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Abstract

We introduce a machine-learning-based coarse-grained molecular dynamics (CGMD) model that faith-

fully retains the many-body nature of the inter-molecular dissipative interactions. Unlike the common

empirical CG models, the present model is constructed based on the Mori-Zwanzig formalism and naturally

inherits the heterogeneous state-dependent memory term rather than matching the mean-field metrics such

as the velocity auto-correlation function. Numerical results show that preserving the many-body nature of

the memory term is crucial for predicting the collective transport and diffusion processes, where empirical

forms generally show limitations.
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I. INTRODUCTION

Accurately predicting the collective behavior of multi-scale physical systems is a long-standing

problem that requires the integrated modeling of the molecular-level interactions across multi-

ple scales [1]. However, for systems without clear scale separation, there often exists no such

a set of simple collective variables by which we can formulate the evolution in an analytic and

self-determined way. One canonical example is coarse-grained molecular dynamics (CGMD).

While the reduced degrees of freedom (DoFs) enable us to achieve a broader range of the spatio-

temporal scale, the construction of truly reliable CG models remains highly non-trivial. A signifi-

cant amount of work [2–13] (see also review [14]), including recent machine learning (ML)-based

approaches [15–19], have been devoted to constructing the conservative CG potential for retaining

consistent static and thermodynamic properties. However, accurate prediction of the CG dynam-

ics further relies on faithfully modeling a memory term that represents the energy-dissipation

processes arising from the unresolved DoFs; the governing equations generally become non-

Markovian on the CG scale. Moreover, such non-Markovian term often depends on the resolved

variables in a complex way [20–26] where the analytic formulation is generally unknown. Exist-

ing approaches often rely on empirical models such as Brownian motion [27], Langevin dynamics

[28], and dissipative particle dynamics (DPD) [29, 30]. Despite their broad applications, studies

[31–33] based on direct construction from full MD show that the empirical (e.g., pairwise addi-

tive) forms can be insufficient to capture the state-dependent energy-dissipation processes due to

the many-body and non-Markovian effects. Recent efforts [34–48] model the memory term based

on the generalized Langevin equation (GLE) and its variants (see also review [49]). While the

velocity auto-correlation function (VACF) is often used as the target quantity for model parame-

terization, it is essentially a metric of the background dissipation under mean-field approximation.

The homogeneous kernel overlooks the heterogeneity of the energy dissipation among the CG

particles stemming from the many-body nature of the marginal probability density function of the

CG variables. This limitation imposes a fundamental challenge for accurately modeling the local

irreversible responses as well as the transport and diffusion processes on the collective scale.

This work aims to fill the gap with a new CG model that faithfully entails the state-dependent

non-Markovian memory and the coherent noise. The model formulation can be loosely viewed as

an extended dynamics of the CG variables joint with a set of non-Markovian features that embod-

ies the many-body nature of the energy dissipation among the CG particles. Specifically, we treat
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each CG particle as an agent and seek a set of symmetry-preserving neural network (NN) rep-

resentations that directly map its local environments to the non-Markovian friction interactions,

and thereby circumvent the exhausting efforts of fitting the individual memory terms with a uni-

fied empirical form. Different from the ML-based potential model [19], the memory terms are

represented by NNs in form of second-order tensors that strictly preserve the rotational symme-

try and the positive-definite constraint. Coherent noise can be introduced satisfying the second

fluctuation-dissipation theorem and retaining consistent invariant distribution. Rather than match-

ing the VACF, the model is trained based on the Mori-Zwanzig (MZ) projection formalism such

that the effects of the unresolved interactions can be seamlessly inherited. We emphasize that the

construction is not merely for mathematical rigor. Numerical results of a polymer molecule system

show that the CG models with empirical memory forms are generally insufficient to capture het-

erogeneous inter-molecular dissipation that leads to inaccurate cross-correlation functions among

the particles. Fortunately, the present model can reproduce both the auto- and cross-correlation

functions. More importantly, it accurately predicts the challenging collective dynamics character-

ized by the hydrodynamic mode correlation and the van Hove function [50] and shows the promise

to predict the meso-scale transport and diffusion processes with molecular-level fidelity.

II. METHODS

Let us consider a full MD system consisting of M molecules with a total number of N atoms.

The phase space vector is denoted by z = [q,p], where q,p ∈ R3N represent the position and

momentum vector, respectively. Given z(0) = z0, the evolution follows z(t) = eL tz0, where L

is the Liouville operator determined by the Hamiltonian H(z). The CG variables are defined

by representing each molecule as a CG particle, i.e., φ(z) =
[
φ Q(z),φ P(z)

]
, where φ Q(z) =

[Q1,Q2, · · · ,QM] and φ P(z) = [P1,P2, · · · ,PM] represent the center of mass and the total mo-

mentum of individual molecules, respectively. Z(t) = [Q(t),P(t)] denote the map φ(z(t)) with

z(0) = z0. To construct the reduced model, we define the Zwanzig projection operator as the

conditional expectation with a fixed CG vector Z, i.e., PZ f (z) := E[ f (z)|φ(z) = Z] under con-

ditional density proportional to δ (φ(z)−Z)e−βH(z) and its orthogonal operator QZ = I−PZ .
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Using Zwanzig’s formalism [51], the dynamics of Z(t) (see Appendix A) can be written as

Q̇ = M−1P

Ṗ =−∇U(Q)+
∫ t

0
K(Q(s), t− s)V(s)ds+R(t),

(1)

where M is the mass matrix and V = M−1P is the velocity. U(Q) is the free energy under φ Q(z)≡

Q. K(Q, t) = PZ[(eQZL tQZL P)(QZL P)T ] is the memory representing the coupling between

the CG and unresolved variables, and R(t) is the fluctuation force.

Eq. (1) provides the starting point to derive the various CG models. Direct evaluation of K(Q, t)

imposes a challenge as it relies on solving the full-dimensional orthogonal dynamics eQZ t . Fur-

ther simplification K(Q, t) ≈ θ(t) leads to the common GLE with a homogeneous kernel. Alter-

natively, the pairwise approximation [K(Q, t)]i j ≈ γ(Qi j)δ (t) or γ(Qi j)θ(t) leads to the standard

DPD (M-DPD) and non-Markovian variants (NM-DPD), respectively. However, as shown below,

such empirical forms are limited to capturing the state-dependence that turns out to be crucial for

the dynamics on the collective scale, and motivates the present model retaining the many-body

nature of K(Q, t).

To elaborate the essential idea, let us start with the Markovian approximation K(Q, t) ≈

−Γ(Q)δ (t), where Γ(Q) = Ξ(Q)Ξ(Q)T is the friction tensor preserving the semi-positive defi-

nite condition, and Ξ(Q) needs to retain the translational, rotational, and permutational symmetry,

i.e.,

Ξi j(Q1 +b, · · · ,QM +b) =Ξi j(Q1, · · · ,QM)

Ξi j(U Q1, · · · ,U QM) = U Ξi j(Q1, · · · ,QM)U T

Ξσ(i)σ( j)(Qσ(1), · · · ,Qσ(M)) =Ξi j(Q1, · · · ,QM),

(2)

where Ξi j ∈ R3×3 represents the friction contribution of j-th particle on i-th particle, b ∈ R3 is a

translation vector, U is a unitary matrix, and σ(·) is a permutation function.

To inherit the many-body interactions, we map the local environment of each CG particle into

a set of generalized coordinates, i.e., Q̂k
i = Qi+∑l∈Ni f k(Qil)Qil , where f : R→RK is an encoder

function to be learned, and Ni = {l|Qil < rc} is the neighboring index set of the i-th particle within

a cut-off distance rc. Accordingly, Q̂i j ∈ R3×K represents a set of features that encode the inter-

molecular configurations beyond the pairwise approximation. The k-th column Q̂k
i j = Q̂k

i − Q̂k
j

preserves the translational and permutational invariance, by which we represent Ξi j by

Ξi j =
K

∑
k=1

hk(Q̂T
i jQ̂i j)Q̂k

i j⊗ Q̂k
i j +h0(Q̂T

i jQ̂i j)I (3)
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where h : RK×K → RK+1 are encoder functions which will be represented by NNs. For i = j, we

have Ξii =−∑ j∈Ni Ξi j based on the Newton’s third law. We refer to Appendix E for the proof of

the symmetry constraint (2).

Eq. (3) entails the state-dependency of the memory term K(Z, t) under the Markovian approxi-

mation. To incorporate the non-Markovian effect, we embed the memory term within an extended

Markovian dynamics [35] (see also Ref. [47]). Specifically, we seek a set of non-Markovian fea-

tures ζ := [ζ1,ζ2, · · · ,ζn], and construct the joint dynamics of [Z,ζ] by imposing the many-body

form of the friction tensor between P and ζ, i.e.,

Q̇ = M−1P

Ṗ =−∇U(Q)+Ξ(Q)ζ

ζ̇ =−Ξ(Q)T V−Λζ+ξ(t),

(4)

where Ξ =
[
Ξ1Ξ2 · · ·Ξn] and each sub-matrix takes the form (3) constructed by {fi(·),hi(·)}n

i=1

respectively. Λ= Λ̂⊗I represents the coupling among n features, where I∈R3N×3N is the identity

matrix and Λ̂ ∈Rn×nneeds to satisfy the Lyapunov stability condition Λ̂+ Λ̂T ≥ 0. Therefore, we

write Λ̂ = L̂L̂T + L̂a, where L̂ is a lower triangular matrix and L̂a is an anti-symmetry matrix

which will be determined later. By choosing the white noise ξ(t) following〈
ξ(t)ξ(t ′)

〉
= β

−1(Λ+ΛT )δ (t− t ′), (5)

we can show that the reduced model (4) retains the consistent invariant distribution, i.e., ρ(Q,P,ξ)∝

exp[−β (U(Q)+PT M−1P/2+ζTζ/2)] (see proof in Appendix C).

Eq. (4) departs from the common CG models by retaining both the heterogeneity and non-

Markovianity of the energy dissipation process. Rather than matching the mean-field metrics

such as the homogeneous VACF, we learn the embedded memory Ξ(Q(t))eΛ(t−s)Ξ(Q(s))T based

on the MZ form. However, directly solving the orthogonal dynamics eQZLt is computation-

ally intractable. Alternatively, we introduce the constrained dynamics z̃(t) = eRtz(0) following

Ref. [32]. Based on the observation PQ = PR ≡ 0, we sample the MZ form from z̃(t),

i.e., KMZ(Z, t) = PZ [(eRtQZL P)(QZL P)T ] and the memory of the CG model reduces to

KCG(Z, t) = Ξ(Q)eΛtΞ(Q)T . This enables us to train the CG models in terms of the encoders

{fi(·),hi(·)}n
i=1 and matrices L̂ and L̂a by minimizing the empirical loss

L =
Ns

∑
l=1

Nt

∑
j=1

∥∥∥KCG(Z(l), t j)−KMZ(Z(l), t j)
∥∥∥2

, (6)

where l represents the different CG configurations (see Appendix F for details in training).
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III. NUMERICAL RESULTS

To demonstrate the accuracy of the present model, we consider a full micro-scale model of a

star-shaped polymer melt system similar to Ref. [32], where each molecule consists of 73 atoms.

The atomistic interactions are modeled by the Weeks-Chandler-Anderse potential and the Hookean

bond potential. The full system consists of 486 molecules in a cubic domain 90× 90× 90 with

periodic boundary conditions. The Nosé-Hoover thermostat [52, 53] is employed to equilibrate

the system with kBT = 4.0 and micro-canonical ensemble simulation is conducted during the

production stage (see Appendix B) for details). Below we compare different dynamic properties

predicted by the full MD and the various CG models. For fair comparisons, we use the same CG

potential U(Q) constructed by the DeePCG scheme [19] for all the CG models; the differences in

dynamic properties solely arise from the different formulations of the memory term.
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FIG. 1. The VACF of the full MD and CG models with various memory formulations in (a) semi-log scale

(b) original scale. “M” and “NM” represent Markovian and Non-Markovian; GLE, DPD, and MB represent

state-independent, pairwise, and the present (NM-MB) model retaining the many-body effects, respectively.

Let us start with the VACF which has been broadly used in CG model parameterization and

validation. As shown in Fig. 1, the predictions from the present model (NM-MB) show good

agreement with the full MD results. In contrast, the CG model with the memory term represented

by the pairwise decomposition and Markovian approximation (i.e., the standard M-DPD form)

yields apparent deviations. The form of the pairwise decomposition with non-Markovian approx-
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imation (NM-DPD) shows improvement at a short time scale but exhibits large deviations at an

intermediate scale. Such limitations indicate pronounced many-body effects in the energy dissi-

pation among the CG particles. Alternatively, if we set the VACF as the target quantity, we can

parameterize the empirical model such as GLE by matching the VACF predicted by the full MD.

Indeed, the prediction from the constructed GLE recovers the MD results. However, as shown

below, this form over-simplifies the heterogeneity of the memory term and leads to inaccurate

predictions on the collective scales.
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FIG. 2. The VCCF Cxx(t;r0) predicted by the full MD and different CG models with initial distance (a)

10 < r0 < 11 and (b) 14 < r0 < 15. Same line legend as Fig. 1.

Fig. 2 shows the velocity cross-correlation function (VCCF) between two CG particles, i.e.,

Cxx(t;r0) = E[Vi(0) ·V j(t)|Qi j(0) = r0], where r0 represents the initial distance. Similar to VACF,

the present model (NM-MB) yields good agreement with the full MD results. However, the pre-

dictions from other empirical models, including the GLE form, show apparent deviations. Such

limitations arise from the inconsistent representation of the local energy dissipation and can be

understood as following. The VACF represents the energy dissipation on each particle as a ho-

mogeneous background heat bath; it is essentially a mean-field metric and can not characterize

the dissipative interactions among the particles. Hence, the reduced models that only recover the

VACF could be insufficient to retain the consistent local momentum transport and the correlations

among the particles.

7



0 5 10 15 20

0.5

0.0

0.5

1.0
Lo

ng
itu

di
na

l
(a)

0 5 10 15 20 0.00

0.25

0.50

0.75

1.00

Tr
an

sv
er

se

(b)

Time

FIG. 3. (a) Longitudinal and (b) Transverse hydrodynamic modes predicted by MD and different CG

models. Same line legend as Fig. 1.

Furthermore, the various empirical models for local energy dissipations can lead to fundamen-

tally different transport processes on the collective scale. Fig. 3 shows the normalized correla-

tions of the longitudinal and transverse hydrodynamic modes [54], i.e., CL(t) = 〈ũ1(t)ũ1(0)〉 and

CT (t) = 〈ũ2(t)ũ2(0)〉, where ũ = 1/M ∑
M
j=1 V jeik·Q j , k is the wave vector, and the subscripts 1

and 2 represent the direction parallel and perpendicular to k, respectively. Similar to the VCCF,

the prediction from the present model (NM-MB) agrees well with the MD results while other

models show apparent deviations. In particular, the prediction from the GLE model shows strong

over-damping due to the ignorance of the inter-molecule dissipations.

Finally, we examine the diffusion process on the collective scale. Fig. 4 shows the van

Hove function that characterizes the evolution of the inter-particle structural correlation defined

by G(r, t) ∝
1

M2 ∑
M
j 6=i δ (‖Qi(t)−Q j(0)‖− r). At t = 0, G(r, t) reduces to the standard radial distri-

bution function where all the CG models can recover such initial conditions. However, for t > 0,

predictions from the models with the pairwise decomposition (NM-DPD) and the GLE form show

apparent deviations. Specifically, at an early stage near t = 50, the neighboring particles begin to

artificially jump into the region near the reference particle, violating the fluid-structure thereafter.

In contrast, the present model (NM-MB) shows consistent predictions of the structure evolution

over a long period until t = 1000, when the initial fluid structure ultimately diffuses into a homo-
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FIG. 4. The van Hove function predicted by (a) full MD (b) the present NM-MB model (c) NM-DPD model

(d) GLE model.

geneous state.

IV. SUMMARY

To conclude, we developed a CG model that faithfully accounts for the broadly overlooked

many-body nature of the non-Markovian memory term. We show that retaining the heterogene-

ity and the strong correlation of the local energy dissipation is crucial for accurately predicting

the cross-correlation among the CG particles, which, however, can not be fully characterized by

the mean-field metrics such as VACF. More importantly, the memory form representing the inter-
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molecule energy dissipations may play a profound role in the transport and diffusion processes

on the collective scale. In particular, the present model accurately predicts the hydrodynamic

mode correlation and the van Hove function where empirical forms show limitations, and there-

fore, shows the promise to study challenging problems relevant to the meso-scale transition and

synthesis processes.
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Appendix A: Dynamics of the coarse-grained variables

We consider a full MD system consisting of M molecules with a total number of N atoms. The

phase space vector is denoted by z = [q,p], where q ∈R3N and p ∈R3N represent the position and

momentum vector, respectively. The coarse-grained (CG) variables are defined by representing

each molecule as a CG particle, i.e., φ(z) =
[
φQ(q),φP(q)

]
, where φQ = [Q1,Q2, · · ·QM] and

φP = [P1,P2, · · ·PM] represent the center of mass (COM) and the total momentum of the individual

molecules. Let Z(t) = [Q(t),P(t)] denote the map φ(z(t)) with z(0) = z0. Using the Koopman

operator [55], Z(t) can be mapped from the initial values, i.e.,

Z(t) = eL tZ(0), (A1)

where L is the Liouville operator determined by the full-model Hamiltonian H(z). Below we

derive the reduced model by choosing CG variables Z as a linear mapping of the full phase-space

vector z (see also Ref. [56]) and we refer to Refs. [32, 57] for discussions of the more general

cases.

Following Zwanzig’s approach, we define a projection operator as the conditional expectation

with a fixed CG vector Z, i.e., PZ f (z) :=
∫

δ (φ(z)−Z)ρ0(z) f (z)dz/Ω(Z), where ρ0(z) ∝

e−βH(z) represents the equilibrium density function and Ω(Z) =
∫

δ (φ(z)−Z)ρ0(z)dz. Also, we

define an orthogonal operator QZ = I−PZ . Using Eq. (A1), we have Ż(t) = eL tPZL Z(0)+

eL tQZL Z(0). In particular, we choose Z = Z(0). Using the Duhamel-Dyson identity, we can
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write the dynamics of Z(t) as

Ż(t) = eL tPZL Z(0)+
∫ t

0
dseL (t−s)PZL eQZL sQZL Z(0)+ eQZL tQZL Z(0). (A2)

Let us start with the mean-field term PZL Z(0). For the present study, the CG variables

are linear functions of z. Therefore, we have PZL Q = L Q = M−1P, i.e., QZL Q ≡ 0. For

PZL P associated with the i-th CG particle, we have

PZL Pi =
∫

δ (φ(z)−Z)ρ0(z)L Pi dz/Ω(Z)

=
∫

δ (φ(z)−Z)ρ0(z)(− ∑
i∈Ni

∇qiH(z))dz/Ω(Z)

=
∫

δ (φ(z)−Z)(β−1
∑

i∈Ni

∇qi)ρ0(z)dz/Ω(Z)

= β
−1

∇Qi

∫
δ (φQ(q)−Q)ρ0(q)dq/

∫
δ (φQ(q)−Q)ρ0(q)dq

=−∇QiU(Q),

(A3)

where Ni represents the index set of the atoms that belongs to the i-th molecule, and U(Q) repre-

sents the free energy defined by U(Q) =−β−1 ln
[∫

δ (φQ(q)−Q)ρ0(q)dq
]
.

For the memory term PZL eQZL sQZL P associated with the i-th CG particle, we have

PZL eQZL sQZL Pi =
∫

ρ0(z)δ (φ(z)−Z)L eQZL sQZL Pi dz/Ω(Z)

=
∫

ρ0(z)(L φ(z) ·∇Z)δ (φ(z)−Z)eQZL sQZL Pi dz/Ω(Z)

=
∫

ρ0(z)(QZL P ·∇P )δ (φ(z)−Z)eQZL sQZL Pi dz/Ω(Z) (by QZL Q≡ 0)

= ∇P ·
∫

ρ0(z)δ (φ(z)−Z)(QZL P)⊗ eQZL sQZL Pi dz/Ω(Z)

= ∇P ·
(∫

ρ0(z)δ (φ(z)−Z)(QZL P)⊗ eQZL sQZL Pi dz/Ω(Z)

)
︸ ︷︷ ︸

K̃i,(Z,s)

− K̃i,(Z,s) ·∇P (1/Ω(Z))Ω(Z).

(A4)

Furthermore, we take the assumption that the memory kernel only depends on the positions of the

CG particlesQ, i.e., ∇P · K̃(Z,s)≡ 0. Also, similar to the derivation in Eq. (A3), we note that

Ω(Z) ∝

∫
δ (φQ(q)−Q)ρ0(q)δ (φP(q)−P )e−βPT M−1P/2 dz ∝ e−βP T M−1P /2. (A5)

Therefore, Eq. (A4) can be further simplified as

PZL eQZL sQZL Pi =−β K̃i,(Q,s) ·M−1P . (A6)

11



With Eqs. (A3) (A6), we can show that the dynamics of Z = [Q,P] can be written as

Q̇ = M−1P

Ṗ =−∇U(Q)−
∫ t

0
K(Q(t− s),s)V(t− s)ds+R(t),

(A7)

where K(Q,s) = β K̃(Q,s) and R(t) = eQZL tQZL Z(0) is modeled as a random process repre-

senting the different initial condition z0 with φ(z0) =Z.

Appendix B: The micro-scale model of the polymer melt system

We consider the micro-scale model of a star-shaped polymer melt system similar to Ref. [32].

Each polymer molecule consists of a “center” atom connected by 12 arms with 6 atoms per arm.

The potential function is governed by the pairwise and bond interactions, i.e.,

V (q) = ∑
i6= j

Vp(qi j)+∑
k

Vb(lk), (B1)

where Vp is the pairwise interaction between both the intra- and inter-molecular atoms except the

bonded pairs. qi j = ‖qi−q j‖ is the distance between the i-th and j-th atoms. Vp takes the form of

the Lennard–Jones potential with cut-off rc, i.e.,

Vp(r) =

VLJ(r)−VLJ(rc), r < rc

0, r ≥ rc

VLJ(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]
, (B2)

where ε = 1.0 is the dispersion energy and σ = 2.415 is the hardcore distance. Also we choose

rc = 21/6σ so that Vp recovers the Weeks-Chandler-Andersen potential. Vb is the bond interaction

between the neighboring particles of each polymer arm and lk is the length of the k-th bond. The

bond potential Vb is chosen to be the harmonic potential, i.e.,

Vb(l) =
1
2

ks(l− l0)2, (B3)

where ks = 1.714 and l0 = 1.615 represent the elastic coefficient and the equilibrium length l0,

respectively. The atom mass is chosen to be unity. The full system consists of N = 486 polymer

molecules in a cubic domain 90×90×90 with periodic boundary condition imposed along each

direction. The Nosé-Hoover thermostat is employed to equilibrate the system with kBT = 4.0 and

micro-canonical ensemble simulation is conducted during the production stage.
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Appendix C: Invariant density function of the CG model

The reduced model takes the following form

Q̇ = M−1P

Ṗ =−∇U(Q)+Ξ(Q)ζ

ζ̇ =−Ξ(Q)T V−Λζ+ξ(t),

(C1)

where Ξ =
[
Ξ1Ξ2 · · ·Ξn] represents a set of non-Markovian features. It resembles the extended

dynamics for the GLE proposed in Ref. [47] except that the coupling between P and the features

ζ are represented by the state-dependent friction tensor Ξ(Q) retaining the many-body nature. By

properly choosing the white noise ξ(t), we can show that model (C1) retains the invariant density

function consistent with the full MD model.

Proposition C.1. By choosing the white noise ξ(t) following〈
ξ(t)ξ(t ′)

〉
= β

−1(Λ+ΛT )δ (t− t ′), (C2)

Model (C1) retains the consistent invariant distribution

ρeq(Q,P,ξ) ∝ exp[−β (U(Q)+PT M−1P/2+ζTζ/2)] (C3)

Proof. Let Z̃ = [Q,P,ζ] denote the resolved variables and W (Z̃) =U(Q)+PT M−1P/2+ζTζ/2

the free energy of the extended dynamics. Model (C1) can be written as the following gradient

dynamics

dZ̃
dt

=


0 I 0

−I 0 Ξ(Q)

0 Ξ(Q)T Λ


︸ ︷︷ ︸

G(Q)

∇Z̃W (Z̃)+ ξ̃(t),

where ξ̃(t) = [0,0,ξ(t)]. Accordingly, the Fokker-Planck equation takes the form

∂ρ(Z̃, t)
∂ t

= ∇ ·
(
−G(Q)∇W (Z̃)ρ(Z̃, t)− 1

2
β
−1(G(Q)+G(Q)T )∇ρ(Z̃, t)

)
.

Plug Eq. (C3) into the above equation, we have

∇ ·
(

β
−1G(Q)∇ρeq(z, t)−

1
2

β
−1(G(Q)+G(Q)T )∇ρeq(z, t)

)
= β

−1
∇ ·
(
Λ̃A

∇ρeq(z, t)
)

≡ 0,
(C4)

where Λ̃= diag(0,0,Λ) and Λ̃A is anti-symmetric.
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Appendix D: Conservative free energy of the CG model

The equilibrium density distribution of the CG model needs to match the marginal density

distribution of the CG variables of the full model. Due to the unresolved atomistic degrees of

freedom, the conservative CG potential U(Q) =−β−1 ln
[∫

δ (φQ(q)−Q)ρ0(q)dq
]

(up to a con-

stant) generally encodes the many-body interactions even if the full MD force field is governed

by two-body interactions. As shown in the previous study [31, 32], accurate modeling of this

many-body potential U(Q) is crucial for predicting the static/equilibrium structure properties such

as the radial distribution, angle (i.e., three-body) distribution, and the equation of state. It pro-

vides the starting point for the present study focusing on constructing reliable reduced models that

accurately predict the non-equilibrium processes on the collective scale.

To establish a fair comparison among the various CG models, we use the same conservative CG

potential U(Q) constructed by DeePCG [19] method for all the CG models. As shown in Fig. 5,

all the CG models can accurately recover the radius distribution function (RDF) of the full MD

model, where the standard pairwise approximation shows limitations. This result validates the

accuracy of the constructed U(Q). Therefore, the different non-equilibrium properties predicted

by the various CG models (presented in the main manuscript) arise from the different formulations

of the memory term K(Q, t), which is the main focus of the present study.

Appendix E: Symmetry-preserving neural network representation

Preserving the physical symmetry constraints is crucial for both the accuracy and the gen-

eralization ability of the constructed ML-models. Besides the conservative potential U(Q), the

constructed memory term will need to satisfy the translation- and permutation-invariance, as well

as the rotation-symmetries. Let Tb, RU , and Pσ denote the translation, rotation, and permutation

operator whose actions on a general function F (Q1, · · · ,QM) defined by

TbF (Q1, · · · ,QM) := F (Q1 +b, · · · ,QM +b),

RU F (Q1, · · · ,QM) := F (Q1U , · · · ,QMU ),

PσF (Q1, · · · ,QM) := F (Qσ(1), · · · ,Qσ(M)),

(E1)

where b ∈ R3 is a position vector, U ∈ R3×3 is an orthogonal matrix and σ is an arbitrary per-

mutation of the set of indices. The components of the constructed memory will need to satisfy the
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FIG. 5. The radius distribution function (RDF) of the full MD and various CG models with the same

conservative CG potential U(Q) constructed by the DeepCG model.

symmetry constraints

TbΞi j(Q1, · · · ,QM) =Ξi j(Q1, · · · ,QM)

RU Ξi j(Q1, · · · ,QM) = U Ξi j(Q1, · · · ,QM)U T

PσΞi j(Q1, · · · ,QM) =Ξσ(i)σ( j)(Qσ(1), · · · ,Qσ(M)),

(E2)

Proposition E.1. The representation Ξi j =
K

∑
k=1

hk(Q̂T
i jQ̂i j)

(
Q̂k

i j

)(
Q̂k

i j

)T
+h0(Q̂T

i jQ̂i j)I preserves

the symmetry conditions (E2), where Q̂k
i = Qi + ∑

l∈Ni

f k(Qil)Qil represents the local environment-

determined features (generalized coordinate) for the i-th particle, f : R→ RK and h : RK×K →

RK+1 are two encoder functions.

Proof. We note that TbQi j = TbQi−TbQ j = Qi j, TbQi j =
∥∥TbQi−TbQ j

∥∥ = Qi j, RU Qi j =

U Qi j, RU Qi j =Qi j, Pσ Qi j =Qσ(i)σ( j), and Pσ Qi j =Qσ(i)σ( j). Therefore, for arbitrary indices
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i and k, the feature Q̂k
i satisfy the following symmetry conditions

TbQ̂k
i = TbQi + ∑

l∈Ni

f k(TbQil)TbQil = Q̂k
i +b

RU Q̂k
i = RU Qi + ∑

l∈Ni

f k(RU Qil)RU Qil = U Q̂k
i

Pσ Q̂k
i = Pσ Qi + ∑

l∈Nσ(i)

f k(Pσ Qil)Pσ Qil = Q̂k
σ(i),

(E3)

where we have used the fact that ∑l f (rl)rl is permutational invariant for the last equation.

Therefore, we have TbQ̂i j = TbQ̂i−TbQ̂ j = Q̂i j, TbQ̂i j = ‖TbQ̂i−TbQ̂ j‖= Q̂i j, RU Q̂i j =

U Q̂i j, RU Q̂i j = Q̂i j, Pσ Q̂i j = Q̂σ(i)σ( j), and Pσ Q̂i j = Q̂σ(i)σ( j). Thus, for arbitrary indices i, j

and k, the encoder functions hk(Q̂i jQ̂T
i j) satisfy the following symmetry condition

Tbhk(Q̂T
i jQ̂i j) = hk((TbQ̂i j)

T TbQ̂i j) = hk(Q̂T
i jQ̂i j)

RU hk(Q̂T
i jQ̂i j) = hk((RU Q̂i j)

T RU Q̂i j) = hk(Q̂T
i jQ̂i j)

Pσ hk(Q̂T
i jQ̂i j) = hk(Q̂T

σ(i)σ( j)Q̂σ(i)σ( j)).

(E4)

Plugging Eq. (E4) into the definition of Ξi j yields (E2).

Appendix F: Training Details

With the equilibrium stage presented in Sec. B, we use constrained dynamics to collect samples

of the instantaneous force F(t) on individual molecules with a fixed configuration Z := [Q̃, P̃],

where Q̃ and P̃ represent the COMs and total momentum of the individual molecules. As they are

linear functions of the full phase space vector z = [q,p], the constraint dynamics (see Ref. [32])

for the j-th atomistic particle associated with the i-th molecule follows

q̇ j = m−1p j− Q̃i

ṗ j =−∇q jV (q)+
1

Nm
∑

k∈Ni

∇qkV (q)
(F1)

where V (q) is the potential function of the full MD model and Nm is the number of atoms per

molecule. With Z(0) = Z, we have Z(t) ≡ Z for t > 0 under (F1). The memory kernel can be

sampled from the time correlation as

KMZ(Z, t) =
〈
δF(t)δF(0)T〉

Z
, (F2)
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where δF = F−PZ(F) is the fluctuation force on individual molecules and PZ(F) is the mean

force obtained from the many-body potential U(Q) discussed in D. We collect two configuration

samples consisting of 486 molecules. For each configuration, 5000 independent ensembles are

conducted with a production stage of 500000 steps to compute the correlation function.

The encoder functions f and h are parameterized as 4-layer fully connected neural networks.

Each hidden layer consists of 10 neurons. The number of state-dependent features is set to be

K = 10 and the number of non-Markovian features n = 5.

The NNs are trained by Adam [58] for 1000000 steps. For each step, 5 targeted CG particles

and their neighbors within the cutoff will be selected as one training set. The initial learning rate

is 1×10−3 and the decay rate is 0.5 per 100000 steps.
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