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Abstract

Many fundamental problems in machine learning can be formulated by the convex program

min
θ∈Rd

n∑

i=1

fi(θ),

where each fi is a convex, Lipschitz function supported on a subset of di coordinates of θ. One common
approach to this problem, exemplified by stochastic gradient descent, involves sampling one fi term at
every iteration to make progress. This approach crucially relies on a notion of uniformity across the fi’s,
formally captured by their condition number. In this work, we give an algorithm that minimizes the above
convex formulation to ǫ-accuracy in Õ(

∑
n

i=1
di log(1/ǫ)) gradient computations, with no assumptions on

the condition number. The previous best algorithm independent of the condition number is the standard
cutting plane method, which requires O(nd log(1/ǫ)) gradient computations. As a corollary, we improve
upon the evaluation oracle complexity for decomposable submodular minimization by [AKMSV21]. Our
main technical contribution is an adaptive procedure to select an fi term at every iteration via a novel
combination of cutting-plane and interior-point methods.

∗Author names are listed in alphabetical order.
†Supported by NSF awards CCF-1749609, DMS-1839116, DMS-2023166, CCF-2105772, a Microsoft Research Faculty Fel-

lowship, a Sloan Research Fellowship, and a Packard Fellowship
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1 Introduction

Many fundamental problems in machine learning are abstractly captured by the convex optimization formu-
lation

minimizeθ∈Rd

∑n
i=1 fi(θ), (1.1)

where each fi is a convex, Lipschitz function. For example, in empirical risk minimization, each fi measures
the loss incurred by the i-th data point from the training set. In generalized linear models, each fi represents
a link function applied to a linear predictor evaluated at the i-th data point.

The ubiquity of (1.1) in the setting with smooth fi’s has spurred the development of well-known variants
of stochastic gradient methods [RM51; BC03; Zha04; Bot12] such as [RSB12; SZ13b; JZ13; MZJ13; DBL14;
Mai15; AY16; HL16; SLB17]; almost universally, these algorithms leverage the “sum structure” of (1.1) by
sampling, in each iteration, one fi with which to make progress. These theoretical developments have in
turn powered tremendous empirical success in machine learning through widely used software packages such
as libSVM [CL11].

In many practical applications, (1.1) appears with non-smooth fi’s, as well as the additional structure
that each fi depends only on a subset of the problem parameters θ. One notable example is decomposable
submodular function minimization1 (SFM), which has proven to be expressive in diverse contexts such
as determinantal point processes [KT10], MAP inference in computer vision [KLT09; VKR09; FJPZ13],
hypergraph cuts [VBK20], and covering functions [SK10]. Another application is found in generalized linear
models when the data is high dimensional and sparse. In this setting, fi depends on a restricted subset of the
parameters θ that correspond to the features of the data point with non-zero value. Last but not least, the
case with each fi depending on a small subset of the parameters is also called sparse separable optimization
and has applications in sparse SVM and matrix completion [RRWN11].

In this work, we initiate a systematic study of algorithms for (1.1) without the smoothness assumption2.
Motivated by the aforementioned applications, we introduce the additional structure that each fi depends
on a subset of the coordinates of θ. As is standard in the black-box model for studying first-order convex
optimization methods, we allow sub-gradient oracle access to each fi.

Problem 1.1. Let f1, f2, . . . , fn : Rd 7→ R be convex, L-Lipschitz, and possibly non-smooth functions, where

each fi depends on di coordinates of θ, and is accessible via a (sub-)gradient oracle. Define m
def
=

∑n
i=1 di to

be the “total effective dimension” of the problem. Let θ⋆
def
= argminθ∈Rd

∑n
i=1 fi(θ) be a minimizer of (1.1),

and let θ(0) be an initial point such that ‖θ(0) − θ⋆‖2 ≤ R. We want to compute a vector θ ∈ R
d satisfying

n∑

i=1

fi(θ) ≤ ǫLR+

n∑

i=1

fi(θ
⋆). (1.2)

Prior works. We focus on the weakly-polynomial regime and therefore restrict ourselves to algorithms with
polylog(1/ǫ) gradient oracle complexities. Table 1 summarizes the performance of all well-known algorithms
applied to Problem 1.1. Note that the variants of gradient descent each require bounded condition number.
The results of [Nes83; All17] and cutting plane methods are all complemented by matching lower bounds
[WS16; Nes04].

Even with smooth fi’s, first-order methods perform poorly when the condition number is large, or when
there is a long chain of variable dependencies. These instances commonly arise in applications; an example
from signal processing is

minimizex

{
(x1 − 1)2 +

n−1∑

i=2

(xi − xi+1)
2 + x2

n

}
, (1.3)

whose variables form an O(n)-length chain of dependencies, and has condition number κ = Θ(n2) and
κ̄ = Θ(n3). Gradient descent algorithms such as [Nes83] and [All17] therefore require Ω(n2) gradient queries,
despite the problem’s total effective dimension being only O(n).

1In decomposable submodular minimization, each fi corresponds to the Lovász extension of the individual submodular

function and is therefore generally non-smooth.
2A function f is said to be β-smooth if f(y) ≤ f(x) + 〈∇f(x), y − x〉 + β/2‖y − x‖2

2
for all x, y and α-strongly-convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ α/2‖y − x‖2
2

for all x, y. The condition number of f is defined to be κ = β/α.
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Authors Algorithm Type Gradient Queries Non-smooth OK?

[Cau+47] Gradient Descent (GD) O(nκ log(1/ǫ))
[Nes83] Accelerated (Acc.) GD O(n

√
κ log(1/ǫ))

[RSB12; SZ13b; JZ13] Stochastic (Stoch.) Variance-Reduced GD O((n+ κ) log(1/ǫ))

[SZ13a; LMH15; FGKS15; ZL15; AB15] Acc. Stoch. Variance-Reduced GD O((n +
√
nκ) log(κ) log(1/ǫ))

[All17] Acc. Stoch. Variance-Reduced GD O((n +
√
nκ) log(1/ǫ))

[KTE88; NN89; Vai89; BV02; LSW15; JLSW20] Cutting-Plane Method (CPM) O(nd log(1/ǫ)) X

[LV21; DLY21] Robust Interior-Point Method (IPM) O(
∑n

i=1 d
3.5
i log(1/ǫ)) X

Table 1: Gradient oracle complexities for solving (1.1) to ǫ-additive accuracy. κ denotes the condition number of∑
i
fi, and κ is a variant of the condition number defined to be the sum of smoothness of the fi’s divided by the

strong convexity of
∑

i
fi.

On the other hand, cutting-plane methods (CPM) and robust interior-point methods (IPM) both trade
off the dependency on condition number for worse dependencies on the problem dimension.

These significant gaps in the existing body of work motivate the following question:

Can we solve Problem 1.1 using a nearly-linear (in total effective dimension) number of
subgradient oracle queries?

In this paper, we give an affirmative answer to this question.

1.1 Our results

We present an algorithm to solve Problem 1.1 with gradient oracle complexity nearly-linear in the total
effective dimension.

Theorem 1.2 (Main Result (Informal); see Theorem 4.11 for formal statement). We give an algorithm that

provably solves Problem 1.1 using O(m log(m/ǫ)) subgradient oracle queries, where m
def
=

∑n
i=1 di.

Intuitively, the number of gradient queries for each fi should be thought of as Õ(di) in our algorithm,
which nearly matches that of the standard cutting-plane method for minimizing the individual function fi.
The nearly-linear dependence on m overall is obtained by leveraging the additional structure on the fi’s and
stands in stark contrast to the O(nd) query complexity of CPM, which is significantly worse in the case
where each di ≪ d. Furthermore, we improve over the current best gradient descent algorithms in the case
where the fi’s have a large condition number.

Based on the query complexity of the standard cutting-plane method, we have the following lower bound
matching our algorithm’s query complexity up to a logm-factor:

Theorem 1.3. There exist functions f1, . . . , fn : Rd 7→ R for which a total of Ω(m log(1/ǫ)) gradient queries
are required to solve Problem 1.1.

An immediate application of Theorem 1.2 is to decomposable submodular function minimization:

Theorem 1.4 (Decomposable SFM). Let V = {1, 2, . . . , n}, and let F : 2V 7→ [−1, 1] be given by F (S) =∑n
i=1 Fi(S∩Vi), each Fi : 2

Vi 7→ R a submodular function on Vi ⊆ V with |Vi| ≤ k. We can find an ǫ-additive
approximate minimizer of F in O(nk2 log(nk/ǫ)) evaluation oracle calls.

Theorem 1.4 significantly improves over the evaluation oracle complexity of Õ(nk6 log(1/ǫ)) given in
[AKMSV21] when the dimension k of each function Fi is large. For non-decomposable SFM, i.e. n = 1
and |V1| = k, the current best weakly-polynomial time SFM algorithm3 finds an ǫ-approximate minimizer
in time O(k2 log(k/ǫ)) [LSW15]. Therefore, our result in Theorem 1.4 can be viewed as a generalization
of the evaluation oracle complexity for non-decomposable SFM in [LSW15], and the dependence on k in
Theorem 1.4 might be the best possible. We defer the details of decomposable SFM to Appendix A.

3Here, we focus on the weakly-polynomial regime, where the runtime dependence on ǫ is log(1/ǫ).
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1.1.1 Limitations

Some limitations of our algorithm are as follows: When each fi depends on the entire d-dimensional vector
θ, as opposed to a subset of the coordinates of size di ≪ d, our gradient complexity simply matches that of
CPM. We would like to highlight, though, that our focus is in fact the regime di ≪ d. When the fi’s are
strongly-convex and smooth, our gradient complexity improves over Table 1 only when κ is large compared
to di. Finally, note that we consider only the gradient oracle complexity in our work; our algorithm’s
implementation requires sampling a Hessian matrix and a gradient vector at every iteration, which incur an
additional polynomial factor in the overall running time.

1.2 Technical challenges in prior works

We now describe the key technical challenges that barred existing algorithms from solving Problem 1.1 in
the desired nearly-linear gradient complexity.

Gradient descent and variants. As mentioned in Section 1, the family of gradient descent algorithms
presented in Table 1 are not applicable to Problem 1.1 without the smoothness assumption. When the ob-
jective in Problem 1.1 is smooth but has a large condition number, even the optimal deterministic algorithm,
Accelerated Gradient Descent (AGD) [Nes83] can perform poorly. For example, when applied to (1.3), AGD
updates only one coordinate in each step (thereby requiring n steps), with each step performing n gradient
queries (one on each term in the problem objective), yielding a total gradient complexity of Ω(n2) [Nes83].
For a similar reason, the fastest randomized algorithm, Katyusha [All17] also incurs a gradient complexity
of Ω(n2) [WS16].

Cutting-plane methods (CPM). Given a convex function f with its set S of minimizers, CPM minimizes
f by maintaining a convex search set E(k) ⊇ S in the kth iteration, and iteratively shrinking E(k) using
the subgradients of f . Specifically, this is achieved by noting that for any x(k) chosen from E(k), if the

gradient oracle indicates ∇f(x(k)) 6= 0, (i.e. x(k) /∈ S), then the convexity of f guarantees S ⊆ H(k) def
={

y : 〈∇f(x(k)),y − x(k)〉 ≤ 0
}
, and hence S ⊆ H(k) ∩ E(k). The algorithm continues by choosing E(k+1) ⊇

E(k) ∩H(k), and different choices of x(k) and E(k) yield different rates of shrinkage of E(k) until a point in S
is found.

Solving Problem 1.1 via the current fastest CPM [JLSW20] takes Õ(d) iterations, each invoking the

gradient oracle on every fi to compute ∇f(x(k)) =
∑n

i=1∇fi(x(k)). This results in Õ(nd) gradient queries
overall, which can be quadratic in n when d = Θ(n) even if each fi depends on only di = O(1) coordinates.
Similar to gradient descent and its variants, the poor performance of CPM on Problem 1.1 may therefore be
attributed to their inability to query the right fi required to make progress.

Interior-point methods (IPM). IPM solves the convex program minu∈S〈c,u〉 by solving a sequence

of unconstrained problems minuΨt(u)
def
= {t · 〈c,u〉+ ψS(u)} parametrized by increasing t, where ψS is

a self-concordant barrier function that enforces feasibility by becoming unbounded as it approaches the
boundary of the feasible set S. The algorithm starts at t = 0, for which an approximate minimizer x⋆0 of ψS
is known, and alternates between increasing t and updating to an approximate minimizer x⋆t of the new Ψt
via Newton’s method. For a sufficiently large t, the minimizer x⋆t also approximately optimizes the original
problem minu∈S〈c,u〉 with sub-optimality gap O(ν/t), where ν is the self-concordance parameter of the
barrier function used.

To apply IPM to Problem 1.1, we may first transform (1.1) to min(u,z)∈K
∑

i zi, where K = {(u, z) :
(ui, zi) ∈ Ki, ∀i ∈ [n]} is the feasible set. Using the universal barrier ψi for each Ki [NN94a], the number

of iterations of IPM is Õ(
√∑n

i=1 di), each requiring the computation of the Hessian and gradient of ψi for

all i ∈ [n], leading to a total of Õ(n1.5) sub-gradient queries to fi’s even when all di = O(1). Even when
leveraging the recent framework of robust IPM for linear programs [LV21], the computation of each Hessian

(by sampling the corresponding Ki [JLLV21]) yields a total sub-gradient oracle complexity of Õ(
∑n

i=1 d
3.5
i ),

far from the complexity we seek.
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1.3 Our algorithmic framework

We now give an overview of the techniques developed in this work to overcome the above barriers. First, we
transform (1.1) into a convex program over structured convex sets:

minimize 〈c,x〉,
subject to xi ∈ Ki ⊆ R

di+1 ∀i ∈ [n]
Ax = b.

(1.4)

where x is the concatenation of the vectors x1, . . . ,xn, and notably the convex sets Ki are all disjoint. Under
this transformation we do not have explicit, closed-form expressions for each Ki; however, the subgradient

oracle for fi can be transformed equivalently to a separation oracle Ki. We define K def
= K1 ×K2 × . . .×Kn.

Main idea: combining CPM and IPM. Recall that CPM maintains a convex set which initially
contains the feasible region and gradually shrinks around the minimizer, while IPM maintains a point inside
the feasible region that moves toward the minimizer. Our novel idea is to combine both methods and maintain
an inner convex set Kin,i as well as an outer convex set Kout,i for each i ∈ [n], such that Kin,i ⊆ Ki ⊆ Kout,i.
We define Kin and Kout analogously to K. When Inequality (3.4) and Inequality (3.3) are satisfied for all
i ∈ [n], we make IPM-style updates without needing to make any oracle calls. When Inequality (3.3) is
violated for some i ∈ [n], we query the separation oracle at the point x⋆out,i defined as the centroid of Kout,i

(c.f. Proposition 3.2). Based on the oracle’s response, we iteratively either grow Kin,i (and, thus, Kin)
outward or shrink Kout,i (and, thus, Kout) inward, until ultimately they approximate K around the optimum
point.

First benefit: large change in volume. If the point x⋆out,i violates Inequality (3.3) for some i ∈ [n], we
query the separation oracle to see if x⋆out,i ∈ Ki or not. If x⋆out,i ∈ Ki, then it is used to expand Kin,i, yielding
in a large volume increase for Kin,i. On the other hand, if x⋆out,i /∈ Ki, the fact that it is the centroid of Kout,i

results in a large volume decrease for Kout,i when it is intersected with a halfspace through x⋆out,i. Thus, our
algorithm witnesses a large change in volume of one of Kin,i and Kout,i, regardless of the answer from the
oracle. Just like in standard CPM, this rapid change in volume is crucial to achieving the algorithm’s oracle
complexity.

Second benefit: making a smart choice about querying fi. Since the algorithm maintains both
an inner and outer set approximating K, by checking if Kin,i and Kout,i differ significantly (Inequality (3.3)
essentially performs this function), we can determine if Ki is poorly approximated, and if so, improve the
inner and outer approximations of the true feasible set. Choosing the right Ki translates to choosing the
right fi to make progress with at an iteration; thus, we address the central weakness of the gradient descent
variants in solving (1.1).

2 Notation and preliminaries

We lay out the notation used in our paper as well as the definitions and prior known results that we rely
on. We use lowercase boldface letters to denote (column) vectors and uppercase boldface letters to denote
matrices. We use xi to denote the ith block of coordinates in the vector x (the ordering of these blocks is
not important in our setup). We use � and � to denote the Loewner ordering of matrices.

We use 〈x,y〉 to mean the Euclidean inner product x⊤y. A subscript x in the inner product notation
means it is induced by the Hessian of some function (which is clear from context) at x; for example,
〈u,v〉x = u⊤∇2

iiψ(x)v with ψ inferred from context. We define the local norm of v at x analogously:

‖v‖x =
√
〈v,∇2ψ(x) · v〉. We also define the norm ‖v‖x,1 def

=
∑n
i=1 ‖v‖xi .

We use ψ to represent barrier functions and Φ to represent potential functions, with appropriate subscripts
and superscripts to qualify them as needed.
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2.1 Facts from convex analysis

In this section, we present some definitions and properties from convex analysis that are useful in our paper.
These results are standard and may be found in, for example, [Roc70; BBV04].

Definition 2.1. Let f : Rn → R. Then the function f∗ : Rn → R defined as

f∗(y) = sup
x∈dom(f)

[〈x,y〉 − f(x)]

is called the Fenchel conjugate of the function f. An immediate consequence of the definition (and by applying
the appropriate convexity-preserving property) is that f∗ is convex, regardless of the convexity of f. We use
the superscript ∗ on functions to denote their conjugates.

Lemma 2.2 (Biconjugacy). For a closed, convex function f, we have f = f∗∗.

Lemma 2.3 ([Roc70]). For a closed, convex differentiable function f, we have y = ∇f(x) ⇐⇒ x = ∇f∗(y).

Lemma 2.4 ([Roc70]). For a strictly convex, twice-differentiable function f , we have ∇2f∗(∇f(x)) =
(∇2f(x))−1.

Definition 2.5 (Polar of a Set [RW09]). Given a set S ⊆ R
n, its polar is defined as

S◦ def
= {y ∈ R

n : 〈y,x〉 ≤ 1, ∀x ∈ S} .

Lemma 2.6 ([Roc70]). Let S ⊆ R
n be a closed, compact, convex set, and let y be a point. Then (conv {S,y})◦ ⊆

S◦ ∩H, where H is the halfspace defined by H = {z ∈ R
n : 〈z,y〉 ≤ 1}.

2.2 Background on interior-point methods

Our work draws heavily upon geometric properties of self-concordant functions, which underpin the rich
theory of interior-point methods. We list below the formal results needed for our analysis, and refer the
reader to [NN94a; Ren01] for a detailed exposition of this function class. We begin with the definitions of
self-concordant functions and self-concordant barriers:

Definition 2.7 (Self-concordance [NN94a]). A function F : Q 7→ R is a self-concordant function on a convex
set Q if for any x ∈ Q and any h,

|D3F (x)[h,h,h]| ≤ 2(D2F (x)[h,h])3/2,

where DkF (x)[h1, . . . ,hk] denotes the k-th derivative of F at x along the directions h1, . . . ,hk. We say F
is a ν-self-concordant barrier if F further satisfies ∇F (x)⊤(∇2F (x))−1∇F (x) ≤ ν for any x ∈ Q.

Theorem 2.8 (Theorem 2.3.3 from [Ren01]). If f is a self-concordant barrier, then for all x and y ∈ dom(f),
we have 〈∇f(x),y − x〉 ≤ ν, where ν is the self-concordance of f .

Theorem 2.9 (Theorem 2.3.4 from [Ren01]). If f is a ν-self-concordant barrier such that x,y ∈ dom(f)
satisfy 〈∇f(x),y − x〉 ≥ 0, then y ∈ Bx(x, 4ν + 1).

We now state the following result from self-concordance calculus.

Theorem 2.10 (Theorem 3.3.1 of [Ren01]). If f is a (strongly nondegenerate) self-concordant function,
then so is its Fenchel conjugate f∗.

The following result gives a bound on the quadratic approximation of a function, with the distance
between two points measured in the local norm. The convergence of Newton’s method can be essentially
explained by this result.
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Theorem 2.11 (Theorem 2.2.2 of [Ren01]). If f is a self-concordant function, x ∈ dom(f), and y ∈ Bx(x, 1),
then

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ 1

2
‖y − x‖2x +

‖y − x‖3x
3(1− ‖y− x‖x)

,

where ‖y − x‖2x
def
= 〈y − x,∇2f(x) · (y − x)〉.

Finally, we need the following definitions of entropic barrier and universal barrier.

Definition 2.12 ([BE15; Che21]). Given a convex body K ⊆ R
n and some fixed θ ∈ R

n, define the function
f(θ) = log

[∫
x∈K exp〈x, θ〉dx

]
. Then the Fenchel conjugate f∗ : int(K) → R is a self-concordant barrier

termed the entropic barrier. The entropic barrier is n-self-concordant.

Definition 2.13 ([NN94b; LY21]). Given a convex body K ⊆ R
n, the universal barrier of K is defined as

ψ : int(K)→ R by
ψ(x) = log vol((K − x)◦)

where (K − x)◦ = {y ∈ R
n : y⊤(z − x) ≤ 1, ∀z ∈ K} is the polar set of K with respect to x. The universal

barrier is n-self-concordant.

2.3 Facts from convex geometry

Since our analysis is contingent on the change in the volume of convex bodies when points are added to
them or when they are intersected with halfspaces, we invoke the classical result by Grünbaum several
times. We therefore state its relevant variants next: Theorem 2.14 applies to log-concave distributions,
and Corollary 2.16 is its specific case, since the indicator function of a convex set is a log-concave function
[BBV04].

Theorem 2.14 ([Grü60; BKLLS20]). Let f be a log-concave distribution on R
d with centroid cf . Let H ={

u ∈ R
d : 〈u,v〉 ≥ q

}
be a halfspace defined by a normal vector v ∈ R

d. Then,
∫
H f(z)dz ≥ 1

e − t+, where

t =
q−〈cf ,v〉√

Ey∼f 〈v,y−cf 〉2
is the distance of the centroid to the halfspace scaled by the standard deviation along the

normal vector v and t+
def
= max{0, t}.

Remark 2.15. A crucial special case of Theorem 2.14 is that cutting a convex set through its centroid yields
two parts, the smaller of which has volume at least 1/e times the original volume and the larger of which is
at most 1− 1/e times the original total volume.

Corollary 2.16 ([Grü60]). Let K be a convex set with centroid µ and covariance matrix Σ. Then, for any
point x satisfying ‖x−µ‖Σ−1 ≤ η and a halfspace H such that x ∈ H, we have vol(K∩H) ≥ vol(K) ·(1/e−η).

Finally, we need the following facts.

Fact 2.17 (Volumes of standard objects). The volume of a q-dimensional Euclidean ball is given by vol(Bq(0, R̄)) =
πq/2

Γ(1+q/2) R̄
q, and the volume of a q-dimensional cone = 1

q+1 · volume of base · height.

3 Our algorithm

We begin by reducing Problem 1.1 to the following slightly stronger formulation (see Theorem 4.11 for the
detailed reduction):

minimize 〈c,x〉,
subject to xi ∈ Ki ⊆ R

di+1 ∀i ∈ [n]
Ax = b.

(3.1)

where x is a concatenation of vectors xi’s, and the Ki’s are disjoint convex sets. This formulation decouples
the overlapping support of the original fi’s by introducing additional variables tied together through the
linear system Ax = b. Each Ki is constructed by applying a standard epigraph trick to the function fi.

7



Note that we do not have a closed-form expression for Ki. Instead, the subgradient oracle for fi translates
to a separation oracle for Ki: on a point zi queried by the oracle, the oracle either asserts zi ∈ Ki, or returns
a separating hyperplane that separates zi from Ki.

At the start of our algorithm, we have the following guarantee:

Lemma 3.1. At the start of our algorithm, we are guaranteed the existence of the following.

1. Explicit convex sets Kin
def
= Kin,1 ×Kin,2 × · · · × Kin,n and Kout

def
= Kout,1 ×Kout,2 × · · · × Kout,n such

that Kin ⊆ K def
= K1 × · · · × Kn ⊆ Kout,

2. An initial xinitial ∈ Kin such that Axinitial = b.

We show how to construct such a set Kin in Section 5.1 and how to find such a Kout and xinitial in
Section 5.2.

3.1 Details of our algorithm

In this section, we explain our main algorithm (Algorithm 1).
The inputs to Algorithm 1 are: initial sets Kin and Kout satisfying Kin ⊆ K ⊆ Kout, an initial point

x ∈ Kin satisfying Ax = b, a separation oracle Oi for each Ki, the objective vector c, and scalar parameters
m, n, R, r, and ǫ. All the parameters are set in the proof of Theorem 4.10.

Throughout the algorithm, we maintain a central path parameter t for IPM-inspired updates, the current
solution x, and convex sets Kin,i and Kout,i satisfying Kin,i ⊆ Ki ⊆ Kout,i for each i ∈ [n]. To run IPM-style
updates, we choose the entropic barrier on Kout and the universal barrier on Kin.

Given the current set Kout, the current t, and the entropic barrier ψout defined on K̂out
def
= Kout ∩

{u : Au = b}, we define the point

x⋆out
def
= arg min

x∈K̂out

{t〈c,x〉+ ψout(x)} . (3.2)

Per the IPM paradigm, for the current value of t, this point serves as a target to “chase” when optimizing
〈c,x〉 over the set K̂out. Although our overall goal in Problem 3.1 is to optimize over K ∩ {u : Au = b}, we
do not know K explicitly and therefore must use its known proxies, Kin or Kout; we choose Kout because
Kout ⊇ K ensures we do not miss a potential optimal point.

Having computed the current target x⋆out, we move the current solution x towards it by taking a Newton
step, provided certain conditions of feasibility and minimum progress are satisfied. If either one of these
conditions is violated, we update either Kin, Kout, or the parameter t.

Updating x. In order to move x towards x⋆out, we require two conditions to hold: x⋆out ∈ Kin and 〈c,x〉 ≥
〈c,x⋆out〉+O(1/t).

The first condition implies x⋆out ∈ K, which would in turn ensure feasibility of the resulting x after a
Newton step. To formally check this condition, we check if the following inequality is satisfied for all i ∈ [n]
and for a fixed constant η:

〈∇ψin,i(xi),x
⋆
out,i − xi〉+ η · ‖x⋆out,i − xi‖xi ≤ 4di. (3.3)

The intuition is that since any point within the domain of a self-concordant barrier satisfies the inequalities
in Theorem 2.8 and Theorem 2.9, violating Inequality (3.3) implies that x⋆out,i is far from Kin,i, and as a
result, x⋆out is not a good candidate to move x towards.

The second condition we impose, one of “sufficient suboptimality”, ensures significant progress in the
objective value can be made when updating x. Formally, we check if

c⊤x⋆out +
4m

t
≤ c⊤x. (3.4)

If the inequality holds, then there is still “room for progress” to lower the value of 〈c,x〉 by updating x; if
the inequality is violated, we update t instead.
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Algorithm 1 Minimizing Decomposable Convex Function

1: ⊲ Solving Problem 3.1
2: Input. ǫ, A, b, c, R, r, m , n, x, Kin, Kout, and Oi for each i ∈ [n].
3: Initialization. t = m logm√

n‖c‖2R
and tend = 8m

ǫ‖c‖2R
, η = 1

100 , and x⋆out (via Equation (3.2))

4: while true do
5: if 〈c,x〉 ≤ 〈c,x⋆out〉+ 4m

t then ⊲ Either update t or end the algorithm
6: if t ≥ tend then
7: return argminx:x∈Kin,Ax=b {t〈c,x〉 +

∑n
i=1 ψin,i(xi)}. ⊲ End the algorithm

8: end if
9: t← t ·

[
1 + η

4m

]
⊲ Update t

10: Update x⋆out and jump to Line 4 ⊲ x⋆out computed as as per Equation (3.2)
11: end if
12: for all i ∈ [n] do
13: if 〈∇ψin,i(xi),x

⋆
out,i − xi〉+ η‖x⋆out,i − xi‖xi ≥ 4di then

14: if x⋆out,i ∈ Ki then ⊲ Query Oi
15: Kin,i = conv(Kin,i,x

⋆
out,i) ⊲ Update Kin,i

16: else
17: Kout,i = Kout,i ∩Hi, where Hi = Oi(x⋆out,i) ⊲ Update Kout,i

18: end if
19: Update x⋆out and jump to Line 4 ⊲ x⋆out computed as per Equation (3.2)
20: end if
21: end for
22: Set δx

def
= η

2 ·
x⋆out−x

‖x⋆out−x‖x,1
,where ‖u‖x,1 def

=
∑n
i=1 ‖u‖xi.

23: x← x+ δx ⊲ Move x towards x⋆out

24: end while

Given the two conditions hold, we move x towards x⋆out in Line 23. The update step is normalized by the
distance between x and x⋆out measured in the local norm, which enforces x ∈ K (since by the definition of
self-concordance, the unit radius Dikin ball lies inside the domain of the self-concordance barrier), and also
helps bound certain first-order error terms (Inequality (4.14) in Section 4.3).

The rest of this section details the procedure for when either of these conditions is violated.

Updating the inner and outer convex sets. Suppose Inequality (3.3) is violated for some i ∈ [n]. Then
x⋆out,i /∈ Kin,i, which in turn means x⋆out might not be in the feasible set K. To reestablish Inequality (3.3)
for i, we can either update Kin,i, or update Kout,i and compute a new x⋆out,i by Equation (3.2).

To decide which option to take, we query Oi at the point x⋆out,i: if the oracle indicates that x⋆out,i ∈ Ki,
then we incorporate x⋆out,i into Kin,i by redefining Kin,i = conv(Kin,i,x

⋆
out,i) to be the convex hull of the

current Kin,i and x⋆out,i (Line 15). If, on the other hand, x⋆out,i /∈ Ki, the oracle Oi will return a halfspace Hi
satisfying Hi ⊇ Ki. Then we redefine Kout,i = Kout,i∩Hi (Line 17). After processing this update of the sets,
the algorithm recomputes x⋆out and returns to the main loop since updating the sets does not necessarily
imply that the new x⋆out satisfies x⋆out ∈ Kin.

This update rule for the sets is exactly where our novelty lies: we do not arbitrarily update sets, rather,
we update one only after checking the very specific condition x⋆out,i /∈ Kin,i. Since the separation oracle is
called only in this part of the algorithm, performing this check enables us to dramatically reduce the number
of calls we make to the separation oracle, thereby improving our oracle complexity.

Further, this update rule shows that even when we cannot update the current x, we make progress by
using all the information from the oracles. Over the course of the algorithm, we gradually expand Kin and
shrink Kout, until they well-approximate K. To formally quantify the change in volume due to the above
operations, we consider the following alternative view of x⋆out.

Proposition 3.2 (Section 3 in [BE15]; Section 3 of [Kla06]). Let θ ∈ R
n, and let pθ be defined as pθ(x)

def
=

9



exp(〈θ,x〉 − f(θ)), where f(θ)
def
= log

[∫
K exp(〈θ,u〉)du

]
. Then,

Ex∼pθ [x] = arg min
x∈int(K)

{f∗(x) − 〈θ,x〉} .

By this proposition, x⋆out defined in Equation (3.2) satisfies

x⋆out
def
= E

x∼exp
{
−t〈c,x〉−log

[∫
K̂out

exp(−t〈c,u〉)du
]}[x], (3.5)

that is, x⋆out is the centroid of some exponential distribution over K̂out. As a result, if x⋆out,i /∈ Ki, the hyper-

plane cutting K̂out through x⋆out will yield a large decrease in volume of K̂out, per Remark 2.15. Therefore,
the query result in a large change in volume in either Kin or Kout, allowing us to approximate K with a
bounded number of iterations.

Updating t. If Inequality (3.4) is violated, then the current x is “as optimal as one can get” for the current
parameter t. This could mean one of two things:

The first possibility is that we have already reached an approximate optimum, which we verify by checking
whether t ≥ O(1/ǫ) in Line 6: If true, this indicates that we have attained our desired suboptimality, and
the algorithm terminates by returning

xret = arg min
x:x∈Kin,Ax=b

{
t · 〈c,x〉 +

n∑

i=1

ψin,i(xi)

}
.

The point xret is feasible because it is in Kin by definition, and the suboptimality of O(1/tend) = O(ǫ) ensures
it is an approximate optimum for the original problem.

The second possibility is that we need to increase t to set the next “target suboptimality”. The value of
t is increased by a scaling factor of 1 + O(1/m) in Line 9. This scaling factor ensures, like in the standard
IPM framework, that the next optimum is not too far from the current one. Following the update to t, we
recompute x⋆out by Equation (3.2). Since 〈c,x〉 > 〈c,x⋆out〉 + O(1/t) is not guaranteed with the new t and
x⋆out, the algorithm jumps back to the start of the main loop.

4 Our analysis

To analyze Algorithm 1, we define the following potential function that captures the changes in Kin,i, Kout,i,
t, and x in each iteration:

Φ
def
= t〈c,x〉 + log

[∫

K̂out

exp(−t〈c,u〉)du
]

︸ ︷︷ ︸
entropic terms

+
∑

i∈[n]

ψin,i(xi)

︸ ︷︷ ︸
universal terms

, (4.1)

where log
[∫

K̂out
exp(−t〈c,u〉)du

]
is related to the entropic barrier on K̂out (see Section 4.1) and ψin,i is the

universal barrier on Ki. In the subsequent sections, we study the changes in each of these potential functions
along with obtaining bounds on the initial and final potentials and combine them to bound the algorithm’s
separation oracle complexity.

4.1 Potential change for the entropic terms

In this section, we study the changes in the entropic terms of Equation (4.1) upon updating the outer

convex set K̂out as well as t. These two changes are lumped together in this section because both updates

affect the term log
[∫

K̂out
exp(−t · 〈c,x〉) dx

]
, albeit in different ways: the update in K̂out affects it via

Grünbaum’s Theorem; the update in t affects it via the fact that, by duality with respect to the entropic

barrier (Definition 2.12), log
[∫

x∈K̂out
exp(〈x, θ〉)dx

]
is also self-concordant. We detail these two potential

changes below.
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Lemma 4.1 (Potential analysis for outer set). Let K̂out
def
= {x : xi ∈ Kout,i ∩ {y : Ay = b}} , and let Φ =

log
[∫

K̂out

exp(−t〈c,u〉)du
]
+ t〈c,x〉 + ∑

i∈[n] ψin,i(xi). Let Hi be the halfspace generated by the separa-

tion oracle Oi queried at x⋆out,i as shown in Line 17 of Algorithm 1. Then the new potential Φ(new) =

log
[∫

K̂out∩Hi
exp(−t〈c,u〉)du

]
+ t〈c,x〉 +∑

i∈[n] ψin,i(xi) is bounded from above as follows.

Φ(new) ≤ Φ+ log(1 − 1/e).

Proof. The change in potential is given by

Φ(new) − Φ = log

[∫
K̂out∩Hi

exp(−t · 〈c,x〉) dx∫
K̂out

exp(−t · 〈c,x〉) dx

]
.

We now apply Theorem 2.14 to the right hand side, with the function f(x) = exp(−t · 〈c,x〉−A(tc)), where

A(θ) = log
[∫

K̂out
exp(−〈θ,x〉)dx

]
. Noting that each halfspace Hi passes directly through x⋆out,i, where x⋆out

is the centroid of K̂out with respect to f (by the definition of x⋆out in Equation (3.5)), Remark 2.15 applies
and gives the claimed volume change.

To capture the change in potential due to the update in t, we recall the alternative perspective to the

function log
[∫

K̂out
exp(−t〈c,x〉)dx

]
given by Definition 2.12 and derive properties of self-concordant barriers.

Lemma 4.2. Consider a ν-self-concordant barrier ψ : int(K)→ R over the interior of a convex set K ⊆ R
d.

Define

ξψt
def
= min

x
[t · 〈c,x〉 + ψ(x)] and xt

def
= argmin

x
[t · 〈c,x〉+ ψ(x)] . (4.2)

Then for 0 ≤ h ≤ 1√
ν
, we have

ξψt + th · 〈xt, c〉 ≥ ξψt(1+h) ≥ ξ
ψ
t + ht · 〈c,xt〉 − h2ν.

Proof. Note that here the first inequality is fairly generic and holds for any function ψ. By definition of
ξψt(1+h) and ξψt in Equation (4.2) and using the fact that the value on the right hand side of Equation (4.3)

is smaller than the expression evaluated at a fixed x = xt,we have

ξψt(1+h) = min
x

[t(1 + h) · 〈x, c〉 + ψ(x)] (4.3)

≤ t(1 + h) · 〈xt, c〉+ ψ(xt)

= ξψt + th · 〈xt, c〉.

We now prove the second inequality of the lemma. This one specifically uses the self-concordance of ψ.
Observe first, by definition,

ξψt = −ψ∗(−tc). (4.4)

Since ψ is a self-concordant barrier (and hence, a self-concordant function), Theorem 2.10 implies that ψ∗ is a
self-concordant function as well. Then, by applying Theorem 2.11 to ψ∗ under the assumption ‖−thc‖−tc ≤ 1
yields

ψ∗(−tc− thc) ≤ ψ∗(−tc) + 〈∇ψ∗(−tc),−thc〉+
[
1

2
‖ − thc‖2−tc +

‖ − thc‖3−tc
3(1− ‖ − thc‖−tc)

]
. (4.5)

By applying the first-order optimality condition to the definition of xt in Equation (4.2), we see that

∇ψ(xt) = −tc. (4.6)
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Next, evaluating a
def
= ‖ − thc‖−tc to check the assumption ‖ − thc‖−tc ≤ 1, we get

a2 = h2〈−tc,∇2ψ∗(−tc) · (−tc)〉 = h2〈∇ψ(xt),∇2ψ∗(∇ψ(xt)) · ∇ψ(xt)〉
= h2〈∇ψ(xt), (∇2ψ(xt))

−1 · ∇ψ(xt)〉
≤ h2ν

where we used Equation (4.6) and Lemma 2.4, in the first two equations and Definition 2.7 and the complex-
ity value of ψ in the last step. Our range of h proves that a ≤ 1, which is what we need for Inequality (4.5)
to hold. We continue our computation to get

[
1

2
‖ − thc‖2−tc +

‖ − thc‖3−tc
3(1− ‖ − thc‖−tc)

]
≤ 1

2
h2ν +

1

3
h3ν3/2 ≤ 1

2
h2ν +

1

3
h2ν ≤ h2ν. (4.7)

Applying Lemma 2.3 to Equation (4.6) gives

∇ψ∗(−tc) = xt. (4.8)

Plugging Equation (4.8) and Inequality (4.7) into the first and second-order terms, respectively, of Inequality (4.5)
gives

ψ∗(−tc− thc) ≤ ψ∗(−tc) + 〈xt,−thc〉+ h2ν.

Plugging in Equation (4.4) gives the desired inequality and completes the proof.

To finally compute the potential change due to t, we need the following result about the self-concordance
parameter of the entropic barrier. While [BE15] prove that this barrier on a set in R

d is (1 + ǫd)d-self-
concordant, the recent work of [Che21] remarkably improves this complexity to exactly d.

Theorem 4.3 ([Che21]). The entropic barrier on any convex body K ⊆ R
d is a d-self-concordant barrier.

We may now compute the potential change due to change in t in Line 9.

Lemma 4.4. When t is updated to t ·
[
1 + η

4m

]
in Line 9 of Algorithm 1, the potential Φ Equation (4.1)

increases to Φ(new) as follows:
Φ(new) ≤ Φ+ η + η2.

Proof. Recall that the barrier function we use for the set K̂out is the entropic barrier ψout. By Equation (4.2)
and the definition of conjugate, we have

−ξψout

t = max
v

[〈−tc,v〉 − ψout(v)] = ψ∗
out(−tc).

Applying Definition 2.12, taking the conjugate on both sides of the preceding equation, and using Lemma 2.2
then gives

− ξψout

t = log

[∫

K̂out

exp(−t · 〈c,u〉) du
]
. (4.9)

From Equation (4.1), the change in potential by changing t to t · (1+ h) for some h > 0 may be expressed as

Φ(new) − Φ = log

[∫

K̂out

exp〈−t(1 + h)c,v〉dv
]
− log

[∫

K̂out

exp〈−tc,v〉dv
]
+ 〈th · c,x〉.

By applying h = η
4m and ν = m (via a direct application of Theorem 4.3), we have h = η

4m ≤ 1√
m

= 1√
ν
,

and so we may now apply Equation (4.9) and Lemma 4.2 in the preceding equation to obtain the following
bound.

Φ(new) − Φ ≤ th〈c,x〉 − th〈c,xt〉+ h2ν.

From Equation (3.2) and Equation (4.2), we see that xt for the entropic barrier satisfies the equation xt =
x⋆out, and applying the guarantee 〈c,x〉 ≤ 〈c,x⋆out〉+ 4m

t to this inequality, we obtain

Φ(new) − Φ ≤ th · 4m
t

+ h2ν = η +
( η

4m

)2

ν ≤ η + η2.
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4.2 Potential change for the universal terms

In this section, we study the change in volume on growing the inner convex set Kin,i in Line 15. As mentioned
in Section 3, our barrier of choice on this set is the universal barrier introduced in [NN94a] (see also [Gül97]).
This barrier was constructed to demonstrate that any convex body in R

n admits an O(n)-self-concordant
barrier, and its complexity parameter was improved to exactly n in [LY21].

Conceptually, we choose the universal barrier for the inner set because the operation we perform on the
inner set (i.e., generating its convex hull with an external point x⋆out) is dual to the operation of intersecting
the outer set with the separating halfspace containing x⋆out (see Lemma 2.6), which suggests the use of a
barrier dual to the entropic barrier used on the outer set. As explained in [BE15], for the special case of
convex cones, the universal barrier is precisely one such barrier.

We now state a technical property of the universal barrier, which we use in the potential argument for
this section.

Lemma 4.5 ([LY21, Lemma 1], [NN94a; Gül97]). Given a convex set K ∈ R
d and x ∈ K, let ψK(x)

def
=

log vol(K−x)◦ be the universal barrier defined on K with respect to x. Let µ ∈ R
d be the center of gravity and

Σ ∈ R
d×d be the covariance matrix of the body (K−x)◦, where (K−x)◦ = {y ∈ R

n : y⊤(z−x) ≤ 1, ∀z ∈ K}
is the polar set of K with respect to x. Then, we have that

∇ψK(x) = (d+ 1)µ, ∇2ψK(x) = (d+ 1)(d+ 2)Σ + (d+ 1)µµ⊤.

Lemma 4.6. Given a convex set K ⊆ R
d and a point x ∈ K. Let ψK

def
= log vol(K − x)◦ be the universal

barrier defined on K with respect to x. Let η ≤ 1/4 and y ∈ K be a point satisfying the following condition

〈∇ψK(x),y − x〉+ η‖y − x‖x ≥ 4d, (4.10)

and construct the new set conv {K,y} . Then, the value of the universal barrier defined on this new set with
respect to x satisfies the following inequality.

ψK,new(x)
def
= ψconv{K,y}(x) = log vol(conv(K,y) − x)◦ ≤ ψK(x) + log(1− 1/e+ η).

Proof. By Lemma 2.6, we have that

(conv(K,y) − x)
◦ ⊆ (K − x)◦ ∩H,

whereH = {z ∈ R
n : 〈z,y − x〉 ≤ 1}. Our strategy to computing the deviation of ψK,new(x)

def
= ψconv(K,y)(x) =

log vol(conv(K,y) − x)◦ from ψK(x) is to compute the change in vol(conv(K,y) − x)◦ ≤ vol [(K − x)◦ ∩H]
from vol(K−x)◦, for which it is immediate that one may apply an appropriate form of Grünbaum’s Theorem.

Let µ be the center of gravity of the body (K − x)◦. If µ /∈ H, then Corollary 2.16 (with η = 0) gives

vol [(K − x)◦ ∩H] ≤ vol(K − x)◦ · (1− 1/e),

and taking the logarithm on both sides gives the claimed bound. We now consider the case in which µ ∈ H,
and the variance matrix of the body (K − x)◦ is Σ. Define v = y − x, and consider the point

z = µ+
1− 〈v, µ〉
‖v‖2Σ

· Σv.

This point satisfies 〈v, z〉 = 1, which implies z ∈ H. Specifically, z lies on the separating hyperplane. We
show that z is sufficiently close to µ, so that even though µ ∈ H, the subset of (K − x)◦ cut out by the
halfspace H is not too large. By applying Lemma 4.5 to compute ‖v‖2x = (d+1)(d+2)‖v‖2Σ+(d+1)〈v, µ〉2,
we may compute the following quantity.

‖z− µ‖Σ−1 =
1− 〈v, µ〉√

1
(d+1)(d+2)‖v‖2x − 1

d+2 · 〈v, µ〉2

=
√
(d+ 1)(d+ 2) · 1− 〈v, µ〉√

1
2‖v‖2x + 1

2‖v‖2x − (d+ 1)〈v, µ〉2
. (4.11)
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Applying the expression for gradient from Lemma 4.5 in Equation (4.10), we have

η‖v‖x ≥ 4d− (d+ 1)〈v, µ〉 ≥ 2d〈v, µ〉,

where we used the fact that µ ∈ H implies 〈v, µ〉 ≤ 1. Since η ≤ 1/4, we have 1
2‖v‖2x ≥ (d + 1)〈v, µ〉2.

Plugging this in Equation (4.11) gives

‖z− µ‖A−1 ≤
√
(d+ 1)(d+ 2) · 1− 〈v, µ〉√

1
2‖v‖2x

≤ 4d
1− 〈v, µ〉
‖v‖x

≤ 4d · 1− 〈v, µ〉
4d(1− 〈v, µ〉)/η ≤ η,

which implies Corollary 2.16 applies, giving us the desired volume reduction.

4.3 Potential change for the update of x

In this section, we quantify the amount of progress made in Line 22 of Algorithm 1 by computing the change
in the potential Φ as defined in Equation (4.1).

Lemma 4.7. Consider the potential Φ Equation (4.1) and the update step δx = η
2 ·

x⋆
out

−x

‖x⋆
out

−x‖x,1
as in Line 22.

Assume the guarantees in Inequality (3.3) and Inequality (3.4). Then the potential Φ incurs the following
minimum decrease.

Φ(new) ≤ Φ− η2

4
.

Proof. Taking the gradient of Φ with respect to x and rearranging the terms gives

tc = ∇xΦ−
n∑

i=1

∇ψin,i(xi). (4.12)

By applying the expression for tc from the preceding equation, we get

Φ(new) − Φ = t〈c,x+ δx〉+
n∑

i=1

ψin,i(xi + δx,i)− t〈c,x〉 −
n∑

i=1

ψin,i(xi)

= 〈∇xΦ, δx〉+
n∑

i=1

[ψin,i(xi + δx,i)− ψin,i(xi)− 〈∇ψin,i(xi), δx,i〉]︸ ︷︷ ︸
qψin,i

(xi)

. (4.13)

The term qψin,i(xi) measures the error due to first-order approximation of ψin,i around xi. Since ψin,i(xi) is
self-concordant functions and ‖δx,i‖xi ≤ ‖δx‖x,1 ≤ η ≤ 1/4, Theorem 2.11 shows that

ψin,i(xi + δx,i)− ψin,i(xi)− 〈∇ψin,i(xi), δx,i〉 ≤ ‖δx,i‖2x,i. (4.14)

Plugging in Inequality (4.14) into Equation (4.13), we get

Φ(new) − Φ ≤ 〈∇xΦ, δx〉+ ‖δx‖2x,1. (4.15)

We now bound the two terms on the right hand side one at a time. Using the definition of δx (as given in
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the statement of the lemma) and of ∇xΦ from Equation (4.12) gives

〈∇xΦ, δx〉 =
η

2

1

‖x⋆out − x‖x,1
〈∇xΦ,x

⋆
out − x〉

=
η

2

1

‖x⋆out − x‖x,1

[
〈tc,x⋆out − x〉+

n∑

i=1

〈∇ψin,i(xi),x
⋆
out,i − xi〉

]

≤ η

2

1

‖x⋆out − x‖x,1

[
〈tc,x⋆out − x〉+

n∑

i=1

(
4ri − η‖x⋆out,i − xi‖xi

)
]

=
η

2

1

‖x⋆out − x‖x,1
[〈tc,x⋆out − x〉+ 4m− η‖x⋆out − x‖x,1]

≤ η

2

1

‖x⋆out − x‖x,1
· (−η‖x⋆out − x‖x,1)

= −η2/2. (4.16)

where the third step follows from Inequality (3.3), the fourth step follows from
∑n

i=1 di = m, and the fifth
step follows from Inequality (3.4). To bound the second term, we note from Line 22 that

‖δx‖2x,1 =
(
η

2
· ‖x

⋆
out − x‖x,1

‖x⋆out − x‖x,1

)2

= η2/4. (4.17)

Hence, we may plug in Inequality (4.16) and Equation (4.17) into Inequality (4.15) to get the desired result.

4.4 Total oracle complexity

Before we bound the total oracle complexity of the algorithm, we first bound the total potential change
throughout the algorithm.

Lemma 4.8. Consider the potential function Φ = t〈c,x〉+ log
[∫

K̂out

exp(−t〈c,u〉)du
]
+
∑

i∈[n] ψin,i(xi) as

defined in Equation (4.1) associated with Algorithm 1. Let Φinit be the potential at t = tinit of this algorithm,
and let Φend be the potential at t = tend. Suppose at t = tinit in Algorithm 1, we have Bm(x, r̄) ⊆ Kin

with r̄ = r/ poly(m) and Kout ⊆ Bm(0, R̄) with R̄ = O(
√
nR). Then we have, under the assumptions of

Theorem 4.10, that

Φinit − Φend ≤ O
(
m log

(
mR

ǫr

))
.

Proof. For this proof, we introduce the following notation: let volA(·) denote the volume restricted to the
subspace {x : Ax = b}. We also invoke Fact 2.17. We now bound the change in the potential term by term,
starting with the entropic terms

t〈c,x〉 + log

[∫

K̂out

exp(−t〈c,u〉)du
]

(4.18)

at t = tinit and a lower bound on it at t = tend. We start with bounding Equation (4.18) evaluated at
t = tend = 8m

ǫ‖c‖2R
.

Let x̄ = argmin
x∈K̂out

〈c,x〉 and α = 〈c, x̄〉. By optimality of x̄, we know that x̄ ∈ ∂K̂out. Denote

BA(z, r̄) to be B(z, r̄) restricted to the subspace {x : Ax = b}. Note that K̂out ⊇ BA(z, r̄). Consider the
cone C and halfspace H defined by

C = x̄+ {λy : λ > 0,y ∈ BA(z− x̄, r̄)} and H def
=

{
x : 〈c,x〉 ≤ α+

1

tend

}
.
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Then, by a similarity argument, we note that C ∩ H contains a cone with height 1
tend‖c‖2

and base radius
r̄

R̄tend‖c‖2
, which means

volA(C ∩H) ≥ 1

m− rank(A)
· 1

tend‖c‖2
·
(

r̄

R̄tend‖c‖2

)m−rank(A)−1

· vol(Bm−rank(A)−1(0, 1)).

Then, we have

log

[∫

K̂out

exp(−tend〈c,u〉)du
]
+ tend〈c,x〉 ≥ log

[∫

K̂out

exp(−tend〈c,u〉)du
]
+ tend min

x∈K̂out

〈c,x〉

≥ log

[∫

C∩H
exp(−tend〈c,u〉)du

]
+ tendα

≥ log

[∫

C∩H
exp(−tendα− 1)du

]
+ tendα

= log

[
1

e
· volA(C ∩ H) exp(−tendα)

]
+ tendα

= log

[
volA(C ∩H) · 1

e

]

≥ −(m− rank(A)− 1) · log(R̄tend‖c‖2/r̄))
+ log(vol(Bm−rank(A)−1(0, 1)))

− log(m− rank(A))− log(tend‖c‖2)− 1. (4.19)

Next, to bound Equation (4.18) at t = tinit, we may express these terms as follows.

log

[∫

K̂out

exp(−tinit · 〈c,u〉)du
]
+ tinit · 〈c,x〉

≤ log
[
volA(K̂out)

]
+ tinit · max

u∈K̂out

〈c,x− u〉

≤ log(vol(Bm−rank(A)(0, R̄))) + tinit · 2R̄‖c‖2
≤ log(vol(Bm−rank(A)(0, 1)))

+ (m− rank(A)) log R̄+O(m logm), (4.20)

where the second step is by K̂out ⊆ Kout ⊆ B∑
i∈[n] di

(0, R̄) (here, the second inclusion is by assumption),

and the third step is by vol(Bq(0, R̄)) = πq/2

Γ(1+q/2) R̄
q and our choice of tinit

def
= m logm√

n‖c‖2R
.

We now compute the change in the entropic barrier
∑
i∈[n] ψin,i(xi), where

ψin,i(xi) = log vol(K◦
in,i(xi)).

Define Bd(0, r) to be the d-dimensional Euclidean ball centred at the origin and with radius r. We note
by the radius assumption of Theorem 4.10 that Kin,i ⊆ Ki ⊆ Bdi(0, R̄) throughout the algorithm. By the
assumption made in this lemma’s statement, we have that at the start of Algorithm 1, Kin,i ⊇ Bdi(x, r̄).
These give us the following bounds.

ψend
in,i (xi) ≥ log(vol(B◦

di(0, R̄)) and ψinit
in,i(xi) ≤ log(vol(B◦

di(xi, r̄))).
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Applying the fact that vol(Bd(0, r)) ∝ rd and summing over all i ∈ [n] gives
∑

i∈[n]

[
ψinit

in,i(xi)− ψend
in,i (xi)

]

≤
∑

i∈[n]

log

(
vol(Bdi(xi, 1/r̄))
vol(Bdi(0, 1/R̄))

)

=
∑

i∈[n]

di log(R̄/r̄) = m log(R̄/r̄). (4.21)

Combining Inequality (4.20), Inequality (4.19), and Inequality (4.21), we have

Φinit − Φend ≤ m log(mR/r)

+
[
log(vol(Bm−rank(A)(0, 1))) + (m− rank(A)) log R̄+O(m logm)

]

+ (m− rank(A)− 1) · log(R̄tend‖c‖2/r̄)− log(vol(Bm−rank(A)−1(0, 1)))

+ log(m− rank(A)) + log(tend‖c‖2) + 1

≤ m log(mR/ǫr)

+ O(m logm)

+ O((m− rank(A)) log(mR/ǫr)) ≤ O(m log(mR/ǫr)).

Lemma 4.9. [Total oracle complexity] Suppose the inputs Kin and Kout to Algorithm 1 satisfy Kout ⊆
Bm(0, R̄) with R̄ = O(

√
nR) and Kin ⊇ B(z, r̄) with r̄ = r/ poly(m). Then, when Algorithm 1 terminates at

t ≥ tend, it outputs a solution x that satisfies

c⊤x ≤ min
x∈K,Ax=b

c⊤x+ ǫ · ‖c‖2R

using at most Nsep = O
(
m log

(
mR
ǫr

))
separation oracle calls.

Proof. Let Nt be the number of times t is updated; Nin the number of times Kin is updated; Nout the number
of times Kout is updated; Nx the number of times x is updated, and Ntotal the total number of iterations of
the while loop before termination of Algorithm 1. Then, combining Lemma 4.1, Lemma 4.4, Lemma 4.6,
and Lemma 4.7 gives

Φend ≤ Φinit +Nout · log(1− 1/e) +Nt · (η + η2) +Nin · log(1− 1/e+ η) +Nx ·
(
−η

2

4

)
. (4.22)

The initialization step of Algorithm 1 chooses η = 1/100, tend = 8m
ǫ‖c‖2R

, and tinit =
m log(m)√
n‖c‖2R

, and we always

update t by a multiplicative factor of 1 + η
4m (see Line 9); therefore, we have

Nt = O(m log(mR/(ǫr)).

From Algorithm 1, the only times the separation oracle is invoked is when updating Kin or Kout in Line 15
and Line 17, respectively. Therefore, the total separation oracle complexity is Nsep = Nin+Nout. Therefore,
we have

Nsep = Nin +Nout ≤ O(1) · [Φinit − Φend +Nt] = O(m log(mR/(ǫr))

This gives the claimed separation oracle complexity.
We now prove the guarantee on approximation. Let xoutput be the output of Algorithm 1 and x be the

point which entered Line 5 right before termination. Note that the termination of Algorithm 1 implies, by
Line 5, that

c⊤xoutput ≤ c⊤x+
ν

tend
≤ c⊤x⋆out +

4(n+m)

tend
≤ min

x∈K,Ax=b
c⊤x+ ǫ · ‖c‖2 · R

where the first step is by the second inequality in Lemma 5.8 (using the universal barrier) and the last step
follows by our choice of tend and the definition of x⋆out and Kout ⊇ K.
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Theorem 4.10 (Main theorem of Problem 3.1). Given the convex program

minimize 〈c,x〉,
subject to xi ∈ Ki ⊆ R

di+1∀i ∈ [n],
Ax = b.

Denote K = K1 × K2 × . . .×Kn. Assuming we have

• outer radius R: For any xi ∈ Ki, we have ‖xi‖2 ≤ R, and

• inner radius r: There exists a z ∈ R
d such that Az = b and B(z, r) ⊂ K,

then, for any 0 < ǫ < 1
2 , we can find a point x ∈ K satisfying Ax = b and

〈c,x〉 ≤ min
xi∈Ki⊆R

di+1∀i∈[n],
Ax=b

〈c,x〉 + ǫ · ‖c‖2 ·R,

in O(poly(m log(mR/ǫr))) time and using

O(m log(mR/(ǫr))

gradient oracle calls, where m =
∑n

i=1 di.

Proof. We apply Theorem 5.1 for each Ki separately to find a solution zi. Then z = (z1, . . . , zn) ∈ R
m+n

satisfies Bm+n(z, r̄) ⊂ K with r̄ = r
6m3.5 . Then, we modified convex problem as in Definition 5.5 with

s = 216m
2.5R
rǫ and obtaining the following:

minimize 〈c̄, x̄〉
subject to Āx̄ = b̄,

x̄ ∈ K̄ def
= K × R

m+n
≥0 × R

m+n
≥0

(4.23)

with

Ā = [A | A | −A], b̄ = b, c̄ = (c,
‖c‖2s√
m+ n

· 1, ‖c‖2s√
m+ n

· 1)⊤

We solve the linear system Ay = b−Az for y. Then, we construct the initial x by set x(1) = z,

x
(2)
i =

{
yi if yi ≥ 0,

0 otherwise.
and x

(3)
i =

{
−yi if yi < 0,

0 otherwise.

Then, we run Algorithm 1 on the Problem 4.23, with initial x set above, m̄ = 3(m + n), n̄ = n + 2, ǭ =
ǫ

6
√
ns
,Kin = {x(1) ∈ B(z, r̄), (x(2),x(3)) ∈ R

2n
≥0} and K̂out = Bm̄(0,

√
nR).

By our choice of tend, we have

t̄end =
8m̄

ǭ‖c̄‖2R̄
≤ 48m

ǫ‖c‖2R
.

First, we check the condition that s ≥ 48ν̄t̄end

√
m+ nR

2

r ‖c‖2, we note that

48ν̄t̄end

√
m+ n

R2

r
‖c‖2 ≤ 27648

m2.5R

ǫr
≤ 216

m2.5R

rǫ
= s.

Let x̄output = (x
(1)
output,x

(2)
output,x

(3)
output) be the output of Algorithm 1. Then, let xoutput = x

(1)
output +

x
(2)
output − x

(3)
output as defined in Theorem 5.6. By Lemma 4.9, we have

min
x∈Pin

c̄⊤x ≤ min
x∈P

c⊤x+ γ

where γ = ǭ · ‖c̄‖2 · R̄.
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Applying (3) of Theorem 5.6, we have

c⊤xoutput ≤
ν̄ + 1

t̄end
+ γ + min

x∈K,Ax=b
c⊤x ≤ min

x∈K,Ax=b
c⊤x+ ǫ · ‖c‖2 ·R.

The last inequality follows by our choice of ǭ and t̄end, we have γ ≤ ǫ
2‖c‖2R and ν̄+1

t̄end
≤ ǫ

2‖c‖2R. Plug this ǭ
in Lemma 4.9, it gives the claimed oracle complexity.

Theorem 4.11 (Main Result). Given Problem 1.1 and θ(0) such that ‖θ⋆ − θ(0)‖2 ≤ R. Assuming all the
fi’s are L-Lipschitz, then there is an algorithm that in time poly(m log(1/ǫ)), using O(m log(m/ǫ)) gradient
oracle calls, outputs a vector θ ∈ R

d such that

n∑

i=1

fi(θ) ≤
n∑

i=1

fi(θ
⋆) + ǫ · LR.

Proof. First, we reformulate (1.1) using a change of variables and the epigraph trick. Suppose each fi depends

on di coordinates of θ given by {i1, . . . , idi} ⊆ [d]. Then, symbolically define xi = [x
(i)
i1
;x

(i)
i2
; . . . ;x

(i)
idi

] ∈ R
di

for each i ∈ [n]. Since each fi is convex and supported on di variables, its epigraph is convex and di + 1
dimensional. So we may define the convex set

Kunbounded
i =

{
(xi, zi) ∈ R

di+1 : fi(xi) ≤ Lzi
}
.

Finally, we add linear constraints of the form x
(i)
k = x

(j)
k for all i, j, k where fi and fj both depend on θk.

We denote these by the matrix constraint Ax = b. Then, Problem 1.1 is equivalent to

minimize
∑n

i=1 Lzi
subject to Ax = b

(xi, zi) ∈ Kunbounded
i for each i ∈ [n].

(4.24)

Since we are given θ(0) satisfying ‖θ(0)− θ∗‖2 ≤ R, we define x
(0)
i = [θ

(0)
i1

; . . . , θ
(0)
idi

] and z
(0)
i = fi(θ

(0))/L.

Then, we can restrict the search space Kunbounded
i to

Ki = Kunbounded
i ∩ {(xi, zi) ∈ R

di+1 : ‖xi − x
(0)
i ‖2 ≤ R and z

(0)
i − 2R ≤ zi ≤ z(0)i + 2R}.

It’s easy to check that Ki is contained in a ball of radius 5R centered at (x
(0)
i , z

(0)
i ), and contains a ball

of radius R centered at (x
(0)
i , z

(0)
i ). The subgradient oracle for fi translates to a separation oracle for Ki.

Then, we apply Theorem 4.10 to (4.24) with Kunbounded
i replaced by Ki to get the error guarantee and oracle

complexity directly.

Finally, we have the matching lower bound.

Theorem 1.3. There exist functions f1, . . . , fn : Rd 7→ R for which a total of Ω(m log(1/ǫ)) gradient queries
are required to solve Problem 1.1.

Proof. [Nes04] shows that for any di, there exists fi : R
di 7→ R for which Ω(di log(1/ǫ)) total gradient

queries are required. We define f1, . . . , fn to be such functions on disjoint coordinates of θ. It follows that
Ω(

∑n
i=1 di log(1/ǫ)) = Ω(m log(1/ǫ)) gradient queries are required in total.

5 Initialization

5.1 Constructing an initial Kin,i

In this section, we discuss how to construct an initial set Kin,i to serve as an input to Algorithm 1. In
particular, we will prove the following theorem.
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Theorem 5.1. Suppose we are given separation oracle access to a convex set K that satisfies B(z, r) ⊆ K ⊆
B(0, R) for some z ∈ R

d. Then, Algorithm 2, in O(d log(R/r)) separation oracle calls to K, outputs a point
x such that B

(
x, r

6d3.5

)
⊆ K.

Algorithm 2 Inner Ball Finding

1: Kout ← B(0, R)
2: while true do
3: Let v be the center of gravity of Kout

4: Sample u from B(v, r/(6d)) uniformly
5: if u ∈ K then
6: Let S = {v ± r

6d3 ei : i ∈ [d]}
7: if S ⊂ K then
8: return the inscribed ball of conv(S)
9: end if

10: end if
11: Let Kout ← Kout ∩H where H = O(u)
12: end while

Before we prove the preceding theorem, we need the following facts about the self-concordant barrier and
convex sets.

Theorem 5.2 ([Nes04, Theorem 4.2.6]). Let ψ : int(K) → R be a ν-self-concordant barrier with the mini-
mizer x⋆ψ. Then, for any x ∈ int(K) we have:

‖x⋆ψ − x‖x⋆
ψ
≤ ν + 2

√
ν.

On the other hand, for any x ∈ R
d such that ‖x− x⋆ψ‖x⋆ψ ≤ 1, we have x ∈ int(K).

Theorem 5.3 ([KLS95, Theorem 4.1]). Let K ⊆ R
d be a convex set with center of gravity µ and covariance

matrix Σ. Then,

{x : ‖x− µ‖Σ−1 ≤
√
(d+ 2)/d} ⊆ K ⊆ {x : ‖x− µ‖Σ−1 ≤

√
d(d+ 2)}.

Theorem 5.4 ([BGVV14, Section 1.4.2]). Let K be a convex set with K ⊂ B(u, R) for some R. Let
K−δ = {x : B(x, δ) ⊂ K}. Then, we have

volK−δ ≥ volK − (1− (1− δ

R
)d) · volB(u, R)

Proof of Theorem 5.1. We note that by the description of the Algorithm 2, the returned ball is the inscribed
ball of conv(S) and we have v ∈ K for each v ∈ S. Then, we must have conv(S) ⊆ K. We note that conv(S)
is a ℓ1 ball with ℓ1 radius r

6d3 , then the inscribed ball has ℓ2 radius r
6d3.5 .

First, we prove the sample complexity of the algorithm above. We use Kt to denote the Kout at the t-th
iteration. We first observe that throughout the algorithm, Kt is obtained by intersection of halfspaces and
B(0, R). This implies

B(z, r) ⊆ K ⊆ Kt ∀t.
Since Kt contains a ball of radius r, let At be the covariance matrix of Kt. By Theorem 5.3, we have

At �
r2

d(d+ 2)
I.

Let Ht be the halfspace returned by the oracle at iteration t. We note that u is sampled uniform from
B(v, r/(6d)), so we have

‖v − u‖A−1 ≤
√
d(d+ 2)

r
· r
6d
≤ 1

3
.
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Apply the inequality above to Corollary 2.16, we have

vol(Kt) ≤ (1− 1/e+ 1/3)tvol(K0) ≤ (1− 1/30)tvol(B(0, R)).

Then, since B(z, r) ⊆ Kt for all the t, this implies the algorithm at most takes O(d log(R/r)) many iterations.
Now, we consider the number of oracle calls within each iterations. There are three possible cases to

consider:

1. u ∈ K−δ with δ = r
6d3 (see the definition of K−δ in Theorem 5.4). In this case, we have S ⊂ K and

this is the last iteration. We can pay this O(d) oracle calls for the last iteration.

2. u ∈ K\K−δ.

Since u is uniformly sampled from B(v, r/(6d)), Theorem 5.4 shows that u ∈ K\K−δ with probability
at most

1− (1 − δ

r/(6d)
)d ≤ 1

d
.

Hence, this case only happens with probability only at most 1/d. Since the cost of checking S ⊂ K
takes O(d) oracle calls. The expected calls for this case is only O(1).

3. u /∈ K. The cost is just 1 call.

Combining all the cases, the expected calls is O(1) per iteration.

5.2 Initial point reduction

In this section, we will show how to obtain an initial feasible point for the algorithm.

Definition 5.5. Given a convex program minAx=b,x∈K⊆Rd c
⊤x and some s > 0, we define c1 = c, c2 =

c3 = s‖c‖2√
d
·1 and P = {x(1) ∈ K, (x(2),x(3)) ∈ R

2d
≥0 : A(x(1)+x(2)−x(3)) = b}. We then define the modified

convex program by
min

(x(1),x(2),x(3))∈P
c⊤1 x

(1) + c⊤2 x
(2) + c⊤3 x

(3).

We denote (c1, c2, c3) by c.

Theorem 5.6. Given a convex program minAx=b,x∈K⊆Rd c
⊤x with outer radius R and some convex set

Kin with Kin ⊆ K and inner radius r. For any modified convex program as in Definition 5.5 with s ≥
48νt
√
d · Rr · ‖c‖2R. For an arbitrary t ∈ R≥0, we define the function

ft(x
(1),x(2),x(3)) = t(c⊤1 x

(1) + c⊤2 x
(2) + c⊤3 x

(3)) + ψPin
(x(1),x(2),x(3))

where ψPin
is some ν self-concordant barrier for the set

Pin = {x(1) ∈ Kin, (x
(2),x(3)) ∈ R

2d
≥0 : A(x(1) + x(2) − x(3)) = b}.

Given xt
def
= (x

(1)
t ,x

(2)
t ,x

(3)
t ) = argmin(x(1),x(2),x(3))∈Pin

ft(x
(1),x(2),x(3)), we denote xin = x

(1)
t +x

(2)
t −x

(3)
t .

Suppose minx∈Pin
c̄⊤x ≤ minx∈P c̄⊤x+ γ, we have the following

1. Axin = b,

2. xin ∈ Kin,

3. c⊤xin ≤ minx∈K,Ax=b c
⊤x+ ν+1

t + γ.

First, we show that x
(1)
t is not too close to the boundary. Before we proceed, we need the following

lemmas.
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Lemma 5.7 (Theorem 4.2.5 [Nes04]). Let ψ be a ν-self-concordant barrier. Then, for any x ∈ dom(ψ) and
y ∈ dom(ψ) such that

〈ψ′(x),y − x〉 ≥ 0,

we have
‖y− x‖x ≤ ν + 2

√
ν.

Lemma 5.8 (Theorem 2 of [ZLY22]). Given a convex set 4 Ω with a ν-self-concordant barrier ψΩ and inner
radius r. Let xt = argminx t · c⊤x+ ψΩ(x). Then, for any t > 0,

min

{
1

2t
,

r‖c‖2
4ν + 4

√
ν

}
≤ c⊤xt − c⊤x∞ ≤

ν

t
.

Consider the optimization problem restricted in the subspace {(x(1),x(2),x(3)) : A(x(1)+x(2)−x(3)) = b},
as a direct corollary of theorem above we have the following:

Corollary 5.9. Let x̄t be as the same as defined in Theorem 5.6. For t ≥ 4ν
r‖c‖2

, we have dist(x
(1)
t ,x

(1)
∞ ) ≥

1
2t‖c‖2

.

Now, we are ready to show dist(x
(1)
t , ∂Kin) is not too small.

Theorem 5.10. Let x̄t be the same as defined in Theorem 5.6. For t ≥ 4ν
r‖c‖2

, we have dist(x
(1)
t , ∂Kin) ≥

r
12νt‖c‖2R

.

Proof. We consider the domain restricted in the subspace {(x(1),x(2),x(3)) : A(x(1) + x(2) − x(3)) = b}. By
the optimality of x̄t and Lemma 5.7, we have

KH ⊆ {x : ‖x− x
(1)
t ‖x(1)

t
≤ ν + 2

√
ν},

where H = {x : c⊤(x(1)
t − x) ≥ 0} and KH

def
= H ∩Kin.

Recall that Kin contains a ball of radius r, we denote it by B. We note that conv(x
(1)
∞ , B) is a union of

a ball and a convex cone C with diameter at most 2R. We observe that the set conv(x
(1)
∞ , B) ∩H contains a

ball of radius at least r
4t‖c‖2R

since dist(x
(1)
∞ , ∂H) ≥ 1

2t‖c‖2
.

We note that
conv(x(1)

∞ , B) ∩H ⊆ Kin ⊆ {x : ‖x− x
(1)
t ‖x(1)

t
≤ ν + 2

√
ν},

this implies {x : ‖x−x(1)
t ‖x(1)

t
≤ ν+2

√
ν} contains a ball of radius at least r

4t‖c‖2R
, and then by Theorem 5.2,

we have B(x
(1)
t , r

4(ν+2
√
ν)t‖c‖2R

) ⊆ Kin.

Lemma 5.11. Let (x
(1)
t ,x

(2)
t ,x

(3)
t ) ∈ R

3d be the same as defined in Theorem 5.6. If t > ν
‖c‖2R

, then we have

‖x(2)
t − x

(3)
t ‖2 ≤ 4

√
d
s R.

Proof. Let x⋆in = argminx∈Kin,Ax=b c⊤x and x⋆in = argminx∈Pin
c⊤x. Since x⋆ ∈ B(0, R), we have

c⊤x⋆in ≤ ‖c‖2R.

Note that (x⋆in,0,0) ∈ Pin, this means we have

c⊤x⋆in ≤ c⊤x⋆in ≤ ‖c‖2R.

Combining this with the second inequality in Lemma 5.8, we get

c⊤xt ≤ c⊤x⋆in +
ν

t
≤ ‖c‖2R+

ν

t
≤ 2‖c‖2R.

4The original theorem is stated only for polytopes, but their proof works for general convex sets.
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We further note that
c⊤2 x

(2)
t ≤ c⊤xt ≤ 2‖c‖R.

This shows

max{‖x(2)
t ‖2, ‖x(3)

t ‖2} ≤
2
√
d‖c‖2R
‖c‖2s

≤ 2
√
dR

s
.

Hence, we have

‖x(2)
t − x

(3)
t ‖2 ≤

4
√
d

s
R.

Now, we are ready to prove Theorem 5.6.

Proof of Theorem 5.6. We note that xin satisfies (1), directly follows by definition of P . By assumption, we
have s ≥ 48νt

√
d · Rr · ‖c‖2R; using this in Lemma 5.11, we have

‖x(2)
t − x

(3)
t ‖2 ≤

r

12νt‖c‖2R
.

This means xin = x
(1)
t + x

(2)
t − x

(3)
t ∈ Kin since dist(x

(1)
t , ∂Kin) ≥ r

12νt‖c‖2R
.

Now, we show c⊤xin is close to c⊤x⋆.
Let x⋆ = argminx∈K,Ax=b c

⊤x and x⋆ = argminx∈P c⊤x. By Lemma 5.8, we have

c⊤xt −
ν

t
≤ c⊤x⋆in ≤ c⊤x⋆ + γ ≤ c⊤x⋆ + γ.

This implies

c⊤x(1)
t ≤ c⊤xt ≤ c⊤x⋆ +

ν

t
+ γ.

We have

c⊤xin = c⊤(x(1)
t + x

(2)
t − x

(3)
t ) ≤ c⊤x⋆ +

ν

t
+

4

s
‖c‖2R ≤ c⊤x⋆ +

ν + 1

t
+ γ.
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A Decomposable submodular function minimization

A.1 Preliminaries

Throughout, V denotes the ground set of elements. A set function f : 2V → R is submodular if it satisfies
the following diminishing marginal differences property:

Definition A.1 (Submodularity). A function f : 2V → R is submodular if f(T ∪{i})− f(T ) ≤ f(S∪{i})−
f(S), for any subsets S ⊆ T ⊆ V and i ∈ V \ T .

We may assume without loss of generality that f(∅) = 0 by replacing f(S) by f(S)− f(∅). We assume
that f is accessed by an evaluation oracle and use EO to denote the time to compute f(S) for a subset S.
Our algorithm for decomposable SFM is based on the Lovász extension [GLS88], a standard convex extension
of a submodular function.

Definition A.2 (Lovász extension [GLS88]). The Lovász extension f̂ : [0, 1]V → R of a submodular function
f is defined as

f̂(x) = Et∼[0,1][f({i ∈ V : xi ≥ t})],

where t ∼ [0, 1] is drawn uniformly at random from [0, 1].

The Lovász extension f̂ of a submodular function f has many desirable properties. In particular, f̂ is a
convex relaxation of f and it can be evaluated efficiently.

Theorem A.3 (Properties of Lovász extension [GLS88]). Let f : 2V → R be a submodular function and f̂
be its Lovász extension. Then,

(a) f̂ is convex and minx∈[0,1]V f̂(x) = minS⊆V f(S);

(b) f(S) = f̂(IS) for any subset S ⊆ V , where IS is the indicator vector for S;

(c) Suppose x ∈ [0, 1]V satisfies x1 ≥ · · · ≥ x|V |, then f̂(x) =
∑|V |

i=1(f([i])− f([i− 1]))xi.

Property (c) in Theorem A.3 allows us to implement a sub-gradient oracle for f̂ by evaluating f .

Theorem A.4 (Sub-gradient oracle implementation for Lovász extension, Theorem 61 of [LSW15]). Let

f : 2V → R be a submodular function and f̂ be its Lovász extension. Then a sub-gradient for f̂ can be
implemented in time O(|V | · EO+ |V |2).

A.2 Decomposable submodular function minimization proofs

In this subsection, we prove the following more general version of Theorem 1.4.

Theorem A.5 (Decomposable SFM). Let F : V → [−1, 1] be given by F (S) =
∑n

i=1 Fi(S ∩ Vi), where each
Fi : 2

Vi → R is a submodular function on Vi ⊆ V with |Vi| = di. Let m =
∑n

i=1 di and dmax := maxi∈[n] di.
Then we can find an ǫ-approximate minimizer of f using at most O(dmaxm log(m/ǫ)) evaluation oracle calls.

Proof. Let f̂i be the Lovász extension of each fi, then f̂ =
∑n
i=1 f̂i is the Lovász extension of f . Note

that f̂ is 2-Lipschitz since the range of f is [−1, 1]. Also, the diameter of the range [0, 1]Vi for each Lovász

extension f̂i is at most
√
|Vi| ≤

√
dmax. Thus using Theorem 4.11, we can find a vector x ∈ [0, 1]V such

that f̂(x) ≤ minx∗∈[0,1]V f̂(x
∗) + ǫ in poly(m log(1/ǫ)) time and O(m log(m

√
dmax/ǫ)) = O(m log(m/ǫ))

subgradients of the f̂i’s. By Theorem A.4, each sub-gradient of f̂i can be computed by making at most
di ≤ dmax queries to the evaluation oracle for fi. Thus the total number of evaluation oracle calls we make
in finding an ǫ-additive approximate minimizer x ∈ [0, 1]V of f̂ is at most O(dmaxm log(m/ǫ)).

Next we turn the ǫ-additive approximate minimizer x of f̂ into an ǫ-additive approximate minimizer
S ⊆ V for f . Without loss of generality, assume that x1 ≥ · · · ≥ x|V |. Then by property (c) in Theorem A.3,
we have

f̂(x) =

|V |∑

i=1

(f([i])− f([i− 1]))xi = f(V ) · x|V | +

|V |−1∑

i=1

f([i]) · (xi − xi+1).
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Since xi − xi+1 ≥ 0, the above implies that mini∈{1,...,|V |} f([i]) ≤ f̂(x). Thus we can find a subset S ⊆ V

among f([i]) for all i ∈ {1, · · · , |V |} such that f(S) ≤ f̂(x). Then by property (a) in Theorem A.3, the set
S is an ǫ-additive approximate minimizer of f . This proves the theorem.
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