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Abstract

We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph
via shortest-paths. Our algorithm combines a new multiplicative-weights framework for
solving unit-weight multi-commodity flows with standard ball growing arguments. Using
Dijkstra’s algorithm for computing the shortest paths afresh every time gives a very sim-
ple algorithm that runs in time O(m?/¢) and finds an O(¢)-sparse balanced cut, when the
given graph has a ¢-sparse balanced cut. Combining our algorithm with known deterministic
data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under in-
creasing edge weights (decremental setting), we obtain a simple deterministic algorithm that
finds m°™ ¢-sparse balanced cuts in m!*+o() /@ time. Our deterministic almost-linear time
algorithm matches the state-of-the-art in randomized and deterministic settings up to sub-
polynomial factors, while being significantly simpler to understand and analyze, especially
compared to the only almost-linear time deterministic algorithm, a recent breakthrough by
Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).

1 Introduction

Graph partitioning is a fundamental algorithmic primitive that has been studied extensively.
There are several ways to formalize the question. We focus on the question of finding balanced
separators in a graph. More precisely, given an m-edge graph G = (V, E), the conductance of

a cut is defined by ®¢(S) = — {VLﬁGSSiE)(“/\ 57 Where Ec(S,S) is the set of edges with exactly

one endpoint in S, and the volume of S, denoted vol(.S) is the sum of the degrees of vertices in

S. We say that a cut (S,V '\ S) is b-balanced if vol(.S),vol(V \ S) > b - vol(V'). The objective in

the Balanced Separator problem is

Given parameters b, ¢ < 1, either find a cut (S,V \ S) that is b-balanced and has
conductance ®¢(S) < ¢, or certify that every Q(b)-balanced® cut has conductance
at least ag.
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The Balanced Separator problem is a classic NP-hard problem and under the Small-Set-
Expansion hypothesis, even NP-hard to approximate to within an arbitrary constant [RST12].
Thus, the above formulation allows for a-approximation for some a < 1. This problem has
been studied extensively due to its application to divide-and-conquer on graphs, and theoretical
connections to random walks, spectral graph theory, and metric embeddings.

Our Results. In this paper, we present a very simple and intuitive algorithm for Balanced
Separator. Our algorithm gives a simple framework based on (scalar) multiplicative weights
that reduces the problem to computing approximate shortest paths in a graph under increasing
lengths for the edges (decremental setting). Our framework either finds a balanced cut with
small conductance, or certifies that every balanced cut has large conductance (Theorem 4.1).

If one simply uses Dijkstra’s algorithm to compute the necessary shortest paths afresh
each time, our algorithm gives an 6(m2 /@) time algorithm that achieves approximation o =
Q(1/1og?n) for cuts of constant balance, and o = Q(1/logn -loglogn) for cuts of constant bal-
ance and conductance (Theorem 2.4). If we instead use known n°()-approximate deterministic
dynamic algorithms for decremental All-Pairs-Shortest-Paths (APSP), we obtain an algorithm
that runs in m'*t°M) /¢ and achieves an approximation of a = n°") (Theorem 2.3).

Our algorithm can be described very simply. We attempt to embed an explicit expander H
as a multi-commodity flow using paths of length 6((%1) in G, while ensuring that the congestion
on the edges in G is at most 6(¢_1). If the ends of points of an edge e € H are connected in
G using a short path, we use the path in G to route e. Further, we increase the length of each
edge on this path by a multiplicative factor. This increased length makes it less likely that
this path will be used in the future. A simple multiplicative-weights argument here now allows
us to bound the congestion over the course of entire algorithm. If our algorithm succeeds in
embedding most edges of H in G, this provides us a certificate that all balanced cuts in G have
expansion ﬁ(qﬁ) If our algorithm fails, we find several edges of H such that the ends points of
these edges are at distance Q((ﬁ_l) as measured by the lengths of the edges computed by the
algorithm. Now, we can apply a simple ball-growing argument to recover a balanced cut of
conductance ¢.

Applications. While finding the Balanced Sparsest Cut is a crucial ingredient in Divide-
And-Conquer frameworks for many algorithms (see [Shm97] for an introduction), and has vari-
ous applications ranging from VLSI Design, Image Segmentation [SM00] to PRAM emulation,
we want to point out in particular that our algorithm can be used to replace the use of the
Cut-Matching framework [KKRV09] in the work of Saranurak-Wang [SW19] (see Remark 4.6 in
Section 4.1). Together, this gives an elegant framework for computing expander decompositions
which in turn have been pivotal in various recent breakthroughs in algorithmic graph theory
with applications to computing Electric Flows [ST04], Maximum Flows and Min-Cost Flows
[CKLPGS22], Gomory-Hu Trees [AKT21; AKLPST22] for finding Global Min-Cuts determin-
istically [KT18; LP20; LS21], and many, many more.

Comparison to Previous Works. There has been a lot of work on algorithms for Balanced
Separator. The celebrated work of Leighton and Rao [LR99] showed that one could achieve
an O(logn) approximation to Balanced Separator by repeatedly solving a linear program that
computes a fractional multi-commodity flow. Several works give a faster implementation of
this approach via a multiplicative-weights algorithms for multi-commodity flow [PST95; You95;
GKO07; Fle00], and by using the Leighton-Rao result as a black-box to deduce that they compute
an O(logn) approximation. However, the running time they achieved for Balanced Separator
was (nm?) since they repeatedly find and remove low-conductance cuts, each of which might be



highly unbalanced, possibly introducing a factor of n. In contrast, our algorithm works directly
with balanced cuts, rather than multi-commodity flows. Our algorithm is in the same spirit
as the Garg-Koénemann, Fleischer framework from [GKO07; Fle00], but directly incorporates the
Leighton-Rao algorithm for finding low conductance cuts.

The groundbreaking work of Spielman and Teng on solving Laplacian linear systems [ST04]
introduced the notion of local algorithms for finding low-conductance cuts, where the running
time of the algorithm scales almost-linearly with the smaller size of the output cut. Thus the
algorithm can be applied repeatedly to find balanced cuts in almost-linear time. Inspired by
this work, multiple local algorithms were proposed [ACLO7; AP09]. While all these algorithms
are fast, and almost-linear in running time, they are inherently randomized, and the balanced
cut found has conductance ﬁ(\/a)ln contrast, our algorithm is deterministic, and finds a cut
of conductance at most ¢ - m°1).

Another line of work develops fast SDP algorithms based on matrix-multiplicative weights.
The most popular of these is the Cut-Matching framework of Khandekar-Rao-Vazirani [KRV09].
Inspired by [KRV09], several works [AK07; OSVV08; OV11; OSV12] obtained almost-linear time
algorithms for Balanced Separator building on the matrix-multiplicative weights framework.
While the cut-matching framework and the resulting algorithms are elegant, they rely on rather
involved techniques that are non-intuitive. The celebrated work of Arora-Rao-Vazirani [ARV09]
obtained an O(y/logn) approximation for Balanced Separator via an SDP based algorithm.
Faster algorithms built on their ideas [AHK10; She09] achieved almost-linear running time
with O(y/logn) approximation. However, these algorithms are very involved, based on matrix-
multiplicative weights, randomized, and rely on near-linear time (approximate) max-flow. Our
algorithm and analysis work with scalar multiplicative weights and are very simple to under-
stand. Further, our algorithm only need to invoke approximate shortest-path oracles under
increasing edge weights.

The only previous deterministic, almost-linear time approximation algorithm for Balanced
Separator was given recently by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak [CGLNPS20]. Their
algorithm relies on a rather intricate recursive scheme that implicitly uses at each recursion level
a reduction to decremental APSP. But even the analysis on a single level relies on the rather
involved expander pruning framework. In contrast to their work, the simplicity of our algorithm
and analysis stands out.

We also point out that a generalization of [CGLNPS20] to weighted graphs was given by Li
and Saranurak [LS21]. This algorithm implicitly uses [CGLNPS20], and is therefore even more
involved.

2 Main Result

We formally state our results in this section. Our main result is the following theorem.

Theorem 2.1. Given an n-vertex, m-edge graph G, an agpsp-approx decremental APSP al-
gorithm and conductance parameter ¢ and balance parameter b € [1/n,1/4], the algorithm
LowCoNDUCTANCECUTORCERTIFY(G, ¢,b) either

1. Returns a cut (S, S) with volg(S), volg(S) > b - vol(G) with conductance ®c(S) < ¢, or

2. Certifies that every cut (X, X) with volg(X), volg(X) = Q(b - volg(G)) has conductance

1 _ 4. 1
at least ¢ - Q2 <a logn-log(l/b)-logaog(n)a/;psp/was))) =¢-0 (7a log®(n)

The algorithm is deterministic and requires the APSP data structure to undergo O(auypsp -
me¢~log® n) updates, queries it O(m) times and spends an additional O(aapsp - m¢ ™" log® n)
time.



Remark 2.2. APSP data structures often answer queries in time proportional to the number
of edges on the approximate shortest path that they return. Our algorithm ensures that the
number of such edges on all paths is bound by O(apsp - m¢~'log3n).

We note that for computing balanced cuts (i.e. cuts where b is constant) which is arguably
the most interesting case, our approximation guarantee becomes (1 /apsp logn - log(ozApspgb_1 .
logn)). For a decremental APSP data structure with constant-approximation and ¢ > Q(1/ log@™) n),
this further simplifies to ©(1/lognloglogn).

Using the efficient n°M-approximate decremental APSP data structure from [BGS21] or
[Chu21], we obtain the following result®:

Theorem 2.3. Given an n-vertex, m-edge graph G, a conductance parameter ¢ and balance
parameter b € [1/n,1/4], there is an algorithm LOWCONDUCTANCECUTORCERTIFY(G, ¢,b)
that can either

1. Find a cut (S,S) with volg(S), volg(S) > b - vol(G) with conductance ®(S) < ¢, or

2. Certify that every cut (X, X) with volg(X),volg(X) = Q(b - volg(G)) has conductance
¢ /e,

The algorithm s deterministic and runs in m”"(l)/qﬁ time.

On the other hand, one can run Dijkstra’s shortest path algorithm for every query and
obtain the following:

Theorem 2.4. Given an n-vertex, m-edge graph G, a conductance parameter ¢ and balance pa-
rameter b € [1/n,1/4], there is a deterministic algorithm LOWCONDUCTANCECUTORCERTIFY(G, ¢, b)
that can either

1. Find a cut (S,S) with volg(S), volg(S) > b - vol(G) with conductance ®¢(S) < ¢, or
2. Certify that every cut (X, X) with volg(X),volg(X) = Q(b - volg(G)) has conductance
1
¢ G satemyE )

The algorithm, is deterministic and runs in O(m?/$) time.

3 Preliminaries

Sparsity and Expanders. In this article, we consider an undirected n-vertex graph G =

(V,E). For such a graph, we define the sparsity of a cut ) C S C V by ¥g(S) = %j’%}

where Eg(S,S) is the set of edges with exactly one endpoint in S. The sparsity of a graph G is
defined ¥(G) = mingcgcy W(S). If G contains no 1)-sparse cut, we say that G is a i-expander.

Conductance vs. Sparsity. Via a simple reduction replacing each vertex of degree d with an
explicit expander graph on d vertices (see Appendix A), we can reduce to the case where every
vertex has degree at most 10. In such a graph, for any set S C V, |S| < vol(S) < 10]S|, and

thus, instead of conductance ®¢(S) = — {vﬁ%ﬁgzl\/\ 5y We can work with sparsity U (S) =
% Throughout the rest of the article, we will therefore work with sparsity instead of

conductance.

*We remark that both data structures [BGS21; Chu21] implicitly rely on the framework of Chuzhoy-Gao-Li-
Nanongkai-Peng-Saranurak [CGLNPS20], thus, our reduction in combination with these data structures does not
yield a simpler algorithm in itself. We are however optimistic that simpler data structures for the decremental
APSP problem are available in the future that do not necessarily rely on expander techniques.



Expander Constructions. Given any n, there is a deterministic construction of a €Q(1)-
expander on n vertices of bounded degree. This will be an essential tool used in our proof and
we use 1y to denote the universal lower bound on the sparsity of such family of expanders.

Theorem 3.1 (See Thm. 2.4 of [CGLNPS20] based on Thm 2 of [GG81].). There is an universal
constant g € (0,1) and an algorithm CONSTDEGEXPANDER(n) that returns a vg-expander H
on a vertex set of size n with mazximum degree 9. The algorithm runs in time O(n).

Remark 3.2. While deterministic algorithms to construct a constant-degree, constant sparsity
expander require rather involved proof techniques, we prove in Appendix C a simple randomized
algorithm to construct a O(logn)-degree Q(logn)-expander H in O(nlogn) time. Using this
randomized algorithm in place of the above theorem only affects guarantees of our overall
algorithm by polylogarithmic factors.

Graph Embeddings. Given graphs H and G that are defined over the same vertex set, then
we say that a function I, ,q is an embedding if it maps each edge (u,v) € H to a u-to-v path
P,y = Ouse(u,v) in G. We say that the congestion of Iy, ,¢ is the maximum number of
times that any edge e € E(G) appears on any embedding path:

cong(pga) = nax, {e' € B(H) | e € psa(e)}.

Certifying Expander Graphs via Embeddings. Graph embeddings are useful since they
allow us to argue that if we can embed a graph H that is known to be an expander into a graph
G, then we can reason about the sparsity of G, as shown below.

Lemma 3.3. Given a y-expander graph H and an embedding of H into G with congestion C,
then G must be an ) (%) -expander.

Proof. Consider any cut (S,V \ S) with |[S| < [V \ S|. Since H is a t-expander, we have
that |Eg(S,V \ S)| > ¥|S|. We also know by the embedding of H into G, that for each edge
(u,v) € Ex(S,V'\ S), we can find path a P, , in G that also has to cross the cut (S,V'\ S) at
least once. But since each edge in G is on at most C such paths, we can conclude that at least

|Eg(S,V\ S)|/C > ¢|S|/C edges in G cross the cut (S,V \ 5). O
We use the following generalization of this Folklore result to balanced sparse cuts.

Lemma 3.4. Given a -expander graph H, a subgraph H' C H with |E(H \ H')| < %bn for
some b € [0,1] and an embedding g, ,c of H' into G with congestion C, then for all cuts
(S,S) where bn < |S| < n/2, we have Yg(S) = Q (%)

Proof. Observe that for each such (S,S), we have |Eg/(S,S)| > |Eg(S,S)| — |E(H \ H')| >
Y|S| — %bn > %\S\ Using the same argument as above, the cut size of S in G is at least

E6(S.5)| > [Ea(5.5)] /€ = wls]/2c. O

Decremental All-Pairs Shortest-Paths (APSP). A decremental appgp-approximate All-
Pairs Shortest-Paths (APSP) data structure (abbreviated appsp-APSP) is a data structure that
is initialized to an m-edge n-vertex graph G and supports the following operations:

o INCREASEEDGEWEIGHT(u, v, A): increases the edge weight of (u,v) by A.



« QUERYDISTANCE(u,v): for any u,v € V returns a distance estimate d(u,v) that apsp-
approximates the distance from u to v in the current graph G denoted dg(u,v), i.e.

d(u,v) € [da(u,v), agpsp - da(u, v)].

o QUERYPATH(u,v): returns a path 7 from u to v in the current graph G of total weight

d(u,v) (that is the value of the distance estimate if queried).

We denote the total time required by the data structure to execute a series of ¢ queries and u
update operations on an n-vertex constant-degree graph by Tapsp(q,u).

Recently, deterministic n°()-approximate APSP data structures have been developed (see
[Chu21; BGS21]) that process any sequence of O(m) edge weight increases in total time m!*o()
while answering distance queries in time n°() time and for a path query, returns paths in time
near-linear in the number of edges on the path (i.e. if it returns a path P, it takes at most time
|P|n°1). We conjecture that in the near-future, O(logn)-APSP data structures are found that
implement edge weight increases in time O(m) and answers distance queries in time O(1) and
path queries in time O(|P)).

4 QOwur Algorithm

In this section, we present an algorithm to find sparse cuts with respect to sparsity or embed an
expander into a constant-degree graph G. By standard reductions (given in Appendix A and
Appendix B), one can translate between sparsity and conductance and remove the bounded-
degree assumption, both with only a constant loss in quality. Thus, by proving the theorem
below, we directly establish our main result, Theorem 2.1.

Theorem 4.1. Given a graph G of degree at most 10, an aypsp-approzr decremental APSP
algorithm and sparsity parameter 1 and balance parameter b € [1/n,1/4], there is an algorithm
SPARSECUTORCERTIFY(G, v, b) (Algorithm 2) that can either

1. Find a cut (S,S) with |S|,|S| > bn of sparsity < 1, or

2. Certify that every cut (X, X) with |X|,|X| = Q(bn) has sparsity

1
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The algorithm is deterministic and requires the APSP data structure to undergo O(cupsp -
n/1log® n) updates, queries it O(n) times and spends an additional O(aypsp - n/1plog3n) time.

Remark 4.2. Our algorithm ensures that the total number of edges summed across all queried
paths is bound by O(ayupsp - n/1p log3 n).

The algorithm contains two phases. The first phase tries to embed an (1)-expander into
the input graph G with congestion 5(1 /). Let F be the subset of expander-edges the algorithm
cannot embed. If |F| = O(bn), i.e. the algorithm embed all but O(bn) edges, Lemma 3.4 ensures
that every b-balanced cut has sparsity Q(1). Otherwise, |F| = Q(bn) and the algorithm outputs
an edge weight w such that every (u,v) € F are far apart w.r.t. w. In this case, the second
phase is initiated to extract a sparse Q(b)-balanced cut from these far-apart pairs of vertices.

4.1 An Algorithm to Separate Or Certify

First, we present the algorithm for the first phase that either embeds a large portion of an
expander or finds a large set of far-apart vertex-pairs w.r.t. some edge weights w.



Lemma 4.3. Given an aypsp-APSP data structure, two graphs G and H over the same vertex
set V', a congestion parameter C € [1,n], and a balance parameter b € [1/n,1/2]. The algorithm
SEPARATEORCERTIFY(G, H,C,b) (Algorithm 1) outputs either
1. A set of weights w € RggG) with ||w|; < 20n, a number b’ € [b,1/2], and a subset of edges
F C E(H) with |F| > 100'n such that

V(u,v) € F, disty(u,v) > %, or

2. A graph H' C H with |E(H) \ E(H')| < 10bn and an embedding Uy that maps each
edge (u,v) in H' to a uwv-path in G with congestion O(C' - agpsp-10g(1/b) -log(C' - capsp/b)).

The algorithm is deterministic and requires the APSP data structure to undergo O(C o ypspn log? n)
edge updates and O(n) distance queries along with additional O(Cagpgpnlog®n) time.

Algorithm 1: SEPARATEORCERTIFY(G, H, C, b)
1 H = (V,0); Uiy + 0; w « 1O 5 m.
2 Maintain an aypgp-approximate APSP data structure on G weighted by w.
3 for i =0,1,...,|logy(1/b)| do
foreach e = (u,v) € E(H) \ E(H') do
if APSP.QUERYDIST(u,v) < 2¢- Capsp then
Add e to H'; Tyrc(e) < APSP.QUERYPATH(u, v).
foreach f € Iy ,g(e) do
| APSP.INCREASEWEIGHT (e, nwe ); we < (1 + n)we.

w N o Gs

o | if |[E(H)\ E(H')| >10n/2' then return (w,27", E(H)\ E(H')).

10 return (H' Uy q).

The Algorithm. Algorithm 1 implements SEPARATEORCERTIFY(G, H, C,b). Here, the task
of finding an embedding of H into G is interpreted as a multicommodity flow problem, that is
each edge (u,v) € H gives rise to the demand to route one unit of flow from u to v. Later, we
use a Yg-expander in place of H.

The goal of the algorithm is to find such an embedding/ multicommodity flow with small
congestion which combined with our choice of H certifies that G is a good (almost) expander
(i.e. contains no balanced sparse cut). Here, we guess the congestion to be roughly C' and want
to enforce cong(Ily¢) < C. In fact, we even provide a slightly tighter analysis.

To achieve this goal, we use a technique which is an instance of the Multiplicative Weight
Update (MWU) framework. Initially, we define a uniform weight function w with weights over
G. We try to embed each edge (u,v) € E(H) using a short uv-path P,, in G with respect to w.
Whenever we embed an edge (u,v) in such a way and the path P,, contains an edge e € E(G),
we increase the weight w, by a multiplicative factor (1+ 7). Naturally, after ¢ edges have been
embedded by using the edge e, we have scaled up the weight of e by a factor of (1 +n)t. Using
e’ < (1+ 2x),z € [0,1], and setting n ~ C ensures that the weight w, approaches a large
polynomial in n for ¢ > 2nlogn (which again is ~ C).

At the same time, the algorithm only embeds edges (u,v) € E(H) if the distance between
the endpoints in G w.r.t. w is small. This ensures that ||w|; = O(nlog(1/b)) and that we never
use an edge e into which many embedding paths are already routed.



More precisely, we proceed in rounds to embed edges in H. At later rounds (i.e. when ¢
large), we have already embed a large number of edges in H. Since the number of remaining
edges is small, we allow for them to be embed with slightly longer paths which still lets us argue
that ||w]|; is increased by at most O(n) in the current round. If in any round, it is not possible
to embed many of the remaining edges with paths of weight at most the current threshold, we
can simply return these edges and end up in the first scenario.

Correctness (Returning in Line 9). We start by proving the following claim which then
immediately establishes correctness if Algorithm 1 terminates at Line 9 (i.e. in the second
scenario).

Invariant 4.4. After the i-th iteration of the for-loop in Line 3, we have ||lw|; < 10n(1 +
2nCaypsp- (i + 1)) < 20n.

Proof. Tnitially, |lw|; = |1F@]||; < 10n.

To gauge the increase in ||w||; during the i-th iteration of the for-loop, consider the effect of
embedding a new edge e in the foreach-loop starting in Line 4 (we only consider such iterations
if the if-statement in Line 5 evaluates true as otherwise w does not change). Letting w®""
denote w just before the foreach-loop iteration and w™¥FW right after. We clearly have that
|wNEW | = |wOEP| +n - wOLP (Tl q(e)) from Line 8. But since the if-statement was true,
we have that wOP (I _,q(e)) < 2° - Cagpsp. We conclude that each edge that is newly embed
increases ||wl||; by at most 7 - 2° - Caypsp.

At the beginning of the i-th iteration of the for-loop, there are at most 10n/2! edges in in
E(H)\ E(H'). At the very first iteration ¢ = 0, |E(H )| < 20n as the max degree of H is at most
10. Later, |[E(H) \ E(H")| < 10n/2""! holds or otherwise the algorithm would terminate after
the (i — 1)-th iteration in Line 9. Thus, during the i-th iteration, the foreach-loop in Line 4
iterates over at most 10n/2¢1 edges as well. We can bound the total increase of ||w||; during

the i-th iteration by
10n

F -n- 2Z . C@Apsp =20n - ﬁCOéApsp.

The total number of iterations is at most |[logy(1/b) |+ 1. This establish the second inequality
using the definition of 7.
U

Note that for every edge (u,v) that isin E(H)\ E(H') when the algorithm returns in Line 9,
the preceding foreach-loop iterated over (u,v) and found that APSP.QUERYDiIsT(u,v) >
20 . Coypsp (as otherwise (u,v) would have been added to E(H')). But this implies that
disty(u,v) > 2. C = C/¥ by our choice of b'. To establish correctness, it only remains

to use the if-condition preceding Line 9 and observe that the condition does not hold when
i=0.

Correctness (Returning in Line 10). It is straight-forward to see from Algorithm 1 that
Iy, is a correct embedding from H' to G and that |[E(H) \ E(H')| < 10bn. It thus only
remains to bound the congestion of 1/ .

Lemma 4.5. The congestion of gy . is at most w.

Proof. Let us fix any edge e € E(G). Note that each time we add an embedding path in the
foreach-loop starting in Line 4 that contains e, we increase the weight w, to (1 + n)w.. Since
initially, w. = 1, we have that after ¢ times that the edge e was used to embed an edge in the
foreach-loop, we have that w, = (14 7)* > €2 since e* < 1+ 2z for z € [0,1]. In particular,



, then at the end of the algorithm,

if the algorithm embeds ¢ times into e for ¢ > w

we would have w, > ZCO‘%.

However, note that by the if-condition in Line 5, we never embed into an edge e that has

weight more than 2'°82(1/0) . C'aypep = Co‘é“’s" since otherwise the path using this edge has higher
weight. We can thus conclude that at the end of the algorithm, w. < (1 + n)% < 200‘%,
which leads to a contradiction. O

Run time Analysis. The for-loop of the algorithm runs at most O(log(1/b)) iterations and
in the it iteration at most O(n/2¢) edges are iterated over in the foreach-loop starting in Line 4.
Thus, the total number of queries to the APSP data structure can be bound by O(Y; n/2%) =
O(n).

The time the algorithm spends updating the weights in Line 8 can be bound by observing
that each edge e has its weight increased only after an additional embedding path was added
through e; but the congestion is bound by O(logn/n) by Lemma 4.5, thus the foreach-loop is
executed at most O(nlogn/n) times over the entire course of the algorithm. This concludes
our analysis of the number of updates to the APSP data structure. The runtime analysis of the
algorithm follows along the same line of reasoning.

Remark 4.6. Our algorithm can be extended to compute expander decompositions, following
the approach of [SW19]. We refer the reader to this paper for additional background and the
necessary definitions. For readers familiar with [SW19], we briefly describe the key step we
need to implement: When SEPARATEORCERTIFY(G, H,C,b) certifies that most edges in the
expander H can be embedded into G (and hence by Lemma 3.4 there are no sparse balanced
cuts in G) then we need to be able to extract a large expander from G so that we only need
to recurse on a small (potentially) non-expanding part To find an induced subgraph with large
expansion, we first produce a new graph G’ by adding the edges E(H) \ E(H') to G. This
ensures that G’ is a good expander. We then use the expander pruning of [SW19] to delete the
same edges F(H)\ E(H') from G’, resulting in a large leftover expander G” with vertex set V”.
By construction G[V"] is now a large expander.

4.2 Extracting the Sparsest Cut

In order to prove Theorem 4.1, we now have to show how to extract a sparsest cut from the
weight function that is returned in case no embedding is found. We point out that in order
to do so it is significantly more convenient to work with an integral weight function w. We
therefore round the weight function that we obtain Lemma 4.3 up which might result in ||w||;
being at most twice as large as stated.

We use the following auxiliary algorithm that finds a cut with few edges crossing given any
two vertices at large distance.

Claim 4.7. The procedure FINDTHINLAYER(G, w,u,v, D) takes a graph G weighted by w €
NggG) and two vertices u,v such that disty(u,v) > D for some integer D > 4log, ||w||1. It

returns a set of vertices S # () such that |S| < |V|/2 and |Eg(S,V \ )| < w. The
algorithm runs in time O(|Eq(S)|log|Ea(S)]).

Given this auxiliary algorithm, we can state the final algorithm and prove our main result,
Theorem 4.1. As described before, we use the algorithm SEPARATEORCERTIFY(G, H, C, l;)
with a constant degree, constant sparsity expander H. It is straight-forward to conclude that
G contains no balanced sparse cuts, if the procedure can embed H.



Otherwise, we take the weight function and repeatedly find a separator between the end-
points of edges in F' that are far from each other (using the auxiliary algorithm). Note that if
there are roughly b'n edges in F at distance roughly C/b, then using the auxiliary algorithm
repeatedly with D =~ C//, produces a cut where the smaller side has Q(|F|) = Q(b'n) vertices.
Using the guarantees from the auxiliary procedure, we further have that the number of edges
in the induced cut are at most O(b'n/C). Thus, the sparsity of the cut must be O(1/C) where
C =~ 1/4 by our choice of parameters.

Algorithm 2: SPARSECUTORCERTIFY(G, v, b)

H < CONSTDEGEXPANDER(|V (G)|); C + 320log n/1;
if SEPARATEORCERTIFY(G, H,C,2b) returns (H',lgs ) then

N =

3 L return (H', g, ,q).

4 else // i.e. if it returns (w,V,F)

5 w <+ [w].

6 X «~ V(G).

7 | D+ 20/v.

8 | while I(u,v) € HIX]NF and [V \ X| <n/4 do

// distg(u,v) > D
9 S < FINDTHINLAYER(G[X], w, u, v, D).
10 X+ X\S.

11 return V' \ X.

Theorem 4.1. Given a graph G of degree at most 10, an aypsp-approzr decremental APSP
algorithm and sparsity parameter 1 and balance parameter b € [1/n,1/4], there is an algorithm
SPARSECUTORCERTIFY(G, v, b) (Algorithm 2) that can either

1. Find a cut (S,S) with |S|,|S| > bn of sparsity <, or

2. Certify that every cut (X, X) with |X|,|X| = Q(bn) has sparsity

1
b0 (ozApsp log n-log(1/b)-log(log(n)ausrse/(b¥)) ) *

The algorithm is deterministic and requires the APSP data structure to undergo O(cupsp -
n/1log® n) updates, queries it O(n) times and spends an additional O(apsp - n/1plog3n) time.

Proof. The case where Algorithm 2 returns in Line 3 follows directly from Lemma 4.3, Theorem 3.1
and Lemma 3.4. Let us therefore analyze the remaining case where the algorithm returns in
Line 11 (the while-loop can be seen to terminate since each iteration shrinks the set X by
Claim 4.7 and X = () trivially has no two vertices at far distance).

We first prove that the final set V' \ X has size b'n < [V \ X| < 3n:

o U'n < |V \ X|: Initially, H[X] = H and F C H contains more than 100'n edges by
Lemma 4.3. Every edge (u,v) € F has distg(u,v) > disty(u,v) > C/b'. Since the
maximum degree of H is 10, as long as |V \ X| < b'n, H[X] contains all but 106'n edges
from H. Thus, H[X] N F is not empty and the while-loop continues. We conclude that
b'n < |V '\ X| holds.

¢ |[V\ X| < 2n: Since the while-loop condition allows only invocations of FINDTHINLAYER
if |V'\ X| < n/4, and since this procedure returns the smaller side of the cut it produces
by Claim 4.7 (which is found on G[X]), we can conclude that at the end of the algorithm
V\X|<n/d+n/2<3n,

10



This indicates that | X| > n/4 > b'n/2 > bn since 2b < V' < %

Next, we bound the sparsity of the cut V' \ X. Let S1,Ss,...,Sk be the sets returned by
procedure FINDTHINLAYER one after another over the course of the while-loop, such that
V\ X = US;. We first observe that these sets are vertex-disjoint since after the i-th iteration,
the procedure FINDTHINLAYER is invoked on the graph G; = G[V'\ (S1U...US;)] to find S;4;.
Further, the final cut (X, V \ X) contains only edges that were previously in a thin layer, i.e.

Eq(X,V\X)C|JEq (V\(S1U...US)),S)).
i
It remains to use the guarantee of Claim 4.7 that for each S;, we have |Eg,(S;,V \ (S1 U
L US)) < M and by the vertex-disjointness of S1, 59, ..., Sk, we thus have that

S;) log ||wl|;
D

|Eq(X,V \ X)| < |UEGZ~(Si,V\ (S1U...U8))l < Z il

< 4l|lwl|; log||wly  8n-blogn

- D C

where we use ||w|| < 20n from Theorem 4.1 and w is obtained from rounding up w, and our
choice of D. Since we have shown that | X[, |V \ X| > ¥/n/2 > bn, choosing C' = 320logn /v,
we have ¥(V \ X) = ¥(X) < 1), as desired.

We use the disjointness of S1,55,...,S5; to argue that the total time spend in procedure
FINDTHINLAYER can be bound by O(nlogn). The remainder of the runtime analysis is trivial
given Lemma 4.3. U

It remains to provide an implementation of FINDTHINLAYER(G, w, u, v, D) and prove Claim 4.7.
The algorithm follows a simple ball-growing procedure. It grows balls from both endpoints u
and v. Because the distance between u and v are guaranteed to be large, the procedure takes
longer time. However, these two balls cannot be larger than the entire graph. There must be a
moment that one of the ball grows only by a thin layer.

Claim 4.7. The procedure FINDTHINLAYER(G, w,u,v,D) takes a graph G weighted by w €
Nng) and two vertices u,v such that disty(u,v) > D for some integer D > 4log, ||w||1. It

returns a set of vertices S # 0 such that |S| < |V|/2 and |Eg(S,V \ )| < M. The
algorithm runs in time O(|Eq(S)|log|Ea(S)]).

Proof. Since disty(u,v) > D by assumption, we have that at least one of w and v have their
ball to radius D/2 contain at most half the vertices in G. More formally, for some z € {u, v},
|Ba,w(z, D/2)] < |V]/2. We claim that there is a radius 0 < r < D/2, such that taking
S = B(z,r) satisfies the above guarantees. For this proof, it is convenient to define the following
auxiliary function ®(z,7r) = Y cp ®(2,7,e) where the latter functions are defined for all edges
e=(z,y) € E by

|disty(z,2) — disty(z,y)| if disty(z,2) <7 and disty(z,y) <7

a( ) 7 —disty(z,2) if disty(z,2) <7 < disty(z,y)
z,re) =
r—disty(z,y) if disty(z,y) <r < disty(z, )
0 otherwise

Here, an edge e = (z,y) € E(G) contributes the distance between its two endpoints x and
y (which is at most w,.) to ®(z,r,e) if both endpoints are fully contained in the ball B(z,r).
If neither of the endpoints are contained it contributes 0. Otherwise, e = (x,y) contributes

11



the distance of the endpoint closer to z to the boundary of the ball. In both cases, 0 <
®(z,r,e) < we. This means in particular that the weight of edges incident to B(z,r) denoted
by w(E(B(z,7))) is always greater-equal to ®(z,r), i.e. w(E(B(z,r))) > ®(z,r) for all r.

Note further that ®(z,r + 1) — ®(z,r) is exactly |Eq(B(z,r),V \ B(z,r))|, the number of
edges that leave B(z,r). To see this, observe that an edge e = (z,y) contributes 1 to the
difference if disty(z,2) <7 <7+ 1 < disty(y,2) holds, i.e. e leaves B(z,r). Otherwise, the
contribution of e are identical in both ®(z,7) and ®(z,r7 4+ 1). Here we use that w is integral
and so are distances in G.

Given this set-up, assume for contradiction that for all 0 < r < D/2, we have

41
D(z,r+1) > <1 + 7Og2DHwH1> O(z,7).

By induction we have that

D/2—1
8(z.0/2) > (1+ LY T a1 > u),

where we use that 1 + 2 > 2% for € [0,1]. This would give a contradiction since |w|; >
w(E(B(z,D/2))) =2 @(z,D/2) > |[wl|.
Therefore, there must be some radius 0 < r < D/2 such that

41
D(z,r+1) < <1 + 7Ogi)”w”1> O(z,7).

Combining with our previous discussion yields that

‘E(B(Z77”), Vv \ B(Z,T‘))‘ = q)(Z,T‘ + 1) - (p(z774)
4logy |lw]|
S 2Tl(l)(za’r)
< Aw(E(B(z,r)))log, |[wl)x
- D

We can therefore take S = B(z,r), as desired.
Finally, to compute this cut, we run Dijkstra’s algorithm from v and v in parallel and check
for the earliest radius r for either of them such that the inequality holds. Thus, the algorithm

runs in time O(|Eg(5)|log |Eq(S)]). O
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A Reducing Conductance to Sparsity

Here, we prove Theorem 2.1. The proof is an adaption of Lemma 5.4 and Theorem 5.5 of
[CGLNPS20].

The Transformation Algorithm. Our algorithm is essentially a wrapper function around
our main result Theorem 4.1. That is, we first construct a bounded degree graph G from G , then
run the algorithm from Theorem 4.1 on G. If the algorithm certifies that G has no balanced
sparse cuts, we prove that G has no balanced low-conductance cuts. Otherwise, if the algorithm
returns a sparse cut in CA?, we recover a balanced low-conductance cut in G.

We first describe the construction of G given G = (V,E). Let us assume an arbitrary
ordering of the edges incident to each vertex v € V. G= (V, E) is constructed as follows:

1. For each vertex v € V, create a set of vertices X, = {v1,v2,...,V4eg(v)}, and an -
expander H, on X, using Theorem 3.1. Add H, to G.

2. For each edge e = (u,v) € E, we add (u;,v;) to E if e is the i" (and ;') edge incident to
u (and v, respectively).

Clearly, G has vol(G) = 2m vertices and each vertex has at most 10 incident edges, 9 from the
expander and 1 from the corresponding edge in G.

We now run the algorithm from our main result, Theorem 4.1, on the graph G. If the
algorithm certifies that no b-balanced v-sparse cut exists in @, we return the same result for
G. Otherwise, we run Algorithm 3 on the returned cut (4, 4) in G to obtain a €(b)-balanced
Q(1p)-sparse cut (S,5) in G. It is straight-forward to check that Algorithm 3 is deterministic
and runs in time linear in the number of edges of G and thus the runtimes stated in Theorem 4.1
are asymptotically not affected.

Algorithm 3: TRANSFORM(G, G, A C V(G))
1return S={uecV | [X,NAl >|X,\A|}.

Certifying G. We start by showing that if no Q(b)-balanced O(1))-sparse cut is found on G,
then no such cut exists in G either.

Lemma A.1. Given a balance parameter b € (0,1/4), if every cut (X, X) in G with | X|, Y‘
b- |V(G)| has Va(S) = ¢, then every cut (S,8) in G with volg(S), volg(S) > b- vol(G) h
a(X) = ¢
Proof. Let (S,S) be any cut in G with volg(9),volg(S) > b-vol(G). Define Xg = U,esX,, and
Xg = Uygs X, = Xg. Observe that |Eg(S,S)| = |E5(X s, Xg)| because the y-expander edges
in G do not appear in the cut and every cut edge (u;,v;) in G corresponds to the cut edge
(u,v) € G.

By construction of G, we have that |Xg| = volg(S) and [Xs| = volg(S) and therefore
|Xs|, | Xs| > b-vol(G) = b|V(G)| by assumption on (S,5). Thus (Xg, Xs) is balanced in G and
we can use the guarantee that ®5(Xg) > ¢. This yields

|Ea(S.5)| = |E4(Xs.Xs)| > ¢ min{|Xs]. [Xs]} = ¢ - minfvol(S), vol(5)}.
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Returning a Sparse Cut. It remains to prove that the above algorithm transforms any
balanced sparse cut in G to a balanced low conductance cut in G. We prove this claim in two
steps. We first show that the number of edges in the cut (S,S) in G is comparable to the
number of edges in (A, 4) in G.

Claim A.2. |E¢(S,5)| = O (‘Ea(A,Z)D.

Proof. Define Xg = UyesX,. Consider any vertex u € V', we have that the graph H,, contributes
at least 1o - min{| X, NA|, | X, \ A|} edges to the cut ‘Ea(A,Z)‘. But in G, the number of edges
incident to X, that are in the cut (S, S) but where previously not in the cut (A, A) can be at
most min{| X, N A|,|X, \ A|} since H, is contained entirely in S or S and only one additional
edge is incident to each vertex in X,.

Thus, we can charge each edge in Ep, (A, A) with at most 1/t edges from E5(S,5) \
E5(A, A) incident on u and cover all such edges. We conclude that |E5(S, 5)| < [E5(A, A)[ +
|E5(A, A)| /1o, and finally use that |[Ec(S, 5)| = [E5(Xs, Xs)| as observed in Lemma A.1. O

Next, we prove that (S,5) is a balanced cut.

Claim A.3. If U (A) < 1ho/2, we have volg(S) > 1|A| and volg(S) > 3[A].
Proof. We prove volg(S) > $|A| (the proof of volg(S) > $[A| is symmetric). Let us assume for
the sake of contradiction that volg(S) < 3|A|. We argued before that for every u € V, we have
|Em, (A, A)| > ¢o-min{|ANX,|,|A\ Xy |}. We again define Xg = UyesX,, and observe that the
fact that 3°,cq [ANX,| < | Xs| = volg(S) < 2| Al implies that },c g |A\Xu| > |A]—|Xs| > 1|A].
Definition of S also yields that [A\ X, | < [AN X,].

Combining insights, we conclude

B5(A ) > C1Er (A D] > S minfl A0 Xl A\ X} 2 3 v+ 41 Xl > 2214

u€esS

which implies that ¥ (A) > 1y/2 which contradicts our assumption, as desired. O
Finally, we combine our insights to prove Theorem 2.1.

Proof of Theorem 2.1. We have from the algorithm that |A|, |A| > b- |V (G)| = 2bm. Therefore,
by Claim A.3, we produce a cut (S,5) in G with volg(S),volg(S) > b/2-vol(G). By Claim A.2,

we further have that |Eg(S,S)| < O(’E@(A,Z)‘) and therefore ®¢(S) = % =

E~(AA —
0 (%) = O(¢) where the last equality stems from the fact that (4, A) had V5(4) < ¢
by Theorem 4.1. O

B The Constant-Degree Assumption

In this section, we prove that the following assumptions are without loss of generality.

Assumption B.1. When computing a sparse cut with respect to sparsity, we may assume at a
cost of a constant factor in the output quality that the input graph G has mazimum degree 10.

Proof. Consider obtaining the graph G from G by adding [m/n] self-loops to each vertex in G.
We then invoke Theorem 2.1 on G with 1 and parameter b.

Note first that in a connected graph G, we have that G < 4m. Further, note that since
self-loops do not appear in cuts, we have Eg(S,S) = E@(S, S) for all S.
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Now, if the algorithm certifies low conductance of CA?, we have for each (S,S5) in G where
|S|,[S] = 4b - n that vol5(S) > [S|[m/n] > 4bm > b - vol(G). Since |Eq(S,S)| = |E5(S,S)| =
¥ min{vol5(S), vol a(?)} > 2y min{|S|, [S|}. Thus every 4b-balanced sparse cut has sparsity at
least %w. Otherwise, the algorithm returns a cut (S, S) of conductance at most ¢ in G. But,
we have ©5(S5) > W5(S5) = ¥g(S) for all S. O

C A Simple Randomized Algorithm to Construct Low-Degree
Expanders

Algorithm 4: RANDCONSTDEGEXPANDER(n)

1 Construct an empty graph H on n vertices.
2 foreach v € V(H) do
3 fori=1,2,...,k =80logn do
Sample a vertex u from V(H) uniformely and i.i.d. at random.
L Add edge (u,v) to H.

[N

6 return H

The Algorithm. Here, we provide Algorithm 4 which implements the algorithm mentioned
in Remark 3.2.

Analysis. Before we start our analysis, we recall the following Chernoff bound.
Theorem C.1. Given i.i.d. {0,1}-random variables X1, Xo,..., X, X =3, X; and any 6 > 0,

§2E[X] §2E(x]

we have PIX > (14 0)E[X]] < ¢ @9 and P[X < (1 — §)E[X]] < e 3

Let us first prove that H has bounded degree.
Claim C.2. Algorithm j returns H such that w.h.p., the mazimum degree is O(logn).

Proof. Each vertex w is selected as the second endpoint of an edge added to H in the inner
for-loop with probability 1/n per iteration. As there are nk iterations of this for-loop, and each
iteration is independent, we have by the Chernoff bound that each vertex w is at most k times
selected with probability at least 1 — e =1l h=1_n32

Since each vertex u has degree equal to k£ plus the number of times it is sampled, we have
that its degree is at most 2k with probability at most 1 — n~32. We obtain our result over all
vertices in H by applying a union bound. U

Claim C.3. Algorithm j returns a Q(logn)-expander H w.h.p.

Proof. Consider any set S with |S| < n/2. Then, we have that E[Eg(S,5)] > 3|S|k since
each edge (u,v) sampled when the foreach-loop iterates over a vertex v € S has u ¢ S with

probability at least % and there are |S|k such sampling events. Since they are independent, we
|S|k

further have from the Chernoff bound that P[|E(S,5)| < $|Sk] <e™ 16 = n=o18 Tt is clear
that if |Eg (S, S)| > 1|S|k then ¥y (S) > & = Q(logn).

The remaining difficulty is that there are an exponential number of cuts so a union bound
seems at first hard to apply. However, we observe that there are at most (g) < (%)a < n3® for
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a > 1 cuts where the smaller half contains « vertices. As we have proven that a cut is ¢-sparse
with probability at most n~>%, we can thus conclude by a simple union bound argument that
H is not Q(log n)-expander with probability at most >~ (%) -n™°* < 1/n. O
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