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Abstract

Safe reinforcement learning (RL) aims to learn
policies that satisfy certain constraints before de-
ploying them to safety-critical applications. Pre-
vious primal-dual style approaches suffer from
instability issues and lack optimality guarantees.
This paper overcomes the issues from the perspec-
tive of probabilistic inference. We introduce a
novel Expectation-Maximization approach to nat-
urally incorporate constraints during the policy
learning: 1) a provable optimal non-parametric
variational distribution could be computed in
closed form after a convex optimization (E-step);
2) the policy parameter is improved within the
trust region based on the optimal variational distri-
bution (M-step). The proposed algorithm decom-
poses the safe RL problem into a convex optimiza-
tion phase and a supervised learning phase, which
yields a more stable training performance. A wide
range of experiments on continuous robotic tasks
shows that the proposed method achieves signifi-
cantly better constraint satisfaction performance
and better sample efficiency than baselines. The
code is available at https://github.com/
liuzuxin/cvpo-safe-rl.

1. Introduction

The past few years have witnessed great success of rein-
forcement learning (RL) (Mnih et al., 2013; Silver et al.,
2017). However, deploying a trained RL policy to the real
world is challenging. One of the major obstacles is to en-
sure the learned policy satisfies safety constraints. Safe RL
studies the RL problem subject to certain constraints, where
the agent aims to not only maximize the task reward return,
but also limit the constraint violation rate to a certain level.
However, learning a parametrized policy that satisfies con-
straints is not a trivial task, especially when the policy is

!Carnegie Mellon University *Nuro Inc. *University of
Illinois Urbana-Champaign. Correspondence to: Zuxin Liu
<zuxinl@cmu.edu>, Ding Zhao <dingzhao@cmu.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

represented by black-box neural networks (Liu et al., 2020;
As et al., 2022; Chen et al., 2021).

Many researchers have pointed out that prior knowledge
of the environment (Dalal et al., 2018; Cheng et al., 2019;
Thananjeyan et al., 2021; Chen et al., 2021) and expert
interventions (Saunders et al., 2017; Alshiekh et al., 2018;
Wagener et al., 2021) are helpful to improve safety, but the
required domain knowledge on the dynamics, constraints, or
the existence of an expert oracle may not always be available.
This paper studies the safe RL problem in a more general
setting: learning a safe policy purely from interacting with
the environment and receiving constraint violation signals.
We aim to unveil and resolve the fundamental issues for safe
RL from the constrained optimization perspective.

Most constrained optimization approaches for safe RL are
under the primal-dual framework, which transforms the
original constrained problem into an unconstrained one by
introducing the dual variables (i.e., Lagrange multipliers)
to penalize constraint violations (Chow et al., 2017; Liang
et al., 2018; Tessler et al., 2018; Bohez et al., 2019; Ray
et al., 2019). However, the primal-dual iterative optimiza-
tion may run into numerical instability issues and lacks opti-
mality guarantee for each policy iteration (Chow et al., 2018;
Stooke et al., 2020). The instability usually comes from im-
balanced learning rates of the primal and dual problem, and
the optimality term means both feasibility (constraint sat-
isfaction) and reward maximization. Another line of work
approximate the constrained optimization problem with low-
order Taylor expansions such that the dual variables could
be solved efficiently (Achiam et al., 2017; Yang et al., 2020;
Zhang et al., 2020) , but the induced approximations errors
may yield poor constraint satisfaction performance in prac-
tice (Ray et al., 2019). In addition, these policy-gradient
algorithms are on-policy by design, and extending them to a
more sample efficient off-policy setting is non-trivial. Note
that in safe RL context, sample efficiency means using both
minimum constraint violation costs and minimum interac-
tion samples to achieve the same level of rewards. As a
result, a constrained RL optimization method that is 1) sam-
ple efficient, 2) stable and has 3) performance guarantees is
absent in the literature.

To bridge the gap, this paper proposes the Constrained Vari-
ational Policy Optimization (CVPO) algorithm from the
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probabilistic inference view. CVPO transforms the safe RL
problem to a convex optimization phase with optimality
guarantees and a supervised learning phase with policy im-
provement bound and the robustness guarantee to recover
to the feasible region, which ensure stable training perfor-
mance. The off-policy implementation also gives rise to
high sample-efficiency in practice. The main contributions
of this work are summarized as follows:

1. To our best knowledge, this is the first work that for-
mulates safe RL as a probabilistic inference problem,
which enables us to leverage the rich toolbox of infer-
ence techniques to solve the safe RL problem. These
techniques are used to overcome many drawbacks of
previous primal-dual policy optimization fashion, such
as unstable training and lack of optimality guarantee.

2. We propose a novel two-step algorithm in an Expec-
tation Maximization (EM) style to naturally incorpo-
rate safety constraints during the policy training. An
optimal and feasible non-parametric variational distri-
bution is solved analytically during the E-step, and
then the parametrized policy is trained via a supervised
learning fashion during the M-step, which allows us to
improve the policy with off-policy data and increase
the sample efficiency.

3. We show the closed-form variational distribution in
the E-step could be computed efficiently with prov-
able optimality guarantee. The efficiency arises from
the strict convexity of the dual problem in most cases,
which ensures the uniqueness and optimality of the
solution, and we did not find similar claims and proofs
in the literature. Furthermore, the trust-region regular-
ized policy improvement during the M-step gives us a
worst-case constraint violation bound and robustness
guarantee against worst-case training iterations.

4. We evaluate CVPO on a series of continuous control
tasks. The empirical experiments demonstrate the ef-
fectiveness of the proposed method — more stable train-
ing, better constraint satisfaction, and up to 1000 times
better sample efficiency than on-policy baselines.

2. Preliminary and Related Work
2.1. Constrained Markov Decision Processes

Constrained Markov Decision Processes (CMDPs) provide
a mathematical framework to describe the safe RL prob-
lem (Altman, 1998), where the agents are enforced with
restrictions on auxiliary safety constraint violation costs. A
CMDP is defined by a tuple (S, A, P, r,, po, C), where S
is the state space, A is the action space, P : S x A x § —
[0,1] is the transition kernel that specifies the transition
probability p(s;y1|st, a;) from state s; to sy under the

action ay, 7 : S X A — R is the reward function, v — [0, 1)
is the discount factor, and pg : S — [0, 1] is the distribution
over the initial states. The last element C' is a set of costs
{¢i : S x A —= Rx¢,i=1,2,...,m} for violating m con-
straints, which is the major difference between CMDP and
traditional Markov Decision Process (MDP). Depending on
the application, the cost ¢; € C' has different representations
and physical meanings. For instance, it could be an indicator
cost signal for being in an unsafe set of states and actions,
or a continuous function of the distance w.r.t the constraint
boundary. For simplicity of notation, we consider one uni-
versal constraint function c € C': § x A — R>¢ exists in
the CMDP to characterize the corresponding constrained
RL problem, which resembles the notation of reward func-
tion. All the definitions and theorems in this paper could be
extended to multiple constraints as well.

Let 7(a|s) denote the policy, and 7 = {sg, ag, ..., } denote
the trajectory. We use shorthand r, = r(s¢,a;) and ¢; =
¢t (8¢, at) for simplicity. The discounted expect return of the
reward under the policy 7 is J.(7) = Erox[> o 774
and similarly the discounted expected return of the cost is
Jo(m) = Ern[> oo ¥ ee], where the initial state sg ~ po.
The objective of a safe RL problem is to find the policy
7* that maximizes the expected cumulative rewards while
limiting the costs incurred from constraint violations to a
threshold €; € [0, +00):

7" = argmax J.(m), s.t. Jo(m) < e (1)

2.2. Related Work

Constrained RL optimization. Primal-dual approach is
most commonly used in solving safe RL problems (Ding
et al., 2020; Bohez et al., 2019). Generally, the primal-dual
style algorithms alternate between optimizing the policy
parameters and updating the dual variables, which are usu-
ally performed via gradient descent (Tessler et al., 2018;
Liang et al., 2018; Zhang et al., 2020). Stooke et al. (2020)
view the dual problem as a control system and propose a
PID control method to update the Lagrange multipliers in
a more stable way. Though the primal-dual framework is
intuitive, the trained policy makes little safety guarantee
with respect to both the converged policy and the behavior
policy during each training iteration (Chow et al., 2018;
Xu et al., 2021). Several works introduce a KL-regularized
policy improvement mechanism and provide the worse-case
performance bound (Achiam et al., 2017; Yang et al., 2020),
however, the quadratic approximation of the original prob-
lem usually lead to high cost (Ray et al., 2019). In addition,
the primal-dual approaches heavily rely on an accurate on-
policy value estimation of constraints, so applying them
to off-policy settings is not easy: one needs to backpropa-
gate gradients from multiple Q-value functions to the policy
network, which may cause instability issues.
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RL as inference. Formulating RL as inference has been
extensively studied recently (Levine, 2018). Haarnoja et al.
(2017; 2018) perform exact inference over the probabilistic
graphical model of RL via message passing. Abdolmaleki
et al. (2018b;a) propose the Maximum a posteriori Policy
Optimization (MPO) method to improve the policy with off-
policy data in an Expectation-Maximization fashion, which
can achieve comparable performance and better sample effi-
ciency than on-policy methods. Song et al. (2019) extend
MPO to on-policy setting, and Fellows et al. (2019) propose
a variational inference (VI) framework for RL. While we
believe the flourishing development of powerful RL as infer-
ence methods could provide a fresh view over the safe RL
domain, however, a theoretical exploration of the connection
between them has so far been lacking.

3. Constrained Variational Policy
Optimization (CVPO)

We observe that under mild assumptions, safe RL could be
viewed as a probabilistic inference problem, which yields
CVPO — a generic approach to incorporate safety con-
straints in the inference step. We will detail our method in
this section and show how CVPO inherits many theoretical
benefits from both the RL as inference and the constrained
RL domain.

3.1. Constrained RL as Inference

Before presenting the inference view, we first introduce the
standard primal-dual perspective to solve CMDP, which
transforms the objective (1) into a min-max optimization by
introducing the Lagrange multiplier A:

(7", \*) = arg Y/\nzlgl max Jr(m) = A(Je(m) —€1). (2)

The core principle of primal-dual approaches is to solve the
min-max problem iteratively. However, the optimal dual
variable A = +oo when J.(7) > €; and A = 0 when
Jo(m) < €1, so selecting a proper learning rate for A is criti-
cal. Approximately solving the minimization also leads to
suboptimal dual variables for each iteration. In addition, the
non-stationary cost penalty term involving A will make the
policy gradient step in the primal problem hard to optimize,
just as shown in the upper diagram of Fig. 1.

To tackle the above problems, we view the safe RL prob-
lem from the probabilistic inference perspective — in-
ferring safe actions that result in “observed” high re-
ward in states. This is done by introducing an optimal-
ity variable O to represent the event of maximizing the
reward. Following similar probabilistic graphical mod-
els and notations in (Levine, 2018), we consider an in-
finite discounted reward formulation, where the likeli-
hood of being optimal given a trajectory is proportional
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Figure 1. Primal-dual view (upper) and inference view (lower).

to the exponential of the discounted cumulative reward:
p(O =11 7) x exp(}.,7'r¢/a), where « is a temper-
ature parameter. Denote the probability of a trajectory T
under the policy 7 as p,(7), then the lower bound of the
log-likelihood of optimality under the policy 7 is (see Ap-
pendix A.1 for proof):

log ps (0 = 1) = log / p(O=1|Tpe(r)dr ()

> Erg[Yy're] — aDxw(a(r)|p(7)) = T(a,7) )
t=0

where ¢(7) is an auxiliary trajectory distribution and 7 (g, )
is the evidence lower bound (ELBO). To ensure safety, we
limit the choices of ¢(7) within a feasible distribution family
that is subject to constraints. Recall that ¢; = c(s¢, a;) is
the cost for constraint violations. We define the feasible
distribution family in terms of the threshold ¢; as

o0

g = {q(als) : Erug[>_2'er] <er,a € Ays €S},

t=0

which is a set of all the state-conditioned action distributions
that satisfy the safety constraint. Afterwards, by factorizing
the trajectory distributions

q(r) = p(s0) [ [ (st41lse, ar)a(aclse), Vg € I,
>0

Pro (1) = (s0) [ [ P(sts1lst, ar)mo(acls)p(0),
>0

where 6 € O is the policy parameters, and p(6) is a prior
distribution, we obtain the following ELBO over the feasible
state-conditioned action distribution ¢(a|s) by cancelling
the transitions:

JT(0,0) =Errg | > (v're — aDxr(q([se) 70 (-]50)))
t=0
+logp(0), Vq(als;) € TIY.

&)
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Optimizing the new lower bound 7 (g, 6) w.r.t ¢ within the
feasible distribution space II5 (E-step) and m within the
parameter space © (M-step) iteratively via an Expectation-
Maximization (EM) fashion yields the Constrained Varia-
tional Policy Optimization (CVPO) algorithm. We could in-
terpret the inference formulation as answering “given future
success in maximizing task rewards, what are the feasible
actions most likely to have been taken?”, instead of “what
are the actions that could maximize task rewards while satis-
fying the constraints?” in the primal-dual formulation. The
decoupling choice by separating the E-step and M-step pro-
vides more flexibility to optimize the control policies and
select their representations. Similar idea is also adopted in
previous works for standard RL setting (Abdolmaleki et al.,
2018b;a).

Viewing safe RL as a variational inference problem has
many benefits. As shown in the lower diagram of Fig. 1, we
break the direct link between the inaccurate dual variable
optimization and the difficult policy improvement and intro-
duce a variational distribution in the middle to bridges the
two steps, such that the policy improvement could be done
via a much easier supervised learning fashion. The key chal-
lenges arise from the E-step because of the limitation of the
variational distribution within a constrained set. However,
we observe that the constrained ¢ could be solved analyti-
cally, efficiently, with optimality and feasibility guarantee
through convex optimization, as we show next.

3.2. Constrained E-step

The objective of this step is to find the optimal varia-
tional distribution ¢ € IIJ to improve the return of
task reward, while satisfying the safety constraint. At
the i-th iteration, we resort to perform a partial con-
strained E-step to maximize J (g, ) with respect to ¢ by
fixing the policy parameters § = 6;. We set the ini-
tial value of ¢ = mg, such that the return of task re-
ward Q%(s,a) and cost Q4(s,a) could be estimated by:

Q?(& CL) = Q:ei (57 a) = E7~ﬂ9i750:s,a0:a {Zzo fytrti| B

QZ(S, a) = Q:SI (Sa a) = ET~W9¢=80:s,ao:“[E1?io 'ytct} ’
where the trajectory 7 could be sampled from the replay
buffer and thus the critics could be updated in an off-policy
fashion. Given 7y, Qr " (s,a) and Q. (s, a), we further
optimize ¢(+|s) by the following KL regularized objective:

J(q) =E,, |:Eq(-|s) Q7" (s,a)] — OZDKL(QHM)}
s.t. qu {Eq“\s) [Q:si (S, a)” <e€

where p,(s) is the stationary state distribution induced by
g(als) and pg. The constraint ensures the optimized distri-
bution is within the feasible set I3 . Solving the E-step (6)
could be regarded as a KL-regularized constrained optimiza-
tion problem. However, since the expected reward return

term Ey (.| [Q:si (s, a)] could be on an arbitrary scale, it
is hard to choose a proper penalty coefficient « of the KL
regularizer for different CMDP settings. Therefore, we im-
pose a hard constraint e5 on the KL divergence between the
non-parametric distribution g(a|s) that to be optimized and
the parametrized policy 7y, (a|s). Then the E-step yields
the following constrained optimization:

q

st. E /q

0| [ alal
Ey, [ Di(a

max qu[/q(a\s)Q:Qi (s,a)da}

$)QI" (s,a)da] < 1
7
|

als)m,)] < €2

/q(a\s)da =1, Vs~ p,

where we have three constraints for this optimization prob-
lem in total. The first safety constraint in terms of ¢, is
to ensure the optimal non-parametric distribution belongs
to the feasible set such that the safety constraints of CMDP
could be satisfied. The second regularization constraint in
terms of the KL threshold ey aims to restrict the optimized
variational distribution ¢ within a trust region of the old
policy distribution. The last equality constraint is to make
sure the solved g is a valid action distribution across all the
states. Intuitively, in E-step, we aim to find the optimal
variational distribution that 1) maximizes the task rewards,
2) belongs to the feasible distribution family HEQI, and 3)
stays within the trust region of the old policy.

Before solving the constrained optimization problem (7), we
need to specify the representation of the variational distribu-
tion g. The inference formulation of the safe RL problem
gives us the flexibility to choose its representation freely.
Note that if we use a parametric representation of g(als),
then the E-step is similar to the policy updating in CPO,
where we could regard optimizing ¢ as updating the pol-
icy parameters from 6; to 6;11. As such, the M-step is no
longer required. However, as shown in CPO, the constrained
optimization problem with a parametrized g is generally in-
tractable, so approximations over the parameter space are
usually required, which may lead to poor constraint satisfac-
tion (Ray et al., 2019).

To avoid the performance degradation induced by approxi-
mation errors, we choose a non-parametric form for g(als).
Namely, given a state s, we use |A| variables for g(-|s) if
the action space is finite. Otherwise, we sample K particles
within the action space to represent the variational distri-
bution for the continuous action space. By constructing a
non-parametric form of g, we could see that problem (7) is a
convex problem since the objective is linear and all the con-
straints are convex. Moreover, we could obtain the optimal
(and mostly unique) solution in an analytical form (8) after
solving a convex dual problem. We show the strong duality
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guarantee under mild assumptions (see Appendix A.2):
Assumption 1. (Slater’s condition). There exists a feasible
distribution q € HB within the trust region of the old policy
mo,: Dk (q||me,) < €.

Theorem 1. If assumption I holds, then the optimal varia-
tional distribution within 113 for problem (7) has the form:

0; _\x)b:
) = T o (=00

where Z(s) is a constant normalizer to make sure q* is a
valid distribution, and the dual variables n* and \* are the
solutions of the following convex optimization problem:

min
A,n>0

nE,, [logEmi [exp (

g(n, A) = Aer + nea+

QY (s,a) - AQY: (s, a)) H O

Theorem 1 suggests the non-parametric variational distri-
bution could be easily solved in close-form with optimality
guarantee, since Assumption 1 ensures zero duality gap.
Eq. (8) indicates that the optimal ¢ is re-weighted based
on the old policy my,, where the weights are controlled
by Q% (s,a), Q% (s,a),n, \. Note that the Q% (s,a) and
QY% (s, a) are viewed as constants here as discussed in sec-
tion 3.1. We can see that higher weights are given to the
actions that have higher future task rewards and lower safety
costs, where the weight between them is balanced by \. Intu-
itively, the dual variable 7 serves as a temperature to control
the flatness of the weights, such that the updated variational
distribution would not be far away from the old policy or
collapse to one action quickly. Higher n enforces stronger re-
strictions on the flatness, which makes sense since we limit
the solution within a trust region. One exciting property of
Theorem 1 is that we prove the strong convexity conditions
of the dual problem, which guarantees the optimality and
uniqueness of the solution, as shown below:

Theorem 2. The multivariate dual function g(n,\) in
(9) is convex on R2>0. It is strictly convex and has a
unique optimal solution when (1) Q% (s,-), Q% (s,-) are
not constant functions; (2) VC € R, 3ag, 5.t.Q% (s, ap) #
C-QY%(s,a0); and (3) X < +oc. When the Slater condition
in Assumption 1 holds, at least one optimal solution exists.

Proof and discussions are in Appendix A.3. Each condition
has corresponding meaning, as we explain in the following
remarks.

Remark 1. For the first condition, if Q. (s, ) is a constant
function, then the objective in (7) will always be a constant
— the optimization becomes meaningless since all the dis-
tributions that within the trust region should be the same;
if Qc(s,-) is a constant function, then the safety constraint

will be inactive, since no policy could change the feasibility
status. In addition, if Q.(s,-) is a constant, the gradient of
the safety constraint dual variable \ will either be a positive
constant when the problem is feasible (tends to make X — 0)
or a negative constant when the problem is infeasible (tends
to make A — 400).

Remark 2. The second condition indicates that if the task
reward @, value is proportional to the cost Q. value every-
where, then multiple optimal solutions may exist on the KL
constraint boundary or the safety constraint boundary. Intu-
itively, the problem becomes a bounded convex optimization
— maximizing the risks E,[Q. (s, a)] within the trust region
defined by €5 and a ball defined by e1. Though the solutions
may not be unique, the optimality could still be guaranteed
as long as the Slater’s condition 1 holds.

Remark 3. The third condition is equivalent to the violation
of our Slater’s condition assumption 1 — no distribution
exists within the trust region that satisfies the safety con-
straints. In that sense, the gradient of the dual variable A
will always be negative, and thus A — 00, which tends to
impose huge penalties on safety critics Q.. In practice, this
rarely happens since we could select a large KL threshold
for E-step and choose a much smaller trust region size for
M-step, such that n-step robustness could be guaranteed
and the Slater’s condition could be easily met, as we show
in Appendix A.7.

From Theorem 2 and above remarks, we can see the con-
ditions for strict convexity are easy to be satisfied: the Q
value functions should not be constants and the reward re-
turn will not be proportional to the cost return in most safe
RL settings. The strict convexity analysis guarantees the
uniqueness of the optimal solution in most situations and
provides some other theoretical implications of the E-M
procedure, such as the convergence to a stationary point
(Sriperumbudur et al., 2009). Furthermore, the Slater condi-
tion indicates that A < +o0 and the existence of an optimal
solution, which ensures the dual problem could be solved ef-
ficiently via any convex optimization tools. We believe this
finding is original and non-trivial, which also lays the theo-
retical foundation of the outstanding empirical performance
of our method, as we show in Sec. 4.

3.3. M-step

After E-step, we obtain an optimal feasible variational dis-
tribution ¢; (| s) for each state by solving (7). In M-step, we
aim to improve the ELBO (5) w.r.t the policy parameter 6.
By dropping the terms in Eq. (5) that are independent of 6,
we obtain the following M-step objective:

T(0) =By, [aBy 1) [log mo(als)] | +logp(6) (10)

where « is a temperature parameter to balance the weight be-
tween likelihood and prior, and ¢ (+|s) serve as the weights
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for the samples 7. Note that the objective could be viewed
as a weighted maximum a-posteriori problem, which is simi-
lar to MPO (Abdolmaleki et al., 2018b;a). Since optimizing
J () is a supervised learning problem, we could use any
prior p() to regularize the policy and use any optimization
methods to solve (10), depending on the policy parametriza-
tion. Particularly, we adopt a Gaussian prior around the old
policy parameter 6; in this paper: 6 ~ N (6;, %) where
Fy, is the Fisher information matrix and  is a positive con-
stant. With this Gaussian prior, we obtain the following
generalized M-step (see Appendix A.4 for detailed proof):

max E,, {Eq;(.\s)[logﬂe(ﬂs)} — BDku(mo; We)]~ 1D

Similar to the E-step, we convert the soft KL regularizer to
a hard KL constraint to deal with different objective scales:

meax qu [Eq;«(.‘s) [log 7T9(CL|S)H

st Ep, [Dxr(mo,(als)||lmo(als))] < e.

12)

The regularizer is important to improve the updating robust-
ness and prevent the policy from overfitting, as we will show
in the experiment section 4.4.

3.4. Theoretical Analysis

CVPO updates the policy by maximizing KL-regularized
objective functions in an EM manner, which brings it two
advantages over primal-dual methods — the ELBO improve-
ment guarantee and the worst-case constraint satisfaction
bound (see Appendix A.5 & A.6 for details).

Proposition 1. Suppose 7y, _, , 7y, satisfy the Slater’s con-
dition, then the ELBO in Eq. (5) is guaranteed to be non-
decreasing: J(q;,0;+1) > J(qi—1,6;).

Proposition 1 provides the policy improvement guarantee
for the reward. Regarding the constraint violation cost, we
have the following bound holds for CVPO:

Proposition 2. Suppose mp, € HEQI. 7,4, and g, are

related by the M-step (12), then we have the upper bound:

[(1—9) + V2eq)0. "+
(1—7)?

where 0. = max, [Eqr,,, [A%(5,0)]|, A% (s,a) is
the cost advantage function of my,.

JC(’]TOH—I) <€+

13)

We can see the worst-case episodic constraint violation up-
per bound for 7, , is related to the trust region size €
and the worst-case approximation error sl Though we
inherit a similar bound as CPO, our method ensures the
optimality of each update and could be done in a more
sample-efficient off-policy fashion. In addition, we observe
that by selecting proper KL constraints € in the M-step, we
have the following policy improvement robustness property:

Proposition 3. Suppose mp, € 1I5. my,,, and mp, are
related by the M-step. If € < €3, where €, €9 are the KL
threshold in M-step and E-step respectively, then the varia-
tional distribution q} , in the next iteration is guaranteed
to be feasible and optimal.

Proposition 3 provides us with an interesting perspective and
a theoretical guarantee of the policy improvement robust-
ness — no matter how bad the M-step update in one iteration
is, we are still able to recover to an optimal policy within the
feasible region. Furthermore, We find that under the Gaus-
sian policy assumption, multiple steps robustness could also
be achieved (see Appendix A.7 for proof and figure illustra-
tions). The monotonic reward improvement guarantee, the
worst-case cost bound and the policy updating robustness
together ensure the training stability of CVPO.

3.5. Practical Implementation

Another advantage of the proposed scheme is that the frame-
work can be easily applied to a more sample efficient off-
policy setting, which is important for safe RL because worse
samples efficiency usually indicates more constraint viola-
tions. Practically, the stationary state distribution p, could
be approximated by the samples from the replay buffer,
which yields the off-policy version of CVPO. Algo. 1 high-
lights the key steps of one training epoch for continuous
action space. To solve tasks with discrete action space, we
only need to replace summation with integration over action
space. We also decompose the KL constraints into separate
constraints on mean and covariance during the M-step (12)
to achieve better exploration-exploitation trade-off (Abdol-
maleki et al., 2018b). For more implementation details and
the full algorithm, please refer to Appendix B.1.

Algorithm 1 CVPO Training for One Epoch

Input: batch size B, particle size K, policy parameter 6;
Output: Updated policy parameter 6,1

Sample B transitions from replay buffer
> E-step begins
Update Q% , Q% via Bellman backup
forb=1,...,Bdo
Sample K actions {a1, ..., ax } for sp
Compute {Q% (sp, ar), Q% (sp,ar);k =1,..., K}.
end for
Compute optimal dual variables n*, A\* by solving the
convex optimization problem (9)
9: Compute the optimal variational distribution for each
state {¢*(-|sp);b =1, ..., B} by Eq. (8)
10: > M-step begins
11: Update policy from 7y, to 7y
learning objective (12)

P RN AR

.., via supervised
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4. Experiment

Motivated by previous works (Ray et al., 2019; Achiam
et al., 2017; Zhang et al.,, 2020; Stooke et al., 2020;
Gronauer, 2022), we designed 5 robotic control tasks with
different difficulty levels to show the effectiveness of our
method. Detail description of the task environments and
method implementations could be found in Appendix B.
The code is also available at https://github.com/
liuzuxin/cvpo-safe-rl.

4.1. Tasks

Circle Task. A car robot is expected to move on a circle in
clock-wise direction. The agent will receive higher rewards
by increasing the velocity and approaching the boundary of
the circle. The safety zone is defined by two parallel plane
boundaries that are intersected with the circle. The agent
receives a cost equals 1 upon leaving the safety zone. The
observation space includes the car’s ego states and the sens-
ing of the boundary. We name this task as Car-Circle.

Goal Task. The agent aims to reach the goal buttons while
avoiding static surrounding obstacles. After the agent press
the correct button, the environment will randomly select a
new goal button. The agent will receive positive rewards
for moving towards the goal button, and a bonus will be
given for successfully reaching the goal. A cost will be
penalized for violating safety constraints — colliding with
the static obstacles or pressing the wrong button. The obser-
vation space includes the agent’s ego states and the sensing
information about the obstacles and the goal, which is rep-
resented by pseudo LiDAR points. We use a Point robot
and a Car robot in this environment. We name them as
Point-Goal and Car-Goal.

Button Task. This task is a harder version of Goal, where
dynamic obstacles are presented in this task. The dynamic
obstacles are moving along a circle continuously, and the
agent needs to reach the goal while avoiding both static and
dynamic obstacles. We can see that the Button task is
harder than Circle and Goal, since the agent is required
to infer the surrounding obstacles’ states from raw sensing
data. We also use a Point robot and a Car robot, and we
name the tasks as Point-Button and Car-Button.

4.2. Baselines

Off-policy baselines. To better understand the role of varia-
tional inference, we use three off-policy primal-dual-based
baselines. In contrast to the vanilla Lagrangian-based ap-
proaches (Ray et al., 2019), we use a stronger baseline
— PID-Lagrangian approach (Stooke et al., 2020) — to
update the dual variables, which can achieve more stable
training. Since the Lagrangian approach could be easily
included in most existing RL methods in principle, we

adopt three well-known base algorithms: Soft Actor Critic
(SAC) (Haarnoja et al., 2018), Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2015), and Twin De-
layed DDPG (TD3) (Fujimoto et al., 2018). We name the
PID-Lagrangian-augmented safe RL versions as SAC-Lag,
DDPG-Lag and TD3-Lag.

On-policy baselines. Constrained Policy Optimization
(CPO) (Achiam et al., 2017) is used as the on-policy safe
RL baseline, since their KL-regularized policy updating
algorithm is closely related to us. Additionally, we use
two Lagrangian-based baselines that are commonly used in
previous works — TRPO-Lag and PPO-Lag, which are
modified from Trust Region Policy Optimization (Schulman
et al., 2015) and Proximal Policy Gradient (Schulman et al.,
2017). We also use TRPO as the unconstrained RL baseline
to show what is the best task reward performance when
ignoring the constraints.

For fair comparison, we use the same network sizes of the
policy and critics for all the methods, including CVPO (our
method). The safety critics updating rule and the discount-
ing factor are also the same for all off-policy methods. For
detailed hyperparameters, please refer to Appendix B.3.

4.3. Results

We separate the comparison with off-policy and on-policy
baselines because off-policy methods are more sample effi-
cient, so the scales for them are different and thus making it
hard to distinguish the plots. Due to the page limit, we only
present some results on a subset of tasks in this section. The
complete experimental results for each comparison on all
tasks could be found in the Appendix C.

Comparison to off-policy baselines. Fig. 2 shows the
training curves for off-policy safe RL approaches. The first
row is the undiscounted episodic task reward (the higher,
the better). The second row is the undiscounted episodic
cost (# of constraint violations), where the blue dashed line
is the target cost threshold. We can clearly see that CVPO
outperforms the off-policy baselines in terms of the con-
straint satisfaction while maintaining high episodic reward,
which validates the optimality and feasibility guarantee of
our method. Note that all the off-policy baselines use the
same network architecture and sizes for @), and Q). crit-
ics, and the major difference between them is the policy
optimization. The training curves also demonstrate better
stability of our approach, as we theoretically analyzed in
section 3.4.

Comparison to on-policy baselines. Fig. 3 shows the train-
ing curves for on-policy baselines. Note that the curves
for our method (CVPO) are the same as the ones in Fig. 2,
and they look to be squeezed because other on-policy base-
lines require much more samples to converge. Among the
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Figure 2. Training curves for off-policy baselines comparison. Each column corresponds to an environment. The curves are averaged over
10 random seeds, where the solid lines are the mean and the shadowed areas are the standard deviation.
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Figure 3. Training curves for on-policy baselines comparison.

baselines, TRPO-Lag and PPO-Lag have better constraint
satisfaction performance than CPO, though PPO-Lag suf-
fers from large variance and low task reward. CPO fails to
satisfy the constraint for the Goal and Button tasks, which
is probably caused by the approximation error during the
policy update, as we discussed in section 3.2. Surprisingly,
our method can achieve comparable task performance to the
unconstrained RL baseline — TRPO (purple curves), while
maintaining safety with much fewer constraint violations
than on-policy safe RL approaches.

Fig. 4 demonstrates the efficacy of utilizing each cost —
how much task rewards we could obtain given a budget of
constraint violations. The curves that approach to the upper
left are better because fewer costs are required to achieve
high rewards. We can clearly see that CVPO outperforms

baselines with large margin among all tasks — we use 100 ~
1000 times less cumulative constraint violations to obtain
the same task reward. Note that the x-axis is on the log-
scale.

Convergence cost comparison. Fig. 5 shows the box plot
of each method’s constraint satisfaction performance after
convergence. We define convergence as the last 20% train-
ing steps. The box plot — also called whisker plot — presents
a five-number summary of the data. The five-number sum-
mary is the minimum (the lower solid line), first quartile (the
lower edge of the box), median (the solid line in the box),
third quartile (the upper edge of the box), and maximum
(the upper solid line). As shown in the figure, on-policy
baselines have better constraint satisfaction performance
than off-policy baselines, which indicates that extending the
primal-dual framework to off-policy settings is non-trivial.
We find that our method meets the safety requirement better
and with smaller variance than most baselines. Interestingly,
we could observe that even the third quartile of cost of our
approach is below the target cost threshold, which indi-
cates that CVPO satisfies constraints state-wise, rather than
in expectation as baselines. The reason is that we sample
a mini-batch from the replay buffer to compute the opti-
mal non-parametric distribution for these states respectively,
while baseline approaches directly optimize the policy to
satisfy the constraints in expectation.

4.4. Ablation study

The role of KL regularizer in M-step. Fig. 6 shows the
importance of adding the KL constraint during the policy
improvement phase. Since the M-step is essentially a super-
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vised learning problem — fitting the policy with the optimal
distribution solved in the E-step, the policy may easily col-
lapse to local optimum action distributions computed from
the current batch of data. Without the KL constraints, the
worst-case performance bound in Proposition 2 tends to be
infinite and the robustness guarantee in Proposition 3 does
not hold, so the agent may fail to satisfy the constraints
(Car-Button task). In addition, the policy overfitting prevent
the agent from exploring more rewarding trajectories and
thus lead to low reward (Car-Circle and Point-Goal tasks).

5. Conclusion

We show the safe RL problem can be decomposed into a
convex optimization phase with a non-parametric variational
distribution and a supervised learning phase. We show the
unique advantages of constrained variational policy opti-
mization: 1) high sample-efficiency from the off-policy
variant of the approach; 2) stability ensured by the mono-
tonic reward improvement guarantee, worst-case constraint
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Figure 6. Ablation study of the KL constraint in M-step.

violation bound, and the policy updating robustness; and
3) with theoretical optimality and feasibility guarantees
by solving a provable and mostly strict convex optimization
problem in the E-step. We validate the proposed method
with extensive experiments, and the results demonstrate the
better empirical performance of our method than previous
primal-dual approaches in terms of constraint satisfaction
and sample efficiency.

The limitations include that our method would be more com-
putationally expensive than primal-dual approaches since a
convex optimization problem need to be solved in the E-step.
In addition, the performance would be heavily dependent
on the quality of reward and safety critics’ estimation due
to the off-policy training style. How to improve the critic’s
estimation of future constraint violations in safe RL is an
important and promising topic. We believe our work can
provide a new perspective in the safe RL field and inspire
more exciting research in this direction.
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A. Proofs and Discussions
A.1. Proof of the evidence lower bound (ELBO) in section 3.1

Denote the probability of a trajectory 7 under the policy 7 as p(7) = p(s0) [ [;5¢ P(St4+1 | S¢,a)m(as | s¢), then the lower
bound of the log-likelihood of optimality given the policy 7 is a

log s (0 = 1) = log | p(0 =1 | Pips(r)ir (14)
= ]_ T
g, [PO =70 "
q(7)
-1 -
q(7)
px(7)
=E;;logp(O=1]|7)+E;,log a7
q ( | ) q q(T)
xErng Zwt] — aDe(a(7)Ip< (7)) = T (g, 7) (18)
t=0
where inequality (16) follows Jensen’s inequality, ¢(7) is an auxiliary trajectory distribution.
A.2. Proof and discussion of Theorem 1 — the optimal variational distribution and the dual function
Recall that the objective in E-step:
max I, [/q(a|s)Q:61 (s, a)da}
st. E,, [/q(a|s)Q29i (s, a)da} <€
(19)
Ey, | Dict(a(als) |70, (als))] < e
/q(a|s)da =1, Vs~ pq.
Then we prove the optimal variational distribution analytical form and its dual function in Theorem 1.
Proof. To solve the constrained optimization problem, we first convert it to the equivalent Lagrangian function:
L(g, A\, n, k) = /pq(s) / q(a|s)Q:9i (s,a)dads (20)
+ A (61 - /pq(s) /q(a\s)QZai (s, a)dads> 21
+1n <€2 - /pq(s) /q(a\s) log a(als) dads) (22)
o, (als)

+r (1—/pq(s)/q(as)dads), 23)

where A, 7, k are the Lagrange multipliers for the constraints. Since the objective is linear and all constraints are convex
(note that KL is convex), the E-step optimization problem is convex. Then we obtain the equivalent dual problem:

min max L(q, A\, 7, k). (24)
AnE g
Take the derivative of Lagrangian function w.r.t g:
OL =y, e, q(als)
=Q, " (s, —\ .7 (s, —mn—k—nl . 25
5y = @ (5:0) = AQI" (5,0) — 5 —mlog T 25)
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Let Eq. (25) be zero, we have the form of the optimal ¢ distribution:

Q:Qi (Sa a) — )‘sti (s, a)) exp (_77 i ﬁ) )
n n

q"(als) = me,(als) exp < (26)

+K

where exp (—"T) could be viewed as a normalizer for g(al|s) since it is a constant that is independent of g. Thus, we

obtain the following form of the normalizer by integrating the optimal ¢:

exp (T] * KJ) = /mi (als) exp <Qr (s,a) = AQe i(s’a)> da, (27)
n n
L : == log/ﬁei (als) exp (QT (s,a) _T’)\QC i <S7a)> da. (28)

Take the optimal ¢ distribution in Equation (26) and "Jg—“ in Equation (28) back to the Lagrangian function (23), we can find
that most of the terms are cancelled out, and obtain the dual function g(7, A),

Z_rei Y Zre,
g(m, A) = X1 + nez +n/pq(8) log/m(a\é’) exp (Q (5,0) ; Qe (5:9) ) 4ogs, 29)
The optimal dual variables are calculated by
7, AT = argming(n, ). (30)
n,
O

A good property is that the dual function is convex (as we will prove in Appendix A.3), so we could use off-the-shelf
convex optimization tools to solve the dual problem. Also, under the Slater’s assumption (1) — there exists a feasible
distribution ¢ € TIg within the trust region of the old policy my,: Dkr.(q||ms,) < €2, we could solve the optimal dual
variables efficiently.

Lemma 1. (Strong duality). If the Slater condition in Assumption (1) holds, then the strong duality holds for the original
problem (7) and the dual problem (24).

Lemma 1 implies that the optimality of our closed form non-parametric distribution in Eq. (26) could be guaranteed, since
there is zero duality gap between the primal and dual problem.

Based on above proofs and lemma, we could easily obtain Theorem 1. Note that Theorem 1 is similar to the one in
FOCOPS (Zhang et al., 2020) but with several major differences: 1) they use a parametric policy as the optimization
objective in (8) instead of our non-parametric variational distribution. The parametrized form makes the problem hard to
solve analytically, and thus first-order approximation over the policy parameters is required; 2) we provide an analytical
form of the dual function and prove it is convex, such that the dual variables 7, A are guaranteed to be optimal by convex
optimization, while they use a gradient-based method to solve the dual variables, which is similar to the Lagrangian-based
methods in the literature (Stooke et al., 2020); 3) they consider the on-policy advantage estimations in their objective (8),
while we allow off-policy evaluation to update the policy, which should be more sample-efficient.

A.3. Proof and discussion of Theorem 2 — the dual function’s convexity and the condition of strong convexity

Note the dual function is the supremum of Lagrangian function w.r.t ¢:

g(na)‘) :maXL(Qa )\,777"5), 3D
q

where k can be calculated by Eq. (27) given q. While the convexity of dual function g has been proven in previous literature
(Proposition 1, section 8.3 in (Luenberger, 1997)), we further derive the conditions of strong convexity.
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Recall the dual function (we omit 6 to simplify the notation):

7\ - A c\9y
g(n, A) = Xe1 + nea +77/pq(s) 10g/7r(a|s) exp (Q (5,9) ; Qels a)) dads. (32)
Observe that the outer integral is independent of 7, A, so the convexity of g(n, A) is the same as:
r\9) - A c\2y
g(n, A) = Xer +nea + nlog/w(a|5) exp (Q (s,0) ; Qels a)) da. (33)

Remark 4. Interestingly, both dual functions could be used in off-policy implementation by tuning the batch size hyper-
parameter. We could view g(n, X) as solving the dual variables through a batch of data, while g(n, \) is a per-state variant
— batch size equals one. Namely, g(n, \) aims to compute the optimal dual variables for each state. Practically, we prefer
using the batch version because computing the dual for each state is computational expensive and sensitive to the Q-value
estimation error.

To further prove the strong convexity conditions of g, we first introduce the following lemmas.

Lemma 2. (Lagrange’s Identity) Given two functions f, g such that f f?(x)dxr < +o0, f g% (z)dx < 400, the following
equation holds,

b b b 2 bob
[ P [ gz<x>dx—< / f(m)g(m)dx) 5 | [ G@t) - 9@ w) dady. G

Proof.

LHS = / / £2(@)6 () dady — / f(2)g(x)dz / ey (35)
//f2 y)dxdy + = //f x)dxdy — //f )g(y)dxdy (36)

= g/a /a (f(2)g(y) — g(x) f(y))? dedy = RHS. -

O

According to the convexity of dual function, the Hessian matrix of g(A, n) is always positive semi-definite. Extending to this
generic property, the following lemma gives the conditions of strict positive definiteness of Hessian matrix in constrained
RL problem.

Lemma 3. The Hessian matrix H of g(\,n) is strlctly positive definite when (1) Q% (s,-), Q% (s,-) are not constant
functions; (2) YC' € R, Jag, 5.t.Q% (s,a9) # C - Q% (s,ag); and (3) \* < 400, where \* is the optimal dual variables in
Eq. (30).

Proof. For simplicity, let M (a als) exp Qr(5,0)=AQc(s,0) ,then g(n, \) = Xe1 + nea +nlog [ M(a)da
plicity ,7 9(n nez +nlog

m‘gf‘) _ M(a) _Qc<;»a>> )
M) _ gy (Gl ;jc;c(s,a)) 9
ogn) [ M(@Qc(s.)da
"oty 2 +log ffz\f(%;d_ J M(@[Q(5.) = Qc(s.)}da 69
on n [ M(a)da
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g - Pan) [ M(a)(Qc(s,a))’da [ M(a)da — (f M(a)Qc(s. a)da)”
BT TN ([ M(a)da)? )
o g(An) [ M(a)[Qr(s,a) = AQ.(s,a)]*da [ M(a)da — ([ M(a)[Q.(s,a) — AQ.(s, a)]da)
22 = 2 = 3
N n 1°(f M(a)da)?
o Pa0) o Pg0n) [ M(a)da f M(0)[Qr(5,0) ~ \Quls, )]Qels, a)da
M2 oNan TN ooy n2([ M(a)da)?
B [ M(a)Qc(s,a)da [ M(a)[Qr(s,a) — ANQc(s, a)]da
n*([ M(a)da)?
(40)
Therefore, H is positive semi-definite with following two conditions,
H;; >0, HpjiHss - Hig > 0. 41

Note H is strictly positive definite when the equality does not hold. We will first prove the inequality holds and further
discuss the condition of strict positive definiteness later.

By Cauchy-Schwarz inequality,
2
/ M(a)(Qu(s,a))2da / M(a)da > ( / M(a)QC(s,a)da) ~H,, > 0. 42)

i.e., the first condition in Eq. (41) holds. To prove the second condition, we use shorthand M = M (a), @, = Q,(s,a), Q. =
Q.(s, a) for simplicity,

H, Hy,-H}, >0

@[/Mdia/Mda</Mcha)H/M = AQe) da/Mda(/M = AQe)d )] @)
[/Mcha/M(Q,. da—/Mda/M = AQe )cha}.

By lemma 2, we have

MQ3?da | Mda — MQ.da i (44)
fauazan fasaa— ( [ a0

:%/ (WQC(S"“)\/M(%) — V/M(a2)Qc(s, az) M(al))zdaldag 5)
—% / M (a1)M(az) (Qe(s. a1) — Qe(s, a2))” darday, 46)

and
/M(Qr - AQC)Qda/Mda— (/M(Q,. _ )\Qc)da)Q “n
// )(Qr(5,a1) — AQc(s,a1))v/M(az) — /M (a2)(Qr(s,a2) — AQe(s, a2)) M(al))Zdaldag (48)
=2 / / M (02) M () [(@ (5,01) —~ Q5. 02)) — (@ (5,02) ~ AQe(s, )] dandas, 49)

Therefore, apply Cauchy—Schwarz inequality to the LHS of Eq. (43), we have
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LHS = %/ M (ay)M(az) (Qe(s, a1) — Qe(s, az))? dardasy (50)
5 [ M@)M(@)[(@(s.01) = 2Quls. @) — (@r(5,2) ~ AQu(s,02)) | danday (51)
1
24U“MwanMQ@ﬁn—@@am 2
((Qr(s,a1) — AQe(s,a1)) — (Qr(s,a2) — AQc(s,a2))) dalda2]2 , (by Cauchy-Schwarz inequality)  (53)
= i / M al a2 [QC(Sval)(Qr(Sval) - )‘QC(Saal)) - QC(S,GZ)(QT(*Sval) - )‘QC(Saal)) (54)
— Qu(s5,a1)(Qr (5, a2) — AQu(s, a2)) + Qu(s, az)(Qr (s, az) — AQu(s, ag))}dald@} ? (55)
2

= i |:2 // M(al)M(aQ) (QC(S7G1)(QT(S,G1) - )‘Qc(sa al)) - Qc(su al)(QT(S7a2) - )‘QC(Sv a2))) daldG’Q
(56)
= [ Q0@ (5100 - XQutssa)das [ M(ez)das 57)

2

_/M(al)Qc<5>a1>dal/M(a2)(Qr(57a2) _)‘QC(SaG/Q))da2:| = RHS. (58)

Note that we use the Cauchy-Schwarz inequality in a middle step. We could easily check that when (.. is a constant function
or A\ — 400, then the equality holds. Otherwise, the equality holds if and only if:

(Qr(sval) - )‘Qc(sval)) - (Qr(87a2) - )‘Qc(sva‘Q)) _ QT(S7CL1) - Qr(s7a2)

Qul(s,a1) — Qu(s, a) = Osa) Qs O (59

where C' is a constant. It could be achieved by setting (), be a constant function or let @), be proportional to Q).. We
summarize the above conditions as follows: (1) @, (s, -) or Q.(s, -) is a constant function; or (2) AC € R, s.t.Va, Q,(s,a) =
CQ.(s,a); or (3) A = +o0. Each condition has corresponding meaning, as we explain in the following remarks. O

Remark 5. For the first condition, if Q,(s, ) is a constant function, then the objective in (7) will always be a constant —
the optimization becomes meaningless since all the distributions that within the trust region should be the same; if Q.(s, ")
is a constant function, then the safety constraint will be inactive, since no policy could change the feasibility status. Note
that the Hessian element Hy 1 will be 0 if Q.(s, -) is a constant, which means that the gradient of the safety constraint dual
variable )\ will either be a positive constant when the problem is feasible (tends to make A\ — 0) or a negative constant
when the problem is infeasible (tends to make X — +00).

Remark 6. The second condition indicates that if the task reward Q, value is proportional to the cost Q. value everywhere,
then multiple optimal solutions may exist on the KL constraint boundary or the safety constraint boundary. Intuitively, the
problem becomes a bounded convex optimization — maximizing the risks Eq[Q. (s, a)] within the trust region defined by €5
and a ball defined by €1. Though the solutions may not be unique, the optimality could still be guaranteed as long as the
Slater’s condition 1 holds.

Remark 7. The third condition is equivalent to the violation of our Slater’s condition assumption 1 — no distribution exists
within the trust region that satisfies the safety constraints. In that sense, the gradient of the dual variable A will always be
negative, and thus \ — +o0o, which tends to impose huge penalties on safety critics Q.. In practice, this rarely happens
since we could select a large KL threshold for E-step and choose a much smaller trust region size for M-step, such that
n-step robustness could be guaranteed and the Slater’s condition could be easily met, as we show in Appendix A.7.

In summary, g(\,n) is convex by Lemma 3 and strictly convex when the equality does not hold in Eq. (59). The strict
convexity analysis ensures the uniqueness of the optimal solution in most situations and provides some other theoretical
implications of the E-M procedure, such as the convergence to a stationary point (Sriperumbudur et al., 2009). In addition,
as long as the Slater’s condition in Assumption 1 holds, we could obtain the optimal solution of the dual problem efficiently
via any convex optimization techniques, though multiple optimal solutions may exist if Eq. (59) holds.
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A.4. Proof of the M-step — KL regularized policy improvement

As shown in section 3.1 and (Abdolmaleki et al., 2018b), given the optimal variational distribution ¢; from the E-step, the
M-step objective is

0,11 = arg max E,, {aIqu(.M [log 779(@|8)]] + log p(6) (60)
which is a Maximum A-Posteriori (MAP) problem. Consider a Gaussian prior around the old policy parameter ¢;, we have

9~N(9i,a—é)

where Fp, is the Fisher information matrix and (3 is a positive constant. With the Gaussian prior, the objective (60) becomes
01 = argmax o, [Eq:(.‘s) [log m(a|s)}] —aB(0—60;)"F, ' (6 - 6;)

(61)
= arg mgxprq [Eq;(.‘s) [logﬂg(a|5)]] — B0 — 91-)TF9:1(0 —0;)

where we could observe that (8 — 6;)" F,~ '(6 — 6;) is the second order Taylor expansion of E,, [Dkx (o, (a|s)||ms(als))].
Thus, we could generalize the above objective to the KL-regularized one:

maxEy, [Eg; (10 [log mo(als)] — BDx.(mo,I70)|. (62)
Similar to the E-step, we could convert the soft KL regularizer to a hard KL constraint:

max E,, [Eq;«(_‘s) [log 7r9(a|s)ﬂ
st Ep, [Dkr(mo,(als)||lmo(als))] < e.

(63)

A.5. Proof of Proposition 1 — the ELBO improvement guarantee

Recall that the optimality of policy 7 is lower bounded by the following ELBO objective

J(q,0) =Erny + log p(6).

> (v're = aDxu(g(lse) 7o (-]s0)))

We improve the policy by optimizing the ELBO alternatively via EM. Thus, we will prove the monotonic improvement
guarantee of ELBO at the i-th training iteration with the following assumption.

Assumption 2. The Slater’s condition holds for both g, _, and T, .

The above assumption indicates a well-optimized policy in the M-step. In addition, it ensures the variational distributions
q;—1 and g, are feasible. Note that an infeasible variational distribution ¢; _; may lead to arbitrarily high reward return. With
this assumption, we prove the ELBO improvement for E-step and M-step separately.

Proof. E-step: By the definition of E-step, we improve the ELBO w.r.t . Since g;_; is feasible (reward return is bounded)
and 7y, satisfies the Slater’s condition, we can prove the E-step update will increase ELBO by Theorem 1:

¢ = argmaxE,, [Equq(s) [Q¥ (s, a)] — aDkwilg(-|s)||m, (:|s)]] By Slater’s condition for ,)
qGHEQ1
=argmaxE,, (v're — aDkL(q(-|s)|Imo(-]s¢)))
qeng t=0
= argmax J (¢, 6;)
qelly
qi—1 € I (By Slater’s condition for g, _,)

=TJ(¢:,0:) > T (qi-1,6:)-
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Therefore, as long as assumption 2 holds, the ELBO will increase monotonically in terms of q.
M-step: By definition in Eq. (10), we update 6 by
0; 11 = arg ;nax Ep,, [aanqi(.m [log 7o (a|s)]] + log p(h)
= argmax [, [~aDkrlgi(‘|se)|mo(-[s)]] +logp(6)
= argmaxE,,, [Eangi(1s) [@F (s,0)] — aDxvlgi(-|se) 7o (-]s)]] + log p(9)

= argmax J (¢;, 7p).
6

Therefore, we have: J(q;, g, ,) > J (¢, m,). Combining all the above together, we have
j<qi77r97‘,+1) > j(qiaﬂﬁi) > j(qifla’”@i)'
O

Remark 8. The Slater’s condition assumption is critical for monotonic policy improvement guarantee, since as we have
shown in Appendix A.2 Remark 4, violation of Slater’s condition may lead to large penalty for constraint violations, and then
in E-step the variational distribution is updated to reduce the cost or reconcile to the feasible set instead of improving the
reward return. However, the n-step robustness (Appendix A.7) guarantees the updated policies in n consecutive iterations
satisfy the Slater’s condition if we choose proper KL constraint thresholds and the initial policy is feasible, which indicates
a monotonic ELBO improvement guarantee during these n policy updating iterations.

A.6. Proof of Proposition 2 — worst-case constraint satisfaction bound

The Corollary 2 and 3 in CPO (Achiam et al., 2017) connect the difference in cost returns between two policies to the
divergence between them,

) = ) € T B AT s+ 2 LR (DR 1815 (64

where 67 = max, |Ea~r[A% (s, a)]|, and A% (s, a) denotes the advantage function of cost.

Note that the M-step does not involve cost constraint when updating 6. Therefore, we obtain the following worse-case
bound:

267"
-7

1 o,
JC<7T97:+1) < Je(mo,) + ﬁESNP"Gi AT, Ly [Acel (s,a)] +

/ Eempey, [Pl (o), ()]

1 o, 2v6. 1
< N+ ——0 T+ /= 65
ch(Wel)"‘l_,y‘s + (1_,},)2 26 (©5)
[(1—7) + v2ey]d:
= Je(mg,) + .
(ma.) (1—)?

When the old policy mg, € HZ, we further have

[(1 =) + V2er]8; "+ .

To(ro.. ) <
(7T91+1) <€+ (1 — 7)2

(66)

A.7. Proof and discussion of Proposition 3 — policy updating robustness

Recall the Proposition 3 — Suppose 7, € HE. mp,,, and my, are related by the M-step. If € < €2, where ¢, €2 are the KL
threshold in M-step and E-step respectively, then the variational distribution ¢, ; in the next iteration is guaranteed to be
feasible and optimal.
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Proof. Since € < €3, the KL divergence between 7y, , and 79, Dxr (7, [|7s,,,) < € < €2. Thus, the Slater condition 1
holds for 7y, , as long as 7y, is feasible, because at least one feasible solution 7y, within the trust region exists. By Theorem
1, we know that ¢}, ; in the E-step is guaranteed to be feasible and optimal. O

Remark 9. Proposition 3 is useful in practice, since it allows the policy to recover to the feasible region from perturbations
in M-step. The perturbations may come from bad function approximation errors in M-step or noisy Q estimations, which
may happen occasionally for black-box function approximators such as neural network. The robustness guarantee holds
even under the worst-case scenario with adversarial perturbations.

Figure illustrations. Fig. 7(a) demonstrates the example of one EM iteration that is subject to approximation errors in the
M-step. The green area represents the feasible region in the parameter space, the yellow ellipsoid is the trust region in the
M-step, and dashed blue circles are the trust region size in the E-step. The righter region has the higher reward in this counter
example. Ideally, the updated policy should be the intersection point of the g, — ¢; line and the yellow ellipsoid. However,
due to the approximation errors in the M-step, the updated policy 7, , might be away from the correction updating direction.
Fig. 7(b) shows the worst-case scenario, where the updating direction is totally orthogonal to the correct one. However, due
to the smaller trust region size of M-step than E-step, the Slater condition still holds — a feasible policy exist within the trust
region of 7y, ., that is specified by €2. So, we could guarantee to obtain an optimal and feasible non-parametric variational
distribution at the (¢ + 1)-th iteration — the policy still has the chance to recover to the feasible region.

Feasible region

Feasible region . - q:f+1 q:‘
7. P |
. q; 1 ’ +° 62/‘/ ]
- q* ; 1+ 7 \v\ p 3
€2 - el € /€& —
g, RO € T W Direction of
T 2 s higher rewards
6 F 7T€i+1 7r(9i+1
Direction of
higher rewards
(a) Regular policy updating (b) Worst-case policy updating

Figure 7. Illustration of the policy updating at the i-th iteration under the M-step approximation error.

Extending the one-step robustness guarantee to multiple steps. A natural follow-up question for Proposition 3 is that
whether we can achieve multiple steps policy updating robustness guarantees — can the policy recover to feasible region with
n > 1 steps adversarial/worst-case M-step policy updating? Since the n-step (n > 1) guarantees may require the Triangular
inequality to be satisfied for consecutive updated policies, but it may not hold for KL divergence in general cases. However,
we found that if the policy 7y is of a multivariate Gaussian form, which is commonly used for continuous action space tasks
in practice, then a relaxed Triangular inequality holds — see Theorem 4 in (Zhang et al., 2021). Thus, we hypothesize that
with a Gaussian policy, n-step robustness could be achieved with sufficiently small € = f(eo, n) with the function f. Next,
we provide a proof for two steps robustness.

Proposition 4. Suppose my, € HCQ1 and  is a Multivariate Gaussian policy. If e < ¢, where €, €3 are the KL threshold in
M-step and E-step respectively, then the variational distribution g}, , in the (i + 2)-th iteration is guaranteed to be feasible
and optimal.

Proof. Denote W, and W_; be the 0, -1 branches of the Lambert W function, respectively. We use 7; denote 7y, for
simplicity. Since Dkr, (7;||7mi+1) < € and Dk, (741 ||mi42) < €, we have the following relaxed Triangular inequality holds
(Theorem 4 in (Zhang et al., 2021)):

2
1 2 2
DKL(']TiH’]TrL’JrQ) < 2e+ 5 ( (W,l(—e(_l—%)) + 1) _ Wil(_e(—l—Qe)) <\/_WO(_€€(125)) + @) > (67)



Constrained Variational Policy Optimization for Safe Reinforcement Learning

Note that Wy(—1/e) = W_;(—1/e) = —1 and for sufficiently small ¢, W_;(—e(=1729) and Wy(—e(~1729) are
arbitrarily close to —1 by the following series (Corless et al., 1996)
W_i(—eT1729) = —1 - 2/e+ O(e);  Wo(—e71729) = —1 +2/e — O(e). (68)
So we have
2 5
(W_l(fe(’l’zf)) + 1) = (—2VE+ 0(e))? = de — O(e") (69)

2 2
W (—e(~1729)) (\/—WO(—QeE(—l—QE)) + @) = (1 +2Ve+0(e)) <m+ @) (70)

< (1+ 2+ 0(6)) <1_2;;+O(€)+4e> an

=8¢ + O(e!) + O(e*). (72)
Then we obtain the following bound by ignoring the high order terms for sufficiently small e:

1
Dxy(mi||mig2) < 2e 4+ 5(46 + 8¢) = 8e. (73)

Therefore, we could conclude that for sufficiently small trust-region size, and € < ¢, we could obtain two steps robustness
guarantee — no matter how worse are the M-step for two iterations, an optimal and feasible variational distribution could be
solved, and the policy could be recovered to the safe region. O

While the above proof could be generalized to n-step robustness, we found that as the certified step n increases, the trust
region size € in M-step has to be shrunk with a faster rate than n. In addition, we could observe that though smaller trust
region size in M-step could improve the robustness, it will also reduce the training efficiency — more training steps and
samples are required to improve the policy. Therefore, there exists a natural robustness and efficiency trade-off in this
context. As we have shown in the experiment section, we believe that one or two steps robustness should be enough to
handle mild approximation errors in practice, since the MLE style objective in M-step will converge to the true distribution
in probability (consistency) and achieve the lowest-possible variance of parameters (efficiency) asymptotically as the sample
size increases (Myung, 2003). This principle also guides us to select reasonable batch size and particle size practically.
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B. Implementation Details
B.1. Full algorithm

Due to the page limit, we omit some implementation details in the main content. We will present the full algorithm and some
implementation tricks in this section. Without otherwise statement, the critics’ and policies’ parametrization is assumed to
be neural networks (NN), while we believe other parametrization form should also work well.

Critics update. Denote ¢, as the parameters for the task reward critic ), and ¢, as the parameters for the constraint
violation cost critic (). Similar to many other off-policy algorithms (Lillicrap et al., 2015), we use a target network
for each critic and the polyak smoothing trick to stabilize the training. Other off-policy critics training methods, such
as Re-trace (Munos et al., 2016), could also be easily incorporated with CVPO training framework. Denote ¢/, as the
parameters for the target reward critic @), and ¢/, as the parameters for the target cost critic )’.. Define D as the replay
buffer and (s, a, s', 7, ¢) as the state, action, next state, reward, and cost respectively. The critics are updated by minimizing
the following mean-squared Bellman error (MSBE):

L(9) = Es.aramp | (Qrls,@) = (4 1Earnal @ (5, @) | (74)
L(6e) = Eqsasrop | (Qe(s,0) = (e +1Eunr[Qu(s’, ) |. (75)
Denote a. as the critics’ learning rate, we have the following updating equations:
Gr < ¢ — Vg, L(¢r) (76)
Ge — ¢c — Ve, L(oe). )

M-step regularized policy improvement trick. We use a Multivariate Gaussian policy in our implementation. As shown in
MPO (Abdolmaleki et al., 2018b;a), decoupling the KL constraint into two separate terms — mean ¢,, and covariance €y, can
yield better empirical performance. Denote C, = E,,_ [$tr(271%;) — n—|—1n(z%)} and C, =K, [5(p—p) TS (p—ps)],
we have:

E,, [Dxw (o, (als) | mo(als))] = C, + Cs. (78)

And thus the M-step objective could be written as the following Lagrangian function:

L(9, By, Bs) = E,, [Eq;(.\s) [logﬂe(a\s)]] + Bulen — Cu) + Bs(es — Cyx). (79)
By performing the gradient descend ascend algorithm over the dual variables f3,,, s, and the policy parameters ¢ in Eq. (79)
iteratively yields the KL-constrained policy improvement in a supervised learning fashion:

m(?xﬁugg,ll%m L0, By, Bs). (80)

Denote o, ax:, v as the learning rate for 3,,, By, 6 respectively, we have the following updating equations:

OL(0. 3,

5ﬂ<_6u*a#%:5u*au(eufcu) 8D
m

Bs FﬂZ*QZW = fy —ax(ex — Cy) (82)

RN ) -

In practice, we also use a target policy network 7y to generate the covariance matrix X and the current policy network 7y to
generate the mean vector p, such that the policy will not be easily collapsed to a local optimum.

Polyak averaging for the target networks. The polyak averaging is specified by a weight parameter p € (0, 1) and updates
the parameters with:
¢ = pgp + (1= p)dr
¢e = ppe + (1= p)oe (84)
0" = pd' + (1 — p)b.
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With all the implementation tricks mentioned above, we present the full CVPO algorithm:

Algorithm 2 CVPO Algorithm

Input: rollouts 7', M-step iteration number M, batch size B, particle size K, discount factor v, polyak weight p, critics
learning rate o, policy learning rate cg, M-step dual variables’ learning rates «,, as, thresholds €, ex

QOutput: policy g

1: Initialize policy parameters 6, 6, critics parameters ¢,., ¢, ¢., ., and replay buffer D = {}
2: for each training iteration do

3:  Rollout T trajectories by 7y from the environment D = D U {(s,a,s’,7,¢)}

4 Sample B transitions {(sp, ap, Sp+1,7b, b )p=1,...,5 } from the replay buffer D

5: b E-step begins

6:  Update reward critic by Eq. (74): ¢, < ¢» — a.V4, L(¢r)

7:  Update cost critic by Eq. (75): ¢¢ = ¢ — eV, L(¢pc)

8 forb=1,...,Bdo

9: Sample K actions {a1, ..., ax } for s
10: Compute {Q% (sp, ax), Q% (sp,ar);k =1,...., K}
11:  end for
12:  Compute optimal dual variables n*, A\* by solving the convex optimization problem (9)
13:  Compute the optimal variational distribution for each state {¢*(-|s);b =1, ..., B} by Eq. (8)
14:  Normalize the variational distribution {¢*(+|sp); b = 1, ..., B} for each state
15: > M-step begins
16:  for M-step iterations m = 1, ..., M do

17: Perform one gradient step for 3,, via Eq. (81) and for Sy, via Eq. (82)

18: Perform one gradient step for policy parameters via Eq. (83): 6 < 0 — QQW
19:  end for

20:  Polyak averaging target networks by Eq. (84)

21: end for

Note that for off-policy methods, we need to convert the episodic-wise constraint violation threshold to a state-wise threshold
for the @, functions. Denote T as the episode length, the target cost limit for one episode is e7. Denote the discounting
factor as ~y. Then, if we assume that at each time step we have equal probability to violate the constraint, the target constraint
value €, for safety critic 7¢ could be approximated by:

1—97T
T(1—-7)

The converted threshold €; will be used to compute the Lagrangian multipliers for the baselines, and also be used as one of
the constraint threshold in the E-step of our method:

€1 =€ X

/ﬂ(a|s)Q:g"’(s7a) <e€, Vs,a

B.2. Experiment environments

The task environment implementations are built upon SafetyGym (based on Mujoco) (Ray et al., 2019) and its PyBullet
implementation (Gronauer, 2022). We modified the original environment parameters for all the safe RL algorithms to make
the training faster and save computational resources. Particularly, we increase the simulation time-step and decrease the
timeout steps for each environment, such that the agent can finish the tasks with fewer steps. In addition, the Goal task in
this paper is modified from the Button task, since we can then fix the layout of the goal buttons and obstacles to make the
environment more deterministic. Note that the original SafetyGym implementation will random sample the layout for each
episode, which greatly increase the training time and variance. The proposed CVPO implementation also works for the
original SafetyGym environments, but may require different set of hyper-parameters and much longer training time. Though
CVPO is sample-efficient, it is not very computational efficient, since we need to sample many particles in the E-step and
solve a convex optimization problem, which is currently done on CPU via SciPy.
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B.3. Hyper-parameters

The hyperparameters are shown in Table 1. More details can be found in the code.

Common Hyperparameters

CVPO Hyperparameter

Policy network sizes [256, 256] Particle size K 32

Q network sizes [256, 256] M-step iterations M 6

Network activation ReLU Learning rate o, 1
Discount factor gamma 0.99 Learning rate ax, 100
Polyak weight p: 0.995 Learning rate oy 0.002

Batch size B: 300 E-step KL threshold e: 0.1
Rollout trajectory number T’ 20 M-step KL threshold €,,: | 0.001
Critics learning rate o, 0.001 M-step KL threshold ex;: | 0.0001
NN Optimizer Adam E-step solver SLSQP

Table 1. Hyperparameters. Left: common hyperparameters for all methods. Right: hyperparameters that are specifically for CVPO.
C. Complete Experiment Results

We present all the experiment results in this section.
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Figure 8. Training curves for off-policy baselines comparison. Each column corresponds to an environment. The curves are averaged over
10 random seeds, where the solid lines are the mean and the shadowed areas are the standard deviation.
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Figure 9. Training curves for on-policy baselines comparison. Each column corresponds to an environment. The curves are averaged over
10 random seeds, where the solid lines are the mean and the shadowed areas are the standard deviation.
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Figure 10. Reward versus cumulative cost (log-scale).
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Figure 11. Box plot of the convergence cost. (on) and (off) denotes on-policy and off-policy method, respectively.
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Figure 12. Ablation study of the KL constraint in the M-step.
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