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Abstract

We study a unified approach and algorithm for constructive discrepancy minimization based
on a stochastic process. By varying the parameters of the process, one can recover various
state-of-the-art results. We demonstrate the flexibility of the method by deriving a discrepancy
bound for smoothed instances, which interpolates between known bounds for worst-case and
random instances.

1 Introduction

Given a universe of elements U = {1, . . . , n} and a collection S = {S1, . . . , Sm} of subsets Si ⊆ U ,
the discrepancy of the set system S is defined as

disc(S) = min
x:U→{−1,1}

max
i∈[m]

∣
∣
∣

∑

j∈Si

x(j)
∣
∣
∣ .

That is, the discrepancy is the minimum imbalance that must occur in at least one of the sets
in S over all bipartitions of U . More generally for an m × n matrix A, the discrepancy of A is
defined as disc(A) = minx∈{−1,1}n ‖Ax‖∞. Note that the definition for set systems corresponds to
choosing A as the incidence matrix of S, i.e., Aij = 1 if j ∈ Si and 0 otherwise. Discrepancy is a
well-studied area with several applications in both mathematics and theoretical computer science
(see [9, 12, 20]).

Spencer’s problem. In a celebrated result, Spencer [26] showed that the discrepancy of any set
system with m = n sets is O(

√
n), and more generally O(

√

n log(2m/n)) for m ≥ n. To show
this, he developed a general partial-coloring method (a.k.a. the entropy method), building on a
counting argument of Beck [8], that has since been used widely for various other problems. A similar
approach was developed independently by Gluskin [15]. Roughly, here the elements are colored in
O(log n) phases. In each phase, an Ω(1) fraction of the elements get colored while incurring a small
discrepancy for each row.

Beck-Fiala and Komlós problems. Another central question is the Beck-Fiala problem where
each element appears in at most k sets in S. Equivalently, every column of the incidence matrix
is k-sparse. The long-standing Beck-Fiala conjecture [10] states that disc(S) = O(

√
k). A further
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generalization is the Komlós problem, also called the vector balancing problem, about the discrep-
ancy of matrices A with column ℓ2-norms at most 1. Komlós conjectured that disc(A) = O(1) for
any such matrix. Note that the Komlós conjecture implies the Beck-Fiala conjecture.

Banaszczyk showed an O(
√
log n) bound for the Komlós problem based on a deep geometric

result [2]. Here, the full coloring is constructed directly (in a single phase), and this result has also
found several applications. The resulting O(

√
k log n) bound for the Beck-Fiala problem is also the

best known bound for general k.1

In contrast, the partial coloring method only gives weaker bounds of O(log n) and O(k1/2 log n)
for these problems – the O(log n) loss is incurred due to the O(log n) phases of partial coloring.

Limitations of Banaszczyk’s result. Even though Banaszczyk’s method gives better bounds
for the Komlós problem, it is not necessarily stronger, and is incomparable to the partial coloring
method. E.g., it is not known how to obtain Spencer’s O(

√
n) result (or anything better than the

trivial O(
√
n log n) random-coloring bound) using Banaszczyk’s result. A very interesting question

is whether there is a common generalization that unifies both these results and techniques.

Algorithmic approaches. Both the partial coloring method and Banaszczyk’s result were origi-
nally non-algorithmic, and a lot of recent progress has resulted in their algorithmic versions. Start-
ing with the work of [3], several different algorithmic approaches are now known for the partial
coloring method [19, 25, 16, 13], based on various elegant ideas from linear algebra, random walks,
optimization and convex geometry.

In further progress, an algorithmic version of the O(
√
log n) bound for the Komlós problem was

obtained by [4], see also [6], and [5] for the more general algorithmic version of Banaszczyk’s result.
In related work, Levy et al. [18] gave deterministic polynomial time constructive algorithms for the
Spencer and Komlós settings matching O(

√

n log(2m/n)) and O(
√
log n) respectively.

A key underlying idea behind many of these results is to perform a discrete Brownian motion
(random walk with small steps) in the {−1, 1}n cube, where the update steps are correlated and
chosen to lie in some suitable subspace. However, the way in which these subspaces are chosen
for the partial coloring method and the Komlós problem are quite different. We give a high level
description of these approaches as this will be crucial later on.

In the partial coloring approach, the walk is performed in a subspace orthogonal to the tight
discrepancy constraints. If the discrepancy for some row Ai reaches its target discrepancy bound,
the update ∆x to the coloring satisfies Ai ·∆x = 0. As the walk continues over time, the subspace
dimension gets smaller and smaller until the walk is stuck. At this point, the subspace is reset and
the next phase resumes.

On the other hand, the algorithm for the Komlós problem does not consider the discrepancy
constraints at all, and chooses a different subspace with a certain sub-isotropic property which
ensures the discrepancy incurred for a row is roughly proportional to its ℓ2 norm, while ensuring
that the rows with large ℓ2-norm incur zero-discrepancy. In particular, in contrast to the partial
coloring method, all the elements are colored in a single phase, and the discrepancy constraints are
ignored.

The need for a combined approach. Even though the O(
√
k log n) bound for the general

Beck-Fiala problem is based on Banaszczyk’s method, all the important special cases where the
conjectured O(

√
k) bound holds are based on the partial coloring method. For example, Spencer’s

problem with m = O(n) sets corresponds to special case of the Beck-Fiala problem with k = O(n).

1For k = o(log n) an improved bound follows from the 2k − 1 bound by [10].
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So Spencer’s six-deviations result resolves the Beck-Fiala conjecture for this case, which we do not
know how to obtain from Banaszczyk’s result.

The Beck-Fiala conjecture also holds for the case of random set systems with m ≥ n. In
particular, Potukuchi [24] considers the model where each column has 1’s in k randomly chosen
rows and shows that the discrepancy is O(

√
k) with high probability. See also [14, 7, 17, 1] for

related results. Potukuchi’s result crucially relies on the partial coloring approach, and it is not
clear at all how to exploit the properties of random instances in Banaszcyck’s approach.

Thus a natural question and a first step towards resolving the Beck-Fiala and Komlós conjecture,
and making progress on other discrepancy problems, is whether there exist more general techniques
to obtain both Spencer’s and Potukuchi’s result and the O(

√
k log n) bound for the Beck-Fiala

problem in a unified way.

1.1 Our results

We present a new unified framework that recovers all the results mentioned above, and various
other state-of-the-art results as special cases. Our algorithm is based on a derandomization of a
stochastic process that is guided by a barrier-based potential function.

Given a matrix A, the algorithm starts with the all-zero coloring x0. Let xt ∈ [−1, 1]n be the
coloring at time. The algorithm maintains a barrier bt > 0 over time and defines the slack of row i
at time t as

si(t) = bt −
n∑

j=1

ai(j)xt(j)

︸ ︷︷ ︸

current discrepancy

−λ
n∑

j=1

ai(j)
2(1− xt(j)

2)

︸ ︷︷ ︸

remaining variance

. (1)

Notice that when all xt(j) eventually reach ±1, the remaining variance term is zero and the slack
measures the gap between the discrepancy and the barrier. We define the potential

Φ(t) =
∑

i

si(t)
−p (2)

for some fixed p > 1, that penalizes the rows with small slacks and blows up to infinity if some slack
approaches zero. If we can ensure that the slacks are always positive and the potential is bounded,
then the discrepancy is upper bounded by value of the barrier when the algorithm terminates.

At each time step, the algorithm picks a random direction vt that is orthogonal to some of the
rows with the least slack, and satisfies some additional properties, and updates the coloring by a
small amount in the direction vt. The barrier bt is also updated. These updates are chosen to
ensure that the potential does not increase in expectation, and hence all the slacks stay bounded
away from 0. We give a more detailed overview in Section 2.

By changing the parameters p, λ depending on the problem at hand, we obtain several results
using a unified approach.

1. Set coloring [26]. For any set system on n elements andm ≥ n sets, disc(S) = O(
√

n log(2m/n)).

2. Komlós problem [6]. For anyA ∈ R
m×n with columns norms

∥
∥Aj

∥
∥
2
≤ 1, disc(A) = O(

√
log n).

3. Random/Spectral Hypergraphs [24]. Let A ∈ {0, 1}m×n be the incidence matrix of a set
system with n elements and m sets, where element lies in at most k sets and let γ =
maxv⊥1,‖v‖=1 ‖Av‖. Then for m ≥ n, disc(S) = O(

√
k + γ).
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4. Gaussian Matrix [11]. For a random matrix A ∈ R
m×n with each entry Aij ∼ N (0, σ2) inde-

pendently, with probability at least 1− (1/m3), disc(A) = O
(

σ
(√

n+
√
logm

)
·
√

log 2m
n

)

.

More generally, given a matrix A, we state the following result based on optimizing the various
parameters of the algorithm, depending on the properties of A. This allows our framework to be
applied in a black-box manner to a given problem at hand.

Theorem 1.1. For a matrix A ∈ R
m×n with

∥
∥Aj

∥
∥
2
≤ L and |ai(j)| ≤ M for all i ∈ [m], j ∈ [n],

let h : R+ → R
+ be a non-increasing function such that for every subset S ⊆ [n] and i ∈ [m],

∑

j∈S
ai(j)

2 ≤ |S| · h(|S|). (3)

Then, for any p > 1, there exists a vector x ∈ {−1, 1}n such that ‖Ax‖∞ ≤ 5b0 + 2M , where

b0 = min

(√

8(p+ 1)(48m)1/p · β, 250L
√

log (2m)

)

. (4)

where β =
∫ n−2
t=0 h(n − t)(n − t)−1/pdt.

Let us see how Theorem 1.1 directly leads to the results stated above.

Set coloring. As ‖Aj‖2 ≤
√
m, we have L =

√
m, and as

∑

j∈S ai(j)
2 ≤ |S|, we can set h(t) = 1

for all t ∈ [n]. Consider (4) and suppose p ≥ 1.1 so that p/(p− 1) = O(1). Then

β =

∫ n−2

t=0
h(n − t) · (n− t)−1/pdt = O(n1−1/p),

and the first bound in (4) gives b0 = O(pn1/2(m/n)1/p). Setting p = log(2m/n) gives Spencer’s
O(
√

n log(2m/n)) bound.

Interestingly, the above result gives a new proof of Spencer’s six-deviations result based on a
direct single-phase coloring. In contrast, all the previously known proofs of this result [3, 19, 25, 13]
required multiple partial coloring phases.

Komlós problem. Here L = 1 and the second term in (4) directly gives a O(
√
logm) bound2.

This also implies an O(
√
log n) bound as at most n2 rows can have ℓ1-norm more than 1, and we

can assume that m ≤ n2.

Similarly, bounding h(t) using standard concentration bounds, directly gives the following re-
sults for various models of random matrices.

Theorem 1.2 (Sub-Gaussian Matrix). Let A ∈ R
m×n with each column drawn independently from

a distribution D, where the marginal of each coordinate is sub-Gaussian with mean 0 and variance
σ2. Then, for n ≤ m ≤ 2O(

√
n), disc(A) = O(σ

√

n log(2m/n)), with probability at least 1− (1/m2).

Theorem 1.3 (Random Matrix). Let A ∈ R
m×n, m ≥ n such that every column of A is drawn

independently from the uniform distribution on {x ∈ R
m : ‖x‖2 ≤ 1}. Then disc(A) = O(1) with

probability at least 1− (1/m2).

2It would be interesting to construct an explicit family of examples where the discrepancy obtained by our approach
is Ω(

√

log n).
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1.1.1 Flexibility of the method

An important advantage of the method is it flexibility, which can be used to obtain several additional
results.

Subadditivity. Given A,B ∈ R
m×n, can we bound disc(A + B) given bounds on disc(A) and

disc(B)? Such questions can be directly handled by this framework by considering a weighted
combination of two different potential functions – one for A and another for B.

More precisely, let us define sdisc(A), the Stochastic Discrepancy of a matrix A, to be the upper
bound on discrepancy obtained by the Potential Walk described in Algorithm 1. For this notion,
we have the following approximate subadditivity for arbitrary matrices.

Theorem 1.4 (Subadditivity of Stochastic Discrepancy). For any two arbitrary matrices A,B ∈
R
m×n, there exists x ∈ {−1, 1}n such that

|〈ai, x〉| . sdisc(A) for every row ai of A, and

|〈bi, x〉| . sdisc(B) for every row bi of B.

In particular, this implies that sdisc(A+B) . sdisc(A) + sdisc(B).

Here a . b means that a = O(1)b. The theorem is algorithmic if A,B are given. It also implies
that for any matrix A, we have sdisc(A) . minB(sdisc(B) + sdisc(A−B)).

Similar questions have been studied previously in the context of understanding the discrepancy
of unions of systems [22, 23]. For example, other related quantities such as the γ2-norm and
the determinant lower bound are also subadditive [22, 23], We remark that the additive bound
cannot hold for the (actual) discrepancy or even hereditary discrepancy3, and a logarithmic loss is
necessary. For this reason, the previous additive bounds based on γ2-norm and the determinant
lower bound lose extra polylogarithmic factors when translated to discrepancy.

A direct application of Theorem 1.4 is the following.

Theorem 1.5 (Semi-Random Komlós). Let C ∈ R
m×n be an arbitrary matrix with columns satis-

fying
∥
∥Cj

∥
∥
2
≤ 1 for all j ∈ [n], and R ∈ R

m×n be a matrix with entries drawn i.i.d. from N (0, σ2).

Then, for n ≤ m ≤ 2O(
√
n), with probability at least 1− (1/m2),

disc(C +R) = O
(√

log n+ σ
√

n log(2m/n)
)

.

For m = O(n), the bound above is O(
√
log n + σ

√
n), which is better than the bound of

O(
√
log n(1 + σ

√
n)) obtained by directly applying the best-known bound for the Komlós problem

to C +R.

As another application, consider a matrix C with n columns and two sets of rows, A and B,
where each row in A has entries in {0, 1}, and the column norm of every column restricted to
rows in B is at most 1. Suppose that A has O(n) rows. Applying the framework gives a coloring
with O(

√
n) discrepancy for rows in A and O(

√
log n) for rows in B.4 Notice that using previous

techniques, if we apply the partial coloring method to get O(
√
n) discrepancy for A, this would

give O(log n) for rows of B. On the other hand, if we apply try to obtain O(
√
log n) discrepancy

for B, all the known methods would incur O(
√
n log n) discrepancy for A.

3A classical example due to Hoffman gives two set systems A and B, each with hereditary discrepancy 1, but their
union has discrepancy Ω(log n/ log log n) [21].

4This answers a question of Haotian Jiang.
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Relaxing the function h(·). Recall that the function h in Theorem 1.1, that controls how the
ℓ2 norms of rows decrease when restricted to subsets S of columns, and plays an important role in
the bounds. In many random or pseudo-random instances however, a worst case bound on h can be
quite pessimistic. For example, here even though most rows decrease significantly when restricted
to S, h can remain relatively high due to a few outlier rows. The following result gives improved
bound for such settings where for any subset S of columns, most row sizes restricted to S do not
deviate much from their expectation if S is chosen at random.

Theorem 1.6 (pseudo-random bounded degree hypergraphs). Let A ∈ {0, 1}m×n such that
∥
∥Aj

∥
∥
1
≤

k. Suppose there exists β ≤ k s.t. for any S ⊆ [n] and any c > 0, the number of rows of A with
∣
∣
∣

∑

j∈S
ai(j) − ‖ai‖1 · (|S|/n)

∣
∣
∣ ≥ cβ (5)

is at most c−2|S|. Then disc(A) = O(
√
k + β).

As discussed in [24], one can set β ≤ maxv⊥1,‖v‖=1 ‖Av‖ in (5), which in particular gives

Potukuchi’s result [24] for random k-regular hypergraphs as β = O(k1/2) in this case.

Combining with Theorem 1.4, this extends to the following semi-random setting. Consider a
random k-regular hypergraph A with n vertices and n edges. Suppose an adversary can arbitrarily
modify A by adding or deleting vertices from edges such that degree of any vertex changes by at
most t. How much can this affect the discrepancy of the hypergraph?

Theorem 1.7 (Semi-Random Hypergraphs). Consider a random k-regular hypergraph with inci-
dence matrix A ∈ R

m×n with m ≥ n, and let C ∈ {−1, 0, 1}m×n be an arbitrary matrix with at most

t non-zero entries per column. Then disc(A+C) = O
(√

k +
√
t log n

)

with probability 1−n−Ω(1).

2 The Framework

Given a matrix A ∈ R
m×n, we start at some x0 and our goal is to reach an xT in {−1, 1}n with

small discrepancy. The basic idea will be to apply a small random update (of size δ) to xt at step t
for T steps, where the update will be chosen with care. We use the slack function and the potential
function defined in (1) and (2) to implement this approach. The figure below gives a high level
description of the algorithm.

Algorithm 1: PotentialWalk

1 Input: A matrix A ∈ Rm×n, a potential function Φ : R× R
n → R

+.
2 Let x0 = 0, t = 0. Let T = (n − 2)/δ2.
3 for t ∈ [T ] do
4 Select vt such that: (i) Eε[Φ(t+1, xt + εδvt)] ≤ Φ(t, xt), (ii) xt± δvt ∈ [−1, 1]n, and (iii)

〈xt, vt〉 = 0, where ε is a Rademacher random variable (±1 with probability 1/2).
5 Let xt+1 = xt + εδvt.

6 Output: xT

2.1 Example: Komlós setting

We first give an overview of the ideas by describing how the framework above works for the Komlós
setting. Recall that here A ∈ R

m×n has columns satisfying
∥
∥Aj

∥
∥
2
≤ 1. To minimize notation, let

6



us assume here that m = n (this is also the hardest case for the problem).

At time t, let Vt = {j ∈ [n] : |xt(j)| < 1− 1/2n} and let nt = |Vt|. These are the variables that
are “alive”, and not yet “frozen”. To ensure that xt ∈ [−1, 1]n, the update vt will only change the
variables in Vt. We also set 〈vt, xt〉 = 0, which ensures that ‖xt‖2 = δ2t for any t ∈ [0, T ]. So vt
satisfies

vt(j) = 0 for all j 6∈ Vt and 〈vt, xt〉 = 0. (6)

As |xt(j)| ≥ (1− 1/2n) for all j /∈ Vt, we have

(n− nt)(1− 1/2n)2 ≤
∑

j /∈Vt

xt(j)
2 ≤

∑

j∈[n]
xt(j)

2 = δ2t.

So the number of alive variables at time t satisfies nt ≥ n− δ2t
(1−(1/(2n)))2

> n− δ2t− 1.

Blocking large rows. To ensure the two-sided bound |∑j ai(j)x(j)| < b0, we create a new
row −ai for each row ai at the beginning. Now, as the squared 2-norm of every column of A is at
most 2, at any time t, the number of rows with

∑

j∈Vt
ai(j)

2 > 12 is at most |Vt|/6 = nt/6. Let us
call such rows large (at time t). Otherwise, the row is small. We additionally constrain vt so that

〈ai, vt〉 = 0 for all rows {i :
∑

j∈Vt

ai(j)
2 > 12}. (7)

This ensures that a row only starts to incur any discrepancy once it becomes small. So at step t,
we will define the slacks only for small rows and only such rows will contribute to the potential
Φ(t). Let It denote the set of small rows at time t. In the slack function (1), we will set bt = b0 for
all t and λ = 2−5b0. So, at the beginning of the algorithm, when x0(j) = 0 for all j, we have

Φ(0) =
∑

i∈I0

1

(b0 − λ ·∑j∈[n] ai(j)
2)p
≤ |I0|

(b0 − 12λ)p
≤ n

(
2

b0

)p

.

At any time t, the change in potential Φ(t + 1) − Φ(t) is due to (i) new rows becoming small
and entering It+1 and (ii) and the change slack of rows in It. As each row has discrepancy 0 until
it becomes small, the total contribution of step (i) over the entire algorithm is at most n(2/b0)

p.

So the main goal will be to show that Φ does not rise due to step (ii). This will ensure that the
potential throughout the algorithm is at most 2n(2/b0)

p, which gives the
∑

j ai(j)x(j) < b0 for all
i.

Bounding the increase in Φ. We now describe the main ideas of the algorithm and computa-
tions for the change in Φ in step (ii). The desired O(

√
log n) will then follow directly by optimizing

the parameters b0 and p in (1).

Let et,i denote a vector in R
n with j-th entry ai(j)

2xt(j). At step t, xt changes as xt+1 − xt =
εδ · vt and, by a simple calculation, the approximate change in si(t) is:

si(t+ 1)− si(t) ≃ (2λ〈et,i, vt〉 − 〈ai, vt〉) εδ + λ〈a(2)i , v
(2)
t 〉δ2

where ε is a Rademacher random variable and a(2) denotes the vector with j-th entry a(j)2. The
error terms not included above are all higher powers of δ, and can be ignored for small enough δ
as long as all coefficients are bounded. We formalize this in Section 2.2 and Appendix A.

Then, up to second order terms in δ,

Φ(t+ 1)− Φ(t) ≃ f(t)δ2 + g(t)εδ

7



where,

f(t) = −pλ
∑

i∈I

〈a(2)i , v
(2)
t 〉

si(t)p+1
+

p(p+ 1)

2

∑

i∈I

(2λ〈et,i, vt〉 − 〈ai, vt〉)2
si(t)p+2

,

g(t) = p
∑

i∈I

(2λ〈et,i, vt〉 − 〈ai, vt〉)
si(t)p+1

.

To bound the expected change in Φ, note that the expectation of the second term g(t)εδ is zero.
So it suffices to prove that there is a choice of vt such that f(t) ≤ 0. This will ensure the expected
change of Φ is at most zero, and there will be a choice of ǫ that ensures Φ is nonincreasing.

The difficulty in making f(t) at most zero is that the positive part (the second term of f(t))
has an extra factor of si(t) in the denominator. So if some si(t) becomes very small, the positive
term could dominate. To ensure this doesn’t happen, we choose vt to be in a subspace that makes
this positive term zero for the smallest slack indices.

Blocking small slacks. Let Jt be the subset of I corresponding to all but the ⌊nt/12⌋ smallest
values of si(t) at time t. Select vt such that

(2λ〈et,i, vt〉 − 〈ai, vt〉) = 0 for all i ∈ I\Jt, (8)

Then as
∑

i si(t)
−p) ≤ Φ(t), and the smallest nt/12 slacks are “blocked”, we have

max
j∈Jt

1

sj(t)
≤
(

Φ(t)

nt/12

)1/p

,

and so,

f(t) ≤ p

(

p+ 1

2

∑

i∈Jt

(2λ〈et,i, vt〉 − 〈ai, vt〉)2
si(t)p+1

max
j∈Jt

sj(t)
−1 − λ

∑

i∈I

〈a(2)i , v
(2)
t 〉

si(t)p+1

)

≤ p

(

p+ 1

2

∑

i∈Jt

(2λ〈et,i, vt〉 − 〈ai, vt〉)2
si(t)p+1

(
12Φ(t)

nt

)1/p

− λ
∑

i∈I

〈a(2)i , v
(2)
t 〉

si(t)p+1

)

In addition to (6) and (8), suppose vt also satisfies

∑

i∈Jt

〈2λet,i − ai, vt〉2
si(t)p+1

≤ 12 ·
∑

i∈Jt

〈a(2)i , vt
(2)〉

si(t)p+1
. (9)

Choosing the update vt. Later in Section 2.2, we will see how to find a vector vt satisfying (6),
(8), (7), and (9). Then,

f(t) ≤ p
∑

i∈Jt

〈a(2)i , v
(2)
t 〉

si(t)p+1

(

6(p + 1)

(
12Φ(t)

nt

)1/p

− λ

)

.

To show that f(t) ≤ 0, it thus suffices to have 6(p + 1) (12Φ(t)/nt)
1/p − λ ≤ 0.

As Φ(t)
1
p ≤ 2(2n)1/p/b0 by the inductive hypothesis, and nt ≥ 1, it suffices to have

12(p + 1)

b0
(24n)1/p − λ ≤ 0.

Choosing p = log n so that n1/p = O(1), and as λ = 2−5b0, we can pick b0 = O(
√
log n) to satisfy

the above. This gives the desired discrepancy bound.
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2.2 The General Framework

We now describe the algorithm more formally. Given a matrix A ∈ R
m×n with

∥
∥Aj

∥
∥
2
≤ 1 for all

j ∈ [n], extend A such that for each original row ai of A, there are two rows ai and −ai in A.
Additionally, partition every row ai into 2 rows, aSi and aLi , with small and large entries, as follows:

aSi (j) =

{

0 if |ai(j)| > 1/2λ

ai(j) otherwise
, aLi (j) =

{

ai(j) if |ai(j)| > 1/2λ

0 otherwise,

where λ is a parameter to be determined later. After this transformation, for any x ∈ R
n, ‖Ax‖∞ =

maxi〈aSi + aLi , x〉, and the squared 2-norm of any column of A is at most 2.

Let I denote the index set of all rows of A, and IS denote the index set of rows of the first type
above.

The step-size of the algorithm is δ and the algorithm will run for T = n−2
δ2 steps. Starting with

x0 = 0, let vt ∈ R
n with 〈xt, vt〉 = 0. For t ∈ [T ],

xt =

{

xt−1 + δvt−1 w.p. 1/2,

xt−1 − δvt−1 w.p. 1/2.

As t increases, some variables will start approaching 1 in magnitude. To ensure that xt ∈ [−1, 1]n,
we restrict vt to be in the space of alive variables, defined as

Vt = {i ∈ [n] : |xt(i)| < 1− 1/(2n)}.

For any t ∈ [T ], ‖xt‖2 = δ2t as

‖xt‖2 = ‖xt−1 + δvt‖2 = ‖xt−1‖2 + δ2 ‖vt‖2 = δ2(t− 1) + δ2 = δ2t. (10)

Let nt = |Vt| denote the number of alive variables at t. By (10), (n−nt)(1− ǫ)2 ≤ δ2t, which gives

nt ≥ n− δ2t

(1− 1/(2n))2
> n− δ2t− 1.

The goal of the rest of this section is to select a vt such that for all t ∈ [T ], xt ∈ [−1, 1]n and
〈ai, xt〉 is bounded by some function of m and n for all rows. To help with this goal, we classify
the rows according to how many variables are still “uncolored” in a row.

Let the set of s-Alive rows at time t be defined as:

It = {i ∈ IS :
∑

j∈Vt

ai(j)
2 ≤ 20}.

The choice of 20 here is arbitrary, and large enough constant works. We can now define the
slack and the potential function.

Slack. For any i ∈ I, the slack function is defined as

si(t) = bt − 〈ai, xt〉 − λ ·
n∑

j=1

ai(j)
2(1− xt(j)

2).

We call bt the barrier, and for t ∈ [T ], we also move it as

bt = bt−1 + δ2dt−1,

9



for some function dt. We set λ = cb0 where c = 1/42 and b0 is the initial barrier.

Potential function. The potential function has a parameter p > 1 and is defined as

Φ(t) =
∑

i∈It
si(t)

−p.

We will only consider slacks for alive rows and ensure that they are always positive. Moreover,
we will consider only the small s-Alive rows as the rows in IL will be easily handled. To ensure
that si(t) does not become too “small” for any s-Alive row, the choice of vt should not decrease
the smallest slacks. This motivates the following definitions.

• Blocked rows: Let Ct be the subset of It corresponding to the ⌊nt/12⌋ smallest values of si(t).

• Let Jt = It\Ct. These are the “large slack” rows.

To prove that all the slacks are positive, we will upper bound the potential throughout by
bounding the change in Φ(t) at each step. Note that Φ(t) will experience jumps whenever a new
index gets added to It, however the total contribution of jumps is easily shown to be bounded (see
Lemma A.1) and can essentially be ignored. To bound the one-step change in Φ, we use the second
order Taylor expansion of Φ(t + 1) centered at Φ(t). In Appendix A, we show that by choosing
δ ≤ O(1/(n2m6p4)), the overall error due to ignoring the higher powers of δ is negligible.

2.3 Algorithm and Analysis

Recall that et,i denotes the vector in R
n with j-th entry ai(j)

2xt(j). We can now state the algorithm
for selecting vt.

Algorithm 2: Algorithm for Selecting vt

1 Initialize x0 ← 0

2 for t = 1, . . . , T = n−2
δ2

do

3 Let Wt = {w ∈ R
n : w(i) = 0, ∀i /∈ Vt} // restrict to alive variables

4 Let Ut = {w ∈ Wt : 〈w, 2λet,i − ai〉 = 0,∀i ∈ Ct and 〈w, xt〉 = 0}
// restrict to large slack rows

5 Let Yt = {w ∈ Wt : 〈w, ai〉 = 0,∀i ∈ I\It} // restricted to s-Alive rows

6 Let Gt denote the subspace

Gt =
{

w ∈ Wt :
∑

i∈Jt

〈(2λet,i − ai) , w〉2si(t)−p−1 ≤ 40 ·
∑

i∈Jt

〈a(2)i , w(2)〉si(t)−p−1

}

(11)

7 Consider the subspace Zt = Ut ∩ Yt ∩ Gt and let W = {w1, w2, . . . , wk} be an

orthonormal basis for Zt. Choose

vt = arg min
w∈W

∑

i∈Jt

〈2λet,i − ai, w〉2si(t)−(p+1). (12)

10



We now re-state our main theorem. In words, the assumption of the theorem is that there is a
non-decreasing function h(.) such that for any row, the squared norm in any subset of coordinates
S is proportional to h(|S|) times the size of the subset S. Under this condition, we can bound the
discrepancy as a function of h.

Theorem 1.1. For a matrix A ∈ R
m×n with

∥
∥Aj

∥
∥
2
≤ L and |ai(j)| ≤ M for all i ∈ [m], j ∈ [n],

let h : R+ → R
+ be a non-increasing function such that for every subset S ⊆ [n] and i ∈ [m],

∑

j∈S
ai(j)

2 ≤ |S| · h(|S|). (3)

Then, for any p > 1, there exists a vector x ∈ {−1, 1}n such that ‖Ax‖∞ ≤ 5b0 + 2M , where

b0 = min

(√

8(p+ 1)(48m)1/p · β, 250L
√

log (2m)

)

. (4)

where β =
∫ n−2
t=0 h(n − t)(n − t)−1/pdt.

The case when h(t) = h is often useful, in which case we have following corollary.

Corollary 2.1. For a matrix A ∈ R
m×n with ‖Aj‖ ≤ L and |ai(j)| ≤ M for all i ∈ [n], j ∈ [m],

let h be such that for every subset S ⊆ [n] and every i ∈ [m],

∑

j∈S
ai(j)

2 ≤ |S| · h. (13)

Then, disc(A) ≤ 5b0 + 2M , where b0 = min(26
√

hn log(2m/n), 250L
√

log (2m)).

Proof. For a constant h, we have β =
∫ n−2
0 (n − t)−1/phdt ≤ n1−1/ph/(1 − 1/p). Choosing p =

log(2m/n) to optimize the first term in (4) gives the result.

Roadmap of the proof. The first main lemma below (Lemma 2.3) establishes that there is a
large feasible subspace from which vt as defined above can be chosen. Using this we prove Lemma
2.4, which bounds the change in potential. This will allow us to bound the discrepancy of each row
and hence prove Theorem 1.1.

A key fact used for proving Lemma 2.3 is the following lemma in [6]. We include a proof for
the reader’s convenience.

Lemma 2.2 ([6]). Let G,H ∈ R
m×n be matrices such that |Gij | ≤ α|Hij | for all i ∈ [m] and

j ∈ [n]. Let K = diag(H⊤H). Then for any β ∈ (0, 1], there exists a subspace W ⊆ R
n satisfying

1. dim(W ) ≥ (1− β)n, and

2. ∀w ∈W, w⊤G⊤Gw ≤ α2

β · w⊤Kw.

Proof. If Kii = 0 for some i, then Hji = Gji = 0 for all j ∈ [n]. So, for a w ∈ W , wi can take
any value, and removing the i-th column of G and H decreases both n and dim(W ) by 1. Without

loss of generality, assume that Kii > 0 for all i ∈ [n] and let M = GK− 1
2 . For any w ∈ R

n, let

y = K
1
2w. Then

w⊤G⊤Gw ≤ α2

β
· w⊤Kw ⇔ y⊤M⊤My ≤ α2

β
· y⊤y.

11



Let Y be the subspace of vectors y that satisfy βy⊤M⊤My ≤ α2 · y⊤y. Then dim(W ) = dim(Y ).
Thus, dim(W ) is equal to the number of eigenvalues of M⊤M less than α2/β. The sum of eigen-
values of M⊤M is equal to tr(M⊤M), which is equal to sum of length squared of columns of

M . Since M = GK− 1
2 and |Gij | ≤ α|Hij |, the length of every column of M is at most α, and

tr(M⊤M) ≤ nα2. Therefore, the number of eigenvalues of M⊤M greater than α2/β is at most βn
and the lemma follows.

We now prove Lemma 2.3.

Lemma 2.3 (Subspace Dimension). For all t ∈ T , dim(Zt) ≥ ⌈2nt/3⌉.
Proof. To lower bound the dimension of Zt we lower bound the dimensions of Ut,Yt and Gt.

First, we have dim(Ut) ≥ nt − dim(Ct) − 1 ≥ ⌈11nt/12⌉ − 1. Second, at time t, as the sum of
ℓ2-norm square of all columns is at most 2nt, we have that

∑

i∈I
∑

j∈Vt
ai(j)

2 ≤ 2nt. So the number

of rows ai with
∑

j∈Vt
ai(j)

2 ≥ 20 is at most ⌊nt/10⌋ and dim(Yt) ≥ nt − ⌊nt/10⌋ = ⌈9nt/10⌉.
We now bound dim(Gt) by applying Lemma 2.2. Let G denote the matrix with columns j

corresponding to variables in Vt and rows i restricted to i ∈ Jt with (i, j) entry (2λet,i(j) −
ai(j))si(t)

−(p+1)/2.

Let H be the matrix with entries ai(j) · si(t)−(p+1)/2 for i ∈ Jt} and j ∈ Vt. As |aij | ≤ 1/(2λ)
for i ∈ It, we have

|Gij | = |2λai(j)2xt(j)− aj(i)| ≤ |2λai(j)2xt(j)| + |aj(i)| ≤ 2|aj(i)| = 2|Hij |.

Let K = diag(H⊤H). Then, using Lemma 2.2 with α = 2 and β = 1/10, we get that there is a
subspace Gt with dim(Gt) ≥ ⌈9nt/10⌉ such that

Gt = {w ∈ Wt : w
⊤G⊤Gw ≤ 40 · w⊤Kw},

which by the definition of G and H is equivalent to that given by (11).

Putting together the bounds on the dimensions of these subspaces gives,

dim(Zt) ≥ dim(Ut ∩ Yt ∩ Gt) ≥ ⌈11nt/12⌉ − 1 + ⌈9nt/10⌉ + ⌈9nt/10⌉ − 2nt ≥ ⌈2nt/3⌉.

Setting the parameters. To show the two bounds in (4), we will set the parameters bt, dt (the
change in bt) and p in two ways:

Case 1: dt = 4(p + 1) · h(nt) ·max
i∈Jt

si(t)
−1 for all t ∈ [T ], and p, b0 arbitrary (14)

Case 2: p = 2 log(2m), b0 = 840(p + 1) ·max
j∈Jt

sj(t)
−1 and dt = 0 for all t ∈ [T ]. (15)

Bounding the potential. The next lemma shows that in both these cases, the potential function
remains bounded.

Lemma 2.4 (Bounded Potential). In either of the cases given by (14) and(15), we have that
Φ(t) ≤ 4m(2/b0)

p, for all t = 0, . . . , T .

Proof. We will prove this by induction. Clearly, this holds at t = 0 as Φ(0) ≤ 2m(2/b0)
p. For the

inductive step, we will show that for any j = 0, . . . , T − 1, if Φ(j) ≤ 4m(2/b0)
p then

Φ(j + 1) ≤ Φ(j) +
1

Tbp0
+ |Ij+1\Ij| ·

(
2

b0

)p

. (16)
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Note that |Ij+1\Ij| is the number of additional rows in IS that may become alive at step j. This
gives the result by induction as summing (16) over j = 0, . . . , T − 1 will give

Φ(t+ 1) ≤ Φ(0) +
T−1∑

j=0

1

Tbp0
+

(
2

b0

)p T−1∑

j=0

|Ij+1\Ij| ≤ 2m ·
(

2

b0

)p

+
1

bp0
≤ 4m ·

(
2

b0

)p

. (17)

We now focus on proving (16) for j = t.

By the induction hypothesis, Φ(t) ≤ 4m (2/b0)
p. By Lemma A.1, one of the signs for xt+1 gives

E(Φ(t+ 1))− Φ(t) ≤ f(t) +
1

Tnbp0
+ |It+1\It| ·

(
2

b0

)p

, where

where

f(t) = −pδ2
∑

i∈It

dt + λ〈a(2)i , v
(2)
t 〉

si(t)p+1
+

p(p+ 1)δ2

2

∑

i∈It

(2λ〈et,i, vt〉 − 〈ai, vt〉)2
si(t)p+2

.

So to prove (16), it suffices to show that f(t) ≤ 0. We first consider the case when bt, dt and p are
given by (14).

As 2λ〈et,i, vt〉 − 〈ai, vt〉 = 0 for all i /∈ Jt, f(t) satisfies

f(t) ≤ −pδ2
∑

i∈Jt

dt + λ〈a(2)i , v
(2)
t 〉

si(t)p+1
+

p(p+ 1)δ2

2
max
j∈Jt

sj(t)
−1 ·

∑

i∈Jt

(2λ〈et,i, vt〉 − 〈ai, vt〉)2
si(t)p+1

. (18)

By a simple averaging argument described in Lemma 2.6, we also have that

∑

i∈It

(2λ〈et,i, vt〉 − 〈ai, vt〉)2
si(t)p+1

≤
∑

i∈It

8h(nt)

si(t)p+1
. (19)

Plugging (19) in (18) gives

f(t) ≤ −pδ2
∑

i∈Jt

dt
si(t)p+1

+
p(p+ 1)δ2

2
max
j∈Jt

sj(t)
−1 ·

∑

i∈Jt

8h(nt)

si(t)p+1
. (20)

Therefore, if dt satisfies equation (14), then f(t) ≤ 0.

We now consider the case in (15). As vt ∈ Gt, we have

∑

i∈Jt

(2λ〈et,i, vt〉 − 〈ai, vt〉)2
si(t)p+1

≤ 40 ·
∑

i∈Jt

〈a(2)i , vt
(2)〉

si(t)p+1
. (21)

Next, as dt = 0 and λ = b0/42, (18) and (21) give

f(t) ≤
∑

i∈Jt

pδ2〈a(2)i , v
(2)
t 〉

si(t)p+1
·
(

− b0
42

+ 20(p + 1) ·max
j∈Jt

sj(t)
−1

)

.

So if b0 satisfies equation (15), then f(t) ≤ 0.

The next lemma gives a bound on the minimum value of slack for any active row, given the
bound on potential function.
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Lemma 2.5. For any t ∈ {0, . . . , T}, if Φ(t) ≤ 4m(2/b0)
p, then maxi∈Jt si(t)

−1 ≤ 2
b0

(
48m
nt

) 1
p
.

Proof. By the definition of Jt, for any i ∈ Jt, there are at least ⌊nt/12⌋ + 1 indices j in It such
that sj(t) ≤ si(t). Therefore,

max
i∈Jt

1

si(t)
≤
(
12Φ(t)

nt

) 1
p

≤ 2

b0

(
48m

nt

) 1
p

, (22)

where the last inequality follows by the assumption, Φ(t) ≤ 4m(2/b0)
p.

Lemma 2.6. For any t ∈ [T ], the choice of vt satisfies

∑

i∈Jt

〈2λet,i − ai, vt〉2
si(t)p+1

≤
∑

i∈Jt

8h(nt)

si(t)p+1
. (23)

Proof. Using (a + b)2 ≤ 2(a2 + b2), and as |2λet,i(j)| = |2λai(j)2xt(j)| ≤ |ai(j)| as |ai(j)| ≤ 1/2λ
for any j and i ∈ IS, we have that for any w,

∑

i∈Jt

〈2λet,i − ai, w〉2
si(t)p+1

≤
∑

i∈Jt

2〈ai, w〉2 + 2〈2λet,i, w〉2
si(t)p+1

≤ 4
∑

i∈Jt

〈ai, w〉2
si(t)p+1

.

Let Wt = {w1, . . . , wk} be an orthonormal basis for Zt and k = dim(Zt). As Zt ⊆ Vt,

∑

i∈Jt

∑k
j=1〈ai, wj〉2
si(t)p+1

≤
∑

i∈Jt

∑

j∈Vt
ai(j)

2

si(t)p+1
≤ nt

∑

i∈Jt

h(nt)

si(t)p+1
.

where the second inequality uses that
∑

j∈Vt
ai(j)

2 ≤ nt · h(nt) by the definition of h.

As k ≥ ⌈nt/2⌉, this gives

1

k

k∑

j=1

∑

i∈Jt

〈2λet,i − ai, wj〉2
si(t)p+1

≤ nt

k

∑

i∈Jt

4h(nt)

si(t)p+1
≤
∑

i∈Jt

8h(nt)

si(t)p+1
.

The result now follows as vt in (12) minimizes
∑

i∈Jt
〈2λet,i−ai, wj〉2si(t)−p−1 over all wj ∈Wt.

We now prove prove the main theorem.

Proof of Theorem 1.1. Recall that we divide each row a of A as a = aS + aL. We will bound
〈aL, xT 〉 and 〈aS , xT 〉 separately.

Let t1 denote the earliest when the squared norm of aL (restricted to the alive variables) is at
most 20, and let n1 be number of non-zeros in aL restricted to the set Vt1 . As |aL(j)| ≥ 1/(2λ) for
each j, the number of non-zero variables n1 in aL at time t1 is at most 80λ2, as

n1/(4λ
2) ≤

∑

j∈Vt1

aL(j)2 ≤ 20.

Moreover, as aL incurs zero discrepancy until t1, the overall discrepancy satisfies

|〈aL, xT 〉| = |〈aL, xt1〉|+ |〈aL, xT − xt1〉| ≤ 0 +
√
n1 · (

∑

j∈Vt1

aL(j)2)1/2 ≤ 80λ ≤ 3b0. (24)
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Henceforth, we focus on the rows aS . We first show that the slacks are always positive. Let

γ = b0/4(4m)
1
p . By Lemma 2.4, for all t ∈ [T ], Φ(t) ≤ 4m(2/b0)

p < γ−p. This implies that
|si(t)| ≥ γ for all i ∈ ISt and t ∈ [T ]. In one step of the algorithm,

|si(t)− si(t− 1)| ≤ δ2dt−1 + |〈ai, xt〉 − 〈ai, xt−1〉|
≤ δ2dt−1 + |δ〈ai, vt−1〉| ≤ 20nδ ≤ 2γ.

So, if si(t− 1) ≥ γ and Φ(t) < γ−p, then si(t) ≥ 0, i.e., the slack si(t) cannot go from being greater
than γ to less than −γ in a single step. So, for every i ∈ IS and t ∈ [T ], si(t) ≥ γ and 〈ai, xT 〉 ≤ bT .
Together with (24) this gives, |〈a, xT 〉| ≤ |〈aS , xT 〉|+ |〈aL, xT 〉| ≤ bT + 3b0.

Let x ∈ {−1, 1}n be obtained from xT by the rounding x(j) = sign(xT (j)). As T = (n− 2)/δ2,
‖xT ‖2 = n− 2 with |xτ (j)| ≤ 1 for all j ∈ [n]. After rounding xT to x, we have ‖x‖2 = n. For any
row a of A, the discrepancy is bounded by

|〈a, x〉| = |〈a, xT 〉|+ |〈a, x− xT 〉| ≤ |〈a, xT 〉|+M

n∑

j=1

|x(j) − xT (j)| ≤ bT + 3b0 + 2M.

We now consider the two cases for b0, dt, p. If the second case given by (15), then by (22), b0 ≤
1680(p+1) · (48m/nt)

1/p/b0. As nt ≥ 1 for all t ∈ [T ] and p = log(2m), we have (48m/nt)
1/p ≤ 10e,

and setting b0 = 250
√

log(2m) suffices. Since dt = 0, bT = b0 and ‖Ax‖∞ ≤ 4b0 + 2M .

In the first case given by (14), then by (22), we have dt = 8(p+1)(48m)
1
p · h(nt)

b0n
1/p
t

for all t ∈ [T ].

Summing dt over t gives

bT − b0 = δ2
T−1∑

t=0

dt = 8(p + 1)(48m)
1
p δ2 ·

T−1∑

t=0

h(nt)/(b0n
1/p
t ).

As nt > n − δ2t − 1 ≥ and h is non-increasing, δ2 ·∑T−1
t=0 h(nt)n

−1/p
t ≤ β, so that bT ≤ b0 +

8(p + 1)(48m)1/pβ/b0. Optimizing b0 = (8(p + 1)(48m)1/pβ)1/2 gives that bT = 2b0 and thus
‖Ax‖∞ ≤ bT + 3b0 + 2M ≤ 5b0 + 2M , giving the desired result.

3 Applications

3.1 Set Coloring

We bound the discrepancy of a set system (U,S) with |U | = n, |S| = m, and m ≥ n. As
‖Aj‖2 ≤

√
m, we have L =

√
m, and as

∑

j∈S ai(j)
2 ≤ |S|, we can set h(t) = 1 for all t ∈ [n].

Consider (4) and suppose p ≥ 1.1 so that p/(p− 1) = O(1). Then

β =

∫ n−2

t=0
h(n − t) · (n− t)−1/pdt = O(n1−1/p),

and the first bound in (4) gives b0 = O(pn1/2(m/n)1/p). Setting p = log(2m/n) gives Spencer’s
O(
√

n log(2m/n)) bound.
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3.2 Vector Balancing

We now consider the discrepancy a matrix A ∈ R
m×n with column ℓ2-norms at most 1.

Here L = 1 and the second term in (4) directly gives a O(
√
logm) bound. This also implies

an O(
√
log n) bound as at most n2 rows can have ℓ1-norm more than 1, and we can assume that

m ≤ n2. In particular, for a row ai with ‖ai‖2 < 1/n1/2, we have |〈ai, x〉| ≤ ‖ai‖1 ≤
√

n ‖ai‖2 < 1
and it can be ignored. The sum of squares of elements in A is at most n the number of rows with
‖ai‖2 > 1/n1/2 is at most n2.

3.3 Sub-Gaussian Matrices

Let X be a random variable with E(X) = 0. X is called Sub-Gaussian with variance σ2 if its
moment generating function satisfies E(esX) ≤ eσ

2s2/2 for all s ∈ R. For a Sub-Gaussian random
variable, E(X2) ≤ 4σ2.

Theorem 1.2 (Sub-Gaussian Matrix). Let A ∈ R
m×n with each column drawn independently from

a distribution D, where the marginal of each coordinate is sub-Gaussian with mean 0 and variance
σ2. Then, for n ≤ m ≤ 2O(

√
n), disc(A) = O(σ

√

n log(2m/n)), with probability at least 1− (1/m2).

Proof. As ai(j) is a Sub-Gaussian with variance σ2, ai(j)
2 − E(ai(j)

2) is a mean zero and sub-
exponential random variable with parameter 16σ2 [27].

For any S ⊆ [n] with |S| = s,

Bernstein’s inequality for sub-exponential random variables [27] (Theorem 2.8.1) gives that,

Pr(
∑

j∈S
ai(j)

2 − E(ai(j)
2) ≥ st) ≤ exp(−min(s2t2/16σ4, st/16σ2)). (25)

Setting t = 96σ2 (log(ne/s) + (logm)/s) and as E(ai(j)
2) ≤ 4σ2, and taking a union bound over

all the rows and all possible subsets of s columns, we get that,

∑

j∈S
a2i (j) ≤ 100σ2|S| (log(ne/|S|) + logm)/|S|)) . (26)

for every S ⊆ [n], i ∈ [m], with probability at least 1− 1/2m2.

Similarly, as ai(j) is sub-Gaussian with mean 0 and variance σ2, with probability at least
1− 1/2m2, we have |ai(j)| ≤ 3σ

√

log(mn) for all i ∈ [m], j ∈ [n], and thus the ℓ2-norm of a column
is at most L = 3

√
mσ
√

log(mn) and M = 3σ
√
logmn. By (26), we can set

h(t) = 100σ2

(

log
(ne

t

)

+
logm

t

)

.

A direct computation gives β =
∫ n−2
0 h(n−t)(n−t)−1/pdt = O(σ2(n1−1/p+p logm)). Using Theorem

1.1 with p = 2⌈log(2m/n)⌉, gives b0 = O(σ(p(m/n)1/p(n+n1/pp logm))1/2) = O(σn1/2 log(2m/n)).

Thus, with high probability ‖Ax‖∞ ≤ (5b0 + 2M) = O(σ
√

n log(2m/n)).
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3.4 Random Matrices

The result above directly implies the following bound for random matrices.

Theorem 1.3 (Random Matrix). Let A ∈ R
m×n, m ≥ n such that every column of A is drawn

independently from the uniform distribution on {x ∈ R
m : ‖x‖2 ≤ 1}. Then disc(A) = O(1) with

probability at least 1− (1/m2).

Proof. Consider a random vector X chosen uniformly at random from the unit ball, {x ∈ R
m :

‖x‖2 ≤ 1}. Then every coordinate of X is sub-Gaussian with variance σ2 = C/
√
m, where C is a

constant [27] (Theorem 3.4.6, Ex 3.4.7). The result now follows from Theorem 1.5.

4 Flexibility of the Method

An advantage of the potential function approach is its flexibility. We describe two illustrative
applications. In Section 4.1 we show how the bounds for matrices A and B obtained using the
framework can be used to directly give bounds for C = A + B by combining the potentials for A
and B in a natural way.

In Section 4.2 we consider how the requirement on the function h(·) in Theorem 1.1 can be re-
laxed, and use it to bound the discrepancy of sparse hypergraphs (the Beck-Fiala setting) satisfying
a certain pseudo-randomness condition.

4.1 Subadditive Stochastic Discrepancy

Theorem 1.4 (Subadditivity of Stochastic Discrepancy). For any two arbitrary matrices A,B ∈
R
m×n, there exists x ∈ {−1, 1}n such that

|〈ai, x〉| . sdisc(A) for every row ai of A, and

|〈bi, x〉| . sdisc(B) for every row bi of B.

In particular, this implies that sdisc(A+B) . sdisc(A) + sdisc(B).

Proof. Let Φ1(t), Φ2(t) be the potential functions corresponding to A and B, respectively. Let the
parameters for Algorithm 2 on A be b10, p1, d

1
t , h1(·) and for B be b20, p2, d

2
t , h2(·).

Note that it might not be possible to select an update vt at time t, that ensures that both
Φ1(t + 1) ≤ Φ1(t) and Φ2(t + 1) ≤ Φ2(t) hold, but we can find a vt for which a weighted sum of
Φ1(t) and Φ2(t) decreases at every step.

Consider the potential function

Φ(t) =
(
b10/2

)p1 Φ1(t) + (b20/2)
p2Φ2(t) .

We apply the same algorithmic framework. For t = 1, . . . , T , select vt such that E(Φ(t+ 1)) ≤
Φ(t), and select the sign of ε for which Φ(t+ 1) ≤ Φ(t), and set xt+1 = xt + ǫδvt. To this end, it
suffices to find a vt such that E(Φ1(t+ 1)) ≤ Φ1(t) and E(Φ2(t+ 1)) ≤ Φ2(t).

Let Z1
t and Z2

t be the feasible subspaces at step t for A and B respectively from Algorithm 2.
We will search for vt in Zt = Z1

t ∩ Z2
t . By Lemma 2.3, dim(Z1

t ),dim(Z2
t ) ≥ ⌈2nt/3⌉. Therefore,

dim(Zt) = dim(Z1
t ∩ Z2

t ) ≥ ⌈2nt/3⌉+ ⌈2nt/3⌉ − nt ≥ nt/3.
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Using Lemma 2.6 on A and B, along with Markov’s inequality implies that there exists a vector
w ∈ Zt such that

∑

i∈I1
t

〈2cb10et,i − ai, w〉2
si(t)p1+1

≤
∑

i∈I1
t

25h1(nt)

si(t)p1+1
and

∑

i∈I2
t

〈2cb20et,i − ai, w〉2
si(t)p2+1

≤
∑

i∈I2
t

25h2(nt)

si(t)p2+1
. (27)

Comparing (27) with (23), the functions h1(·) and h2(·) only increase by a constant factor when
compared to running Algorithm 2 on A and B independently. So it suffices to multiply d1t and d2t
by 4 to ensure that by Lemma 2.4,

E[Φ1(t)]− Φ1(t− 1) ≤ 1

Tn(b10)
p1

and E[Φ2(t)]− Φ2(t− 1) ≤ 1

Tn(b20)
p2
. (28)

Plugging (28) in the definition of Φ(t), we get E[Φ(t)] − Φ(t − 1) ≤ 2/(Tn). So one of the two
choices of xt gives Φ(t)− Φ(t− 1) ≤ 2/(Tn). Summing over t,

Φ(t) ≤ Φ(0) +
2

n
≤
(
b10
2

)p1

Φ1(0) +

(
b20
2

)p2

Φ2(0) +
2

n
.

By Lemma A.1, Φ1(0) ≤ 2m · (2/b10)p1 and Φ2(0) ≤ 2m · (2/b20)p2 , thus Φ(t) ≤ Φ(0) + 2/n ≤ 5m.
For a row i ∈ J ℓ

t for ℓ ∈ {1, 2}, we have (⌊nt/12⌋+1) ·(bℓ0/2)pℓ ·si(t)−pℓ ≤ Φ(t) ≤ 5m, which implies
that for any t, and ℓ ∈ {1, 2},

max
i∈J ℓ

t

si(t)
−1 ≤ 2

bℓ0

(
60m

nt

) 1
pℓ

. (29)

Upon comparing (29) with (22), notice that maxk∈J 1
t

sk(t)
−1 and maxk∈J 2

t
sk(t)

−1 are only a
constant factor larger when compared to running Algorithm 2 on A and B separately, and hence
the discrepancies for both A and B are only a constant factor larger.

4.2 Discrepancy of Sparse Pseudo-random Hypergraphs

In this section, we consider 0/1 matrices that satisfy a certain regularity property, namely, for most
rows, the sum of their entries in any subset of columns is close to the sum of the full row scaled
by the fraction of columns in the subset. This property is satisfied, e.g., by the matrices that
correspond to sparse random hypergraphs. In particular, we show the following.

Theorem 1.6 (pseudo-random bounded degree hypergraphs). Let A ∈ {0, 1}m×n such that
∥
∥Aj

∥
∥
1
≤

k. Suppose there exists β ≤ k s.t. for any S ⊆ [n] and any c > 0, the number of rows of A with
∣
∣
∣

∑

j∈S
ai(j) − ‖ai‖1 · (|S|/n)

∣
∣
∣ ≥ cβ (5)

is at most c−2|S|. Then disc(A) = O(
√
k + β).

Proof outline. At a high level the proof is similar to that of Theorem 1.4, using a weighted
potential function. However, rather than just two potentials, we will have to consider a combination
of O(log n) potentials, and it will take some care to make sure this doesn’t create an overhead in the
discrepancy. We note that the main algorithm remains: at each step choose a vector in a subspace
defined by a set of constraints based on the current vector xt.

Consider the case when A has at most n rows and we run Algorithm 2 on A with the additional
constraints that at time t,
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(a) we ignore all rows with
∑

i∈Vt
ai(j) < 20β from the potential function, and

(b) we move orthogonal to all rows for which |∑i∈Vt
ai(j) − ‖ai‖1 · (nt/n)| ≥ 10nt.

In the first case, once the size of rows becomes less than 20β at some step t, we will simply bound
the discrepancy gained by this row after t by 20β.

The second set of rows are the one that do not reduce in size proportional to the progress of
the coloring. Using the assumption in the theorem, i.e., (5) with c = 10, the number of rows for
which point (b) is true is at most nt/100. So, for all but nt/100 rows,

20β ≤
∑

j∈Vt

ai(j) ≤ ‖ai‖1 ·
nt

n
+ 10β.

This gives β ≤ (1/10) ‖ai‖1 · (nt/n) if row i is active and therefore, for all but nt/100 rows, using
the assumption of the theorem,

∑

j∈Vt

ai(j) ≤ 2 ‖ai‖1 ·
nt

n
. (30)

So, hi(|S|) = 2 ‖ai‖1 /n satisfies the bound (3) in Theorem 1.1 and we obtain

|ai · xT | = O(β) + min

(

O(
√

p · ‖ai‖1), O(
√

n log(2n))

)

For p = 2, |ai · xT | = O(β +
√

‖ai‖1). So, the discrepancy of a row is proportional to the square-
root of its initial ℓ1-norm. Unfortunately, for rows with large initial norms, this can be as large as
O(
√
n).

To fix this issue, let us restrict ourselves to the case when all rows have similar initial ℓ1-norm,
i.e., for all i,

x · k ≤ ‖ai‖1 < 2x · k.
Since every column of A contains at most k ones, the number of rows with ℓ1-norm greater than
x · k is at most (k · n)/(x · n) = n/x

By (30), for all but nt/100 rows,
∑

j∈Vt
ai(j) ≤ 4x · k · (nt/n). Note that a row only gains

discrepancy when it satisfies both
∑

i∈Vt
ai(j) < 20k and |∑i∈Vt

ai(j)−‖ai‖1 · (nt/n)| ≤ 10β. This
implies that

‖ai‖1 · (nt/n)− 10β ≤
∑

i∈Vt

ai(j) ≤ 20k.

In other words, ‖ai‖1 · (nt/n) ≤ 20k + 10β ≤ 30k. Under the assumption that ‖ai‖1 ≥ x · k for
all rows, we get (nt/n) ≤ 30/x. So, when nt ≥ 30n/x, we can set h(nt) = 0. In other words, the
function

h(|S|) =
{

0 when |S| ≥ 30n/x

4x · (k/n) otherwise

satisfies (3). This gives
∫ n−2
t=0 h(n− t) · (n− t)−1/pdt = O(x1/p · k · n−1/p), and by Theorem 1.1,

disc(A) = β +min
(

O(
√

p · k), O(
√

n log(2n))
)

= O(β +
√
k) for p = 2.

So if we only consider a set rows with similar initial ℓ1-norms (within constant factor of each other)
at a time, the discrepancy of such a set is bounded by O(β+

√
k). This suggests using Theorem 1.4
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to bound the discrepancy of union of this set. However, since the initial ℓ1-norms of rows can range
anywhere from 1 to n, there can be as many as log(n) sets and corresponding potential functions.
Naively applying Theorem 1.4 will give a

√

log(n) factor increase in discrepancy, rather than a
constant.

Before discussing how to fix this issue, we formally describe the partition of rows into classes:

Partitioning rows according to ℓ1-norm: First, extend A such that for each original row ai,
there are two rows ai and −ai in A. Since our goal is to prove discrepancy O(

√
k), we can ignore all

rows will ℓ1-norm less than
√
k. Then m ≤ n

√
k because the number of rows with ℓ1-norm greater

than
√
k is at most 2nk/

√
k = 2n

√
k. Let N = ⌈log2 n/k⌉ and Q = {0} ∪ [N ]. Partition the rows

of A into based on their initial ℓ1-norm into |Q| = N + 1 classes:

• A0 = {i ∈ I :
√
k ≤ ‖ai‖1 < 2k}.

• For each i ∈ [N ], let Ai = {i ∈ I : 2ik ≤ ‖ai‖1 < 2i+1k}.

The sum of ℓ1-norms of rows in A is at most 2nk, therefore for any i, 2ik|Ai| ≤ 2nk and |Ai| ≤ 21−in.

To keep the increase in discrepancy a constant factor rather than
√

log(n), we carefully dis-
tribute the following two resources among these classes at any step:

• The number of rows with small slacks that vt is orthogonal to from each class. Since the total
number of rows vt can move orthogonal to at time t is at most nt, we need to distribute nt

among the classes. See Lemma 4.2 for more details.

• The bound on
∑

i∈It∩Aq
(2λ〈et,i, vt〉 − 〈ai, vt〉)2 si(t)−p−1 in terms of

∑

i∈It∩Aq
h(nt)si(t)

−p−1

for each class q.

Rows with larger initial ℓ1 norm get more of each resource.

We create N + 1 potential functions {Φi(t)}Ni=0, one associated with each row partition. The
potential functions use the same p, b0 parameters, and λ = cb0 with c = 1/42, but have different
rate of change of barrier functions dq(·), based on q. We will run Algorithm 2 on each partition
separately but use the same xt and vt at each step. In this case, we can select parameters to ensure
that each potential function is decreasing in expectation (see Lemma 4.5). However, there might
not exist a vector vt that ensure that moving in vt direction decreases all the potential functions
simultaneously.

To deal with this, we use a weighted combination of Φq as the potential function: Let

Φ(t) =
1

k
· Φ0(t) +

∑

q≥1

22q · Φq(t). (31)

For reasoning behind the form of Φ(t), see Section 4.2.2.

4.2.1 A suitable subspace

To identify the constrained subspace for the PotentialWalk (Algorithm 6), we use the following
definitions. The set of Active rows is defined as

It = {i ∈ I :
∑

j∈Vt

|ai(j)| ≤ 12k}.
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For each class q, let hq : R
+ → R be a non-increasing function such that for every subset S ⊆ n, at

most nt/16 rows i from class Aq violate the condition

∑

j∈S
|ai(j)| ≤ |S| · hq(|S|) (32)

While following the general framework from Section 2.2, we make three crucial changes:

• Move orthogonal to rows with large deviation. At step t, the ℓ1 norm of row ai will be close
to (nt/n) · ‖ai‖1 for most rows. Let ai,t denote a vector in R

n with j-th entry 1j∈Vtai(j), i.e.,
ai,t is row ai restricted to the alive coordinates at time t. Then the set of large deviation rows
consists of rows that deviate significantly from this expected value

Bt = {i ∈ I : | ‖ai,t‖1 − ‖ai‖1 · (nt/n)| ≥ 4β}. (33)

For any t ∈ [T ], (5) implies that dim(Bt) ≤ ⌊nt/16⌋.

• Ignore Dead rows. As soon as the ℓ1-norm of some row becomes less than 8β, we drop it from
the potential function. The set of dead rows at step t is defined as

Dt = {i ∈ I : ‖ai,t‖1 ≤ 8β}. (34)

For a dead row, rather than keeping track of its discrepancy using a slack function, we will
uniformly bound the the additional discrepancy gained by a row after it becomes dead.

• Block rows based on their initial size. For q ∈ Q, let Cqt be the subset of Aq∩It corresponding
to the ⌊2i−8n2

t/n⌋ smallest values of {si(t) : i ∈ Aq ∩ It}, and let J q
t = Ai\{Cqt ∪ Dt}.

We are ready to state the algorithm for selecting vt.

Algorithm 3: Algorithm for Selecting vt

1 Let hq(nt) = 2q+2/n and wq(t) = 25−
q
4

(
n
nt

)1/4

2 for t = 1, . . . , T do

3 Let Wt = {w ∈ R
n : w(i) = 0, ∀i ∈ Vt} // restrict to alive variables

4 Let Ut = {w ∈ Wt : 〈w, 2cb0et,i − ai〉 = 0,∀i ∈ Ct and 〈w, xt〉 = 0}
// restrict to large slack rows

5 Let Yt = {w ∈ Wt : 〈w, ai〉 = 0,∀i ∈ I\It} // move orthogonal to large norm rows

6 Let Gt = {w ∈ Wt : 〈ai, w〉 = 0, ∀i ∈ Bt}
// move orthogonal to large deviation rows

7 Let Zt = Ut ∩ Yt ∩ Gt and let W = {w1, w2, . . . , wk} be an orthonormal basis for Zt

8 Let vt ∈W such that for all q ∈ Q,

∑

i∈J q
t

〈2cb0et,i − ai, vt〉2si(t)−p−1 ≤ 8wq(t) · hq(nt)
∑

i∈J q
t

si(t)
−p−1. (35)
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We are now ready for the formal proof. We divide it into several subparts. The first part
bounds the number of active classes at time t, as a slowly increasing function of t. Then we derive
the specific weights used in the potential function that combines potential functions for each class
of rows (based on initial norm). After that we show that there is a large subspace of vectors which
all satisfy the desired goal of not increasing the potential value while satisfying all the constraints
about inactive rows and variables. Using this we bound the final discrepancy.

4.2.2 Number of active classes

Lemma 4.1. At step t, the following two conditions hold: (i) The number of classes q for which
Aq ∩ {It\{Bt ∪ Dt}} 6= ∅ is at most log(16n/nt) and (ii) hq(t) = 2q+2k/n satisfies (32) for all
q ∈ Q.

Proof. Let ‖ai,t‖1 =
∑

j∈Vt
|ai(j)|, i.e., it is the ℓ1-norm of row i restricted to Vt. At step t, if

i ∈ I\{Bt ∪ Dt}, then by (33) and (34), we have 8β ≤ ‖ai,t‖1 and

(nt/n) · ‖ai‖1 − 4β ≤ ‖ai,t‖1 ≤ (nt/n) · ‖ai‖1 + 4β. (36)

This gives 4β ≤ (nt/n) · ‖ai‖1 and ‖ai,t‖1 ≤ (2nt/n) · ‖ai‖1.
Moreover, if i ∈ Aq then ‖ai‖1 ≤ 2q+1k and we get ‖ai,t‖1 ≤ (nt/n) · 2q+2k. Therefore hq(t) =

2q+2/k satisfies (32).

Furthermore, if i ∈ It, i.e., ‖ai,t‖1 ≤ 12k, by (36) we have (nt/n) · ‖ai‖1 − 4β ≤ ‖ai,t‖1 ≤ 12k.
As β < k, this gives (nt/n) · ‖ai‖1 ≤ 4β + 12k ≤ 16k. So if i ∈ It\{Bt ∪ Dt}, then

4β · (n/nt) ≤ ‖ai‖1 ≤ 16k · (n/nt).

Note that this condition is dependent only on the initial ℓ1-norm of ai. Since 2qk ≤ ‖ai‖1 < 2q+1k
for any i ∈ Aq, a necessary condition for Aq ∩ {It\{Bt ∪ Dt}} 6= ∅ is

(2β/k) · (n/nt) ≤ 2q ≤ 16 · (n/nt). (37)

Therefore q ≤ log(16n/nt).

Lemma 4.1 implies that at any step t, the set of active rows is from the first log2(16n/nt) classes
of rows. It also helps us define two important parameters associated with a row class q. At step t,
consider a q ∈ Q with Aq ∩ {It\{Bt ∪ Dt}} 6= ∅.

• Since n− δ2t− 1 < nt ≤ 16 · 2−qn By (37). For q ≥ 1, let

tq := max
{
0, nδ−2

(
1− 16 · 2−q − 1/n

)}

Similarly, let

t0 := nδ−2
(

1− 16k−1/2 − 1/n
)

.

Before step tq, for any i ∈ Aq, 〈ai, vt〉 = 0. Because si(t) is a constant till tq, we set dq(t) = 0
for all t < tq.

• On the other hand, q must satisfy 2q ≤ 16n
nt

. Let

qt := argmax
i≥0

{
2i ≤ 16 · (n/nt)

}
.
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4.2.3 The weighted potential function

Now we can justify our choice of the potential function. If all the potential functions actually
decreased at every step of the algorithm, and we could select a vt that ensured maxi∈Aq (〈ai, vt〉)2 ≤
k/n for all q, then using hq(t) = k/n for all q ∈ Q, Theorem 1.1 gives us

n∑

t=tq

dq(t) ≃ O(
√

p(21−qn)1/p) ·
√
∫ n−2

t=tq

(n− t)−1/pdt · (k/n) = O(2
q
p
−q(1− 1

p
)
√
k) = O(

√
k),

for p = 2. However, since the potential functions decrease simultaneously only in expectation,
there might not exist a vt such that each potential function decreases when we move along vt.
Instead we take a weighted linear combination of the potential functions Φ(t) (31), and ensure that
Φ(t) is decreasing at each step t. Strictly speaking, Φ(t) is not decreasing over time but actually
increasing as row classes with higher q get added in later steps. When we say Φ(t) is decreasing,
we mean that Φ(t + 1) restricted to rows in It is less than Φ(t) restricted to rows in It, i.e.,
∑

i∈It 1/si(t+ 1)−p ≤∑i∈It 1/si(t)
−p.

What should the weights be? First, we need to normalize Φq(t) by |Aq(t)|. However this is not
enough as we still want to use Φ(t) to bound 1/si(t) for each active row. However, Φ(t) can be
much larger than the Φq(t).

If we use the sum of normalized potential functions as the potential, consider some i ∈ Aq.
Condition (37) implies that at step t, there are at most log2(16n/nt) active classes and therefore
maxi∈Aq (si(t))

−p ∝ log2(16n/nt) · Φq(0). This gives

n∑

t=tq

dq(t) ≃ O

(√

p(21−qn)1/p
)

·

√
√
√
√

∫ n−2

t=tq

(

log
n

nt
· 1

(n− t)

)1/p

· (k/n)

= O(q2
q
p
−q(1− 1

p
)
√
k) = O(q

√
k),

for p = 2. Intuitively, a row with a large initial size may acquire high discrepancy because it gets
added to the potential function later, when Φ(t) contains the potentials corresponding to more row
classes q, and therefore the value of Φ(t) is actually higher. This suggests that the potential Φq(t)
corresponding to a large q should have a higher weight to balance the effect of a large value of Φ(t),
and hence our choice of Φ(t):

Φ(t) =
1

k
· Φ0(t) +

qt∑

q=1

22q · Φq(t).

4.2.4 Bounding the discrepancy

The next lemma gives a bound on dim(Zt) analogous to 2.3.

Lemma 4.2. For any t ∈ [T ], it holds that dim(Zt) ≥ ⌈nt/2⌉.

Proof. At time t, It only consists of rows from class Aq with q ≤ qt. So,

dim(Ct) ≤
qt∑

i=0

dim(Cit) ≤
qt∑

i=0

2i−8n2
t

n
≤ n2

t

n
· 2qt−7 ≤ 2−7n2

t

n
· 16n
nt
≤ nt

8
.
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Since the number of rows in It is at most ⌊nt/6⌋, we have dim(Yt) ≥ nt − ⌊nt/6⌋.
By (5), dim(Bt) ≤ ⌊nt/16⌋ and dim(Gt) ≥ nt − ⌊nt/16⌋. Putting it together,

dim(Zt) ≥ dim(Yt)− dim(Bt)− dim(Ct)− 1 ≥ ⌈nt/2⌉.

The next lemma is analogous to Lemma 2.6.

Lemma 4.3. For all t ∈ [T ], there exists vt ∈ Zt such that ∀q ∈ Q,
∑

i∈J q
t

〈2cb0et,i − ai, vt〉2si(t)−p−1 ≤ 8wq(t) · hq(nt)
∑

i∈J q
t

si(t)
−p−1 . (38)

Proof. By Lemmas 2.6 and 4.2, for each q ∈ Q, there exists vq ∈ Zt such that

∑

i∈J q
t

〈2cb0et,i − ai, vq〉2si(t)−p−1 ≤ nt

dim(Zt)
·
∑

i∈J q
t

4hq(nt)si(t)
−p−1 ≤

∑

i∈J q
t

8hq(nt)si(t)
−p−1.

However, this does not imply that there exists a vt that satisfies these bounds for all classes
simultaneously. Instead, we use Markov’s inequality to assign a weight wq(t) to each class q at step
t such that

∑qt
q=0w

−1
q (t) < 1, and therefore there exists a vector vt ∈ Zt such that

∑

i∈It∩Aq

(2λ〈et,i, vt〉 − 〈ai, vt〉)2 si(t)−p−1 ≤ wq(t) ·
∑

i∈It∩Aq

8h(nt)si(t)
−p−1 (39)

and for each class. Let
Qt = {q ∈ Q : Aq ∩ {It\{Bt ∪Dt}} 6= ∅}.

If some row class q is not in Qt, then any row i ∈ Aq is either dead or frozen or bad. If it is dead,
we drop it from the potential and it does not affect (39). If it is frozen or bad, 〈2cb0ei,t−ai, vt〉 = 0
and the condition is trivially satisfied. So we only need to consider q ∈ Qt. The weight wq =

25−q/4 (n/nt)
1/4 suffices as

∑qt
q=1 2

q/4−5 (n/nt)
1/4 ≤ 1/2.

Note that for any row i ∈ Aq, at t ≤ tq, 〈2cb0ei,t− ai, vt〉 = 0. So, we can set dqt = 0 for rows in
class q. So, by Lemma 2.4 and equation (39),

dq(t) =

{

0 if t ≤ tq

4(p + 1) · wq(t) · hq(nt) ·maxi∈J q
t
si(t)

−1 otherwise,
(40)

implies that there exists a vt ∈ Zt such that for all q ∈ Q,

E[Φq(t)] ≤ Φq(t− 1) +
1

Tnbp0
. (41)

The next lemma helps us bound the rate of change of bq(t), which eventually gives a bound on
bq(T ) in Theorem 1.6.

Lemma 4.4. For any t ∈ {0, . . . , T}, if Φ(t) ≤ 8n
(

2
b0

)p
(16nnt

), then

max
j∈J q

t

sj(t)
−1 ≤







k1/p · 21+15/p

b0

(
n
nt

)3/p
if q = 0

21+(15−3q)/p

b0

(
n
nt

)3/p
if q ≥ 1.

(42)
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Proof. For any q and i ∈ J q
t , there are at least ⌊2q−8n2

t/n⌋ indices j in It∩Aq such that sj(t) ≤ si(t).
Therefore, for q ≥ 1,

22q · 2
q−8n2

t

n
· si(t)−p ≤ Φ(t), (43)

and for q = 0,

1

k
· 2

−8n2
t

n
· si(t)−p ≤ Φ(t). (44)

Plugging Φ(t) ≤ 8n
(

2
b0

)p
(16nnt

) in (43) and (44) gives the required bounds.

Lemma 4.5. For value of p and dq given by (39), for all t = 0, . . . , T , we have

Φ(t) ≤ 27n2

nt
·
(

2

b0

)p

.

Proof. Plugging (41) in the definition of Φ(t),

E(Φ(t+1))−Φ(t) ≤ 1

Tbp0
+ |{It\It−1} ∩A0| ·

1

k
·
(

2

b0

)p

+22q ·
(

2

b0

)p

·
∑

q≥1

|{It\It−1} ∩Aq|. (45)

At every step t, the algorithm selects the choice of xt for which the above inequality is true.
Summing Φ(s)− Φ(s− 1) over s ∈ [t],

Φ(t) ≤ Φ(0) +
1

k
|I0t | ·

(
2

b0

)p

+
∑

q≥1

22q|Iqt | ·
(

2

b0

)p

(46)

For any q ∈ Q, by Lemma A.1 we have Φq(0) +
∑

t |I
q
t+1\I

q
t | · (2/b0)p ≤ |Aq| · (2/b0)p. This gives

Φ(t) ≤ 1

k
|A0| ·

(
2

b0

)p

+
∑

1≤q≤qt

22q|Aq| ·
(

2

b0

)p

(47)

Using |A0| ≤ 2n/
√
k and |Aq| ≤ 21−qn for q ≥ 1, we get

Φ(t) ≤ 2n

(
2

b0

)p



1√
k
+

qt∑

q=1

2q



 ≤ 4n

(
2

b0

)p

2qt+1 ≤ 27
(

2

b0

)p(n2

nt

)

, (48)

where the last inequality follows from 2qt ≤ 16(n/nt).

Proof of Theorem 1.6. If row i ∈ Aq becomes dead after step t− 1, then

|〈ai, xT 〉| ≤ |〈ai, xt〉|+ |〈aSi , xT − xt〉| ≤ bt(q) + 2
∑

j∈Vt

|ai(j)|

≤ bT (q) + 2
∑

j∈Vt

ai(j)
2 ≤ bT (q) + 16β.
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Substituting the bound on maxi∈J t
q
si(t)

−1 from (42), and using wq(t) = 25−q/4 · (n/nt)
1/4 and

hq(t) = 2q+2/n, we get

dq(t) =







0 if t < tq

9k · 23q/8+14

nb0

(
n

n−δ2t−1

)5/8
if q ≥ 1 and t ≥ tq

9k
9
8 · 214nb0

(
n

n−δ2t−1

)5/8
if q = 0 and t ≥ t0.

For any q ≥ 1, summing up dq(·),

bq(T ) = b0 + δ2
T−1∑

t=tq

dq(0) ≤ δ2
∫ T

t=tq

9k · 23q/4+12+(15−3q)/8

nb0

(
n

n− δ2t− 1

)5/8

dt

≤ b0 +

∫ n−2

t=δ2tq

9k · 23q/8+14

nb0

(
n

n− t− 1

)5/8

dt

≤ b0 +
219+3q/8k

b0
· n−3/8 · (n− δ2tq)

3/8 = b0 +
220k

b0
.

For b0 = 210
√
k, bq(T ) ≤ 211

√
k for all q ≥ 1. Similar calculation for q = 0 show that b0 = 210

√
k

and bT (0) = 211
√
k suffice.

Let x ∈ {−1, 1}n be obtained from xT by the rounding x(j) = sign(xT (j)). Since T = (n−2)/δ2,
‖xT ‖2 = n− 2 with |xT (j)| ≤ 1 for all j ∈ [n]. After rounding xT to x, ‖x‖2 = n and

|〈ai, x〉| ≤ |〈ai, xT 〉|+ |〈ai, x− xT 〉| ≤ 2bT + 16β +
∑

j

|x(j) − xT (j)|

≤ bT + 16β + 2.

Random and Semi-random Sparse Hypergraphs. This gives an alternate proof of the result
[24] of Potukuchi that disc(H) = O(

√
k) for regular random k-regular hypergraph H, on n vertices

and m edges with m ≥ n and k = o(m1/2). In particular, Potukuchi showed that such hypergraphs
satisfy condition (5) with high probability.

Consider a random k-regular hypergraph A with n vertices and m edges as above, but suppose
that an adversary can change the graph so that the number of edges incident to v that are added
or deleted is at most t. Let A+C denote the incidence matrix of this corrupted hypergraph. How
much can this affect the discrepancy of the hypergraph?

Theorem 1.7 (Semi-Random Hypergraphs). Consider a random k-regular hypergraph with inci-
dence matrix A ∈ R

m×n with m ≥ n, and let C ∈ {−1, 0, 1}m×n be an arbitrary matrix with at most

t non-zero entries per column. Then disc(A+C) = O
(√

k +
√
t log n

)

with probability 1−n−Ω(1).

Proof. By the subadditive property of stochastic discrepancy, disc(A+C) ≤ O(
√
k)+O(

√
t log n).

However, this bound is not algorithmic because it requires running the algorithm separately on A
and Ac −A.
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A Appendix: Bounding the step size

Lemma A.1. For A ∈ R
m×n,

• Φ(0) +
∑

t |It+1\It| ·
(

2
b0

)p
≤ 2m ·

(
2
b0

)p
.

• For all t ∈ {0, 1, . . . , T − 1}, if Φ(t) ≤ 27m2
(

2
b0

)p
and dt = O(pn ·maxi∈Jt si(t)

−1), then for

step size δ2 ≤ (Cn2m6p4)−1,

E(Φ(t+ 1)) − Φ(t) ≤ f(t) +
1

Tnbp0
+ |It+1\It| ·

(
2

b0

)p

where f(t) = −pδ2
∑

i∈It

dt + cb0〈a(2)i , v
(2)
t 〉

si(t)p+1
+

p(p+ 1)δ2

2

∑

i∈It

〈2cb0et,i − ai, vt〉2
si(t)p+2

.
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Proof. We note that the purpose of this lemma is to allow the proof to ignore higher order terms
by making the step size inverse polynomially small, and thereby obtain a (deterministic) polytime
algorithm. As our focus is on establishing polynomiality, we have not optimized the bounds.

For any i ∈ It+1\It, we have 〈ai, xt+1〉 = 0 and

∑

j

ai(j)
2(1− xt+1(j)

2) ≤
∑

j∈Vt+1

ai(j)
2 + n(1− (1− 1

2n
)2) < 21.

Therefore, for any i ∈ It+1\It, using the fact that the coefficient of the above energy term is
cb0 = b0/42,

1

si(t+ 1)
≤ 1

(bt+1 − 21cb0)
≤ 2

b0
.

Therefore

Φ(0) =
∑

i∈I0
si(0)

−p ≤ |I0| · (
2

b0
)p.

Since |I0|+
∑

t |It+1\It| ≤ 2m, we have

Φ(0) +
∑

t

|It+1\It| ·
(

2

b0

)p

≤ 2m ·
(

2

b0

)p

.

This concludes the proof of the first part.

For the second part, we will use a second-order Taylor approximation and choose δ small enough
so that the higher order terms are negligible.

Let Zt(b, x) :=
∑

i∈It

(

b− 〈ai, x〉 − λ ·∑n
j=1 ai(j)

2(1− x(j)2)
)−p

=
∑

i∈It si(t)
−p, the potential

function restricted to the active rows in time step t. Then,

Φ(t+ 1)− Φ(t) =
∑

i∈It
si(t+ 1)−p − si(t+ 1)−p +

∑

i∈It+1\It
si(t+ 1)−p

≤ Zt(bt+1, xt+1)− Zt(bt, xt) + |It+1\It| ·
(

2

b0

)p

.

Hence,

E(Φ(t+ 1))− Φ(t) ≤ E(Zt(bt+1, xt+1))− Zt(bt, xt) + |It+1\It| ·
(

2

b0

)p

(49)

Using Taylor’s theorem,

Zt(bt+1, xt+1)− Zt(bt, xt) = δ · ∇xZt(bt, xt)
⊤vt + δ2 · ∇bZt(bt, xt)dt +

δ2

2
· v⊤t ∇2

xZt(bt, xt)vt

+
δ4

2
· ∇2

bZt(bt, xt)d
2
t +

1

6
· ∇3Zt(b

′, x′)[w,w,w],

for some b′ ∈ [bt, bt+ δ2dt] and x′ ∈ [xt, xt+ δvt], and w is the tuple (δ2dt, δvt). Taking expectation,

E(Zt(bt+1, xt+1))− Zt(bt, xt) = δ2 · ∇bZt(bt, xt)dt +
δ2

2
· v⊤t ∇2

xZt(bt, xt)vt
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+
δ4

2
· ∇2

bZt(bt, xt)d
2
t + E(

1

6
· ∇3Zt(b

′, x′)[w,w,w]). (50)

For any t ∈ [T ],

∇bZt(bt, xt) = −p
∑

i∈It

1

si(t)p+1
, and (51)

∇2
xZt(bt, xt) = p(p+ 1)

∑

i∈It

(2cb0et,i − ai)(2cb0et,i − ai)
⊤

si(t)p+2
− pcb0

∑

i∈It

diag(a
(2)
i )

si(t)p+1
. (52)

We will show the following claim.

Claim 1. For any t and any b′, x′ as defined above,

E(
1

6
· ∇3Zt(b

′, x′)[w,w,w]) +
δ4

2
· ∇2

bZt(bt, xt)d
2
t ≤

1

Tnbp0
.

Combining this claim with (50), (51), and (52), we get

E(Zt(bt+1, xt+1))− Zt(bt, xt) ≤ −pδ2
∑

i∈It

dt + cb0〈a(2)i , v
(2)
t 〉

si(t)p+1

+
p(p+ 1)δ2

2

∑

i∈It

〈2cb0et,i − ai, vt〉2
si(t)p+2

+
1

Tbp0

= f(t) +
1

Tnbp0
.

Substituting this bound in (49) proves the lemma.

Proof of Claim 1.

As Φ(t) ≤ 27m2 · (2/b0)p, for any i ∈ It,

si(bt, xt) = si(t) ≥ b0(2
p+7m2)−1/p. (53)

By (53),

dt = O(pn ·max
i∈Jt

si(t)
−1) = O

(

pn · (2p+7m2)1/pb−1
0

)

. (54)

By (53) and (54), and as the second derivative of Zt with respect to bt is

∇2
bZt(bt, xt) = p(p+ 1)

∑

i∈It
si(t)

−p−2,

we obtain
δ4∇2

bZt(bt, xt)d
2
t = O(2pn2m

3+ 3
p p4δ4(m/n)

2
p b−p−4

0 ).

For each of the choices p = 2⌈log(2m)⌉ or p = 2⌈log(2m/n)⌉ or p = 8, since δ2 = 1/Cn2m6p4 and
T = (n− 2)/δ2, we have

δ4∇2
bZt(t)d

2
t ≤

δ2

2n(n− 2)bp0
≤ 1

2Tnbp0
. (55)
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E(∇3Zt(b
′, x′)) in direction w is given by

E(∇3Zt(b
′, x′)[w,w,w]) = −p(p+ 1)(p + 2)

∑

i∈It

δ6d3t
si(b′, x′)p+3

− 3p(p+ 1)(p + 2)δ4
∑

i∈It

dt
(
2cb0〈(a2i x′), vt〉 − 〈ai, vt〉

)2

si(b′, x′)p+3
+ 3p(p+ 1)cb0δ

4
∑

i∈It

dt〈a(2)i , v
(2)
t 〉

si(b′, x′)p+2

≤ 3p(p+ 1)cb0δ
4
∑

i∈It

dt
si(b′, x′)p+2

, (56)

where we use that dt, si ≥ 0.

To bound the difference between si(b
′, x′)− si(bt, xt), consider the difference between b′ and b,

|b′ − bt| ≤ δ2dt ≤
b0

16(27m2)1/p
, (57)

and the difference between 〈ai, x′〉+ cb0 ·
∑n

j=1 ai(j)
2(1−x′(j)2) and 〈ai, xt〉+ cb0 ·

∑n
j=1 ai(j)

2(1−
xt(j)

2),

|〈ai, x′〉+
n∑

j=1

ai(j)
2(1− x′(j)2)− 〈ai, xt〉 −

n∑

j=1

ai(j)
2(1− xt(j)

2)|

≤ δ|〈ai, vt〉|+ cb0
∑

j

ai(j)
2|xt(j)2 − (xt(j) + δλ2vt(j))

2)|

≤ δ(1 + 4cb0
√
n) ≤ b0

16(27m2)1/p
. (58)

By (57) and (58),

si(b
′, x′) = si(bt, xt) + y − bt + 〈ai, x′〉+

n∑

j=1

ai(j)
2(1− x′(j)2)〈ai, xt〉 −

n∑

j=1

ai(j)
2(1 − xt(j)

2)

≥ si(bt, xt)−
b0

16(27m2)1/p
− b0

16(27m2)1/p
≥ 3b0

8(27m2)1/p
(59)

By (56) and (59), E(∇3Zt(b
′, x′)[w,w,w]) = O(nm

3+ 3
p p3δ4(8/3)pb−p−1

0 ).

Again, since p = 2⌈log(2m)⌉ or p = 2⌈log(2m/n)⌉ or p = 8, for δ2 = 1/Cn2m6p4,

E(∇3Zt(b
′, x′)[w,w,w]) ≤ δ2

2n(n− 2)bp0
=

1

2Tnbp0
. (60)

Now the claim follows from the bounds (55) and (60).
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