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Abstract
We study a unified approach and algorithm for constructive discrepancy minimization based
on a stochastic process. By varying the parameters of the process, one can recover various
state-of-the-art results. We demonstrate the flexibility of the method by deriving a discrepancy
bound for smoothed instances, which interpolates between known bounds for worst-case and
random instances.

1 Introduction

Given a universe of elements U = {1,...,n} and a collection & = {S1,..., Sy} of subsets S; C U,
the discrepancy of the set system S is defined as

dise(5) = x:Ugl{H—ll,l} 212% ‘ gs: x(g)‘ ’

That is, the discrepancy is the minimum imbalance that must occur in at least one of the sets
in S over all bipartitions of U. More generally for an m x n matrix A, the discrepancy of A is
defined as disc(A) = minge_1 13 [[Az[|,,. Note that the definition for set systems corresponds to
choosing A as the incidence matrix of S, i.e., A;; = 1 if j € S; and 0 otherwise. Discrepancy is a
well-studied area with several applications in both mathematics and theoretical computer science
(see [9, 12, 20]).

Spencer’s problem. In a celebrated result, Spencer [26] showed that the discrepancy of any set
system with m = n sets is O(y/n), and more generally O(y/nlog(2m/n)) for m > n. To show
this, he developed a general partial-coloring method (a.k.a. the entropy method), building on a
counting argument of Beck [8], that has since been used widely for various other problems. A similar
approach was developed independently by Gluskin [15]. Roughly, here the elements are colored in
O(logn) phases. In each phase, an )(1) fraction of the elements get colored while incurring a small
discrepancy for each row.

Beck-Fiala and Komlés problems. Another central question is the Beck-Fiala problem where
each element appears in at most k sets in §. Equivalently, every column of the incidence matrix
is k-sparse. The long-standing Beck-Fiala conjecture [10] states that disc(S) = O(Vk). A further
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generalization is the Komlés problem, also called the vector balancing problem, about the discrep-
ancy of matrices A with column fe-norms at most 1. Komlds conjectured that disc(A) = O(1) for
any such matrix. Note that the Komlds conjecture implies the Beck-Fiala conjecture.

Banaszczyk showed an O(y/logn) bound for the Komlés problem based on a deep geometric
result [2]. Here, the full coloring is constructed directly (in a single phase), and this result has also
found several applications. The resulting O(y/klogn) bound for the Beck-Fiala problem is also the
best known bound for general k.!

In contrast, the partial coloring method only gives weaker bounds of O(logn) and O(k/?logn)
for these problems — the O(logn) loss is incurred due to the O(logn) phases of partial coloring.

Limitations of Banaszczyk’s result. FEven though Banaszczyk’s method gives better bounds
for the Komlds problem, it is not necessarily stronger, and is incomparable to the partial coloring
method. E.g., it is not known how to obtain Spencer’s O(y/n) result (or anything better than the
trivial O(y/nlogn) random-coloring bound) using Banaszczyk’s result. A very interesting question
is whether there is a common generalization that unifies both these results and techniques.

Algorithmic approaches. Both the partial coloring method and Banaszczyk’s result were origi-
nally non-algorithmic, and a lot of recent progress has resulted in their algorithmic versions. Start-
ing with the work of [3], several different algorithmic approaches are now known for the partial
coloring method [19, 25, 16, 13], based on various elegant ideas from linear algebra, random walks,
optimization and convex geometry.

In further progress, an algorithmic version of the O(y/log n) bound for the Komlds problem was
obtained by [4], see also [6], and [5] for the more general algorithmic version of Banaszczyk’s result.
In related work, Levy et al. [18] gave deterministic polynomial time constructive algorithms for the
Spencer and Komlés settings matching O(y/nlog(2m/n)) and O(y/logn) respectively.

A key underlying idea behind many of these results is to perform a discrete Brownian motion
(random walk with small steps) in the {—1,1}" cube, where the update steps are correlated and
chosen to lie in some suitable subspace. However, the way in which these subspaces are chosen
for the partial coloring method and the Komlds problem are quite different. We give a high level
description of these approaches as this will be crucial later on.

In the partial coloring approach, the walk is performed in a subspace orthogonal to the tight
discrepancy constraints. If the discrepancy for some row A; reaches its target discrepancy bound,
the update Az to the coloring satisfies A; - Ax = 0. As the walk continues over time, the subspace
dimension gets smaller and smaller until the walk is stuck. At this point, the subspace is reset and
the next phase resumes.

On the other hand, the algorithm for the Komlds problem does not consider the discrepancy
constraints at all, and chooses a different subspace with a certain sub-isotropic property which
ensures the discrepancy incurred for a row is roughly proportional to its ¢ norm, while ensuring
that the rows with large fo-norm incur zero-discrepancy. In particular, in contrast to the partial
coloring method, all the elements are colored in a single phase, and the discrepancy constraints are
ignored.

The need for a combined approach. Even though the O(y/klogn) bound for the general
Beck-Fiala problem is based on Banaszczyk’s method, all the important special cases where the
conjectured O(v/k) bound holds are based on the partial coloring method. For example, Spencer’s
problem with m = O(n) sets corresponds to special case of the Beck-Fiala problem with k& = O(n).

'For k = o(logn) an improved bound follows from the 2k — 1 bound by [10].



So Spencer’s six-deviations result resolves the Beck-Fiala conjecture for this case, which we do not
know how to obtain from Banaszczyk’s result.

The Beck-Fiala conjecture also holds for the case of random set systems with m > n. In
particular, Potukuchi [24] considers the model where each column has 1’s in k randomly chosen
rows and shows that the discrepancy is O(v/k) with high probability. See also [14, 7, 17, 1] for
related results. Potukuchi’s result crucially relies on the partial coloring approach, and it is not
clear at all how to exploit the properties of random instances in Banaszcyck’s approach.

Thus a natural question and a first step towards resolving the Beck-Fiala and Komlds conjecture,
and making progress on other discrepancy problems, is whether there exist more general techniques
to obtain both Spencer’s and Potukuchi’s result and the O(y/klogn) bound for the Beck-Fiala
problem in a unified way.

1.1 Our results

We present a new unified framework that recovers all the results mentioned above, and various
other state-of-the-art results as special cases. Our algorithm is based on a derandomization of a
stochastic process that is guided by a barrier-based potential function.

Given a matrix A, the algorithm starts with the all-zero coloring z¢. Let x; € [—1,1]" be the
coloring at time. The algorithm maintains a barrier b; > 0 over time and defines the slack of row i
at time ¢ as

si(t) = b — Y ai(j)z(j) /\Zal (1 —2:(5)%). (1)
j=1

current discrepancy remaining variance

Notice that when all x4(j) eventually reach 41, the remaining variance term is zero and the slack
measures the gap between the discrepancy and the barrier. We define the potential

B(t) =) si(t)™” (2)

for some fixed p > 1, that penalizes the rows with small slacks and blows up to infinity if some slack
approaches zero. If we can ensure that the slacks are always positive and the potential is bounded,
then the discrepancy is upper bounded by value of the barrier when the algorithm terminates.

At each time step, the algorithm picks a random direction v; that is orthogonal to some of the
rows with the least slack, and satisfies some additional properties, and updates the coloring by a
small amount in the direction v;. The barrier b; is also updated. These updates are chosen to
ensure that the potential does not increase in expectation, and hence all the slacks stay bounded
away from 0. We give a more detailed overview in Section 2.

By changing the parameters p, A depending on the problem at hand, we obtain several results
using a unified approach.

1. Set coloring [26]. For any set system on n elements and m > n sets, disc(S) = O(y/nlog(2m/n)).

|, <1, disc(4) = O(v/log n).

3. Random/Spectral Hypergraphs [24]. Let A € {0,1}™*™ be the incidence matrix of a set
system with n elements and m sets, where element lies in at most k sets and let v =
max, | 1 |y|=1 ||[Av||. Then for m > n, disc(S) = Ok + ).

2. Komlds problem [6]. For any A € R™*" with columns norms || A7



4. Gaussian Matrix [11]. For a random matrix A € R™*" with each entry A;; ~ N(0,0?) inde-

pendently, with probability at least 1 — (1/m?), disc(4) = O (0 (vn+ logm) - y/log 277”)

More generally, given a matrix A, we state the following result based on optimizing the various
parameters of the algorithm, depending on the properties of A. This allows our framework to be
applied in a black-box manner to a given problem at hand.

Theorem 1.1. For a matriz A € R™*™ with HAjH2 < L and |a;(j)| < M for all i € [m],j € [n],
let h: Rt — R* be a non-increasing function such that for every subset S C [n] and i € [m],

S w(i)? < 18] - h(IS))- (3)

jes

Then, for any p > 1, there exists a vector x € {—1,1}" such that ||Ax||, < 5by + 2M, where

bp = min <\/8(p +1)(48m)1/P - 3, 250L+/log (2m)> . (4)

where [ = f;?f h(n — t)(n —t)~'/Pdt.

Let us see how Theorem 1.1 directly leads to the results stated above.

Set coloring. As ||A7|]z < /m, we have L = y/m, and as > jes a;(j)? < |S|, we can set h(t) =1
for all t € [n]. Consider (4) and suppose p > 1.1 so that p/(p — 1) = O(1). Then

n—2
8= h(n —t) - (n —t)"YPdt = O(n*=1/P),
t=0

and the first bound in (4) gives by = O(pn'/?(m/n)'/?). Setting p = log(2m/n) gives Spencer’s
O(y/nlog(2m/n)) bound.

Interestingly, the above result gives a new proof of Spencer’s six-deviations result based on a
direct single-phase coloring. In contrast, all the previously known proofs of this result [3, 19, 25, 13]
required multiple partial coloring phases.

Komlés problem. Here L = 1 and the second term in (4) directly gives a O(y/logm) bound?.
This also implies an O(y/logn) bound as at most n? rows can have £;-norm more than 1, and we

can assume that m < n2.

Similarly, bounding h(t) using standard concentration bounds, directly gives the following re-
sults for various models of random matrices.

Theorem 1.2 (Sub-Gaussian Matrix). Let A € R™*™ with each column drawn independently from

a distribution D, where the marginal of each coordinate is sub-Gaussian with mean 0 and variance
o2, Then, forn <m < 200 disc(A) = O(o+/nlog(2m/n)), with probability at least 1 — (1/m?).

Theorem 1.3 (Random Matrix). Let A € R™*", m > n such that every column of A is drawn
independently from the uniform distribution on {x € R™ : ||z|, < 1}. Then disc(A) = O(1) with
probability at least 1 — (1/m?).

2Tt would be interesting to construct an explicit family of examples where the discrepancy obtained by our approach

is Q(vTogn).



1.1.1 Flexibility of the method

An important advantage of the method is it flexibility, which can be used to obtain several additional
results.

Subadditivity. Given A, B € R™*" can we bound disc(A + B) given bounds on disc(A) and
disc(B)? Such questions can be directly handled by this framework by considering a weighted
combination of two different potential functions — one for A and another for B.

More precisely, let us define sdisc(A), the Stochastic Discrepancy of a matrix A, to be the upper
bound on discrepancy obtained by the Potential Walk described in Algorithm 1. For this notion,
we have the following approximate subadditivity for arbitrary matrices.

Theorem 1.4 (Subadditivity of Stochastic Discrepancy). For any two arbitrary matrices A, B €
R™>" there exists v € {—1,1}" such that

|{a;,x)| < sdisc(A)  for every row a; of A, and
[(b;, x)| < sdisc(B)  for every row b; of B.

In particular, this implies that sdisc(A + B) < sdisc(A) + sdisc(B).

Here a < b means that a = O(1)b. The theorem is algorithmic if A, B are given. It also implies
that for any matrix A, we have sdisc(A) < ming(sdisc(B) + sdisc(4A — B)).

Similar questions have been studied previously in the context of understanding the discrepancy
of unions of systems [22, 23]. For example, other related quantities such as the y-norm and
the determinant lower bound are also subadditive [22, 23], We remark that the additive bound
cannot hold for the (actual) discrepancy or even hereditary discrepancy?, and a logarithmic loss is
necessary. For this reason, the previous additive bounds based on y2-norm and the determinant
lower bound lose extra polylogarithmic factors when translated to discrepancy.

A direct application of Theorem 1.4 is the following.

Theorem 1.5 (Semi-Random Komlés). Let C' € R™*"™ be an arbitrary matriz with columns satis-
fying HCjH2 <1 for all j € [n], and R € R™™ be a matriz with entries drawn i.i.d. from N(0,0?).

Then, for n < m < 200V with probability at least 1 — (1/m?),
disc(C + R) = O (x/logn + J\/nlog(2m/n)) .

For m = O(n), the bound above is O(y/logn + o+/n), which is better than the bound of
O(v/logn(1 + o+/n)) obtained by directly applying the best-known bound for the Komlés problem
to C' + R.

As another application, consider a matrix C' with n columns and two sets of rows, A and B,
where each row in A has entries in {0,1}, and the column norm of every column restricted to
rows in B is at most 1. Suppose that A has O(n) rows. Applying the framework gives a coloring
with O(y/n) discrepancy for rows in A and O(y/logn) for rows in B.* Notice that using previous
techniques, if we apply the partial coloring method to get O(y/n) discrepancy for A, this would
give O(logn) for rows of B. On the other hand, if we apply try to obtain O(y/logn) discrepancy
for B, all the known methods would incur O(y/nlogn) discrepancy for A.

3 A classical example due to Hoffman gives two set systems A and B, each with hereditary discrepancy 1, but their
union has discrepancy Q(logn/loglogn) [21].
“This answers a question of Haotian Jiang.



Relaxing the function h(-). Recall that the function h in Theorem 1.1, that controls how the
£5 norms of rows decrease when restricted to subsets S of columns, and plays an important role in
the bounds. In many random or pseudo-random instances however, a worst case bound on h can be
quite pessimistic. For example, here even though most rows decrease significantly when restricted
to S, h can remain relatively high due to a few outlier rows. The following result gives improved
bound for such settings where for any subset S of columns, most row sizes restricted to S do not
deviate much from their expectation if S is chosen at random.

Theorem 1.6 (pseudo-random bounded degree hypergraphs). Let A € {0,1}™*" such that HAj Hl <
k. Suppose there exists B < k s.t. for any S C [n] and any ¢ > 0, the number of rows of A with

>l = lad, - (1S1/m)] = 8 (5)

jes
is at most ¢~2|S|. Then disc(A) = O(VE + f).

As discussed in [24], one can set < max,q ||=1 ||Av]| in (5), which in particular gives
Potukuchi’s result [24] for random k-regular hypergraphs as 8 = O(k'/?) in this case.

Combining with Theorem 1.4, this extends to the following semi-random setting. Consider a
random k-regular hypergraph A with n vertices and n edges. Suppose an adversary can arbitrarily
modify A by adding or deleting vertices from edges such that degree of any vertex changes by at
most t. How much can this affect the discrepancy of the hypergraph?

Theorem 1.7 (Semi-Random Hypergraphs). Consider a random k-regular hypergraph with inci-
dence matriz A € R™*™ with m > n, and let C' € {—1,0,1}"*" be an arbitrary matriz with at most

t non-zero entries per column. Then disc(A+ C) = O (\/E + +/tlog n> with probability 1 — n~1),

2 The Framework

Given a matrix A € R™*" we start at some xg and our goal is to reach an xp in {—1,1}" with
small discrepancy. The basic idea will be to apply a small random update (of size §) to z; at step ¢
for T' steps, where the update will be chosen with care. We use the slack function and the potential
function defined in (1) and (2) to implement this approach. The figure below gives a high level
description of the algorithm.

Algorithm 1: Potential Walk

1 Input: A matrix A € R™*", a potential function ® : R x R" — R™.

2 Let g = 0,t = 0. Let T = (n — 2)/4°.

3 for t € [T] do

4 Select vy such that: (1) E.[®(t + 1, 2 + eovy)] < P(t, z4), (il) 2 + 0vy € [—1,1]™, and (iii)
(x,vr) = 0, where € is a Rademacher random variable (£1 with probability 1/2).

5 Let x441 = oy + €dvy.

6 Output: zr

2.1 Example: Komlés setting

We first give an overview of the ideas by describing how the framework above works for the Komlés
setting. Recall that here A € R™*™ has columns satisfying HAj H2 < 1. To minimize notation, let

6



us assume here that m = n (this is also the hardest case for the problem).

At time ¢, let Vy = {j € [n] : |z4(j)] <1 —1/2n} and let n; = |V;|. These are the variables that
are “alive”, and not yet “frozen”. To ensure that z; € [—1,1]", the update v; will only change the
variables in V,. We also set (v;,2;) = 0, which ensures that |z||* = 62t for any t € [0,T]. So v;

satisfies
v (4) =0 for all j €V, and (vy, ) = 0. (6)

As |z4(5)] > (1 —1/2n) for all j ¢ Vi, we have

(n—mn)(1—1/2n)" < (j)* < Y m(j)* =

JEVe JEn]

. . . . _ 52t 52,
So the number of alive variables at time ¢ satisfies n; > n A=a/G0)2 >n— 0t —1.

Blocking large rows. To ensure the two-sided bound |}, a;(j)z(j)| < bo, we create a new
row —a; for each row a; at the beginning. Now, as the squared 2-norm of every column of A is at
most 2, at any time ¢, the number of rows with devt a;(§)? > 12 is at most |V4|/6 = n;/6. Let us
call such rows large (at time ¢). Otherwise, the row is small. We additionally constrain v; so that

(aj,v¢) = 0 for all rows {i : Z ai(j)? > 12}. (7)
JEVL
This ensures that a row only starts to incur any discrepancy once it becomes small. So at step ¢,
we will define the slacks only for small rows and only such rows will contribute to the potential
®(t). Let Z; denote the set of small rows at time ¢. In the slack function (1), we will set b, = by for
all t and A = 275bg. So, at the beginning of the algorithm, when x((j) = 0 for all j, we have

- 1 | Zol W (2Y
(I)(O) = Z (bO ). Zje[n] ai(j)2)p < (bO _ 12)\)10 < <b0> .

i€Zp

At any time ¢, the change in potential ®(t + 1) — ®(¢) is due to (i) new rows becoming small
and entering Z;,1 and (ii) and the change slack of rows in Z;. As each row has discrepancy 0 until
it becomes small, the total contribution of step (i) over the entire algorithm is at most n(2/bg)P.

So the main goal will be to show that ® does not rise due to step (ii). This will ensure that the
potential throughout the algorithm is at most 2n(2/bo)?, which gives the . a;(j)z(j) < by for all
i.

Bounding the increase in ®. We now describe the main ideas of the algorithm and computa-
tions for the change in ® in step (ii). The desired O(y/logn) will then follow directly by optimizing
the parameters by and p in (1).

Let e;; denote a vector in R™ with j-th entry a;(j)?x4(j). At step t, x; changes as ;1| — x4 =
ed - vy and, by a simple calculation, the approximate change in s;(t) is:

(t + 1) - 32( ) (ZA(et,i,vt> - (ai,vt>) o + )\< (2) ( )>52

where ¢ is a Rademacher random variable and a(? denotes the vector with j-th entry a(j)?. The
error terms not included above are all higher powers of 4, and can be ignored for small enough §
as long as all coefficients are bounded. We formalize this in Section 2.2 and Appendix A.

Then, up to second order terms in 6,

Ot +1) — (1) = f()0° + g(t)ed



where,

) €t,i,Vt) — \Qi, Ut 2
I)X:Z=H1 @+U§:@M,,> (@i, ve))

(+\p+2 )
€T 2 i€l si(t)

(2X (e, ve) — (ai, ve))

t) = ’ .
g(t) pz pwoTE
1€L

To bound the expected change in ®, note that the expectation of the second term g(t)ed is zero.
So it suffices to prove that there is a choice of v; such that f(¢) < 0. This will ensure the expected
change of ® is at most zero, and there will be a choice of € that ensures ® is nonincreasing.

The difficulty in making f(¢) at most zero is that the positive part (the second term of f(t))
has an extra factor of s;(¢) in the denominator. So if some s;(¢) becomes very small, the positive
term could dominate. To ensure this doesn’t happen, we choose v; to be in a subspace that makes
this positive term zero for the smallest slack indices.

Blocking small slacks. Let J; be the subset of Z corresponding to all but the [n;/12| smallest
values of s;(t) at time ¢. Select v; such that

(2X (et i, v) — (ai,ve)) = 0 for all i € T\ T, (8)
Then as ), s;(t)7?) < ®(t), and the smallest n;/12 slacks are “blocked”, we have

e L < (200 )”p,

jede si(t) = \ne/12

and so,

eri,vr) — (az,vr))? a(2)71)§2)
f(t)§p<p—;12(2)‘< )i > < >) maxs](t) 1_)\2<827>>

. 1 . 1
i€t si(t)r jedi o s
. p+1§:@quwy4%mm2 128(t) VE_A (@!? vy
- 2 - si(t)ptl ny : si(t)p+l
€Tt 1€

In addition to (6) and (8), suppose v; also satisfies

(2Xet; — aj, ve)?
> pWOTEs <12- Z p+1 . (9)

€Tt €Tt

Choosing the update v;. Later in Section 2.2, we will see how to find a vector v; satisfying (6),

(8), (7), and (9). Then,
(2) (2) 1/p
y<py i%mw(%ﬁ)) —A).

(IS0 ¢
To show that f(t) <0, it thus suffices to have 6(p + 1) (12®(¢t )/nt)l/p -2 <0.
As ®(t )P < 2(2n)Y? /by by the inductive hypothesis, and n; > 1, it suffices to have
12(p + 1)
bo

Choosing p = logn so that n'/? = O(1), and as A\ = 27%by, we can pick by = O(y/Togn) to satisfy
the above. This gives the desired discrepancy bound.

(24n)Y? — X < 0.



2.2 The General Framework

We now describe the algorithm more formally. Given a matrix A € R™*" with HAj H2 < 1 for all
J € [n], extend A such that for each original row a; of A, there are two rows a; and —a; in A.
Additionally, partition every row a; into 2 rows, af and aZL , with small and large entries, as follows:

S(j) = {o if |a;(5)] > 1/2)\ WL () — {ai(j) if ai(5)] > 1/2A

a;(j) otherwise ' 0 otherwise,

where ) is a parameter to be determined later. After this transformation, for any x € R", ||Az|| =
maxi(a;9 + aiL ,x), and the squared 2-norm of any column of A is at most 2.

Let Z denote the index set of all rows of A, and Z° denote the index set of rows of the first type
above.

The step-size of the algorithm is § and the algorithm will run for 7' = —2— steps. Starting with
xg =0, let v; € R™ with (a,v;) = 0. For ¢t € [T],

o T4—1+ov—1  w.p. 1/2
! Ti—1 — 5%_1 W.p. 1/2.

As t increases, some variables will start approaching 1 in magnitude. To ensure that x; € [—1,1]",
we restrict v; to be in the space of alive variables, defined as

Vi={ien]:|z(i)] <1-1/(2n)}.
For any t € [T], ||z|* = 62t as
lzell* = Narems + Svel|* = llzema|* + 6 [Jue]® = 6%(t — 1) + 62 = &%t (10)
Let ny = |V;| denote the number of alive variables at t. By (10), (n —n;)(1 —¢€)? < §%¢, which gives
2
4
ntzn——é >n— 6% — 1.

(1-1/(2n))?

The goal of the rest of this section is to select a vy such that for all ¢ € [T], x; € [—1,1]" and
(aj,x) is bounded by some function of m and n for all rows. To help with this goal, we classify
the rows according to how many variables are still “uncolored” in a row.

Let the set of s-Alive rows at time ¢ be defined as:

={ieT: Zal )2 <20}

JEV:

The choice of 20 here is arbitrary, and large enough constant works. We can now define the
slack and the potential function.

Slack. For any ¢ € Z, the slack function is defined as
si(t) =by — (az, @) — X\~ Zal (1 — x4 ( 3)2).

We call b; the barrier, and for ¢ € [T'], we also move it as

by = b1 + 6%dy_1,



for some function d;. We set A\ = ¢by where ¢ = 1/42 and by is the initial barrier.

Potential function. The potential function has a parameter p > 1 and is defined as

O(t) =Y sit)".

i€t

We will only consider slacks for alive rows and ensure that they are always positive. Moreover,
we will consider only the small s-Alive rows as the rows in Z' will be easily handled. To ensure
that s;(¢) does not become too “small” for any s-Alive row, the choice of v; should not decrease
the smallest slacks. This motivates the following definitions.

e Blocked rows: Let C; be the subset of Z; corresponding to the [n;/12] smallest values of s;(t).

e Let J; = Z;\C;. These are the “large slack” rows.

To prove that all the slacks are positive, we will upper bound the potential throughout by
bounding the change in ®(t) at each step. Note that ®(t) will experience jumps whenever a new
index gets added to Z;, however the total contribution of jumps is easily shown to be bounded (see
Lemma A.1) and can essentially be ignored. To bound the one-step change in ®, we use the second
order Taylor expansion of ®(¢ 4 1) centered at ®(¢). In Appendix A, we show that by choosing
§ < O(1/(n?>mbp*)), the overall error due to ignoring the higher powers of § is negligible.

2.3 Algorithm and Analysis

Recall that e;; denotes the vector in R” with j-th entry a;(j)22:(j). We can now state the algorithm
for selecting ;.

Algorithm 2: Algorithm for Selecting v,

1 Initialize xg <+ 0

2 fortzl,...,T:”—é_Q2 do
3 Let Wy ={w e R" :w(i) =0, Vi & V;} // restrict to alive variables

4 Let Uy = {w € Wy : (w,2Xer; — a;) = 0,Vi € C; and (w, z4) = 0}

// restrict to large slack rows
5 Let Yy = {w € Wy : (w,a;) = 0,Vi € T\Z;} // restricted to s-Alive rows
6 Let G; denote the subspace

G = {w cEW;: Z<(2)\et,i —a;),w)?s;(t)P7 <40 Z <a§2),w(2)>3i(t)_p_l} (11)

€Tt €Tt

7 Consider the subspace Z; = U; N Yy NG and let W = {wy,ws,...,wi} be an
orthonormal basis for Z;. Choose
vy = arg min (2Xer; — aj, w)?s; ()P (12)

weW
1€Jt
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We now re-state our main theorem. In words, the assumption of the theorem is that there is a
non-decreasing function h(.) such that for any row, the squared norm in any subset of coordinates
S is proportional to h(|S]|) times the size of the subset S. Under this condition, we can bound the
discrepancy as a function of h.

Theorem 1.1. For a matrix A € R™*™ with HAjH2 < L and |a;(j)| < M for all i € Im],j € [n],
let h : RT — RT be a non-increasing function such that for every subset S C [n] and i € [m],

> ai(§)? < |IS]-h(S)). (3)

JjeS

Then, for any p > 1, there exists a vector x € {—1,1}" such that || Az, < 5by + 2M, where

by = min <\/8(p +1)(48m)1/P - 3, 250L+/log (2m)> . (4)

where B = [/ " h(n —t)(n—t)~V/Pdt.
The case when h(t) = h is often useful, in which case we have following corollary.

Corollary 2.1. For a matriz A € R™" with ||A|| < L and |a;(j)| < M for all i € [n],j € [m],
let h be such that for every subset S C [n] and every i € [m],

> ai(i)? < IS]-h (13)

jeSs
Then, disc(A) < bbg + 2M, where by = min(26\/hn log(2m/n), 250L+/log (2m)).
Proof. For a constant h, we have § = [~ )~ YPhdt < n'~'/Ph/(1 — 1/p). Choosing p =
log(2m/n) to optimize the first term in (4) g1ves the result. O

Roadmap of the proof. The first main lemma below (Lemma 2.3) establishes that there is a
large feasible subspace from which v; as defined above can be chosen. Using this we prove Lemma
2.4, which bounds the change in potential. This will allow us to bound the discrepancy of each row
and hence prove Theorem 1.1.

A key fact used for proving Lemma 2.3 is the following lemma in [6]. We include a proof for
the reader’s convenience.

Lemma 2.2 ([6]). Let G,H € R™ "™ be matrices such that |Gj| < a|Hyj| for all i € [m] and
j €[n]. Let K = diag(H"H). Then for any 8 € (0,1], there exists a subspace W C R™ satisfying

1. dim(W) > (1 — B)n, and

2. YweW, w GTGw < 2w Kuw.

B
Proof. 1If K;; = 0 for some 4, then Hj; = Gj; = 0 for all j € [n]. So, for a w € W, w; can take
any value, and removing the i-th column of G and H decreases both n and dim(W) by 1. Without
loss of generality, assume that K; > 0 for all i € [n] and let M = GK ~3. For any w € R", let

y:K%w.Then
T AT a® 5 TasT a®
wGngg-w Kw@yMMygg-y .

11



Let Y be the subspace of vectors y that satisfy By M "My < o? - y"y. Then dim(W) = dim(Y).
Thus, dim(W) is equal to the number of eigenvalues of M " M less than a?/3. The sum of eigen-
values of MM is equal to tr(M " M), which is equal to sum of length squared of columns of

M. Since M = GK™2 and |Gij| < «|H;j|, the length of every column of M is at most «, and
tr(MTM) < na?. Therefore, the number of eigenvalues of M T M greater than o?/3 is at most 8n
and the lemma follows. O

We now prove Lemma 2.3.
Lemma 2.3 (Subspace Dimension). For allt € T, dim(Z;) > [2n;/3].

Proof. To lower bound the dimension of Z; we lower bound the dimensions of U, )y and G;.

First, we have dim(i;) > ny — dim(C;) — 1 > [11n;/12] — 1. Second, at time ¢, as the sum of
fo-norm square of all columns is at most 2n,, we have that > ;.7 > .y, ai(j )2 < 2n;. So the number
of rows a; with .y, ai(7)* > 20 is at most |n;/10| and dim(Y;) > n; — |n¢/10] = [9n;/10].

We now bound dim(G;) by applying Lemma 2.2. Let G denote the matrix with columns j
corresponding to variables in V; and rows i restricted to ¢ € J; with (i,7) entry (2Xet;(j) —
a;(j))si(t)" PO/,

Let H be the matrix with entries a;(5) - s;(t)~P*D/2 for i € J;} and j € Vy. As |ay;| < 1/(2))
for i € Z;, we have

Gij| = 122a: (§)2:(§) — a;(8)] < 12205 (5) 2@ ()] + laj (i)| < 2a;(i)| = 2|Hyj).

Let K = diag(H " H). Then, using Lemma 2.2 with a = 2 and 3 = 1/10, we get that there is a
subspace G; with dim(G;) > [9n;/10] such that

G={weW, :w G"Gw <40 -w' Kw},

which by the definition of G and H is equivalent to that given by (11).

Putting together the bounds on the dimensions of these subspaces gives,

Setting the parameters. To show the two bounds in (4), we will set the parameters by, d; (the
change in b;) and p in two ways:

Case 1: dy =4(p+1) - h(ny) - max s;(t)~! for all t € [T], and p, by arbitrary (14)
1€t
Case 2: p=2log(2m), by = 840(p + 1) - max s;j(t)"t and d; = 0 for all ¢ € [T]. (15)
JEeJt

Bounding the potential. The next lemma shows that in both these cases, the potential function
remains bounded.

Lemma 2.4 (Bounded Potential). In either of the cases given by (14) and(15), we have that
O(t) < 4Am(2/bo)?, for allt =0,...,T.

Proof. We will prove this by induction. Clearly, this holds at ¢t = 0 as ®(0) < 2m(2/by)P. For the
inductive step, we will show that for any j =0,...,7 — 1, if ®(j) < 4m(2/bg)P then

B(j + 1) < B(j) + T%g T\ (f—o) | (16)

12



Note that |Z;+1\Z;| is the number of additional rows in Z° that may become alive at step j. This

gives the result by induction as summing (16) over j =0,...,7 — 1 will give
T-1 T-1
1 2\? 2\? 1 2\?
O(t+1) — T 7|1 <2 — —<4dm-|{—) . 17
0 a0+ Y (5) Sz <o (T) s zan (7).

We now focus on proving (16) for j = ¢.

By the induction hypothesis, ®(t) < 4m (2/by)?. By Lemma A.1, one of the signs for x4y gives
2 p
| - <%> , where

a(-z) v(2) 2 €t,i,Vt) — (A, Ut §
£ = —po? 3 S A1) oo+ 1§~ @\ ) = s ))?

s(t)pt1 + 2 si(t)p+2

E(@(t+ 1)) — ®(t) < f(t)

1
Tnbg

where

€Lt
So to prove (16), it suffices to show that f(#) < 0. We first consider the case when b;,d; and p are
given by (14).
As 2X (et i, ve) — (a;,ve) = 0 for all i ¢ Ty, f(t) satisfies

€Lt

1 Z (2M (e, vr) — <aivvt>)2' (18)

d + A(a@) v(2)> p(p+1)82
2 i i 0t
f(t) < —pé E max s;(t) S (]

si(t)ptt 2 jed:

€Tt €Tt

By a simple averaging argument described in Lemma 2.6, we also have that

(2X\(eri,ve) — (a, v0))? 8h(n4)
> ’ <> : (19)

AP+ ()P +L

€Ty si(t) i€y si(t)?
Plugging (19) in (18) gives
d plp+1)5° -1 8h(n:)
< —pd? ; : .

f(t) < —pd g% s, (£)P + D) gré?fsj(t) Ze% s ()P (20)

Therefore, if d; satisfies equation (14), then f(¢) <0

We now consider the case in (15). As v, € G;, we have

(2X\ewi, ve) — (s, vr))?

,Z; si(t)pt! =40 Zj p+1 (21)

1€t 1€t
Next, as dy = 0 and A = by/42, (18) and (21) give

2) @
p62< a; Uy > b 1
< _ .
f(t) < ; S0P TR 20(p+1) - max s, (t)~
? t

So if by satisfies equation (15), then f(¢) < 0. O

The next lemma gives a bound on the minimum value of slack for any active row, given the
bound on potential function.
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Lemma 2.5. For anyt € {0,..., T}, if ®(t) < 4m(2/bo)P, then max;c 7, s;(t)~' < I% <48—m>

Proof. By the definition of J;, for any i € [J;, there are at least |n;/12] + 1 indices j in Z; such
that s;(t) < s;(t). Therefore,

max —— < <12@(t)>; < bz (48—m> , (22)

e si(t) — ny

where the last inequality follows by the assumption, ®(t) < 4m(2/by)P. O

Lemma 2.6. For any t € [T], the choice of v, satisfies

2N — i, vg)> 8h(ny
Z < 3;.(t)p+1 > < Z s,-(t()p"f)l' (23)

1€Jt 1€Jt

Proof. Using (a + b)? < 2(a? + b%), and as 12Xeri(j)| = 120a; ()¢ (5)] < |ai(4)] as |ai(5)| < 1/2A
for any j and i € Z°, we have that for any w,

(2Xer; — a;, w)? 2(a;, w)? + 2(2Xet i, w a,,
> <> - " <4 Z

. +1 +1
= si(t)? €T i) = si

Let Wy = {w1,...,w} be an orthonormal basis for Z; and k = dim(Z;). As Z; C V),

Z Z?:l(ahwﬁz < Z Z]EVﬁ i(

Si(t)il’-l-l S ( 117—1-1

€Tt et ZEJ

where the second inequality uses that > ..y, a;(j )2 < ny - h(ny) by the definition of h.
As k > [n./2], this gives

k
1 2)\et i anwi)? oy 4h(ny) 8h(ng)
EZ_: Zj t)p+1 < k Z s;(t)PH < Z s;(t)p+L

1

The result now follows as v; in (12) minimizes Y,/ (2Xey; —as, wy)s;(t) P~ over all w; € Wy O

We now prove prove the main theorem.
Proof of Theorem 1.1. Recall that we divide each row a of A as a = a® 4+ a”. We will bound
(a¥,x7) and (a®, 27) separately.

Let t; denote the earliest when the squared norm of a” (restricted to the alive variables) is at

most 20, and let n; be number of non-zeros in a” restricted to the set Vy,. As |a”(j)| > 1/(2)) for
each j, the number of non-zero variables n; in a® at time ¢; is at most 80A2, as

n1/(4X) < ) a"(5)* < 20.

jGth
Moreover, as a’ incurs zero discrepancy until ¢;, the overall discrepancy satisfies
[a", zr)| = [(a", @,)| + [0 or —2,)| O+ /1= (Y a™(j)*)/? <80A<3h.  (24)
jGth
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Henceforth, we focus on the rows a®. We first show that the slacks are always positive. Let
1
v = bo/4(4m)r. By Lemma 2.4, for all ¢t € [T], ®(¢) < 4m(2/by)? < ~~P. This implies that
|s;(t)] > for all i € Z; and t € [T]. In one step of the algorithm,

15i(t) — si(t — 1)| < 8% dy—1 + [{as, z¢) — (i, 24-1)]
< 6%dyq + |0(a;, vi—1)] < 20n0 < 2+.

So, if s;(t —1) > v and ®(t) < v~P, then s;(t) > 0, i.e., the slack s;(t) cannot go from being greater
than 7 to less than —+ in a single step. So, for every i € Z° and t € [T}, s;(t) > ~ and (a;, z7) < br.
Together with (24) this gives, |(a,z7)| < |(a®, z7)| + [{(a”, z7)| < by + 3b.

Let x € {—1,1}" be obtained from z by the rounding x(j) = sign(zr(j)). As T = (n —2)/52,
|z7||> = n — 2 with |z, (j)] <1 for all j € [n]. After rounding 27 to =, we have ||z|* = n. For any
row a of A, the discrepancy is bounded by

(a,2)| = [{a,27)| + a, & — 21)| < [a,27)| + M Y |2(5) — 27 (j)] < by + 3by +2M.
j=1

We now consider the two cases for by, di, p. If the second case given by (15), then by (22), by <
1680(p+1) - (48m/n;) /7 /bg. Asny > 1 for all t € [T] and p = log(2m), we have (48m/n;)"/? < 10e,
and setting by = 2504/log(2m) suffices. Since d; = 0, by = by and ||Az||, < 4by + 2M.

h(n:)

In the first case given by (14), then by (22), we have d; = 8(p + 1)(48m)% g for all t € [T7.
0704
Summing d; over t gives
T—1 . T-1
br—bo =082 dy=8(p+1)(48m)»62 - Y h(ne)/(bon,’").
=0 =0

As ny > n — 6%t — 1 > and h is non-increasing, 62 - ZZ:OI h(nt)nt_l/p < B, so that by < by +
8(p + 1)(48m)'/?B/by. Optimizing by = (8(p + 1)(48m)"/PB)1/? gives that by = 2by and thus
|Az|| o, < by + 3by +2M < 5by + 2M, giving the desired result.

U

3 Applications

3.1 Set Coloring

We bound the discrepancy of a set system (U,S) with |[U| = n, |S| = m, and m > n. As
|A7||l2 < /m, we have L = y/m, and as Zjesai(j)2 < |S], we can set h(t) = 1 for all ¢t € [n].
Consider (4) and suppose p > 1.1 so that p/(p — 1) = O(1). Then
n—2
8= h(n —t) - (n—t)"YPdt = O(n'=1/7),
t=0

and the first bound in (4) gives by = O(pn'/?(m/n)'/?). Setting p = log(2m/n) gives Spencer’s
O(y/nlog(2m/n)) bound.
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3.2 Vector Balancing

We now consider the discrepancy a matrix A € R™*" with column fo-norms at most 1.

Here L = 1 and the second term in (4) directly gives a O(y/logm) bound. This also implies
an O(y/logn) bound as at most n? rows can have ¢;-norm more than 1, and we can assume that
m < n?. In particular, for a row a; with ||la;||, < 1/n'/2, we have |(a;, )| < |Jaill; < /nllail, <1
and it can be ignored. The sum of squares of elements in A is at most n the number of rows with
l|aill, > 1/n'/? is at most n?.

3.3 Sub-Gaussian Matrices

Let X be a random variable with E(X) = 0. X is called Sub-Gaussian with variance o2 if its
moment generating function satisfies E(e*¥) < e”*s*/2 for all s € R. For a Sub-Gaussian random
variable, E(X?) < 402.

Theorem 1.2 (Sub-Gaussian Matrix). Let A € R™*™ with each column drawn independently from
a distribution D, where the marginal of each coordinate is sub-Gaussian with mean 0 and variance
o2, Then, forn <m < 200" disc(A) = O(o+/nlog(2m/n)), with probability at least 1 — (1/m?).

Proof. As a;(j) is a Sub-Gaussian with variance o2, a;(5)? — E(a;(j)?) is a mean zero and sub-
exponential random variable with parameter 1602 [27].

For any S C [n] with |S| = s,

Bernstein’s inequality for sub-exponential random variables [27] (Theorem 2.8.1) gives that,

Pr(z ai(5)? — E(a;(5)?) > st) < exp(—min(s*t? /1604, st /165?)). (25)
JES
Setting t = 9602 (log(ne/s) + (logm)/s) and as E(a;(5)?) < 402, and taking a union bound over
all the rows and all possible subsets of s columns, we get that,

> ai(j) < 1000°[S| (log(ne/|S|) + logm)/|S])) (26)
JjES
for every S C [n], i € [m], with probability at least 1 — 1/2m?.

Similarly, as a;(j) is sub-Gaussian with mean 0 and variance o2, with probability at least
1—1/2m?, we have |a;(j)| < 30+/log(mn) for all i € [m],j € [n], and thus the fo-norm of a column

is at most L = 3y/mo+/log(mn) and M = 30+/logmn. By (26), we can set
1
h(t) = 10002 <log (%) + Ogm> .

t

A direct computation gives 5 = fO"_Z h(n—t)(n—t)~/Pdt = O(c?(n*~"P+plogm)). Using Theorem

1.1 with p = 2[log(2m/n)], gives by = O(co(p(m/n)"/?(n+n/Pplogm))*/?) = O(on'/?log(2m/n)).
Thus, with high probability ||Az|| ., < (5by + 2M) = O(o+/nlog(2m/n)).

U
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3.4 Random Matrices
The result above directly implies the following bound for random matrices.

Theorem 1.3 (Random Matrix). Let A € R™ " m > n such that every column of A is drawn
independently from the uniform distribution on {x € R™ : ||z|, < 1}. Then disc(A) = O(1) with
probability at least 1 — (1/m?).

Proof. Consider a random vector X chosen uniformly at random from the unit ball, {z € R™ :
|||, < 1}. Then every coordinate of X is sub-Gaussian with variance o = C/y/m, where C is a
constant [27] (Theorem 3.4.6, Ex 3.4.7). The result now follows from Theorem 1.5. O

4 Flexibility of the Method

An advantage of the potential function approach is its flexibility. We describe two illustrative
applications. In Section 4.1 we show how the bounds for matrices A and B obtained using the
framework can be used to directly give bounds for C' = A + B by combining the potentials for A
and B in a natural way.

In Section 4.2 we consider how the requirement on the function A(-) in Theorem 1.1 can be re-
laxed, and use it to bound the discrepancy of sparse hypergraphs (the Beck-Fiala setting) satisfying
a certain pseudo-randomness condition.

4.1 Subadditive Stochastic Discrepancy

Theorem 1.4 (Subadditivity of Stochastic Discrepancy). For any two arbitrary matrices A, B €
R™>*" " there exists x € {—1,1}" such that

|{a;,x)| < sdisc(A)  for every row a; of A, and
[(b;, x)| < sdisc(B)  for every row b; of B.

In particular, this implies that sdisc(A + B) < sdisc(A) + sdisc(B).
Proof. Let ®1(t), ®o(t) be the potential functions corresponding to A and B, respectively. Let the

parameters for Algorithm 2 on A be b}, p1,d}, hi(-) and for B be b, pa, d?, ha(-).

Note that it might not be possible to select an update v, at time ¢, that ensures that both
Qi(t+1) < &4(t) and Po(t + 1) < Py(t) hold, but we can find a v, for which a weighted sum of
@, (t) and Py(t) decreases at every step.

Consider the potential function
®(t) = (by/2)" @1(t) + (05/2)P* @a(t)

We apply the same algorithmic framework. For t = 1,...,T , select v; such that E(®(t+ 1)) <
®(t), and select the sign of e for which ®(¢ + 1) < ®(¢), and set x4+ = x4 + edvy. To this end, it
suffices to find a v; such that E(®;(t + 1)) < ®1(t) and E(Pa(t + 1)) < Po(t).

Let Z} and Z2 be the feasible subspaces at step t for A and B respectively from Algorithm 2.
We will search for vy in Z; = Z} N Z2. By Lemma 2.3, dim(Z}),dim(Z?) > [2n;/3]. Therefore,

dim(Z;) = dim(2} N 22) > [2n:/3] + [2n:/3] — n¢ > 14 /3.
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Using Lemma 2.6 on A and B, along with Markov’s inequality implies that there exists a vector
w € Z; such that

12 2 2
Z<2Cb0€t,z ai,w) Sz%hl(nt) and Z<2Cb0€t,z a;,w) 3225h2(nt) 27)

(t)p1+1 (t)p1+1 (+\p2+1 (t)p2+1”
st Sz(t) ezt 32( ) ie1? Sz(t) ier? 32( )

Comparing (27) with (23), the functions hi(-) and hga(-) only increase by a constant factor when
compared to running Algorithm 2 on A and B independently. So it suffices to multiply d; and d?
by 4 to ensure that by Lemma 2.4,

1 1
E®(t)] —P1(t —1) < ——— d E[®y(t)] —P2(t —1) < —5—.
[@1(1)] = ®1(t = 1) < To@e [@2(t)] — P2t — 1) < T
Plugging (28) in the definition of ®(t), we get E[®(t)] — ®(t — 1) < 2/(Tn). So one of the two
choices of z; gives ®(t) — ®(t — 1) < 2/(Tn). Summing over t,

(28)

() < B(0) + % < (%)pl 1(0) + @)pz By(0) + %

By Lemma A.1, ®1(0) < 2m - (2/b})P* and ®2(0) < 2m - (2/b2)P2, thus ®(¢) < ®(0) + 2/n < 5m.
For arow i € J/ for £ € {1,2}, we have (|n;/12]+1)-(b§/2)P¢ - 5;(t)~P¢ < ®(t) < 5m, which implies
that for any ¢, and ¢ € {1,2},
1
2 (60m e
max s;(t)"! < = <_m> " (29)
iejf bO ne
Upon comparing (29) with (22), notice that maxy,c 71 sp(t)~! and maxy.e 72 sp(t)~! are only a
constant factor larger when compared to running Algorithm 2 on A and B separately, and hence
the discrepancies for both A and B are only a constant factor larger. O

4.2 Discrepancy of Sparse Pseudo-random Hypergraphs

In this section, we consider 0/1 matrices that satisfy a certain regularity property, namely, for most
rows, the sum of their entries in any subset of columns is close to the sum of the full row scaled
by the fraction of columns in the subset. This property is satisfied, e.g., by the matrices that
correspond to sparse random hypergraphs. In particular, we show the following.

Theorem 1.6 (pseudo-random bounded degree hypergraphs). Let A € {0,1}™*" such that HAj Hl <
k. Suppose there exists B < k s.t. for any S C [n] and any ¢ > 0, the number of rows of A with

> ait) — laill, - (1S1/m)| = o8 (5)

JjES
is at most ¢~2|S|. Then disc(A) = O(VE + f).

Proof outline. At a high level the proof is similar to that of Theorem 1.4, using a weighted
potential function. However, rather than just two potentials, we will have to consider a combination
of O(log n) potentials, and it will take some care to make sure this doesn’t create an overhead in the
discrepancy. We note that the main algorithm remains: at each step choose a vector in a subspace
defined by a set of constraints based on the current vector x;.

Consider the case when A has at most n rows and we run Algorithm 2 on A with the additional
constraints that at time ¢,
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(a) we ignore all rows with ), a;(j) < 208 from the potential function, and

(b) we move orthogonal to all rows for which |}y, ai(j) — [laill; - (n¢/n)] = 10n,.

In the first case, once the size of rows becomes less than 205 at some step ¢, we will simply bound
the discrepancy gained by this row after ¢ by 205.

The second set of rows are the one that do not reduce in size proportional to the progress of
the coloring. Using the assumption in the theorem, i.e., (5) with ¢ = 10, the number of rows for
which point (b) is true is at most n;/100. So, for all but n;/100 rows,

. n
208 < Y ai(j) < [laall; - gt +108.
JEV:

This gives 8 < (1/10) ||ai||; - (n¢/n) if row i is active and therefore, for all but n;/100 rows, using
the assumption of the theorem,
‘ n
> ai() < 2laifly - - (30)
JEV:

So, hi(|S]) = 2|ai]|; /n satisfies the bound (3) in Theorem 1.1 and we obtain

la; - xp| = O(B) + min (O(\/p- llaill;), O( nlog(2n))>

For p =2, |a; - z7| = O(B + /||ai|l;). So, the discrepancy of a row is proportional to the square-
root of its initial /1-norm. Unfortunately, for rows with large initial norms, this can be as large as
O(vn).

To fix this issue, let us restrict ourselves to the case when all rows have similar initial /1-norm,
i.e., for all 4,

-k <|a; <2zx-k.

Since every column of A contains at most k ones, the number of rows with ¢;-norm greater than
x -k is at most (k-n)/(x-n)=n/zx

By (30), for all but n;/100 rows, 3.y, a;(j) < 4x - k- (n¢/n). Note that a row only gains
discrepancy when it satisfies both ) .oy, ai(j) < 20k and |} ¢y, ai(j) — llaill - (ne/n)| < 103. This
implies that

lailly - (ne/n) =108 < ai(j) < 20k.
1€VL

In other words, |la;||; - (n¢/n) < 20k + 108 < 30k. Under the assumption that ||a;||; > « - k for
all rows, we get (n;/n) < 30/z. So, when n; > 30n/z, we can set h(n;) = 0. In other words, the
function

h(IS]) = 0 when |S| > 30n/x
4z (k/n)  otherwise

satisfies (3). This gives f::oz h(n —t) - (n—t)"YPdt = O(z*/? - k- n=/?), and by Theorem 1.1,

disc(A) = f + min (O(\/p k),0(/n log(2n))) = OB+ Vk) forp=2.

So if we only consider a set rows with similar initial /;-norms (within constant factor of each other)
at a time, the discrepancy of such a set is bounded by O(5 + \/E) This suggests using Theorem 1.4
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to bound the discrepancy of union of this set. However, since the initial £1-norms of rows can range
anywhere from 1 to n, there can be as many as log(n) sets and corresponding potential functions.
Naively applying Theorem 1.4 will give a (/log(n) factor increase in discrepancy, rather than a
constant.

Before discussing how to fix this issue, we formally describe the partition of rows into classes:

Partitioning rows according to /i-norm: First, extend A such that for each original row a;,
there are two rows a; and —a; in A. Since our goal is to prove discrepancy O(\/E), we can ignore all
rows will £;-norm less than v/k. Then m < nvk because the number of rows with ¢;-norm greater
than vk is at most 2nk/vk = 2nVk. Let N = [logyn/k] and Q = {0} U [N]. Partition the rows
of A into based on their initial /1-norm into |Q] = N + 1 classes:

o Ag={i € Z:Vk < ||a||, < 2k}.
e For each i € [N], let A; = {i € T: 2k < [|a;||, < 27+'k}.

The sum of £;-norms of rows in A is at most 2nk, therefore for any 4, 2'k|A;| < 2nk and | A;| < 2'7n.

To keep the increase in discrepancy a constant factor rather than \/log(n), we carefully dis-
tribute the following two resources among these classes at any step:

e The number of rows with small slacks that v, is orthogonal to from each class. Since the total
number of rows v; can move orthogonal to at time ¢ is at most n;, we need to distribute n;
among the classes. See Lemma 4.2 for more details.

e The bound on };c7, 4, (2A(esi, ve) — (as, v))? 5;(£)"P~1 in terms of D ieTinA, h(ng)s;(t)P~1
for each class gq.

Rows with larger initial £; norm get more of each resource.

We create N + 1 potential functions {®;(¢)}¥,, one associated with each row partition. The
potential functions use the same p, by parameters, and A = cby with ¢ = 1/42, but have different
rate of change of barrier functions d,(-), based on ¢q. We will run Algorithm 2 on each partition
separately but use the same x; and v; at each step. In this case, we can select parameters to ensure
that each potential function is decreasing in expectation (see Lemma 4.5). However, there might
not exist a vector v; that ensure that moving in v; direction decreases all the potential functions
simultaneously.

To deal with this, we use a weighted combination of ®, as the potential function: Let

B(t) = % CDo(t) + 30 2% @, (1), (31)
q>1

For reasoning behind the form of ®(t), see Section 4.2.2.

4.2.1 A suitable subspace

To identify the constrained subspace for the PotentialWalk (Algorithm 6), we use the following
definitions. The set of Active rows is defined as

L={iel:) la(j) <12k},

JEV:
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For each class ¢, let hy : RT — R be a non-increasing function such that for every subset S C n, at
most ny/16 rows ¢ from class A, violate the condition

D lai()I < [S]- hy(IS]) (32)

jes

While following the general framework from Section 2.2, we make three crucial changes:

e Move orthogonal to rows with large deviation. At step t, the 1 norm of row a; will be close

to (n¢/n) - ||ail|; for most rows. Let a;; denote a vector in R™ with j-th entry 1jey,a;(j), i-e.,
a;y is row a; restricted to the alive coordinates at time ¢. Then the set of large deviation rows
consists of rows that deviate significantly from this expected value

By = {i € T:|llaitlly = llaill, - (ne/n)| = 45} (33)
For any t € [T], (5) implies that dim(B;) < [n:/16].

Ignore Dead rows. As soon as the £1-norm of some row becomes less than 843, we drop it from
the potential function. The set of dead rows at step t is defined as

Dy ={i €T |lais], <88} (34)

For a dead row, rather than keeping track of its discrepancy using a slack function, we will
uniformly bound the the additional discrepancy gained by a row after it becomes dead.

Block rows based on their initial size. For ¢ € Q, let C{ be the subset of A, NZ; corresponding
to the [2°7%n?/n] smallest values of {s;(t) : i € A, N 7L}, and let T = A;\{C} U D;}.

We are ready to state the algorithm for selecting v;.

Algorithm 3: Algorithm for Selecting v,

14

2 fort=1,...,7 do

3

4

Let Wy = {w € R" : w(i) =0, Vi € Vy} // restrict to alive variables
Let Uy = {w € Wy : (w,2cboer,; — a;) = 0,Vi € C; and (w, x;) = 0}
// restrict to large slack rows

Let Yy = {w € Wy : (w,a;) =0,V € T\Z;} // move orthogonal to large norm rows
Let Gy = {w € W, : (a;,w) =0, Vi € B}

// move orthogonal to large deviation rows
Let Z, =U; N Y, NGy and let W = {wy,wa, ..., wi} be an orthonormal basis for Z;
Let v; € W such that for all ¢ € Q,

Z (2choes; — ai,ve)2si(t) P < 8wy (t) - hy(ny) Z si(t) P71, (35)

ieJf ieJ)
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We are now ready for the formal proof. We divide it into several subparts. The first part
bounds the number of active classes at time ¢, as a slowly increasing function of ¢t. Then we derive
the specific weights used in the potential function that combines potential functions for each class
of rows (based on initial norm). After that we show that there is a large subspace of vectors which
all satisfy the desired goal of not increasing the potential value while satisfying all the constraints
about inactive rows and variables. Using this we bound the final discrepancy.

4.2.2 Number of active classes

Lemma 4.1. At step t, the following two conditions hold: (i) The number of classes q for which
A, N {Z\{B, U D}} # 0 is at most log(16n/n;) and (i) hy(t) = 2972k/n satisfies (32) for all
qge Q.

Proof. Let [[aisll, = > ey, [ai(5)], 1.e., it is the £1-norm of row i restricted to V;. At step ¢, if
i € Z\{B; UD;}, then by (33) and (34), we have 83 < ||a; ||, and

(ne/n) - llailly — 48 < llaidly < (ne/n) - llaill, +48. (36)

This gives 45 < (n¢/n) - ||a;||; and ||a2-,t||1 < (2n¢/n) - ||as|;-
Moreover, if i € Ay then [a||; < 277k and we get ||ail|, < (ng/n) - 2772k. Therefore hy(t) =
29+2 [k satisfies (32).

Furthermore, if i € 7y, i.e., ||a; ||, < 12k, by (36) we have (n/n) - [|a;||; — 48 < |laill, < 12k.
As B < k, this gives (ny/n) - ||a;|; <46 + 12k < 16k. So if i € Z,\{B; U D, }, then

4p - (n/ne) < llaill, < 16k - (n/nq).

Note that this condition is dependent only on the initial £;-norm of a;. Since 29k < ||a;||; < 2971k
for any i € A;, a necessary condition for A, N {Z,\{B; UD,}} # 0 is

(28/k) - (n/ng) <29 <16 - (n/nyg). (37)

Therefore ¢ < log(16n/n;). O

Lemma 4.1 implies that at any step ¢, the set of active rows is from the first log,(16n/n;) classes

of rows. It also helps us define two important parameters associated with a row class q. At step ¢,
consider a g € Q with A, N {Z\{B; UD;}} # 0.

e Since n — 6%t —1 < ny <16-279 By (37). For ¢ > 1, let
tg:=max {0, n6"?(1-16-277—1/n)}

Similarly, let
to = no2 (1 16k 1/n> .

Before step t,, for any i € A, (a;,v:) = 0. Because s;(t) is a constant till ¢,, we set dy(t) =0
for all t < t,.

e On the other hand, ¢ must satisfy 27 < 13—?. Let

q = argr?zagc {Qi <16 - (n/nt)} .
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4.2.3 The weighted potential function

Now we can justify our choice of the potential function. If all the potential functions actually
decreased at every step of the algorithm, and we could select a v; that ensured max;ec 4, ({a;, vt>)2 <
k/n for all ¢, then using hy(t) = k/n for all ¢ € Q, Theorem 1.1 gives us

fﬁ%@:Oumwﬂmww¢Lf%w¢rww«wm=0@?Wﬁw%=0w%,

t=tq

for p = 2. However, since the potential functions decrease simultaneously only in expectation,
there might not exist a v; such that each potential function decreases when we move along v;.
Instead we take a weighted linear combination of the potential functions ®(¢) (31), and ensure that
®(t) is decreasing at each step t. Strictly speaking, ®(¢) is not decreasing over time but actually
increasing as row classes with higher ¢ get added in later steps. When we say ®(t) is decreasing,
we mean that ®(t + 1) restricted to rows in Z; is less than ®(¢) restricted to rows in Z, i.e.,
Dier, /sit +1)7P < 3 ieq, 1/si(1) 7P

What should the weights be? First, we need to normalize ®,(t) by |A4(t)|. However this is not
enough as we still want to use ®(¢) to bound 1/s;(t) for each active row. However, ®(¢) can be
much larger than the ®,(¢).

If we use the sum of normalized potential functions as the potential, consider some i € A,.
Condition (37) implies that at step t, there are at most log,(16n/n;) active classes and therefore
max;e A, (5i(t)) 7P o< logy(161/ny) - @4(0). This gives

lg; dg(t) = O < p(21—‘1n)1/p> . /t:;f <log nﬁt i 1_ t)>1/p - (k/n)
| = 0(g2¢ ™" )Vk) = O(gVk),

for p = 2. Intuitively, a row with a large initial size may acquire high discrepancy because it gets
added to the potential function later, when ®(¢) contains the potentials corresponding to more row
classes ¢, and therefore the value of ®(t) is actually higher. This suggests that the potential ®,(t)
corresponding to a large ¢ should have a higher weight to balance the effect of a large value of ®(t),
and hence our choice of ®(t):

d(t) = % - Do (t) + i 2% 3, (t).
q=1

4.2.4 Bounding the discrepancy
The next lemma gives a bound on dim(Z;) analogous to 2.3.
Lemma 4.2. For any t € [T], it holds that dim(Z;) > [n/2].

Proof. At time ¢, Z; only consists of rows from class A, with ¢ < ¢;. So,

at 4t 5i—8, 2 2 —7,,2

n n n ng 8
i=0 i=0 t
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Since the number of rows in Z; is at most [n:/6], we have dim(};) > ny — [n:/6].
By (5), dim(B;) < |[n¢/16] and dim(G;) > n; — [n:/16]. Putting it together,

The next lemma is analogous to Lemma 2.6.

Lemma 4.3. For allt € [T}, there exists v, € Z; such that Vq € Q,

> (2cboeri — ai, i) si(t) P < Bwg(t) - hg(ng) Y si(t) P (38)

ieJ! e

Proof. By Lemmas 2.6 and 4.2, for each ¢ € Q, there exists v, € Z; such that

Z (2cboes ;i — ai,vg)2si(t) P < d1m Z Z 4hg(ng)s;(t) P71 < Z 8hq(ne)s;(t) P71
€T ! €T ieJ!

However, this does not imply that there exists a v; that satisfies these bounds for all classes
simultaneously Instead, we use Markov’s inequality to assign a weight wg(t) to each class ¢ at step
t such that ) " o w, L(t) < 1, and therefore there exists a vector v; € Z; such that

Z (2M e, ve) — (ar, o) si(t) P S wg(t) - > 8h(ng)si(t) P (39)

i€iNAq i€LiNAg

and for each class. Let

Q ={q€ Q: A N{T,\{B, UD}} # 0}.

If some row class ¢ is not in Q;, then any row ¢ € A, is either dead or frozen or bad. If it is dead,
we drop it from the potential and it does not affect (39). If it is frozen or bad, (2cboe; s — a;, v¢) =0
and the condition is trivially satisfied. So we only need to consider ¢ € Q;. The weight w, =
25-a/4 (n/nt)1/4 suffices as Y1 21/4-5 (n/nt)1/4 <1/2. O

Note that for any row i € Ay, at t < t,, (2cbpe;r — a;,vi) = 0. So, we can set df = 0 for rows in
class ¢q. So, by Lemma 2.4 and equation (39),

0 ift <t

di(t) = { _ — (40)

4(p+1) - wg(t) - hq(ne) - maxe 7a si(t) 1 otherwise,

implies that there exists a vy € Z; such that for all ¢ € Q,

E[®q(1)] < @4(t = 1) +

it (41)

The next lemma helps us bound the rate of change of b,(t), which eventually gives a bound on
by(T") in Theorem 1.6.

Lemma 4.4. For anyt € {0,..., T}, if (t) < 8n (bl 16" , then

El/p.

3/
)7 g =0
3/p

7; ifq>1. 2

max s;(t) ! <
jeTE 21+(15— 3¢J)/p (
bo

21+lo/p (
n
n
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Proof. For any g and i € J7, there are at least [297%n? /n| indices j in Z;N.A, such that s;(t) < s;(t).
Therefore, for ¢ > 1,

2% . 2"_;”? Csi(t) 7P < B(1), (43)

and for ¢ =0,
1 2_2"3 silt) P < B(2). (44)
Plugging ®(t) < 8n (%)p (17(3—?) in (43) and (44) gives the required bounds. O

Lemma 4.5. For value of p and d, given by (39), for allt =0,...,T, we have

27n?2 2\?
d(t) < = .
0 <2t (bo)

Proof. Plugging (41) in the definition of ®(¢),

E(cp(tﬂ))_@(t)gTibg+|{zt\zt_1}m40|%- <%> +9%0. <b2_0> S THTNT-1} N Al (45)

q>1

At every step t, the algorithm selects the choice of x; for which the above inequality is true.
Summing ®(s) — ®(s — 1) over s € [t],

®(t) < D(0) + |10 <—> +) 27| ( > (46)
0 q>1
For any ¢ € Q, by Lemma A.1 we have ®4(0) + >, [T/ 1 \Z{| - (2/bo)P < |Agl - (2/bo)P. This gives
1 2\? 2\?
o0 <l (2) + ¥ 24l (2) )

1<q<q:

Using |Ag| < 2n/Vk and |A,| < 217 for ¢ > 1, we get

cI>()<2n<2> i+§:2q <4n<2> 2Qt+1<27<2>p<"—2> (48)
bo vk pour - bo bo ne)’
where the last inequality follows from 29 < 16(n/n;). O

Proof of Theorem 1.6. If row i € A, becomes dead after step ¢t — 1, then

as, 7)| < [ai, )] + 1(af, 27— 24)] < bi(g) +2Y lai()
JEVL

< br(q +2Za2 < br(q) + 168.
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1/4

Substituting the bound on max;e 7 si(t)~" from (42), and using w,(t) = 2°79* . (n/ny)"/* and

he(t) = 29%2 /n, we get

0 if t <t
93q/8+14 " 5/8
dy(t) = 9k - " (n_égt_l) ifg>1landt>t,
5/8
9/*?%’%(%) if g =0 and t > t.

For any ¢ > 1, summing up d,(-),

T-1 T . 93q/44+12+(15—3¢) /8 5/8
bq(T):b0+52qu(o)§52/ O 2 < " ) dt

t:tq t:tq ’I’Lbo n — 52t - 1
n—2 g .93q/8+14 n 5/8
<by+ / < > dt
t=52t,4 nbo n—t—1
219+3q/8k 920,
S b() + . n_3/8 . (n — 52tq)3/8 = b(] + b—
0 0

For by = 2'9V/k, be(T) < 211k for all ¢ > 1. Similar calculation for ¢ = 0 show that by = 2'°Vk
and br(0) = 2"V suffice.

Let x € {—1,1}" be obtained from z7 by the rounding z(j) = sign(xr(j)). Since T = (n—2)/62,
|zr||* = n — 2 with |zp(j)| < 1 for all j € [n]. After rounding 27 to z, ||z||* = n and

ai, z)| < [{ai, )| + @i, 2 — z7)| < 207 + 1683 + Z |z(4) — 27 (5)|
J
< br + 168 + 2. 0

Random and Semi-random Sparse Hypergraphs. This gives an alternate proof of the result
[24] of Potukuchi that disc(H) = O(V'k) for regular random k-regular hypergraph #, on n vertices
and m edges with m > n and k = o(m!/?). In particular, Potukuchi showed that such hypergraphs
satisfy condition (5) with high probability.

Consider a random k-regular hypergraph A with n vertices and m edges as above, but suppose
that an adversary can change the graph so that the number of edges incident to v that are added
or deleted is at most t. Let A 4+ C denote the incidence matrix of this corrupted hypergraph. How
much can this affect the discrepancy of the hypergraph?

Theorem 1.7 (Semi-Random Hypergraphs). Consider a random k-regular hypergraph with inci-
dence matriz A € R™*™ with m > n, and let C € {—1,0,1}™*"™ be an arbitrary matriz with at most

t non-zero entries per column. Then disc(A+C) = O (\/E + /tlog n> with probability 1 —n=¥1)

Proof. By the subadditive property of stochastic discrepancy, disc(A 4 C) < O(Vk) 4+ O(y/tlogn).
However, this bound is not algorithmic because it requires running the algorithm separately on A
and A, — A. O
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Appendix: Bounding the step size

Lemma A.1. For A € R™*",

(0) + 224 1 Zea\ T - (%)p <2m- (%)p-

e Forallt e {0,1,...,T —1}, if ®(t) < 2"m? (%)p and d; = O(pn - max;e 7, s;(t)~1), then for

step size 62 < (Cn2mSpt)~1,

E(®(t +1)) — 2() < f(1) + #bg [T\ <%)

2 (2 2 . 2
f(t) _ _p52 Z dy + Cb0<ai ) Uy > + p(p+ 1)5 Z <2Cb06t7z CLZ,’Ut>

where
s;(t)P1 s (t)PT2

1€t 1€y
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Proof. We note that the purpose of this lemma is to allow the proof to ignore higher order terms
by making the step size inverse polynomially small, and thereby obtain a (deterministic) polytime
algorithm. As our focus is on establishing polynomiality, we have not optimized the bounds.

For any i € Z;41\Z;, we have (a;,z;+1) = 0 and

S w(P (1 - ra()?) < Y ail) +a( - (1-5)) <21

J JEVE1
Therefore, for any i € Z;11\Z;, using the fact that the coefficient of the above energy term is
Cb(] == b(] / 42,

1 1 2
< < —.
Si(t-l- 1) B (bt+1 - 21Cb0) )

Therefore

0)= 3 si0) 7 < Tl - ()
€Ly

Since |[Zo| 4+ >, |Zi+1\Z¢| < 2m, we have

0) + 2; Zi1\ Ty | - <%>,, < 2m - <%>,,

This concludes the proof of the first part.

For the second part, we will use a second-order Taylor approximation and choose § small enough

so that the higher order terms are negligible.
-p

Let Zy(b,z) == Yer, <b —ag,x) = A ai()3(1 - :c(j)2)) — Yoz, 5:(t)7P, the potential
function restricted to the active rows in time step ¢t. Then,

Dt +1)—@t) =D s(t+ 1) —s(t+ 1)+ > si(t+1)"

i€Zy eTo\T,
2 p
< Zi(biv1, wer1) — Zi(be, 2t) + | Lo 1 \Ze| - <%> '
Hence,
2 p
E(®(t +1)) — ©(t) < E(Zi(brs1, 141)) — Ze(be, xe) + | Tig1\Te - <%> (49)

Using Taylor’s theorem,

62
Zt(bt+17 .Z't+1) — Zt(bt, .’L’t) = (5 . Vth(bt, xt)TUt + (52 . VbZt(bt, xt)dt + ? . 'UtTViZt(bt, xt)vt

54 1
—|— — vat(bt,xt)dt + 6 V?’Zt(b',w')[w,w,w],

for some b’ € [by, by 4 0%dy] and x € [z, 24 + dvy], and w is the tuple (§2dy, dv;). Taking expectation,

52
E(Zt(bt+1, $t+1)) — Zt(bt, a:t) = (52 . VbZt(bt, .Z't)dt + E . U;Vizt(bt, .’L’t)’Ut
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54

T Vi Zi(be, 1) dy +E( V22V, 2" [w, w, w)).

For any t € [T,

Vi Zi(be, xt) = —p Z p+1 , and
1€1¢

2cboer; — a;)(2choer; — a;) dia, a@)
V2 Zi(bi, 1) Zp(p—l—l)z( 0L )(2choe, ) —pcbozig( ).

(P2 (F\pr1
i€y si(t) €Ty silt)?
We will show the following claim.
Claim 1. For any t and any ', 2" as defined above,
3 5t 1
E(6 V2 Zy (V2" [w, w, w)) +t5 V2Z(by, ) d? < Tl
Combining this claim with (50), (51), and (52), we get
dy + cb <a(2) v(2)>
2 t 0\&; Ut
E(Z(beg1, 2e11)) — Zi(be, 20) < —pd ; St
1eLle
p(p +1)5? 3 (2cboeri — ai, vp)? L
2 icT Si(t)p+2 Tb]g
1Lt
= () +
N Tnbh

Substituting this bound in (49) proves the lemma.
Proof of Claim 1.
As ®(t) < 2"m? . (2/bg)?, for any i € Ty,

si(by,xy) = si(t) > b0(2p+7m2)—1/p'

By (53),

— 1y L (op+T7,,,2\1/pp—1
d¢ = O(pn - ?éz})t(sz(t) ) O(pn (2PTIm=) P, )

By (53) and (54), and as the second derivative of Z; with respect to b; is

ViZi(be,w) = plp+1) D silt) P72,

i€t

we obtain 3 2
33 Zy(by, 30)d} = O(2PnPm> w6 (m/n)rby Y.

(50)

(51)

(52)

For each of the choices p = 2[log(2m)] or p = 2[log(2m/n)] or p = 8, since 62 = 1/Cn?*mSp* and

T = (n —2)/§?, we have

52 1
y2 2 < < .
T VaZi(t)d: < 2n(n — 2)b5 — 2Tnb})
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E(V3Z,(t,2")) in direction w is given by

503

E(V2Z(, 2" )w,w,w]) = —plp+ 1) +2) > I

€Lt

di (2cbo((a22’),ve) — (i, v¢) 2 di(a? @
—3plp+ 1)+ 2)54 Z ( si(b/, z/)Pt3 ) +3p(p + 1)Cb054 Z W
i€l v ’ i€y )

dy

i PP (56)

< 3p(p + 1)cbpd* Y
1€1¢
where we use that dg, s; > 0.

To bound the difference between s;(V, 2') — s;(bt, x¢), consider the difference between b’ and b,

bo

2
VS S ey

(57)
and the difference between (a;, ') +cbo - X7 a;(j N2(1—2'(5)?) and {(a;, x¢) + cbg - > =1 ai(] )2 (1 —
2¢(5)%),

n n

aisa’) + > ai() (1= 2'()%) = (ai,we) = Y ai(i)*(1 = 24(5)?)]
Jj=1 j=1

< 8l{ais ve)| + cbo Y ai(§)* () — (o) + 6Aove(1))?)]

J

< 6(1 + 4ebpy/n) < 6@ m2) /s (58)
By (57) and (58),
siWa’) = sibe,x0) +y = b+ (ai,2’) + > ai() (1= ' (7)) as,20) = Y ai()*(1 = 24(j)?)
j=1 j=1
bo bo 3bo
2 silbo @) = 607 m T~ T6@Tmd) e = S@Tma) (59)
By (56) and (59), E(V3Z,(V, ") [w, w,w]) = O(nm™ » p364(8/3)7b5 7).
Again, since p = 2[log(2m)] or p = 2[log(2m/n)] or p = 8, for 62 = 1/Cn?*mSp?
E(V3Z,(V, 2" ) [w, w,w]) < i _ (60)
ne U T 2n(n — 2)bh 2T nbh’
Now the claim follows from the bounds (55) and (60). O
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