa, Ahlfors,
& Lin, 2008; Myers & Blumstein, 2008; Noe & Fischer-Baum,
2020) as well as new findings using the classic lexically-
mediated compensation for coarticulation (LCfC) paradigm of
Elman and McClelland (1988). The two camps have accepted
LCAC as a crucial test for feedback (e.g., McQueen, Jesse,
& Norris, 2009; Pitt & McQueen, 1998). While McQueen
et al. (2009) failed to replicate the findings of Magnuson et
al. (2003b) using their original materials, Luthra et al. (2021)
noted that a precondition for observing LCfC is having ma-
terials that can drive both robust phoneme restoration and ro-
bust compensation for coarticulation — but few previous LCfC
studies had actually established that their materials elicited
these effects separately before combining them for the LCfC
paradigm. When Luthra et al. (2021) first pretested items to
ensure that they yielded both effects separately, they found ro-
bust LCfC results (with an initial sample of 40 participants and
a direct replication with a second sample of 40 participants).

Theoretical, computational, neural, and behavioral findings
are all converging towards the conclusion that feedback pro-
vides an efficient mechanism for using prior probabilities (em-
bodied in lexical knowledge, in the case of word recognition)
to promote fast, noise-resistant processing.

Acknowledgments

This research was supported by NSF BCS-PAC 1754284, NSF
BCS-PAC 2043903, and NSF NRT 1747486 (PI: ISM). SL
was supported by an NSF Graduate Research Fellowship.
AMC and PG were supported by NIH T32 DC017703 (E.
Myers and I-M. Eigsti, PIs). We thank Arty Samuel, Thomas
Hannagan, and Rachel Theodore for helpful discussions.

2971



References

Elman, J. L., & McClelland, J. L. (1988). Cognitive penetra-
tion of the mechanisms of perception: Compensation for
coarticulation of lexically restored phonemes. Journal
of Memory and Language, 27(2), 143—-165.

Fenske, M., Aminoff, E., Gronau, N., & Bar, M. (2006). Top-
down facilitation of visual object recognition: Object-
based and context-based contributions. Progress in
Brain Research, 155, 3-21. doi: 10.1016/S0079-
6123(06)55001-0

Frauenfelder, U. H., & Peters, G. (1998). Simulating the
time course of spoken word recognition: An analysis
of lexical competition in TRACE. In Localist connec-
tionist approaches to human cognition. (pp. 101-146).
Mahwah, NJ, US: Lawrence Erlbaum Associates Pub-
lishers.

Ganong, W. F. (1980). Phonetic categorization in auditory
word perception. Journal of Experimental Psychology:
Human Perception and Performance, 6(1), 110-125.
doi: https://doi. org/10. 1037/0096-1523. 6. 1. 110

Getz, L. M., & Toscano, J. C. (2019). Electrophysiological
evidence for top-down lexical influences on early speech
perception. Psychological Science, 30(6), 830-841.

Gow, D., & Olson, B. (2015). Lexical mediation of phono-
tactic frequency effects on spoken word recognition: A
granger causality analysis of mri-constrained meg/eeg
data. Journal of Memory and Language, 82, 41-55.

Gow, D., Segawa, J., Ahlfors, S., & Lin, F.-H. (2008). Lexical
influences on speech perception: A granger causality
analysis of meg and eeg source estimates. Neurolmage,
43, 614-623.

Luthra, S., Peraza-Santiago, G., Beeson, K., Saltzman, D.,
Crinnion, A. M., & Magnuson, J. S. (2021). Ro-
bust lexically-mediated compensation for coarticulation:
Christmash time is here again. Cognitive Science, 45(4),
e12962.

Magnuson, J. S., Curtice, A., Grubb, S., Crinnion, A. M., &
Sossounov, N. (in preparation). jSTRACE: A javascript
reimplementation of the TRACE model of speech per-
ception and spoken word recognition.

Magnuson, J. S., McMurray, B., Tanenhaus, M. K., & Aslin,
R. N. (2003a). Lexical effects on compensation for coar-
ticulation: A tale of two systems? Cognitive Science,
27,795-799.

Magnuson, J. S., McMurray, B., Tanenhaus, M. K., & Aslin,
R. N. (2003b). Lexical effects on compensation for
coarticulation: The ghost of christmash past. Cognitive
Science, 27, 285-298.

Magnuson, J. S., Mirman, D., Luthra, S., Strauss, T., & Harris,
H. (2018). Interaction in spoken word recognition mod-
els: Feedback helps. Frontiers in Psychology, 9(369).
doi: 10. 3389/fpsyg. 2018. 00369

McClelland, J. L. (1991). Stochastic interactive processes and
the effect of context on perception. Cognitive Psychol-
0gy, 23, 1-44. doi: 10. 1016/0010-0285(91)90002-6

McClelland, J. L. (2013). Integrating probabilistic models of
perception and interactive neural networks: a historical
and tutorial review. Frontiers in Psychology, 4, 503. doi:
10. 3389/fpsyg. 2013. 00503

McClelland, J. L., & Elman, L., J. (1986). The TRACE model
of speech perception. Cognitive Psychology, 18, 1-86.
doi: 10. 1016/0010-0285(86)90015-0

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive
activation model of context effects in letter perception:
I. An account of basic findings. Psychological Review,
88(5), 375-407. (Place: US Publisher: American Psy-
chological Association) doi: 10. 1037/0033-295X. 88.
5.375

McQueen, J. M. (2003). The ghost of christmas future: didn’t
scrooge learn to be good? commentary on magnuson,
mcmurray, tanenhaus, and aslin. Sci, 27, 795-799. doi:
10. 1207/s15516709c0g2705¢

McQueen, J. M., Jesse, A., & Norris, D. (2009). No lexical-
prelexical feedback during speech perception or: Is it
time to stop playing those christmas tapes? Journal of
Memory and Language, 61(1), 1-18.

Mpyers, E., & Blumstein, S. (2008). The neural bases of the
lexical effect: An fmri investigation. Cerebral Cortex,
18(2), 278-288.

Noe, C., & Fischer-Baum, S. (2020). Early lexical influences
on sublexical processing in speech perception: Evidence
from electrophysiology. Cognition, 197, 1-14.

Norris, D., & Cutler, A. (2021). More why,
less how: What we need from models of
cognition. , 213, 104688. Retrieved from

https://www.sciencedirect.com/science/article/pii/S00!

doi: https://doi.org/10.1016/j.cognition.2021.104688

Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging
information in speech recognition: feedback is never
necessary. Behavioral and Brain Sciences, 23(3), 299-
370. doi: 10. 1017/s0140525x00003241

Norris, D., McQueen, J. M., & Cutler, A. (2016). Prediction,
Bayesian inference and feedback in speech recognition.
Language, Cognition and Neuroscience, 31(1), 4—18.

Pitt, M. A., & McQueen, J. M. (1998). Is compensation for
coarticulation meditated by the lexicon? Journal of
Memory and Language, 39, 347-370.

Reicher, G. M. (1969). Perceptual recognition as a function
of meaningfulness of stimulus materials. Journal of
Experimental Psychology, 81, 275-280.

Rubin, P., Turvey, M. T., & Van Gelder, P. (1976). Initial
phonemes are detected faster in spoken words than in
spoken nonwords. Perception & Psychophysics, 19,
394-398.

Samuel, A. G. (1997). Lexical activation produces potent
phonemic percepts. , 32, 97-127.

Samuel, A. G., & Pitt, M. A. (2003). Lexical activation
(and other factors) can mediate compensation for coar-
ticulation. Journal of Memory and Language, 48(2),
416-434.

2972



Selfridge, O. G. (1955). Pattern recognition and modern
computers. In Proceedings of the March 1-3, 1955,
Western Joint Computer Conference (p. 91-93). New
York, NY, USA: Association for Computing Machinery.
doi: 10.1145/1455292.1455310

Wheeler, D. D. (1970). Processes in word recognition. Cogni-
tive Psychology, 1, 59-85.

2973



