2208.03811v1 [math.OC] 7 Aug 2022

.
.

arxiv

Decomposable Non-Smooth Convex Optimization with
Nearly-Linear Gradient Oracle Complexity

Sally Dong Haotian Jiang
University of Washington, Seattle University of Washington, Seattle
sallyqd@uw.edu jhtdavid@uw.edu
Yin Tat Leef Swati Padmanabhan
University of Washington, Seattle University of Washington, Seattle
yintat@uw.edu pswati@uw.edu

Guanghao Ye
Massachusetts Institute of Technology
ghye@mit.edu

August 9, 2022

Abstract
Many fundamental problems in machine learning can be formulated by the convex program

n

min Z fi(6),

i=1

where each f; is a convex, Lipschitz function supported on a subset of d; coordinates of §. One common
approach to this problem, exemplified by stochastic gradient descent, involves sampling one f; term at
every iteration to make progress. This approach crucially relies on a notion of uniformity across the f;’s,
formally captured by their condition number. In this work, we give an algorithm that minimizes the above
convex formulation to e-accuracy in O3}, dilog(1/¢)) gradient computations, with no assumptions on
the condition number. The previous best algorithm independent of the condition number is the standard
cutting plane method, which requires O(ndlog(1/¢€)) gradient computations. As a corollary, we improve
upon the evaluation oracle complexity for decomposable submodular minimization by [AKMSV21]. Our
main technical contribution is an adaptive procedure to select an f; term at every iteration via a novel
combination of cutting-plane and interior-point methods.

* Author names are listed in alphabetical order.
tSupported by NSF awards CCF-1749609, DMS-1839116, DMS-2023166, CCF-2105772, a Microsoft Research Faculty Fel-
lowship, a Sloan Research Fellowship, and a Packard Fellowship

1 Introduction

Many fundamental problems in machine learning are abstractly captured by the convex optimization formu-
lation

minimizegepa Yoy fi(6), (1.1)
where each f; is a convex, Lipschitz function. For example, in empirical risk minimization, each f; measures
the loss incurred by the i-th data point from the training set. In generalized linear models, each f; represents
a link function applied to a linear predictor evaluated at the i-th data point.

The ubiquity of (1.1) in the setting with smooth f;’s has spurred the development of well-known variants
of stochastic gradient methods [RM51; BC03; Zha04; Bot12] such as [RSB12; SZ13b; JZ13; MZJ13; DBL14;
Mailb; AY16; HL16; SLB17]; almost universally, these algorithms leverage the “sum structure” of (1.1) by
sampling, in each iteration, one f; with which to make progress. These theoretical developments have in
turn powered tremendous empirical success in machine learning through widely used software packages such
as 1ibSVM [CL11].

In many practical applications, (1.1) appears with non-smooth f;’s, as well as the additional structure
that each f; depends only on a subset of the problem parameters 8. One notable example is decomposable
submodular function minimization® (SFM), which has proven to be expressive in diverse contexts such
as determinantal point processes [[KT10], MAP inference in computer vision [KLT09; VIKR09; FJPZ13],
hypergraph cuts [VBK20], and covering functions [SK10]. Another application is found in generalized linear
models when the data is high dimensional and sparse. In this setting, f; depends on a restricted subset of the
parameters 6 that correspond to the features of the data point with non-zero value. Last but not least, the
case with each f; depending on a small subset of the parameters is also called sparse separable optimization
and has applications in sparse SVM and matrix completion [RRWNII].

In this work, we initiate a systematic study of algorithms for (1.1) without the smoothness assumption”.
Motivated by the aforementioned applications, we introduce the additional structure that each f; depends
on a subset of the coordinates of 6. As is standard in the black-box model for studying first-order convex
optimization methods, we allow sub-gradient oracle access to each f;.

Problem 1.1. Let fi, fa,..., fn : R® — R be convex, L-Lipschitz, and possibly non-smooth functions, where
each f; depends on d; coordinates of 0, and is accessible via a (sub-)gradient oracle. Define m = S di to

be the “total effective dimension” of the problem. Let 6* o/ argmingera ., fi(0) be a minimizer of (1.1),
and let 6©) be an initial point such that |00 — 6*||2 < R. We want to compute a vector § € R satisfying

n

> £i(0) < eLR+ Y fi(67). (1.2)

i=1 i=1

Prior works. We focus on the weakly-polynomial regime and therefore restrict ourselves to algorithms with
polylog(1/e) gradient oracle complexities. Table 1 summarizes the performance of all well-known algorithms
applied to Problem 1.1. Note that the variants of gradient descent each require bounded condition number.
The results of [Nes83; All17] and cutting plane methods are all complemented by matching lower bounds
[WS16; Nes04].

Even with smooth f;’s, first-order methods perform poorly when the condition number is large, or when
there is a long chain of variable dependencies. These instances commonly arise in applications; an example
from signal processing is

n—1
minimizex {(xl —-1)%+ Z(Xl —xi11)% + xi}) (1.3)
i=2
whose variables form an O(n)-length chain of dependencies, and has condition number x = O(n?) and

k = ©(n?). Gradient descent algorithms such as [Nes83] and [A1117] therefore require Q(n?) gradient queries,
despite the problem’s total effective dimension being only O(n).

1In decomposable submodular minimization, each f; corresponds to the Lovéasz extension of the individual submodular
function and is therefore generally non-smooth.

2A function f is said to be B-smooth if f(y) < f(z) + (Vf(x),y —) + /2|y — x||% for all z,y and a-strongly-convez if
fly) > f(z) +(Vf(z),y —) + /2|y — z||% for all z,y. The condition number of f is defined to be x = 3/cv.

Authors Algorithm Type Gradient Queries Non-smooth OK?

[Cau+47] Gradient Descent (GD) O(nklog(1/e))

[Nes83] Accelerated (Acc.) GD O(ny/rlog(1/e))

[RSB12; SZ13b; JZ13] Stochastic (Stoch.) Variance-Reduced GD O((n +®)log(1/e¢))

[SZ13a; LMHL15; FGKS15; ZL15; AB15] Acc. Stoch. Variance-Reduced GD O((n + v/nk) log(R) log(1/¢))

[ALl17] Acc. Stoch. Variance-Reduced GD O((n + v/nR) log(1/e€))

[KTES8; NN89; Vai89; BV02; LSW15; JLSW20] Cutting-Plane Method (CPM) O(ndlog(1/e)) v
[LV21; DLY21] Robust Interior-Point Method (IPM) O i, d3%log(1/e€)) v

Table 1: Gradient oracle complexities for solving (1.1) to e-additive accuracy. k denotes the condition number of
>, fi, and K is a variant of the condition number defined to be the sum of smoothness of the f;’s divided by the
strong convexity of >, fi.

On the other hand, cutting-plane methods (CPM) and robust interior-point methods (IPM) both trade
off the dependency on condition number for worse dependencies on the problem dimension.
These significant gaps in the existing body of work motivate the following question:

Can we solve Problem 1.1 using a nearly-linear (in total effective dimension) number of
subgradient oracle queries?

In this paper, we give an affirmative answer to this question.

1.1 Our results

We present an algorithm to solve Problem 1.1 with gradient oracle complexity nearly-linear in the total
effective dimension.

Theorem 1.2 (Main Result (Informal); see Theorem 4.11 for formal statement). We give an algorithm that

provably solves Problem 1.1 using O(mlog(m/e)) subgradient oracle queries, where m o Sor . di.

Intuitively, the number of gradient queries for each f; should be thought of as O(d;) in our algorithm,
which nearly matches that of the standard cutting-plane method for minimizing the individual function f;.
The nearly-linear dependence on m overall is obtained by leveraging the additional structure on the f;’s and
stands in stark contrast to the O(nd) query complexity of CPM, which is significantly worse in the case
where each d; < d. Furthermore, we improve over the current best gradient descent algorithms in the case
where the f;’s have a large condition number.

Based on the query complexity of the standard cutting-plane method, we have the following lower bound
matching our algorithm’s query complexity up to a log m-factor:

Theorem 1.3. There exist functions fi1,..., fn : R4+ R for which a total of Q(mlog(1/¢)) gradient queries
are required to solve Problem 1.1.

An immediate application of Theorem 1.2 is to decomposable submodular function minimization:

Theorem 1.4 (Decomposable SFM). Let V = {1,2,...,n}, and let F : 2V — [~1,1] be given by F(S) =
S F(SNV;), each F; : 2Yi — R a submodular function on V; CV with |V;| < k. We can find an e-additive
approzimate minimizer of F in O(nk?log(nk/¢)) evaluation oracle calls.

Theorem 1.4 significantly improves over the evaluation oracle complexity of 5(nk6 log(1/€)) given in
[AKMSV21] when the dimension k of each function F; is large. For non-decomposable SFM, ie. n =1
and |V;| = k, the current best weakly-polynomial time SFM algorithm® finds an e-approximate minimizer
in time O(k?log(k/¢€)) [LSW15]. Therefore, our result in Theorem 1.4 can be viewed as a generalization
of the evaluation oracle complexity for non-decomposable SFM in [LSW15], and the dependence on k in
Theorem 1.4 might be the best possible. We defer the details of decomposable SFM to Appendix A.

3Here, we focus on the weakly-polynomial regime, where the runtime dependence on e is log(1/e).

1.1.1 Limitations

Some limitations of our algorithm are as follows: When each f; depends on the entire d-dimensional vector
0, as opposed to a subset of the coordinates of size d; < d, our gradient complexity simply matches that of
CPM. We would like to highlight, though, that our focus is in fact the regime d; < d. When the f;’s are
strongly-convex and smooth, our gradient complexity improves over Table 1 only when x is large compared
to d;. Finally, note that we consider only the gradient oracle complexity in our work; our algorithm’s
implementation requires sampling a Hessian matrix and a gradient vector at every iteration, which incur an
additional polynomial factor in the overall running time.

1.2 Technical challenges in prior works

We now describe the key technical challenges that barred existing algorithms from solving Problem 1.1 in
the desired nearly-linear gradient complexity.

Gradient descent and variants. As mentioned in Section 1, the family of gradient descent algorithms
presented in Table 1 are not applicable to Problem 1.1 without the smoothness assumption. When the ob-
jective in Problem 1.1 is smooth but has a large condition number, even the optimal deterministic algorithm,
Accelerated Gradient Descent (AGD) [Nes83] can perform poorly. For example, when applied to (1.3), AGD
updates only one coordinate in each step (thereby requiring n steps), with each step performing n gradient
queries (one on each term in the problem objective), yielding a total gradient complexity of Q(n?) [Ness3].
For a similar reason, the fastest randomized algorithm, Katyusha [All17] also incurs a gradient complexity
of Q(n?) [WS16].

Cutting-plane methods (CPM). Given a convex function f with its set S of minimizers, CPM minimizes
f by maintaining a convex search set £%) O S in the k' iteration, and iteratively shrinking £®*) using
the subgradients of f. Specifically, this is achieved by noting that for any x*) chosen from £®*), if the

gradient oracle indicates Vf(x*)) # 0, (i.e. x*) ¢ S) then the convexity of f guarantees S C H(¥ def
{y Vf x(k) —xh)y < O} and hence S C 7—[¥) N £(*). The algorithm continues by choosing 8(’“"’1))
EF Nk and different choices of x(*) and £%*) yield different rates of shrinkage of £*) until a point in S
is found. _

Solving Problem 1.1 via the current fastest CPM [JLSW20] takes O(d) iterations, each invoking the
gradient oracle on every f; to compute Vf(x¥)) = 3" Vf;(x(¥)). This results in 5(nd) gradient queries
overall, which can be quadratic in n when d = ©(n) even if each f; depends on only d; = O(1) coordinates.
Similar to gradient descent and its variants, the poor performance of CPM on Problem 1.1 may therefore be
attributed to their inability to query the right f; required to make progress.

Interior-point methods (IPM). IPM solves the convex program min,ecs{c,u) by solving a sequence

of unconstrained problems min, ¥;(u) Lef {t-{c,u) + ¢s(u)} parametrized by increasing t, where s is
a self-concordant barrier function that enforces feasibility by becoming unbounded as it approaches the
boundary of the feasible set S. The algorithm starts at ¢ = 0, for which an approximate minimizer xg of ¥s
is known, and alternates between increasing ¢ and updating to an approximate minimizer x; of the new W,
via Newton’s method. For a sufficiently large ¢, the minimizer x} also approximately optimizes the original
problem min,es(c,u) with sub-optimality gap O(v/t), where v is the self-concordance parameter of the
barrier function used.

To apply IPM to Problem 1.1, we may first transform (1.1) to ming zex >_; 2i, where K = {(u,z) :
(u;,2;) € K;,Vi € [n]} is the feasible set. Using the universal barrier ¢; for each K; [NN94a], the number
of iterations of IPM is 5(>, d;), each requiring the computation of the Hessian and gradient of t; for
all i € [n], leading to a total of O(n'®) sub-gradient queries to f;’s even when all d; = O(1). Even when
leveraging the recent framework of robust IPM for linear programs [[LV21], the computation of each Hessian
(by sampling the corresponding K; [JLLV21]) yields a total sub-gradient oracle complexity of 5(21 Ld3P),
far from the complexity we seek.

1.3 Our algorithmic framework

We now give an overview of the techniques developed in this work to overcome the above barriers. First, we
transform (1.1) into a convex program over structured convex sets:

minimize (c,x),

subject to x; € K; C R4 Vi € [n] (1.4)
Ax =Db.
where x is the concatenation of the vectors x1, . ..,X,, and notably the convex sets IC; are all disjoint. Under

this transformation we do not have explicit, closed-form expressions for each IC;; however, the subgradient

oracle for f; can be transformed equivalently to a separation oracle KC;. We define K def Kix Ko x...xK,.

Main idea: combining CPM and IPM. Recall that CPM maintains a convex set which initially
contains the feasible region and gradually shrinks around the minimizer, while IPM maintains a point inside
the feasible region that moves toward the minimizer. Our novel idea is to combine both methods and maintain
an inner convex set KC;, ; as well as an outer convex set Koy ; for each ¢ € [n], such that Kin ; € K; C Kout ;-
We define K, and Koyt analogously to K. When Inequality (3.4) and Inequality (3.3) are satisfied for all
i € [n], we make IPM-style updates without needing to make any oracle calls. When Inequality (3.3) is
violated for some i € [n], we query the separation oracle at the point x7, ; defined as the centroid of Kout,
(c.f. Proposition 3.2). Based on the oracle’s response, we iteratively either grow Ki,,; (and, thus, Kiy)
outward or shrink Koy ; (and, thus, Koyt) inward, until ultimately they approximate K around the optimum
point.

First benefit: large change in volume. If the point x7,, ; violates Inequality (3.3) for some i € [n], we
query the separation oracle to see if x5, ; € K; or not. If x5, ; € K, then it is used to expand Kiy i, yielding
in a large volume increase for Ki, ;. On the other hand, if xgum ¢ K;, the fact that it is the centroid of Koyt i
results in a large volume decrease for Kout,; when it is intersected with a halfspace through x%,; ;. Thus, our
algorithm witnesses a large change in volume of one of Ki,; and Koys,;, regardless of the answer from the
oracle. Just like in standard CPM, this rapid change in volume is crucial to achieving the algorithm’s oracle

complexity.

Second benefit: making a smart choice about querying f;. Since the algorithm maintains both
an inner and outer set approximating C, by checking if K, ; and Koy,; differ significantly (Inequality (3.3)
essentially performs this function), we can determine if K; is poorly approximated, and if so, improve the
inner and outer approximations of the true feasible set. Choosing the right IC; translates to choosing the
right f; to make progress with at an iteration; thus, we address the central weakness of the gradient descent
variants in solving (1.1).

2 Notation and preliminaries

We lay out the notation used in our paper as well as the definitions and prior known results that we rely
on. We use lowercase boldface letters to denote (column) vectors and uppercase boldface letters to denote
matrices. We use x; to denote the i*" block of coordinates in the vector x (the ordering of these blocks is
not important in our setup). We use > and = to denote the Loewner ordering of matrices.

We use (x,y) to mean the Euclidean inner product x"y. A subscript X in the inner product notation
means it is induced by the Hessian of some function (which is clear from context) at x; for example,
(u,v)x = u'VZy(x)v with v inferred from context. We define the local norm of v at x analogously:

(IVilx = (v, V29¥(x) - v). We also define the norm ||v||x,1 def S V-
We use v to represent barrier functions and ® to represent potential functions, with appropriate subscripts
and superscripts to qualify them as needed.

2.1 Facts from convex analysis

In this section, we present some definitions and properties from convex analysis that are useful in our paper.
These results are standard and may be found in, for example, [Roc70; BBV04].

Definition 2.1. Let f : R™ — R. Then the function f*:R"™ — R defined as

fy)= sup [(x,y) = f(x)]

xedom(f)

is called the Fenchel conjugate of the function f. An immediate consequence of the definition (and by applying
the appropriate convexity-preserving property) is that f* is convex, regardless of the convexity of f. We use
the superscript * on functions to denote their conjugates.

Lemma 2.2 (Biconjugacy). For a closed, convex function f, we have f = f**.

Lemma 2.3 ([Roc70]). For a closed, convex differentiable function f, we havey = Vf(x) < x =V f*(y).
Lemma 2.4 ([Roc70]). For a strictly convex, twice-differentiable function f, we have V2f*(Vf(x)) =
(V2f(x)) ™

Definition 2.5 (Polar of a Set [RW09]). Given a set S C R", its polar is defined as

S° déf{yeR":(y,x)gl, Vx € S}.

Lemma 2.6 ([Roc70]). LetS € R™ be a closed, compact, convex set, and lety be a point. Then (conv {S,y})°
S° NH, where H is the halfspace defined by H = {z € R" : (z,y) < 1}.

2.2 Background on interior-point methods

Our work draws heavily upon geometric properties of self-concordant functions, which underpin the rich
theory of interior-point methods. We list below the formal results needed for our analysis, and refer the
reader to [NN94a; Ren01] for a detailed exposition of this function class. We begin with the definitions of
self-concordant functions and self-concordant barriers:

Definition 2.7 (Self-concordance [NN94a]). A function F : @ — R is a self-concordant function on a convex
set @ if for any x € () and any h,

|D3F(x)[h, h, h]| < 2(D*F(x)[h, h])*/2,

where D*F(x)[hy, ..., h;] denotes the k-th derivative of F at x along the directions hy, ..., h,. We say F
is a v-self-concordant barrier if F' further satisfies VF (z) " (V2F(2)) !V F(x) < v for any x € Q.

Theorem 2.8 (Theorem 2.3.3 from [Ren01]). If f is a self-concordant barrier, then for allx andy € dom(f),
we have (Vf(x),y —x) < v, where v is the self-concordance of f.

Theorem 2.9 (Theorem 2.3.4 from [RenO1]). If f is a v-self-concordant barrier such that x,y € dom(f)
satisfy (Vf(x),y —x) >0, then y € Bx(x,4v + 1).

We now state the following result from self-concordance calculus.

Theorem 2.10 (Theorem 3.3.1 of [RenO1]). If f is a (strongly nondegenerate) self-concordant function,
then so is its Fenchel conjugate f*.

The following result gives a bound on the quadratic approximation of a function, with the distance
between two points measured in the local norm. The convergence of Newton’s method can be essentially
explained by this result.

N

Theorem 2.11 (Theorem 2.2.2 of [Ren01]). If f is a self-concordant function, x € dom(f), andy € Bx(x,1),
then

T
fly) < f(x) +(Vf(x),y —x) + %”y_XHi'i‘ Ma

def
where ||y — x|z = (y —x, V?f(x) - (y — x)).
Finally, we need the following definitions of entropic barrier and universal barrier.

Definition 2.12 ([BE15; Che21]). Given a convex body K C R™ and some fixed § € R", define the function
f(0) = log Uxelc exp(x, 0)dx]. Then the Fenchel conjugate f* : int(K) — R is a self-concordant barrier
termed the entropic barrier. The entropic barrier is n-self-concordant.

Definition 2.13 ([NN94b; LY21]). Given a convex body K C R", the universal barrier of K is defined as
¥ int(K) — R by
$(x) = logvol((K — x)°)

where (K —x)° = {y € R" :y'(z — x) < 1,Vz € K} is the polar set of K with respect to x. The universal
barrier is n-self-concordant.

2.3 Facts from convex geometry

Since our analysis is contingent on the change in the volume of convex bodies when points are added to
them or when they are intersected with halfspaces, we invoke the classical result by Griinbaum several
times. We therefore state its relevant variants next: Theorem 2.14 applies to log-concave distributions,
and Corollary 2.16 is its specific case, since the indicator function of a convex set is a log-concave function
[BBV04].

Theorem 2.14 ([Grii60; BKLLS20]). Let f be a log-concave distribution on RY with centroid cy. Let H =
{u eR?e: (u,v) > q} be a halfspace defined by a normal vector v € R?. Then, fH f(z)dz > % — tT, where

t= % is the distance of the centroid to the halfspace scaled by the standard deviation along the
y~i{viy—cy

d
normal vector v and t+ max{0,t}.

Remark 2.15. A crucial special case of Theorem 2.14 is that cutting a convex set through its centroid yields
two parts, the smaller of which has volume at least 1/e times the original volume and the larger of which is
at most 1 — 1/e times the original total volume.

Corollary 2.16 ([Grii60]). Let K be a convex set with centroid y and covariance matriz 3. Then, for any
point X satisfying |x — u||s-1 < n and a halfspace H such that x € H, we have vol(KNH) > vol(K)-(1/e—n).

Finally, we need the following facts.

Fact 2.17 (Volumes of standard objects). The volume of a q-dimensional Euclidean ball is given by vol(B,(0, R)) =
/2

WR‘I, and the volume of a q-dimensional cone = —= - volume of base - height.

q+1

3 Our algorithm

We begin by reducing Problem 1.1 to the following slightly stronger formulation (see Theorem 4.11 for the
detailed reduction):

minimize (c,x),
subject to x; € K; C R4 Vi € [n] (3.1)
Ax =b.

where x is a concatenation of vectors x;’s, and the /C;’s are disjoint convex sets. This formulation decouples
the overlapping support of the original f;’s by introducing additional variables tied together through the
linear system Ax = b. Each K; is constructed by applying a standard epigraph trick to the function f;.

Note that we do not have a closed-form expression for ;. Instead, the subgradient oracle for f; translates
to a separation oracle for IC;: on a point z; queried by the oracle, the oracle either asserts z; € K;, or returns
a separating hyperplane that separates z; from /C;.

At the start of our algorithm, we have the following guarantee:

Lemma 3.1. At the start of our algorithm, we are guaranteed the existence of the following.

.. def def
1. Ezplicit convex sets Ky, = Kin1 X Kina X -+ X Kin . and Koyt = Kout,1 X Kout,2 X -+ X Koyt,n such

that Kin €K Iy x -+ % K € Kouts
2. An initial Xinitia € Kin such that AXinitial = b.

We show how to construct such a set i, in Section 5.1 and how to find such a K,ut and Xinjtial in
Section 5.2.

3.1 Details of our algorithm

In this section, we explain our main algorithm (Algorithm 1).

The inputs to Algorithm 1 are: initial sets IC;, and Koyt satisfying Ky € K C Kout, an initial point
x € Ky, satisfying Ax = b, a separation oracle O; for each IC;, the objective vector c, and scalar parameters
m, n, R, r, and €. All the parameters are set in the proof of Theorem 4.10.

Throughout the algorithm, we maintain a central path parameter ¢ for IPM-inspired updates, the current
solution x, and convex sets Kin; and Kout; satisfying Kin; € K; C Kou,; for each ¢ € [n]. To run IPM-style

updates, we choose the entropic barrier on Koyt and the universal barrier on Kj,.

Given the current set Koy, the current ¢, and the entropic barrier ., defined on /ﬁm def Kout N

{u: Au = b}, we define the point

Xty arg min {t(e,x) + Vour ()} (3:2)
xEKout
Per the IPM paradigm, for the current value of ¢, this point serves as a target to “chase” when optimizing
(c,x) over the set Kout. Although our overall goal in Problem 3.1 is to optimize over K N{u: Au = b}, we
do not know K explicitly and therefore must use its known proxies, I iy or Kout; we choose Koy because
Kout 2 K ensures we do not miss a potential optimal point.

Having computed the current target x} ., we move the current solution x towards it by taking a Newton
step, provided certain conditions of feasibility and minimum progress are satisfied. If either one of these
conditions is violated, we update either i, Kout, or the parameter ¢.

Updating x. In order to move x towards X}, we require two conditions to hold: x} , € Ki, and (c,x) >
(e, X5) + O(1/1).

The first condition implies x},, € K, which would in turn ensure feasibility of the resulting x after a
Newton step. To formally check this condition, we check if the following inequality is satisfied for all i € [n]
and for a fixed constant 7:

(Vthin i (Xi), Xout,; — Xi) + 10 | Xoue, — Xillx, < 4di. (3.3)

The intuition is that since any point within the domain of a self-concordant barrier satisfies the inequalities
in Theorem 2.8 and Theorem 2.9, violating Inequality (3.3) implies that x7,, ; is far from Ky, and as a
result, x3 . is not a good candidate to move x towards.

The second condition we impose, one of “sufficient suboptimality”, ensures significant progress in the
objective value can be made when updating x. Formally, we check if

T % 4m T
c Xiu+ e <c'x (3.4)

If the inequality holds, then there is still “room for progress” to lower the value of {c,x) by updating x; if
the inequality is violated, we update t instead.

Algorithm 1 Minimizing Decomposable Convex Function

1: > Solving Problem 3.1

2: Input. €, A, b, ¢, R, r, m , n, X, Kin, Kous, and O; for each i € [n].

3: Initialization. ¢t = % and tepq = GHE%, n = 155, and x%, (via Equation (3.2))
4: while true do

5: if (c,x) < (c,x%y) + 2 then > Either update ¢ or end the algorithm
6: if ¢t > teng then

7 return arg miny.xex;,, Ax=b {£(¢,X) + Y i Yin,i(x:)}- > End the algorithm
8: end if

9: tet-[1+ L] > Update ¢
10: Update x3,,, and jump to Line 4 > x% . computed as as per Equation (3.2)
11: end if

12: for alli e [n] do

13: if (Vohin,i(Xi), Xue, — Xi) + 1lXgut,s — Xillx, = 4d; then

14: if x5,; € K; then > Query O;
15: Kin,i = conv(Kin , Xéum—) > Update Kiy
16: else

17: Kout,i = Kout,i N H;, where H; = O; (xgum) > Update Kout i
18: end if

19: Update x3,, and jump to Line 4 > x%,. computed as per Equation (3.2)
20: end if

21: end fogCf . et e

22: Set 6x = 2 - T Where lullx,: = > [ullx,-

23: X ¢ X+ 0x > Move x towards x}
24: end while

Given the two conditions hold, we move x towards x7,,, in Line 23. The update step is normalized by the
distance between x and x7,, measured in the local norm, which enforces x € K (since by the definition of
self-concordance, the unit radius Dikin ball lies inside the domain of the self-concordance barrier), and also
helps bound certain first-order error terms (Inequality (4.14) in Section 4.3).

The rest of this section details the procedure for when either of these conditions is violated.

Updating the inner and outer convex sets. Suppose Inequality (3.3) is violated for some i € [n]. Then
X5uti & Kini, which in turn means x%,, might not be in the feasible set K. To reestablish Inequality (3.3)
for ¢, we can either update K, ;, or update Kout,; and compute a new x by Equation (3.2).

out,?
To decide which option to take, we query O; at the point x* , .: if the oracle indicates that x7 . . € K;,
*

out,i* out,i

then we incorporate x%,, ; into Ki,; by redefining iy ; = conv(Kin i, x5, ;) to be the convex hull of the
current Kiy; and x5, ; (Line 15). If, on the other hand, x3, ; ¢ Ki, the oracle O; will return a halfspace H;
satisfying H; 2 K;. Then we redefine Kout; = Kout,s NH; (Line 17). After processing this update of the sets,
the algorithm recomputes x7,, and returns to the main loop since updating the sets does not necessarily
imply that the new xJ, satisfies x}, € Kin.

This update rule for the sets is exactly where our novelty lies: we do not arbitrarily update sets, rather,
we update one only after checking the very specific condition Xy, ; ¢ Kin,i. Since the separation oracle is
called only in this part of the algorithm, performing this check enables us to dramatically reduce the number
of calls we make to the separation oracle, thereby improving our oracle complexity.

Further, this update rule shows that even when we cannot update the current x, we make progress by
using all the information from the oracles. Over the course of the algorithm, we gradually expand C;, and
shrink Coyut, until they well-approximate K. To formally quantify the change in volume due to the above
operations, we consider the following alternative view of x7 ;.

Proposition 3.2 (Section 3 in [BE15]; Section 3 of [K1a06]). Let 6 € R™, and let pp be defined as py(x) il

exp((0,x) — f(0)), where f(0) d:eflog [[ic exp((0,u))du]. Then,

Expol] = g _min {f*(x) ~ (0.2}

x€int (K

By this proposition, x3,; defined in Equation (3.2) satisfies

out

def
xt. =K

out x~exp{—t<c,x)—log Uﬁouc exp(—t(c,u))du} } [X]’ (35)

that is, x7 ; is the centroid of some exponential distribution over Kout. As a result, if X5y & Ki, the hyper-

plane cutting Eout through x7 . will yield a large decrease in volume of Eout, per Remark 2.15. Therefore,
the query result in a large change in volume in either K, or Kout, allowing us to approximate K with a
bounded number of iterations.

Updating ¢t. If Inequality (3.4) is violated, then the current x is “as optimal as one can get” for the current
parameter ¢. This could mean one of two things:

The first possibility is that we have already reached an approximate optimum, which we verify by checking
whether ¢ > O(1/e) in Line 6: If true, this indicates that we have attained our desired suboptimality, and
the algorithm terminates by returning

xret — arg min {t . <C, X> + Zwin,i(xi)} .

x:XEKin,Ax=b .
i=1

The point x™" is feasible because it is in Kj, by definition, and the suboptimality of O(1/tena) = O(€) ensures
it is an approximate optimum for the original problem.

The second possibility is that we need to increase t to set the next “target suboptimality”. The value of
t is increased by a scaling factor of 1 + O(1/m) in Line 9. This scaling factor ensures, like in the standard
IPM framework, that the next optimum is not too far from the current one. Following the update to ¢, we
recompute x3,, by Equation (3.2). Since (c¢,x) > (c,x},.) + O(1/t) is not guaranteed with the new ¢ and
X5, the algorithm jumps back to the start of the main loop.

4 Our analysis

To analyze Algorithm 1, we define the following potential function that captures the changes in Kin ;, Kout,i,
t, and x in each iteration:

D d:°ft<c,x> + log [/

’Cout

exp(—t(c,u>)du} + Z Yin,i(X;), (4.1)
i€[n]

universal terms

entropic terms

where log U’E . exp(—t{c, u))du} is related to the entropic barrier on /@m (see Section 4.1) and i ; is the

universal barrier on /C;. In the subsequent sections, we study the changes in each of these potential functions
along with obtaining bounds on the initial and final potentials and combine them to bound the algorithm’s
separation oracle complexity.

4.1 Potential change for the entropic terms

In this section, we study the changes in the entropic terms of Equation (4.1) upon updating the outer
convex set /E(,ut as well as t. These two changes are lumped together in this section because both updates
affect the term log [fﬁouc exp(—t - {(c,x)) dx}, albeit in different ways: the update in Kou affects it via
Griinbaum’s Theorem; the update in t affects it via the fact that, by duality with respect to the entropic
barrier (Definition 2.12), log [Jrer,. exp((x, 9>)dx} is also self-concordant. We detail these two potential
changes below.

10

Lemma 4.1 (Potential analysis for outer set). Let Eout def {x:%x; € Kour,i N {y : Ay =b}}, and let & =
log {fﬁm exp(—t(c,u))du] + t{c,X) + X i Yini(xi). Let H; be the halfspace generated by the separa-
ol as shown in Line 17 of Algorithm 1. Then the new potential ®("e%) =

out,i

log Uﬁoumm exp(—t{c, u))du} + (e, x) + ¢ Yin,i(X:) s bounded from above as follows.

tion oracle O; queried at x

d(mew) < & 4 log(1 — 1/e).
Proof. The change in potential is given by

exp(—t - (c,x)) dx

JR s
(I)(ncw) _p=1 KoutNH
& [Je.. exp(—t-(c,x)) dx
We now apply Theorem 2.14 to the right hand side, with the function f(x) = exp(—t-(c,x) — A(tc)), where
A(0) = log [IR _exp(—(0, x>)dx} . Noting that each halfspace H; passes directly through x7 , ,, where x%,

out,?’

is the centroid of Koy with respect to f (by the definition of x?*,, in Equation (3.5)), Remark 2.15 applies
and gives the claimed volume change. O

To capture the change in potential due to the update in ¢, we recall the alternative perspective to the

function log [J; Rou exp(—t(c, x))dx} given by Definition 2.12 and derive properties of self-concordant barriers.

Lemma 4.2. Consider a v-self-concordant barrier v : int(K) — R over the interior of a convex set K C R%.

Define

ig o/ min [t-(c,x) +¢¥(x)] and x; af argmin [t-(c,x) +¥(x)]. (4.2)

Then for 0 < h < i, we have

& Fth- (xi,0) > &y > & +ht- (e, %) — b

Proof. Note that here the first inequality is fairly generic and holds for any function . By definition of
{Z/EHh) and ¢ in Equation (4.2) and using the fact that the value on the right hand side of Equation (4.3)
is smaller than the expression evaluated at a fixed x = x;,we have

Exrany = min [((1+ 1) - (x,€) + (x)] (4.3)
S UL+ h) - (x¢,€) +1h(xe)
=& 4 th- (x4,¢).
We now prove the second inequality of the lemma. This one specifically uses the self-concordance of .

Observe first, by definition,
& = —y*(~to). (4.4)

Since ¢ is a self-concordant barrier (and hence, a self-concordant function), Theorem 2.10 implies that ¢* is a
self-concordant function as well. Then, by applying Theorem 2.11 to ¢* under the assumption || —the|| . < 1
yields

(—te — the) < ¢(—t *(—tc), —th —|| — the||? < : 4.5
¢ (c C) — dj (C) + <V¢ (C)7 C> + 2” c”—tc + 3(1 _ || _ thC”,tC) ()

By applying the first-order optimality condition to the definition of x; in Equation (4.2), we see that
Vi(xy) = —tc. (4.6)

11

Next, evaluating a def || = the||—ic to check the assumption || — the||—e < 1, we get

a® = h?(—tc, V2* (—tc) - (—tc)) = h2(Veh(x;), V2 (Vah(xy)) - Vab(xt))
= W (Vo (xe), (V2 (x0)) - V(%))
< h?v
where we used Equation (4.6) and Lemma 2.4, in the first two equations and Definition 2.7 and the complex-

ity value of 1 in the last step. Our range of h proves that a < 1, which is what we need for Inequality (4.5)
to hold. We continue our computation to get

1 | — thel?, 1 1 1 1
= || — thel? © < Zh%w+ B2 < Ch%u 4 ShPv < b 4.7
2! C||_t°+3(1—||—thc||_tc) e U U e (4.7)
Applying Lemma 2.3 to Equation (4.6) gives
V™ (—tc) = x¢. (4.8)

Plugging Equation (4.8) and Inequality (4.7) into the first and second-order terms, respectively, of Inequality (4.5)
gives

Y*(—tc — the) < P*(—tc) + (x¢, —thc) + h?v.
Plugging in Equation (4.4) gives the desired inequality and completes the proof. O

To finally compute the potential change due to ¢, we need the following result about the self-concordance
parameter of the entropic barrier. While [31215] prove that this barrier on a set in R? is (1 + ¢;)d-self-
concordant, the recent work of [Che21] remarkably improves this complexity to exactly d.

Theorem 4.3 ([Che21]). The entropic barrier on any convex body KK C R? is a d-self-concordant barrier.
We may now compute the potential change due to change in ¢ in Line 9.

Lemma 4.4. When t is updated to t - [1 + &} in Line 9 of Algorithm 1, the potential ® Equation (4.1)
increases to ®(%) qas follows:
(I)(new) S (I)+77+772

Proof. Recall that the barrier function we use for the set /Eout is the entropic barrier ¥o,¢. By Equation (4.2)
and the definition of conjugate, we have

—gfom = max [(—tc, v) — Yout (V)] = Yoy (—tc).

Applying Definition 2.12, taking the conjugate on both sides of the preceding equation, and using Lemma 2.2
then gives

— 52%‘“ = log [/Eout exp(—t- (c,u)) du} . (4.9)

From Equation (4.1), the change in potential by changing ¢ to ¢- (1 + h) for some h > 0 may be expressed as

d(ev) _ ¢ = log [/A exp(—t(1+ h)c,v>dv} — log [/A exp(—tc,v)dv] + (th - ¢, x).
K:out K:out

By applying h = zL- and v = m (via a direct application of Theorem 4.3), we have h = ;L. < —— = \/L;,
and so we may now apply Equation (4.9) and Lemma 4.2 in the preceding equation to obtain the following
bound.

5k

deW) _ § < th(c,x) — thic,x;) + h2w.

From Equation (3.2) and Equation (4.2), we see that x; for the entropic barrier satisfies the equation x; =

X%, and applying the guarantee (c,x) < (c,x%,.) + 4Tm to this inequality, we obtain

4 2
@(“ew)—fbgth-—m—i—h%:n—i—(i) v <n+n.
t dm

12

4.2 Potential change for the universal terms

In this section, we study the change in volume on growing the inner convex set Kiy ; in Line 15. As mentioned
in Section 3, our barrier of choice on this set is the universal barrier introduced in [NN94a] (see also [Giil97]).
This barrier was constructed to demonstrate that any convex body in R™ admits an O(n)-self-concordant
barrier, and its complexity parameter was improved to exactly n in [LY21].

Conceptually, we choose the universal barrier for the inner set because the operation we perform on the
inner set (i.e., generating its convex hull with an external point x},,) is dual to the operation of intersecting
the outer set with the separating halfspace containing x%, (see Lemma 2.6), which suggests the use of a
barrier dual to the entropic barrier used on the outer set. As explained in [BE15], for the special case of
convex cones, the universal barrier is precisely one such barrier.

We now state a technical property of the universal barrier, which we use in the potential argument for
this section.

Lemma 4.5 ([LY21, Lemma 1], [NN94a; Giil97]). Given a convex set K € R? and x € K, let {x(x) il
log vol(K —x)° be the universal barrier defined on KC with respect to x. Let u € R? be the center of gravity and
¥ € R™4 be the covariance matriz of the body (K —x)°, where (K —x)° ={y e R" 1y (z—x) < 1,Vz € K}

is the polar set of IC with respect to x. Then, we have that

Vi (x) = (d+ 1)p, Vx(x) = (d+1)(d+2)S + (d+ Dpp" .
Lemma 4.6. Given a convex set I C R and a point x € K. Let = log vol(K — x)° be the universal
barrier defined on IC with respect to x. Let n < 1/4 and 'y € K be a point satisfying the following condition

(Ve (%), y — x) +nlly — x[[x > 4d, (4.10)

and construct the new set conv{K,y}. Then, the value of the universal barrier defined on this new set with
respect to x satisfies the following inequality.

de, °
i new(X) =f¢conv{ic,y}(x) = logvol(conv(K,y) — x)° < ¢c(x) + log(l — 1/e + n).
Proof. By Lemma 2.6, we have that
(conv(K,y) —x)° C (K —x)°NH,

where H = {z € R" : (z,y — x) < 1}. Our strategy to computing the deviation of)i new(X) def Veonv(K,y) (X) =

log vol(conv(K,y) — x)° from 9x(x) is to compute the change in vol(conv(K,y) — x)° < vol [(K — x)° NH]

from vol(K —x)°, for which it is immediate that one may apply an appropriate form of Griinbaum’s Theorem.
Let p be the center of gravity of the body (K — x)°. If u ¢ H, then Corollary 2.16 (with n = 0) gives

vol [(K —x)° NH] < vol(K —x)°- (1 —1/e),

and taking the logarithm on both sides gives the claimed bound. We now consider the case in which y € H,
and the variance matrix of the body (K — x)° is 3. Define v =y — x, and consider the point

1 - <th‘>

-2V
IvI5

zZ=u+

This point satisfies (v,z) = 1, which implies z € H. Specifically, z lies on the separating hyperplane. We
show that z is sufficiently close to u, so that even though p € H, the subset of (K — x)° cut out by the
halfspace H is not too large. By applying Lemma 4.5 to compute ||[v||2 = (d+1)(d+2)||v|%+ (d+ 1) {v, u)?,
we may compute the following quantity.

1—
D S S\ 1 R —
\/(d+1)(d+2) Hv”x —dar2 <V7 /1’>

= /d+D){d+2)- L= v . (4.11)

)
VEIVIE + 3IVIZ = (d+ 1)(v,)2

13

Applying the expression for gradient from Lemma 4.5 in Equation (4.10), we have

where we used the fact that 1 € H implies (v,u) < 1. Since n < 1/4, we have 3[|v[2 > (d + 1){v,)%
Plugging this in Equation (4.11) gives

1- v, 1- v,
|z — plla-r < V{d+1)(d+2)- 1<” ||2>§4d ||v<||)
21IViix *

. 1- <V7:u>
=My ="

which implies Corollary 2.16 applies, giving us the desired volume reduction. O

4.3 Potential change for the update of x

In this section, we quantify the amount of progress made in Line 22 of Algorithm 1 by computing the change
in the potential ® as defined in Equation (4.1).

x* —x . . Y
=1. _Jow = gsin Line 22.
2 x5 —xllx,1

Lemma 4.7. Consider the potential ® Equation (4.1) and the update step dx
out

Assume the guarantees in Inequality (3.3) and Inequality (3.4). Then the potential ® incurs the following
minimum decrease.

2
plrew) < - L
=%y

Proof. Taking the gradient of ® with respect to x and rearranging the terms gives

te=Vad = > Vibini(xi). (4.12)

=1

By applying the expression for tc from the preceding equation, we get

V) — & = t(c,x + 0x) + Z Yini (X + 0x,1) — t{c,x) — Z Vin,i(X;)
=1 =1
v (I) 6 + Z wm i\ X + 5x z) wimi(xi) - <v¢in,i(xi)7 5x,i>] . (413)
i=1

G (%4)

The term gy, ,(x;) measures the error due to first-order approximation of i, ; around x;. Since ¥y, ;(x;) is
self-concordant functions and ||0x:|x; < ||0x||x,1 <1 < 1/4, Theorem 2.11 shows that

Vin,i (Xi + Oxi) — Yini (%5) — (Vibin,i (%), 0xi) < |60l - (4.14)
Plugging in Inequality (4.14) into Equation (4.13), we get

DY) — B < (Vi @, 0x) + [|0x12 1 (4.15)

We now bound the two terms on the right hand side one at a time. Using the definition of dx (as given in

14

the statement of the lemma) and of V® from Equation (4.12) gives

n 1 "
v)((1)76)(=3 - qu),xou — X
(V00 = Tt — e T
n 1 . . .
=-—— |(tc, X — X) + g V1/)in7i Xi), Xoui — Xi
2 ||xgut . x”x,l l< t > i:1< () t, >]
n 1 . & .
LS - 4y — -
= 2 l< e 1)]
n 1 " «
= [(tC, X5y — X) +4m — n||xTy — X||x,
2 T = Xl [¢ —X) Nl[xgus — Xllx,1]
n 1 .
s (—"|Xous — Xl|x,
= 2T e o 7 Xe)
= —n?/2. (4.16)

where the third step follows from Inequality (3.3), the fourth step follows from Z?:l d; = m, and the fifth
step follows from Inequality (3.4). To bound the second term, we note from Line 22 that

*

2
18]I, = (ﬁ : M) — 2/4. (4.17)

2 IxGue = Xl

Hence, we may plug in Inequality (4.16) and Equation (4.17) into Inequality (4.15) to get the desired result.
O

4.4 Total oracle complexity

Before we bound the total oracle complexity of the algorithm, we first bound the total potential change
throughout the algorithm.

Lemma 4.8. Consider the potential function ® = t(c,x) + log [f,e cexp(—t(c,u))du| + 37,1, Yini(Xi) as
defined in Equation (4.1) associated with Algorithm 1. Let ®;pnit be the potential at t = tin of this algorithm,

and let ®.nq be the potential at t = tend- Supp0§e at t = tipie in Algorithm 1, we have B, (x,7) C K
with 7 = r/poly(m) and Koyt C B (0, R) with R = O(y/nR). Then we have, under the assumptions of

Theorem 4.10, that
R
(I)init - (I)end S O (mlog <m—>) .
€r

Proof. For this proof, we introduce the following notation: let vola () denote the volume restricted to the
subspace {x : Ax = b}. We also invoke Fact 2.17. We now bound the change in the potential term by term,
starting with the entropic terms

t{c,x) + log [/A exp(—t(c,u))du] (4.18)

’Cout

at t = tiniy and a lower bound on it at ¢t = teng. We start with bounding Equation (4.18) evaluated at
t = tend = €HCT|n2R'

Let x = argmin ¢z (c,x) and @ = (c,X). By optimality of X, we know that X € OKous. Denote

Ba(z,7) to be B(z,7) restricted to the subspace {x : Ax = b}. Note that Koyt 2 Ba(z,7). Consider the
cone C and halfspace H defined by

C=x+{\y:A>0,ycBa(z—%7)?} and H L

1
{x:(c,x>§a+ }
lend

15

Then, by a similarity argument, we note that C N ‘H contains a cone with height m and base radius

F .
—=————, which means
thnd”0”2 ’

1 1 7 m—rank(A)—1
vola(CNH) > . | = -vol(B,, —rank(a)—1(0,1)).
ACOH) 2 TR Tl (Rtend|c|2> (Brs-saai(a)-1(0, 1))

Then, we have

log [/A exp(—tcnd<c,u>)du} + tend{c,x) > log /A exp(—tenda(c, u))du| + tena min (c,x)
Kout LS Kout i XELout

> log / exp(—tend{c, u))du| + tenacx
LJCNH

> log / exp(—tend — 1)du| + tend
LJCNH

(1
e

=log |- -vola(CNH) exp(—tcndoz)] + tengQ

1
=log |vola(CNH) - E}

> —(m — rank(A) — 1) - log(Rtenal|c||2/7))
+ log(vol(By,—rank(a)—1(0,1)))
— log(m — rank(A)) — log(tendllc|l2) — 1. (4.19)

Next, to bound Equation (4.18) at ¢ = tinit, we may express these terms as follows.

log [/A exp(—tinit - (¢, w))du| + tinit - (C,X)
’Cout

<log {VOIA(I%O,H)] + tinit - max (¢, X — u)
lleiéout

< log(vol(By—rank(a) (0, R))) + tinic - 2R||c]2
< log(VOI(Bmfrank(A) (07 1)))
+ (m — rank(A)) log R + O(mlogm), (4.20)

where the second step is by Kouwt € Kous C Bziew 4,(0, R) (here, the second inclusion is by assumption),

and the third step is by vol(B,(0, R)) = 1‘(%/;/2)

We now compute the change in the entropic barrier Zie[n] Yin,i (x;), where

= . def logcm
RY and our choice of tjy; = —ae™
it Vvrlcll2R

win,i (xi) = log VOl(IC?n,i (Xi)).

Define B4(0,7) to be the d-dimensional Euclidean ball centred at the origin and with radius . We note
by the radius assumption of Theorem 4.10 that Ki,; C K; C By, (0, R) throughout the algorithm. By the
assumption made in this lemma’s statement, we have that at the start of Algorithm 1, Ki,; 2 Ba,(x, 7).
These give us the following bounds.

end (%) > log(vol(Bg, (0, R)) and i (x;) < log(vol(Bg, (x4, 7))).

in,i in,s

16

Applying the fact that vol(B4(0,7)) oc 7% and summing over all i € [n] gives

S [t (x) — v (xi)]

i€[n]
< Zl (VO] (xz,l/f))>
2 By, (0.1/7)
= Z d; log(R/7) = mlog(R/F). (4.21)
ieln]
Combining Inequality (4.20), Inequality (4.19), and Inequality (4.21), we have
Pinit — Pena < mlog(mR/r)
+ [log(vol(By,—rank(a)(0,1))) + (m — rank(A)) log R + O(mlogm)]
+ (m — rank(A) — 1) - log(Rtend||c||2/7) — log(vol(By,—rank(a)—1(0,1)))
+ log(m — rank(A)) + log(tendl|cl]2) + 1
< mlog(mR/er)
+ O(mlogm)
+ O((m — rank(A)) log(mR/er)) < O(mlog(mR/er)).

N

Lemma 4.9. [Total oracle complexity] Suppose the inputs K, and Koyt to Algorithm 1 satisfy Keur C
B, (0, R) with R = O(y/nR) and K, 2 B(z,7) with ¥ = r/poly(m). Then, when Algorithm 1 terminates at
t > tend, it outputs a solution x that satisfies

c'x< min c Tx+e-|c||2R
xek,Ax

using at most Nyep = O (m log ("g—f)) separation oracle calls.

Proof. Let N be the number of times ¢ is updated; N, the number of times K;, is updated; Noyt the number
of times Koyt is updated; Ny the number of times x is updated, and Mot the total number of iterations of
the while loop before termination of Algorithm 1. Then, combining Lemma 4.1, Lemma 4.4, Lemma 4.6,
and Lemma 4.7 gives

2

Bend < Pinie + Nous - log(1 — 1/e) + N; - (n +n0?) + N - log(1 — 1/e +n) + Ny - (—%)) (4.22)

m log(m
and tinie = \/ﬁl\il(lzlzf’ and we always

The initialization step of Algorithm 1 chooses nn =1/100, tepq = qﬁ%’

update ¢ by a multiplicative factor of 14 7. (see Line 9); therefore, we have
N; = O(mlog(mR/(er)).

From Algorithm 1, the only times the separation oracle is invoked is when updating Ki, or Koyt in Line 15
and Line 17, respectively. Therefore, the total separation oracle complexity is Afsep = Nin +MNout. Therefore,
we have

'/V'SCP = Mn +Nout S 0(1) ‘ [(I)init - (I)cnd +M] = O(mlog(mR/(er))

This gives the claimed separation oracle complexity.

We now prove the guarantee on approximation. Let Xoutpus be the output of Algorithm 1 and x be the
point which entered Line 5 right before termination. Note that the termination of Algorithm 1 implies, by
Line 5, that

4(n +
Tty + M o iy Tt el R

T T
Cc Xoutput S c X+ =
end tend xeK,Ax

where the first step is by the second inequality in Lemma 5.8 (using the universal barrier) and the last step
follows by our choice of tenq and the definition of x7,, and Koy 2 K. O

17

Theorem 4.10 (Main theorem of Problem 3.1). Given the convex program

minimize {c,X),
subject to x; € K; C R+ € [n],
Ax =Db.

Denote K =K1 X Ko X ... x K. Assuming we have
o outer radius R: For any x; € K;, we have ||x;|2 < R, and

e inner radius r: There exists a z € R? such that Az =b and B(z,r) C K,

1

then, for any 0 <e < 3,

we can find a point x € K satisfying Ax =b and

(e,x) < min (e, x) +e-lefl2- R,
x;,€K; CRYtvien],
Ax=b

in O(poly(mlog(mR/er))) time and using

O(mlog(mR/(er))

gradient oracle calls, where m =Y. | d;.

Proof. We apply Theorem 5.1 for each KC; separately to find a solution z;. Then z = (z1,...,2,) €
satisfies B,,4n(2,7) C K with 7 = gmas- Then, we modified convex problem as in Definition 5

5= 216@ and obtaining the following:

minimize (C,X)
subject to AXx =
x e K= K xRIF™ x RYG™

with
lellzs o llel2s

vm4+n ’\/m—i—n

We solve the linear system Ay =b — Az for y. Then, we construct the initial X by set x) =g,

<@ _ {yi ify; >0, and = — {_Yi if y; <0,

A=[A|A|-A],b=b,c=(c, 1)

g 0 otherwise. o otherwise.

Rm-i-n

5 with

(4.23)

Then, we run Algorithm 1 on the Problem 4.23; with initial X set above, m = 3(m +n),i=n+ 2, =

Foms Kin = {xM) € B(z,7), (x?,x®) ¢ R4} and Kout = Bm (0, /nR).

By our choice of tenq, we have
_ 8m 48m

fond = ——= < :
T Elel2R T elell2R

First, we check the condition that s > 480tenav/m + nR72 lc|l2, we note that

B R2 2.5R 2.5R
A8TFunav/m T n——||cl» < 276481 < 9160 Tt _
T €r TE

(€] (2) (3)

Output,xoutput,xoutput) be the output of Algorithm 1. Then, let Xoutpur

Let ioutput = (X
(2) (3)

Xoutput - Xoutpu

;. as defined in Theorem 5.6. By Lemma 4.9, we have

min ¢' X < minc' X+~
XEPin xeP

where v =€ [|¢||2 - R.

18

1
= Xgu)tput +

Applying (3) of Theorem 5.6, we have

v+1
CTXoutput < V—+ +v4+ min ¢ x< min c¢'x4e- llellz - R.

tend z€K,Ax=b z€K,Ax=b

The last inequality follows by our choice of € and fenq, we have v < §||c[l2R and 1 < £|[c[2R. Plug this €
in Lemma 4.9, it gives the claimed oracle complexity.
O

Theorem 4.11 (Main Result). Given Problem 1.1 and 69 such that ||0* — 0|y < R. Assuming all the
fi’s are L-Lipschitz, then there is an algorithm that in time poly(mlog(1/e)), using O(mlog(m/e)) gradient
oracle calls, outputs a vector § € R? such that

n n

ST h0) < fi(67) +e- LR,

=1 =1

Proof. First, we reformulate (1.1) using a change of variables and the epigraph trick. Suppose each f; depends
(@), (). _.x(_i)] c R

on d; coordinates of ¢ given by {i1,...,i4,} C [d]. Then, symbolically define x; = [z; ";2; ;. ..;7;,
for each i € [n]. Since each f; is convex and supported on d; variables, its epigraph is convex and d; + 1

dimensional. So we may define the convex set
K;mbounded _ {(Xiu Zi) c Rdri-l : fi(xi) < Lzl})

Finally, we add linear constraints of the form :z,(j) = xg) for all 1,4,k where f; and f; both depend on 0.
We denote these by the matrix constraint Ax = b. Then, Problem 1.1 is equivalent to

minimize Y., Lz
subject to Ax=Db (4.24)
(xi, ;) € Kcynbounded for each i € [n)].

Since we are given 6(0) satisfying [|6(©) — 6*||, < R, we define x\”) = [95?); e 953] and z\” = f,(0©)/L.

Then, we can restrict the search space Kynbounded ¢
K, = ICi“nbO“ndCd NA{(x;,2) € R%+1 . lIx; — X§0)||2 < R and zi(o) —2R <z < zi(o) + 2R}.

0 0

K2 ()

It’s easy to check that /C; is contained in a ball of radius 5R centered at (x), and contains a ball

of radius R centered at (xgo), zi(o)). The subgradient oracle for f; translates to a separation oracle for K;.

Then, we apply Theorem 4.10 to (4.24) with Aynbounded yeplaced by K; to get the error guarantee and oracle
complexity directly. O

Finally, we have the matching lower bound.

Theorem 1.3. There exist functions f1,..., fn : RT > R for which a total of Q(mlog(1/€)) gradient queries
are required to solve Problem 1.1.

Proof. [Nes04] shows that for any d;, there exists f; : R% ~— R for which Q(d;log(1/¢)) total gradient
queries are required. We define f1,..., f, to be such functions on disjoint coordinates of #. It follows that
QX" dilog(1/e)) = Q(mlog(1/e)) gradient queries are required in total. O

5 Initialization

5.1 Constructing an initial s,

In this section, we discuss how to construct an initial set KCi,; to serve as an input to Algorithm 1. In
particular, we will prove the following theorem.

19

Theorem 5.1. Suppose we are given separation oracle access to a convex set K that satisfies B(z,r) C K C
B(0, R) for some z € R?. Then, Algorithm 2, in O(dlog(R/r)) separation oracle calls to K, outputs a point
x such that B (x, #) CcK.

Algorithm 2 Inner Ball Finding

1: Kout < B(0,R)
2: while true do
Let v be the center of gravity of Koyt
Sample u from B(v,r/(6d)) uniformly
if u € K then

Let S = {v =+ gze; :i € [d]}

if S C K then

return the inscribed ball of conv(S)

end if
10: end if
11: Let Kout < Kout N H where H = O(u)
12: end while

Before we prove the preceding theorem, we need the following facts about the self-concordant barrier and
convex sets.

Theorem 5.2 ([NesO4, Theorem 4.2.6]). Let ¢ : int(K) — R be a v-self-concordant barrier with the mini-
mizer x;,. Then, for any x € int(KC) we have:

x5 = Xlxs;, < v+ 2y
On the other hand, for any x € R? such that ||x — X llxz;, < 1, we have x € int(K).

Theorem 5.3 ([[<.595, Theorem 4.1]). Let K C R? be a conver set with center of gravity p and covariance
matriz Y. Then,

fx: lx—plls < @+ 2)/d} CK S {x: [x—plls < VAd+2)}

Theorem 5.4 ([BGVV14, Section 1.4.2]). Let K be a convex set with K C B(u, R) for some R. Let
K_s ={x:B(x,0) C K}. Then, we have

vdmﬁzvdn—ufw1—%ﬁ)de@Ja

Proof of Theorem 5.1. We note that by the description of the Algorithm 2, the returned ball is the inscribed
ball of conv(S) and we have v € K for each v € S. Then, we must have conv(S) C K. We note that conv(S)
is a £y ball with ¢, radius 6757, then the inscribed ball has /5 radius #.

First, we prove the sample complexity of the algorithm above. We use IC; to denote the Koyt at the t-th
iteration. We first observe that throughout the algorithm, KC; is obtained by intersection of halfspaces and
B(0, R). This implies

B(z,1) CK C K, Vt.

Since K; contains a ball of radius r, let A; be the covariance matrix of ;. By Theorem 5.3, we have

r2

A= — T
"= dd+2)

Let H; be the halfspace returned by the oracle at iteration ¢. We note that u is sampled uniform from
B(v,r/(6d)), so we have

dd+2) r 1

—uffg < YT o

Iv=ullam < =55 < 3

20

Apply the inequality above to Corollary 2.16, we have
vol(Ky) < (1 —1/e+1/3)'vol(Ko) < (1 — 1/30)'vol(B(0, R)).

Then, since B(z,r) C K; for all the ¢, this implies the algorithm at most takes O(dlog(R/7)) many iterations.
Now, we consider the number of oracle calls within each iterations. There are three possible cases to
consider:

1. u € K_5 with § = gZz (see the definition of K_s in Theorem 5.4). In this case, we have S C K and
this is the last iteration. We can pay this O(d) oracle calls for the last iteration.

2. ue K:\K:_(;.
Since u is uniformly sampled from B(v,r/(6d)), Theorem 5.4 shows that u € KX\K_s with probability
at most 5 1
1—(1- ——)" < -
(r/(6d)) —d

Hence, this case only happens with probability only at most 1/d. Since the cost of checking S C K
takes O(d) oracle calls. The expected calls for this case is only O(1).

3. u¢ K. The cost is just 1 call.

Combining all the cases, the expected calls is O(1) per iteration.

5.2 Initial point reduction

In this section, we will show how to obtain an initial feasible point for the algorithm.
Definition 5.5. Given a convex program minay—p xexcrd c'x and some s > 0, we define ¢; = ¢c,cy =
c3 = % 1and P = {xM € K, (x?,x3) ¢ R%do c A(xW +x@) —x3)) = b}. We then define the modified
convex program by
min x4 Cy Tx? 4 CTX(S)
(x(l),x@),x(s))ep

We denote (c1, c2,c3) by €.

Theorem 5.6. Given a convexr program minax—p xexCRd c'x with outer radius R and some convex set
Kin with iy C K and inner radius v. For any modified convex program as in Definition 5.5 with s >
48vt\/d - & - ||c||2R. For an arbitrary t € R, we define the function

ft(x(l),x@),x(?’)) - t(cirx(l) + c;—x(z) + c;x(?’)+ p,, (x 1 x®@ x(?’))
where p,. is some v self-concordant barrier for the set
= {xWV € Kin, (x@,x) e RZ : A(xD + x?) —xO)) = b}.

(1 %2 4®)

Given X af (x; xt M4 x@_x®

= arg Min 31 x x®)ep,, Fe(xM x®) xG)) we denote x4, = x; +x;7) —x;
Suppose mingep,, €' X < mingep €' X + 7, we have the following

1. AXin = b,
2. Xin € Kin,
3. ¢'xy, < mingex Ax—bC' X+ %1 + .

First, we show that x,gl) is not too close to the boundary. Before we proceed, we need the following

lemmas.

21

Lemma 5.7 (Theorem 4.2.5 [Nes04]). Let ¢ be a v-self-concordant barrier. Then, for any x € dom(¢) and
y € dom(v)) such that
<U)/(X)7y - X> > 07
we have
Iy —xllx <v+2vv.

Lemma 5.8 (Theorem 2 of [Z1.Y22]). Given a convex set * Q with a v-self-concordant barrier 1q and inner
radius r. Let x; = argminy t - ¢' x + ¥q(x). Then, for anyt > 0,

. 1 rlcll2 T T v
[| | VP — < —.
mln{zt’4u+4ﬁ S0 X TE X 2

Consider the optimization problem restricted in the subspace {(x™"),x(®) x®3)) : A(x(M) 4+x?) —x(3)) = b},
as a direct corollary of theorem above we have the following:

M %0y >

W we have dist(x;
rllell2

Corollary 5.9. Let x; be as the same as defined in Theorem 5.6. For t >

1 _
2tlcfl2 -

Now, we are ready to show dist(x; (1) , 0Ky) is not too small.

L—, we have dzst(81Cm) >

rllellz

Theorem 5.10. Let X; be the same as defined in Theorem 5.6. For t >
Toilela R

Proof. We consider the domain restricted in the subspace {(x(V),x®,x®): A(x() +x? —x®)) =b}. By
the optimality of X; and Lemma 5.7, we have
Ky C{x:|x— x§1)||xi1) <v+2Vv},

where H = {x: cT(xgl) —x) >0} and Ky L9 N K.

Recall that KC;,, contains a ball of radius r, we denote it by B. We note that conv(xéo)7 B) is a union of
a ball and a convex cone C with diameter at most 2. We observe that the set conv(x(()o), B)NH contains a
ball of radius at least since dlst(xOo ,OH) >
We note that

T
dtllefl2 R - 2tH‘SII

conv(x'Y, BYNH C Kin C {x:||x— xgl)qu) <v+2yv},

this implies {x : ||x—x§1) |, < v+2/v} contains a ball of radius at least e and then by Theorem 5.2,
t

(1) r
we have B(Xt 7W) g ICin. O

Lemma 5.11. Let (xﬁl),x?),xf)) € R34 be the same as defined in Theorem 5.6. Ift > m, then we have
I =%Vl < 2R,
Proof. Let xf, = arg minyex,, Ax=b €' X and X}, = argmingep,, €' X. Since x* € B(0, R), we have
¢Txs, < llcll2 .
Note that (x,,0,0) € Pi,, this means we have
c'x, <c'xf < |c|2R.

Combining this with the second inequality in Lemma 5.8, we get

14 14
ETit S ETii*n + ? S ||C||2R+ ? S 2||C||2R

4The original theorem is stated only for polytopes, but their proof works for general convex sets.

22

We further note that

el x? <e'x, <2|c||R.
This shows

2 3 2Vd| 2R _ 2VdR
max{[|x{?||a, [|x{¥]|2} < < :

l[cll2s s
Hence, we have
i = %P2 < %ER.
O
Now, we are ready to prove Theorem 5.6.

Proof of Theorem 5.6. We note that x;, satisfies (1), directly follows by definition of P. By assumption, we
have s > 48vtV/d - £ - ||c||2R; using this in Lemma 5.11, we have

2 3 r
I =%Vl < 75

lell2R
This means x;, = xgl) + x§2> - x§3) € Ki, since dist(xgl), Oiy) >

T
= 12ut]c[2R"
Now, we show ¢ x;, is close to ¢ x*.

Let x* = argminygex, Ax=b ¢'x and X = arg Minyep c'x. By Lemma 5.8, we have

T T
inécx*_'_’YSCX*_'—FY'
This implies

¢'xi <e'® <c'x o4
We have
¢ xiy = cT(xgl) + x§2) - ng)) Tx*

4 1
<c'x —|—%—|——||c||2R§ch*+i—|—’y.
S

6 Acknowledgements

We thank Ian Covert for helpful discussions about the problem applications and Ewin Tang for helpful
feedback on the paper.

23

References

[AB15]

[AKMSV21]

[A1l17]

[AY16]

[BBVO4]
[BCO3]|
[BE15]
[BGVV14|

[BKLLS20]

[Bot12]

[BV02]

[Cau-+47]
[Che21]

[CL11]

[DBL14]

[DLY21]

[FGKS15]

[FIPZ13]

[GLS8S)

Alekh Agarwal and Leon Bottou. “A lower bound for the optimization of finite sums”. In:
International conference on machine learning. PMLR. 2015, pp. 78-86.

Kyriakos Axiotis, Adam Karczmarz, Anish Mukherjee, Piotr Sankowski, and Adrian Vladu.
“Decomposable submodular function minimization via maximum flow”. In: International Con-
ference on Machine Learning. PMLR. 2021, pp. 446-456.

Zeyuan Allen-Zhu. “Katyusha: The first direct acceleration of stochastic gradient methods”.
In: The Journal of Machine Learning Research 18.1 (2017), pp. 8194-8244.

Zeyuan Allen-Zhu and Yang Yuan. “Improved SVRG for non-strongly-convex or sum-of-non-
convex objectives”. In: International conference on machine learning. PMLR. 2016, pp. 1080—
1089.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

Léon Bottou and Yann Cun. “Large scale online learning”. In: Advances in neural information
processing systems 16 (2003).

Sébastien Bubeck and Ronen Eldan. “The entropic barrier: a simple and optimal universal
self-concordant barrier”. In: Conference on Learning Theory. 2015, pp. 279-279.

Silouanos Brazitikos, Apostolos Giannopoulos, Petros Valettas, and Beatrice-Helen Vritsiou.
Geometry of isotropic convex bodies. Vol. 196. American Mathematical Soc., 2014.

Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. “Chasing nested
convex bodies nearly optimally”. In: Proceedings of the Thirty-First Annual ACM-SIAM Sym-
posium on Discrete Algorithms. 2020, pp. 1496-1508.

Léon Bottou. “Stochastic gradient descent tricks”. In: Neural networks: Tricks of the trade.
Springer, 2012, pp. 421-436.

Dimitris Bertsimas and Santosh Vempala. “Solving convex programs by random walks”. In:
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing (STOC).
ACM. 2002, pp. 109-115.

Augustin Cauchy et al. “Méthode générale pour la résolution des systemes d’équations simul-
tanées”. In: Comp. Rend. Sci. Paris 25.1847 (1847), pp. 536-538.

Sinho Chewi. “The entropic barrier is n-self-concordant”. In: arXiv preprint arXiw:2112.10947
(2021).

Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector machines”. In:
ACM Transactions on Intelligent Systems and Technology 2 (3 2011). Software available at
http://www.csie.ntu.edu.tw/“cjlin/libsvm 27:1-27:27.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. “SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives”. In: Advances in neural
information processing systems 27 (2014).

Sally Dong, Yin Tat Lee, and Guanghao Ye. “A nearly-linear time algorithm for linear pro-
grams with small treewidth: a multiscale representation of robust central path”. In: Proceedings
of the 58rd Annual ACM SIGACT Symposium on Theory of Computing. 2021, pp. 1784-1797.

Roy Frostig, Rong Ge, Sham Kakade, and Aaron Sidford. “Un-regularizing: approximate prox-
imal point and faster stochastic algorithms for empirical risk minimization”. In: International
Conference on Machine Learning. PMLR. 2015, pp. 2540-2548.

Alexander Fix, Thorsten Joachims, Sung Min Park, and Ramin Zabih. “Structured learning of
sum-of-submodular higher order energy functions”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2013, pp. 3104-3111.

Martin Grotschel, Laszl6 Lovasz, and Alexander Schrijver. Geometric algorithms and combi-
natorial optimization. Springer, 1988.

24

[Grii60]
[Giil97]
[HL16]

[JLLV21]

[TLSW20]

(1213
[K1a06]

[KLS95

[KLT09]

[KT10]
[KTESS]
[LMH15]

[LSW15]

[Lv21]
[LY21]
[Mail5]
[MZJ13]
[Nes04]
[Nes83]

[NN89]

[NN94a]

Branko Griinbaum. “Partitions of mass-distributions and of convex bodies by hyperplanes.”
In: Pacific Journal of Mathematics 10.4 (1960), pp. 1257-1261.

Osman Giler. “On the self-concordance of the universal barrier function”. In: STAM Journal
on Optimization 7.2 (1997), pp. 295-303.

Elad Hazan and Haipeng Luo. “Variance-reduced and projection-free stochastic optimization”.
In: International Conference on Machine Learning. PMLR. 2016, pp. 1263-1271.

He Jia, Aditi Laddha, Yin Tat Lee, and Santosh Vempala. “Reducing isotropy and volume to
KLS: an o*(n 3 ¢ 2) volume algorithm”. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing. 2021, pp. 961-974.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. “An improved cutting plane
method for convex optimization, convex-concave games, and its applications”. In: Proceedings

of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. 2020, pp. 944-953.

Rie Johnson and Tong Zhang. “Accelerating stochastic gradient descent using predictive vari-
ance reduction”. In: Advances in neural information processing systems 26 (2013).

Boas Klartag. “On convex perturbations with a bounded isotropic constant”. In: Geometric &
Functional Analysis GAFA 16.6 (2006), pp. 1274-1290.

Ravi Kannan, Laszlo Lovasz, and Miklos Simonovits. “Isoperimetric problems for convex bod-
ies and a localization lemma”. In: Discrete & Computational Geometry 13.3 (1995), pp. 541—
559.

Pushmeet Kohli, Lubor Ladicky, and Philip H. S. Torr. “Robust higher order potentials for en-
forcing label consistency”. In: International Journal of Computer Vision 82.3 (2009), pp. 302—
324.

Alex Kulesza and Ben Taskar. “Structured determinantal point processes”. In: Advances in
neural information processing systems 23 (2010).

Leonid G Khachiyan, Sergei Pavlovich Tarasov, and I. I. Erlikh. “The method of inscribed
ellipsoids”. In: Soviet Math. Dokl. Vol. 37. 1988, pp. 226—230.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. “A universal catalyst for first-order opti-
mization”. In: Advances in neural information processing systems 28 (2015).

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. “A faster cutting plane method and its
implications for combinatorial and convex optimization”. In: 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 2015, pp. 1049-1065.

Yin Tat Lee and Santosh S Vempala. “Tutorial on the Robust Interior Point Method”. In:
arXiv preprint arXiw:2108.04734 (2021).

Yin Tat Lee and Man—Chung Yue. “Universal barrier is n-self-concordant”. In: Mathematics
of Operations Research 46.3 (2021), pp. 1129-1148.

Julien Mairal. “Incremental majorization-minimization optimization with application to large-
scale machine learning”. In: STAM Journal on Optimization 25.2 (2015), pp. 829-855.

Mehrdad Mahdavi, Lijun Zhang, and Rong Jin. “Mixed optimization for smooth functions”.
In: Advances in neural information processing systems 26 (2013).

Yurii E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course. Vol. 87.
Applied Optimization. Springer, 2004. DOI: 10.1007/978-1-4419-8853-9.

Yurii E Nesterov. “A method for solving the convex programming problem with convergence
rate O(1/k?)”. In: Dokl. akad. nauk Sssr. Vol. 269. 1983, pp. 543-547.

YE Nesterov and AS Nemirovskii. “Self-concordant functions and polynomial time methods
in convex programming. preprint, Central Economic & Mathematical Institute, USSR Acad”.
In: Sci. Moscow, USSR (1989).

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex pro-
gramming. STAM, 1994.

25

[NN94b|

[Ren01]
[RM51]
[RocT70]
[RRWN11]

[RSB12]

[RW09)]
[SK10]
[SLB17|
[SZ13a]
[SZ13b]
[Vai89)]

[VBK20]

[VKROY]

[WS16]

[Zha04]

ZL15]

[ZLY?22]

Yurii E. Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programmang. Vol. 13. Siam studies in applied mathematics. STAM, 1994. 1sBN: 978-0-89871-
319-0. por: 10.1137/1.9781611970791. URL: https://doi.org/10.1137/1.9781611970791.

James Renegar. A mathematical view of interior-point methods in convex optimization. STAM,
2001.

Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In: The annals of
mathematical statistics (1951), pp. 400-407.

R Tyrrell Rockafellar. Convexr Analysis. Vol. 36. Princeton University Press, 1970.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. “Hogwild!: A lock-free ap-
proach to parallelizing stochastic gradient descent”. In: Advances in neural information pro-
cessing systems 24 (2011).

Nicolas Roux, Mark Schmidt, and Francis Bach. “A stochastic gradient method with an expo-
nential convergence rate for finite training sets”. In: Advances in neural information processing
systems 25 (2012).

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis. Vol. 317. Springer Science &
Business Media, 2009.

Peter Stobbe and Andreas Krause. “Efficient minimization of decomposable submodular func-
tions”. In: Advances in Neural Information Processing Systems 23 (2010).

Mark Schmidt, Nicolas Le Roux, and Francis Bach. “Minimizing finite sums with the stochastic
average gradient”. In: Mathematical Programming 162.1 (2017), pp. 83-112.

Shai Shalev-Shwartz and Tong Zhang. “Accelerated mini-batch stochastic dual coordinate
ascent”. In: Advances in Neural Information Processing Systems 26 (2013).

Shai Shalev-Shwartz and Tong Zhang. “Stochastic dual coordinate ascent methods for regu-
larized loss minimization.” In: Journal of Machine Learning Research 14.2 (2013).

Pravin M Vaidya. “A new algorithm for minimizing convex functions over convex sets”. In:
30th Annual Symposium on Foundations of Computer Science. 1989, pp. 338-343.

Nate Veldt, Austin R Benson, and Jon Kleinberg. “Minimizing localized ratio cut objectives in
hypergraphs”. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery € Data Mining. 2020, pp. 1708-1718.

Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. “Joint optimization of segmentation
and appearance models”. In: 2009 IEEE 12th international conference on computer vision.

IEEE. 2009, pp. 755-762.

Blake E Woodworth and Nati Srebro. “Tight complexity bounds for optimizing composite
objectives”. In: Advances in neural information processing systems 29 (2016).

Tong Zhang. “Solving large scale linear prediction problems using stochastic gradient descent
algorithms”. In: Proceedings of the twenty-first international conference on Machine learning.

2004, p. 116.

Yuchen Zhang and Xiao Lin. “Stochastic primal-dual coordinate method for regularized em-
pirical risk minimization”. In: International Conference on Machine Learning. PMLR. 2015,

pp. 353-361.

Manru Zong, Yin Tat Lee, and Man-Chung Yue. “Short-step Methods Are Not Strongly
Polynomial-Time”. In: arXiv preprint arXiv:2201.02768 (2022).

26

A Decomposable submodular function minimization

A.1 Preliminaries

Throughout, V denotes the ground set of elements. A set function f : 2V — R is submodular if it satisfies
the following diminishing marginal differences property:

Definition A.1 (Submodularity). A function f : 2" — R is submodular if f(TU{i})— f(T) < f(SU{i}) —
f(9), for any subsets SCT CV andie V\T.

We may assume without loss of generality that f() = 0 by replacing f(S) by f(S) — f(0). We assume
that f is accessed by an evaluation oracle and use EO to denote the time to compute f(S) for a subset S.
Our algorithm for decomposable SFM is based on the Lovasz extension [G1.S88], a standard convex extension
of a submodular function.

Definition A.2 (Lovasz extension [G1585]). The Lovasz extension f : [0, 1] — R of a submodular function
f is defined as

flz) = Eijoylf({i € Vim > t})],
where t ~ [0,1] is drawn uniformly at random from [0, 1].

The Lovasz extension f of a submodular function f has many desirable properties. In particular, f is a
convex relaxation of f and it can be evaluated efliciently.

Theorem A.3 (Properties of Lovasz extension [GLS83]). Let f: 2V — R be a submodular function and f
be its Lovdsz extension. Then,

(a) f is convex and mingeo,1)v f(x) = mingcy £(S);
(b) £(S) = f(Is) for any subset S CV, where I is the indicator vector for S;
(c) Suppose x € [0,1]V satisfies x1 > -+ > x|, then fla) = E‘VI (F([2) = f([¢ = 1])x;.
Property (c) in Theorem A.3 allows us to implement a sub-gradient oracle for f by evaluating f.

Theorem A.4 (Sub-gradient oracle implementation for Lovasz extension, Theorem 61 of [LSW15]). Let

f: 2V = R be a submodular function and f be its Lovdsz extension. Then a sub-gradient for f can be
implemented in time O(|V| - EO + |V]?).

A.2 Decomposable submodular function minimization proofs
In this subsection, we prove the following more general version of Theorem 1.4.

Theorem A.5 (Decomposable SFM). Let F : V — [—1,1] be given by F(S) = Y1, Fi(SNV;), where each
F;:2Yi = R is a submodular function on V; CV with |V;| = d;. Let m = Z?:l d; and dpax = maX;e(y) d;-
Then we can find an e-approximate minimizer of f using at most O(dmaxm log(m/e€)) evaluation oracle calls.

Proof. Let fz be the Lovasz extension of each f;, then f =3, f; is the Lovész extension of f. Note
that f is 2-Lipschitz since the range of f is [—1,1]. Also, the diameter of the range [0,1]% for each Lovész
extension f; is at most \/[V;| < v/dmax. Thus using Theorem 4.11, we can find a vector z € [0,1]V such
that f(z) < ming.cp v f(2*) + € in poly(mlog(1/e)) time and O(mlog(my/dmax/€)) = O(mlog(m/e))
subgradients of the fi’s. By Theorem A.4, each sub-gradient of fl can be computed by making at most
d; < dmax queries to the evaluation oracle for f;. Thus the totAal number of evaluation oracle calls we make
in finding an e-additive approximate minimizer = € [0,1]V of f is at most O(dmaxm log(m/e)).

Next we turn the e-additive approximate minimizer x of f into an e-additive approximate minimizer
S CV for f. Without loss of generality, assume that x1 > --- > 2}y|. Then by property (c) in Theorem A.3,

we have
V] [V]-1

F) = (F(D) = fli = W))ai = f(V) -2 + Z f]) - (@i = @iga).

=1

27

Since x; — x;41 > 0, the above implies that min;c g, vy f([1]) < f(x). Thus we can find a subset S C V

among f([i]) for all i € {1,---,|V|} such that f(S) < f(z). Then by property (a) in Theorem A.3, the set
S is an e-additive approximate minimizer of f. This proves the theorem. O

28

	1 Introduction
	1.1 Our results
	1.1.1 Limitations

	1.2 Technical challenges in prior works
	1.3 Our algorithmic framework

	2 Notation and preliminaries
	2.1 Facts from convex analysis
	2.2 Background on interior-point methods
	2.3 Facts from convex geometry

	3 Our algorithm sec]sec:AlgOverview
	3.1 Details of our algorithm

	4 Our analysis
	4.1 Potential change for the entropic terms
	4.2 Potential change for the universal terms
	4.3 Potential change for the update of x
	4.4 Total oracle complexity

	5 Initialization
	5.1 Constructing an initial Kin,i
	5.2 Initial point reduction

	6 Acknowledgements
	A Decomposable submodular function minimization
	A.1 Preliminaries
	A.2 Decomposable submodular function minimization proofs

