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Abstract—Synthetic Aperture Radar (SAR) Automatic Target
Recognition (ATR) is the key technique for remote sensing
image recognition. The state-of-the-art works exploit the deep
convolutional neural networks (CNNs) for SAR ATR, leading to
high computation costs. These deep CNN models are unsuitable
to be deployed on resource-limited platforms. In this work, we
propose a graph neural network (GNN) model to achieve accurate
and low-latency SAR ATR. We transform the input SAR image
into the graph representation. The proposed GNN model consists
of a stack of GNN layers that operates on the input graph to
perform target classification. Unlike the state-of-the-art CNNs,
which need heavy convolution operations, the proposed GNN
model has low computation complexity and achieves comparable
high accuracy. The GNN-based approach enables our proposed
input pruning strategy. By filtering out the irrelevant vertices
in the input graph, we can reduce the computation complexity.
Moreover, we propose the model pruning strategy to sparsify the
model weight matrices which further reduces the computation
complexity. We evaluate the proposed GNN model on the MSTAR
dataset and ship discrimination dataset. The evaluation results
show that the proposed GNN model achieves 99.38% and 99.7 %
classification accuracy on the above two datasets, respectively.
The proposed pruning strategies can prune 98.6% input vertices
and 97 % weight entries with negligible accuracy loss. Compared
with the state-of-the-art CNNs, the proposed GNN model has
only 1/3000 computation cost and 1/80 model size.

Keywords—Synthetic aperture radar, automatic target recogni-
tion, graph neural network, low computation complexity, model
pruning

I. INTRODUCTION

Synthetic aperture radar (SAR) is capable of high-resolution
remote sensing and independent of weather conditions to
observe the targets on the earth ground. SAR automatic target
recognition (ATR) is the crucial technique to classify the target
in the SAR images and has been used in many real-world
applications, such as agriculture [1] [2], civilization [3] [4],
etc. SAR devices are typically mounted on moving platforms,
such as aircraft, spacecraft, and small/micro satellites [5]-
[9]. These moving platforms usually have limited computa-
tion resources and power budgets (e.g., 80-180W [10]). The
state-of-the-art works [11]-[15] develop complex convolu-
tional neural networks (CNNs) for SAR ATR to achieve high
classification accuracy. However, complex CNNs suffer from
high computation costs and large memory footprints, making
them unsuitable to be deployed on resource-limited platforms.
For example, to achieve real-time image classification using
CNNs, GPU is widely used. The power consumption of a state-
of-the-art GPU device (e.g., NVIDIA RTX3090 has a power
consumption of 450W) can exceed the power budget of the
small/micro satellites.
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Figure 1. The objects in the SAR images

We identify that CNNs have high computation costs due
to (1) heavy convolution operations and (2) CNNs do not
exploit the data sparsity in SAR images because CNNs need
to use the whole image as input. As shown in Figure 1, an
object in a SAR image usually has a small number of pixels,
and most pixels are irrelevant for classification. Recently,
Graph Neural Networks (GNNs) are proposed to operate
on graph data structure and have been successfully applied
to many graph classification tasks [16]-[18], such as point
cloud classification. [19] has proven that GNN can classify
a graph based on its graph structural information and vertex
features. Motivated by that, we propose to use GNN for
SAR ATR. First, we extract the image pixels of the target
object. We use these pixels to build a graph by constructing
the edge connections among the pixels. We exploit GNN to
operate on the input graph for target classifying. The proposed
GNN-based approach achieves significantly less computation
cost and comparable accuracy compared with state-of-the-art
CNNSs. Moreover, we propose attention mechanisms, including
vertex attention and feature attention, to improve the model’s
accuracy. Our main contributions are:

« We propose a novel GNN model for SAR ATR with atten-
tion mechanisms, including vertex attention and feature
attention, to achieve high accuracy with low computation
complexity.

« We propose the input pruning strategy and the weight
pruning strategy to further reduce the computation com-
plexity with negligible accuracy loss.

o« We perform detailed ablation studies to evaluate (1)
various connectivity for constructing the input graph, (2)
various types of GNN layers, (3) the effect of the attention
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Figure 2. Overview of the proposed approach

TABLE I. NOTATIONS

Notation Description ‘ Notation Description
Gg(v,&,X°%) input graph | v; it vertex
4 set of vertices \ €ij edge from v; to v;
& set of edges ‘ L number of GNN layers
h! feature vector of v; at layer | | N (i) neighbors of v;

mechanism, and (4) the impact of the proposed pruning
strategies.

« We evaluate the proposed approach on MSTAR and
ship discrimination datasets. The evaluation results show
that the proposed GNN model achieves 99.38% and
99.7% classification accuracy on the above two datasets,
respectively. Compared with the state-of-the-art CNNis,
the proposed GNN model has only 1/3000 computation
cost and 1/80 model size.

The rest of the paper is organized as follows: Section II
presents the proposed GNN model for SAR ATR; Section III
describes the proposed pruning strategies for reducing com-
putation complexity; Section IV demonstrates the evaluation
results.

II. PROPOSED MODEL

Figure 2 depicts the overview of the proposed approach.
In Section II-A, we introduce the basics of the graph neural
network. In Section II-B, we cover the proposed graph repre-
sentation for the SAR images. In Section II-C, we introduce
the proposed GNN model architecture.

A. Graph Neural Network

We define GNN notations in Table I. Graph Neural Net-
works (GNN5s) [20]-[22] are proposed for representation learn-
ing on graph G(V, &, X°). GNNs can learn from the structural
information and vertex features and embed this information
into low-dimension vector representation/graph embedding
(For example, hf is the embedding of vertex v;). The vector
representation can be used for many downstream tasks, such
as node classification [21] [20], link prediction [23], graph
classification [24], etc. As shown in Figure 3, GNNs follow the
message-passing paradigm that vertices recursively aggregate
information from the neighbors.

Input: Graph: G(V,£); vertex features: {h(l),hg, ...,hlow};

Output: Output vertex features {hlL, hi. .., h’ILVI};
1: for [ =1...L do
2 for each vertex v €V do
3 al = Aggregate(h!™! s u e N'(v))
4 2! = Update(a!,, W), h! = o(2!)

v

Figure 3. GNN Computation Abstraction

B. Graph Representation

We transform the input SAR image into a graph represen-
tation G(V,&, X°), where each pixel in the SAR image is
mapped to a vertex v € V in the graph. The SAR signal value
of the pixel becomes the feature of the vertex. Each pixel
is connected to its neighbors as the edge connections €. As
shown in Figure 4, we propose the following two ways of
connecting a pixel to its neighbors and evaluate them in the
experiments:

« 4-connectivity: Each pixel is connected to the four neigh-

bors: up (p2), down (p8), left (p4), and right (p6).

« 8-connectivity: Each pixel is connected to the eight

neighbors: pl, p2, p3, p4, p6, p7, p8, 9.
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Figure 4. Two types of connectivity for constructing input
graph

C. Model Architecture

The proposed model architecture is shown in Figure 5,
which consists of a stack of layers, including Graph Neural
Network layers, graph pooling layers, and attention layers. The
final Multi-layer Perceptron (MLP) generates the classification
result. For simplicity, v; ; denotes the vertex/pixel that locates
at i" row and ;" column in original SAR image. The
input to layer [ (1 < I < L) is the vertex feature vectors

{hﬁ"jl tv;; € Vo) and edges {e : e € &_1} that defines
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Figure 5. Diagram of model architecture

the connectivity of the vertices in V;_1. The output of layer [
is the vertex feature vectors {h! ; : v; j € Vi}.

Graph neural network (GNN) layer: A GNN layer follows
the Aggregate-Update paradigm as shown in Algorithm 3.
Using the Aggregate() function, each vertex aggregates the
feature vectors from the neighbors (line 3 of Algorithm 3).
Then, each feature vector is updated by the Update() function
to generate the updated feature vector (line 4 of Algorithm 3).
There are some representative Graph Neural Network layers,
such as GCN [20], GraphSAGE [21], GIN [19], and SGC [25].

Graph pooling layer: It downscales the input graph V,_; into
a smaller output graph V;. The pooling operaton is similar to
the pooling in the 2-D images:

o -1 -1 -1 -1
hi,j = maX(hzmja h2i+1,2j7 hzi,2j+17 h2i+1,2j+1) (1

-1 -1 -1
; €V, and UQZ 237U21+1 251 V2i,2j41 V23412541 € Vi-1-

where v
Attentlon layer: We exploit the attention mechanism to im-
prove the accuracy. The attention layer consists of feature
attention that calculates the attention scores for each vertex
feature, and vertex attention that calculates the attention scores

for each vertex. The feature attention is calculated by:

medn

F}, = sigmoid(mean({h; ; : v; ; € V})W,

wm({h, vy e vhwemy

where h; j, Fy, € RS, W W™ ¢ R, and c denotes
the length of feature vector. fa[4] is the attention score for i

feature. The vertex attention score is calculated using a GNN
layer:

{a;,; v €V} = sigmoid(GNNL({h; ; : v; j € Vi_1})), B)

Where «; ; is the attention score for vertex v; ;. Then, the
output of the attention layer is calculated by:

(RS RO = (1+ 0, ;)RM, + il ® Fr,) (4)

where ® is element-wise multiplication.

Multi-layer Perceptron (MLP): After a sequence of layers,
all the feature vectors are flattened into a single vector, which
is sent to the MLP for classification. MLP has a stack of fully
connected (FC) layers.

III. PRUNING

This section covers the proposed pruning techniques, includ-
ing, input pruning (Section ITI-A), and weight pruning (Section
III-B).

A. Input Pruning

The key benefit of using GNN is that GNN is flexible
in accepting any graph structure as the input. Thereby, we
are able to exploit input pruning to reduce the computation
complexity. Theoretically, in a SAR image (See Figure 1),
the pixels not in the target do not affect the classification
results. As studied in [26], by properly setting up a constant
threshold I,, we can filter out most irrelevant pixels since
the pixels that do not belong to the target usually have
negligible SAR signal magnitude. After constructing the input
graph from the SAR image, we prune the vertices that have
a magnitude smaller than [,. The magnitude of a vertex

is calculated by /7 + 23 +... + x2, where np denotes the
number of polarization of the SAR signal. For example, a
quad-polarization system has four kinds of polarization —
horizontal-horizontal (HH), vertical-vertical (VV), horizontal-
vertical (HV), and vertical-horizontal (VH). After pruning the
vertices, all the edges connected to the pruned vertices are also
pruned. Due to the input pruning, the graph pooling operation
(Equation 1) is slightly modified:

hl i = max(]l;lzj 'hl2;12_]7 112;11 ,27 ~hl2211 1259 )

1l2112g+1 h21 ,27+1> ]lézil ,27+1 h27,+1 2j+1)

where 1, ; € {0,1} is the indicator that indicates the existence
of vertex v; ;. After input pruning, we can skip the compu-
tation for the pruned vertices, which greatly reduces the total
computation complexity.

B. Weight Pruning

As analyzed in [27], [28], the weight matrices in GNNs have
redundancy, and some weight entries can be pruned without
affecting the classification accuracy. Therefore, to reduce the
total computation complexity, we perform weight pruning by
training the model using lasso regression [29]. We add the L1
penalty to the loss function:

w
loss = 1(y,y") + A > |w| (6)



where (y,y') is the classification loss, and A Y)Y |w)| is the
L1 penalty term parameterized by A. The L1 penalty leads
to weight shrinkage during training. Thereby, some model
weights become zeros and can be eliminated from the model.
After training, we set a threshold I,,, and the model weights
with absolute values smaller than I,, are pruned.

IV. EVALUATION

We evaluate our approach on two widely used datasets:

« MSTAR: The setting of the MSTAR dataset follows the
state-of-the-art work [11] [14] [15] [12]. MSTAR contains
the SAR images of ten classes of ground vehicles, with
2747 images in the training set and 2427 images in the
testing set.

« Ship discrimination [30]: For the ship discrimination
dataset, we follow the setting in [31], which is a binary
classification task that identifies if a given SAR image has
a ship or not. The dataset contains 1596 positive image
samples and 1596 negative image samples.

A. Evaluation on MSTAR Dataset

1) Experimental Setting: For the MSTAR dataset, we use
the following setting. The proposed model consists of 12
layers. We develop the proposed model using Pytorch Geo-
metric. We use the cross-entropy loss as the classification loss
(Equation 6). We train the model using the Adam optimization
algorithm. The training batch size is set as 20, and the initial
learning rate is 0.02. A\ (for lasso regression) is set as 0.002.
The L2 weight decay is set as 0.08. We train the model for 150
epochs, and the learning rate is multiplied by 0.5 for every 10
epoch. We use the 8-connectivity to build the input graph. We
evaluate the three widely used GNN layers in the proposed
model — GCN layer [20], GraphSAGE layer [21], and GAT
[22]. We train the proposed model using one NVIDIA RTX
A6000 GPU.

Performance metrics: We evaluate the proposed approach us-
ing the following metrics: classification accuracy, computation
complexity, and number of parameters.

TABLE II. THE ACCURACY ON MSTAR DATASET

GNN Layer C fivit Training Testing Training
Type onnectivity Accuracy  Accuracy Time
GCN 4 99.16% 90.06% 3.0 hours

8 95.44% 83.82% 4.0 hours
GAT 4 99.53% 92.21% 1.8 hours
8 82.71% 71.33% 1.9 hours
4 100.00% 97.81% 52 min
GraphSAGE 8 100.00%  99.38% 55 min

2) Classification Accuracy: The accuracy of the proposed
model (under various GNN layer types and connectivity) is
shown in Table II. We observe that using the GraphSAGE layer
as the GNN layer leads to the highest training/testing accuracy.
Using the GraphSAGE layer also leads to the lowest training
time. For the GraphSAGE layer, using 8-connectivity to build
the input graph can result in higher accuracy but slightly higher

training time than 4-connectivity. Table III shows that the
proposed GNN model achieves higher accuracy compared with
the state-of-the-art CNNs [11], [12], [14], [15] with negligible
computation complexity for inference.

TABLE III. COMPARISON WITH THE STATE-OF-THE-
ART CNNS ON MSTAR DATASET

Type  Accuracy # of FLOPs # of Para.
[11] CNN 92.3% x 0.5 x 108
[14] CNN  97.97% % 0.65 x 10°
[15] CNN  98.52% ix 2.1 x 10°
12 CNN  99.3% 1x 2.5 x 106

(121 7% (6.94 GFLOPs) X

This work [after pruning]

(GraphSAGE layer, GNN  99.1% So55 X 0.03 x 106

8-connectivity)

TABLE 1IV. THE IMPACT OF THE ATTENTION
MECHANISM (USING GRAPHSAGE LAYER AND
8-CONNECTIVITY)
Vertex Feature Training Testing Training
Attention  Attention Accuracy Accuracy Time
X X 99.67% 93.77% 31 min
X v 100.0% 98.51% 40 min
v X 100.0% 99.26% 41 min
v v 100.0% 99.38% 55 min

3) Ablation Study: We perform an ablation study to evalu-
ate the impact of the attention mechanism (using GraphSAGE
layer and 8-connectivity). The result is shown in Table IV.
Without vertex and feature attention, the model achieves
only 93.77% accuracy. With only vertex attention, the model
achieves 99.26% accuracy. With only feature attention, the
model achieves 98.51% accuracy. With both vertex and feature
attention, the model achieves 99.38% accuracy. The evaluation
result demonstrates that the attention mechanism can improve
classification accuracy without significantly increasing com-
putation complexity.

4 X10 5 Training set 4 10 5 Testing set
3 3
8 8
c i=4
22 22
3 3
3 3
o O
1 1
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

SAR signal magnitude SAR signal magnitude

Figure 6. The distribution of the SAR signal magnitude in the
training/testing set of MASTAR

4) Evaluation on the Pruning Strategy: We evaluate the
proposed input pruning and weight pruning strategies. We use
GraphSAGE layer and 8-connectivity as the setting of the
model.
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Figure 7. Evaluation of proposed pruning strategy

Input Pruning: Figure 6 shows the data distribution of the
SAR signal magnitude of the image pixels in the training/test-
ing set. The SAR signal magnitude ranges from 0 to 16.
Since most pixels have a magnitude between 0-1, Figure
6 only shows the range 0-1. For experiment, we set the
pruning threshold 7, (See Section III-A) to be 0, 0.1, 0.2, 0.3
respectively. The image pixels that have a magnitude small
than [, are pruned.

Weight Pruning: The weights in weight matrices can be
either negative or positive. We set the threshold I, for weight
pruning (See Section III-B). The weights that have an absolute
value that is smaller than I,, are pruned. In the experiment,
we set I,, to be between 1 x 102 and 1 x 10!,

The evaluation results for the pruning strategy are shown in
Figure 7. We have the following observations:

« Without weight pruning, when I, = 0.1, 93.4% input
vertices/pixels are pruned, the accuracy is dropped to
99.1%; when I, = 0.2, 98.6% input vertices/pixels are
pruned, the accuracy is dropped to 98.5%; when I,, = 0.3,
99.1% input vertices/pixels are pruned, the accuracy is
dropped to 96.5%.

« When weight pruning threshold I,, < 107, the accuracy
does not change w.r.t. to I,,. When [, = 107, more than
95% weights are pruned. Therefore, most entries in the
weight matrices are redundant.

Therefore, by setting proper threshold I, [, for input
pruning and weight pruning, most input pixels and weights
can be pruned without significantly dropping the accuracy.
Figure 7 shows the evaluation results for the pruning strategy,
97% weight entries are pruned, and the accuracy is 99.1%. By
skipping the computation for the pruned vertices and weights,
we can dramatically reduce the total computation complexity.

5) Experimental Setting: For ship discrimination dataset,
we follow the setting of [31] to conduct experiment for few-
shot learning. Since the ship discrimination is a binary class
task, the few-shot learning task can be formed as a 2-way-K-
shot-classification problem, where K = {1,2,..,10} denotes
the number of labeled training images for each class. We

train the model using the Adam optimization algorithm. The
training batch size is set as %, and the learning rate is set as
0.001 » K. The L2 weight decay is set as 0.08.

6) Classification Accuracy: As shown in Figure 8, we
compare our accuracy with [31] (baseline) for the few-shot
learning on the ship discrimination dataset. Note that the
baseline [31] uses a convolutional neural network (CNN), and
the authors pretrained their CNN using the ship discrimination
dataset on the Electro-Optical (EO) domain. We do not pretrain
our network on any dataset. For various K, the proposed
model outperforms the baseline [31], which is a pretrained
deep CNN model.

100

©
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Figure 8. The accuracy on the ship discrimination dataset

TABLE V. COMPARISON OF ACCURACY (%)

K 1 2 3 4 5 6 7
Baseline [31] 86.3 863 828 942 878 960 91.1
Our work 93.8 931 979 940 997 974 978

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel GNN-based approach
for SAR automatic target recognition. The proposed approach
uses the GNN layer as the backbone and uses the attention
mechanism to improve classification accuracy. We proposed



pruning strategies, including input pruning and weight prun-
ing, to reduce the computation complexity. The evaluation
results on the MSTAR and ship discrimination datasets show
that the proposed model outperforms the state-of-the-art CNNs
in classification accuracy and computation complexity. In [32],
we designed a hardware accelerator for the proposed GNN
model. In the future, we plan to extend the proposed GNN
model to more SAR-related tasks, such as object detection.
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