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Abstract—Predicting the throughput of WLAN deployments is
a classic problem that occurs in the design of robust and high
performance WLAN systems. However, due to the increasingly
complex communication protocols and the increase in interfer-
ence between devices in denser and denser WLAN deployments,
traditional methods either have substantial runtime or enormous
prediction error and hence cannot be applied in downstream
tasks. Recently, Graph Neural Networks have been proven to be
powerful graph analytic models and have been broadly applied to
various networking problems such as link scheduling and power
allocation. In this work, we propose HTNet, a specialized Hetero-
geneous Temporal Graph Neural Network that extracts features
from dynamic WLAN deployments. Analyzing the unique graph
structure of WLAN deployment graphs, we show that HTNet
achieves the maximum expressive power on each snapshot. Based
on a powerful message passing scheme, HTNet requires fewer
number of layers compared with other GNN-based methods
which entails less supporting data and runtime. To evaluate the
performance of HTNet, we prepare six different setups with
more than five thousands dense dynamic WLAN deployments
that cover a wide range of real-world scenarios. HTNet achieves
the lowest prediction error on all six setups with an average
improvement of 25.3% over the state-of-the-art methods.

Index Terms—throughput prediction, WLANSs, machine learn-
ing, temporal graph neural network, channel bounding

I. INTRODUCTION

Ever since the release of the first version of the IEEE
802.11 (Wi-Fi) standard in 1997, Wi-Fi has become the most
established and most widely used Wireless Local Area Net-
work (WLAN) technical standards. Recently, along with the
development of Internet of Things (IoT) [1] and wireless smart
devices, the density of WLAN deployments has dramatically
increased, leading to strong interference that could seriously
affect performance if not properly handled. To fulfill the
growing requirements on latency and throughput of these wire-
less devices, the 802.11 standard is constantly being updated
to introduce advanced features such as Dynamic Channel
Bounding (DCB) [2] and multi-user Orthogonal Frequency
Division Multiple Access (OFDMA) [3].

A fundamental problem in WLAN optimizations is the
throughput prediction problem [4]. An accurate and fast
throughput predictor allows network managers (whether au-
tomated or not) to explore more of the design space and
design high performance and robust WLAN systems. How-
ever, predicting the throughput in next generation WLANSs is

challenging due to the strong interference in dense deploy-
ments and the vast variety of dynamically configured WLAN
features. On the one hand, classic theory-based methods that
use channel statistics such as Signal to Interference and
Noise Ratio (SINR) and Received Signal Strength Indicator
(RSSI) fail to capture sophisticated interactions at the Media
Access Control (MAC) and Physical (PHY) layers, leading
to fallacious predictions [5]. On the other hand, event-based
simulators [6], [7] require order-of-magnitude more simulation
time compared with the actual transmission time, and hence
can only be used for verification purposes. In order to quickly
and rapidly predict throughput, the predictor needs to analyze
the multi-domain information from WLAN deployments in-
cluding channel state information, connectivity information,
and their trends with respect to time.

Recently, Graph Neural Networks (GNN) [8] and variants
have achieved significant successes in learning non-Euclidean
graph data. By iteratively gathering and aggregating informa-
tion from neighbors, the node embeddings generated by GNNs
remarkably outperform traditional graph analytic algorithms in
many downstream tasks such as node classification and link
prediction. However, GNNs suffer from neighbor explosion [9]
and over-smoothing [10] and they need to be adapted to differ-
ent operating environments. In the networking domain, GNNs
have demonstrated superior performance in extracting node-
and graph-level features from network graphs and are widely
used in various applications such as resource allocation [11],
[12] and traffic prediction [13], [14]. However, for throughput
prediction, static GNNs fail to capture the important temporal
information, which leads to lower accuracy.

To design fast and accurate throughput predictors, recent
works [5], [15], [16] propose Machine Learning (ML) algo-
rithms to extract features from WLAN deployments and solve
the throughput prediction problem as a regression problem.
ATARI [15] goes one step further to directly apply GNN to
extract features from WLAN deployment graphs. However,
they lack the ability to capture complete information from
WLAN deployments and analyze it in a comprehensive way.
We explicitly divide the overall information of a WLAN
deployment into three parts:

o Contextual information designates the self-contained

static information of an AP or STA, including the primary
channel, available channels, transmission power, traffic,



and location.

¢ Structural information designates the static information
related to two entities. For example, the structural in-
formation of an STA and its corresponding AP includes
RSSI, SINR, and airtime.

o Temporal information designates the dynamic infor-
mation that changes with time. Depending on different
WLAN deployments, the temporal information could be
the dynamic channel allocation, dynamic STA location,
dynamic interference source, etc.

To jointly learn these three parts, we propose HTNet, a
specialized Heterogeneous Temporal Graph Neural Network
(HTGNN) that extracts features from WLAN deployment
without any information loss. HTNet captures contextual and
structural information through an attention-based heteroge-
neous message passing scheme. We prove that HTNet achieves
maximal expressive power and can distinguish between any
two different WLAN deployments. For temporal information,
HTNet views WLAN deployments as Discrete Time Dynamic
Graphs (DTDGs) and employs a sequence model to regulate
the message passing process. Note that HTNet is designed to
extract features from WLAN deployments and can be applied
not only to the throughput prediction problem but also to many
other network problems such as dynamic channel allocation
and power control. We summarize the main contributions of
this work below:

e We propose HTNet, a low-complexity fast inference
HTGNN-based feature extractor for WLAN deployment
which is the first model that jointly captures the com-
plete contextual, structural, and temporal information in
WLAN deployments.

o We analyze the characteristics of WLAN deployment
snapshots and design a message passing scheme with
maximal expressive power.

e We generate and publish the first dynamic WLAN de-
ployment throughput prediction dataset that contains six
different setups which cover a wide range of real-world
scenarios and can be used by other researchers.

¢ We evaluate the performance of HTNet on the throughput
prediction problem on the aforementioned dataset. HTNet
achieves the lowest prediction error on all six setups,
outperforming state-of-the-art methods by an average of
25.3%.

II. BACKGROUND

A. Notation

We represent scalars as lowercase non-bold letters such as
t and «, vectors as lowercase bold letters such as h and b,
and matrices as uppercase bold letters such as A and W.
Nodes are represented using the letters u, v, ¢, 7 while edges
are represented using the letter e or their source and destination
nodes uv and ¢j. The variables of the k-th layer are denoted
by (k) in brackets.

B. Problem Definition

We first define the throughput prediction problem in dy-
namic WLAN deployments. Given a dynamic WLAN deploy-
ment with some AP and STA nodes where each STA node
is connected to one AP node at any time, the throughput
prediction problem aims at predicting the dynamic throughput
of each STA. We assume the time granularity is ¢, (i.e.,
the WLAN deployment changes every t, time intervals).
Without loss of generality, the throughput prediction problem
could be represented as a node regression problem on a
heterogeneous Discrete Time Dynamic Graph (DTDG), which
can be represented as a series of heterogeneous graph snap-
shots {G¢|t = 0,t,4,2ts,---} in which each static snapshot
Ge({Vit}, {€;+}) has two types of nodes AP and STA and
two types of edges AP-STA and AP-AP. For simplicity, each
node or each edge, despite the heterogeneity, is associated
with a fixed length node or edge feature vector v or e that
represents the channel, transmission, interference, and other
information. The missing features are denoted as zeros in the
vectors. This allows the heterogeneous DTDG to be easily
converted to homogeneous DTDG to support homogeneous
baseline methods. Denoting the throughput of STA node ¢ and
time ¢ to be y;;, the throughput prediction problem is defined
as a dynamic node regression problem on {G;} to predict y;;
for all STA nodes 4 at each timestamp ¢ = 0,t,,2t,,---. We
adopt the supervised learning setup in which the ground truth
throughput is given for the training and validation sets and the
goal is to predict the throughput in the test set. Please refer to
Section IV for details.

C. Static Graph Neural Networks

Static Graph Neural Networks (GNNs) encode graphs into
node embeddings by iteratively performing message passing
in each Graph Neural Layer (GNL). The vanilla homogeneous
GNN Graph Convolutions Network (GCN) [8] is defined on a
static homogeneous undirected graph G(V, £) where each node
v € V is associated with some attribute features represented
by a fixed length vector. The k-th GCN layer computes the
hidden features by the following message passing scheme

H® = ReLU(AHF~DW*)), (1)

where H,, is the hidden node feature matrix of all the nodes
in the graph stacked vertically, A is the normalized adjacency
matrix, and W is the weight matrix. Multiple GCN layers
are stacked to compute the final output node embeddings
HE)K) which are sent to downstream applications for further
processing. In the supervised training setup, the downstream
networks directly provide the gradients so that the weight
matrices W can be learned. The receptive field of a node
is defined as the set of supporting nodes used to compute
its node embedding. For example, a 2-layer GCN has the
receptive field of 2-hop neighbors. To improve performance
and support various applications, later works propose many
GNL variants based on the vanilla GCN layer. EGNN [17]
enhances GCN by maintaining additional hidden edge features



Hgk) in the message passing scheme. GAT [18] introduces
the attention feature when aggregating neighbor information.
JK-Net [19] improves the performance of deep GNNs with
residual connections.

A static heterogeneous graph could be represented by
G({Vi},{&;}) where each i represent one type of node and
each j represent one type of edge. The edge types are also re-
ferred to as the relations R = {j}. To model the heterogeneity,
R-GCN [20] treats each relation j independently and uses a
combine function (-) to generate the output node embedding,
which can be implemented as mean, concatenation, etc. A
R-GCN layer has the forward model

H(Y = (GNL (A7, HED, W) jeR), @)

where GNL is any homogeneous Graph Neural Layer, A s
the normalized adjacency matrix of relation j, and W;k) is
the weights in GNL of relation j.

D. Temporal Graph Neural Networks on DTDGs

Dynamic graphs can be expressed as set of graph events.
For example, in a dynamic WLAN deployment, the mobility of
STAs can be described as a graph event in which a node feature
vector changes. A hand over of an STA between two APs can
be described as two graph events of an edge disappearing and
another edge appearing. In a dynamic graph, each graph event
is associated with a timestamp. If the timestamps are discrete,
we define these dynamic graphs as Discrete Time Dynamic
Graph (DTDG). A DTDG with discrete timestamps {¢;} can
be represented by a sequence of static graph snapshots {G;, }
in which each static graph G;, is the snap of the dynamic
graph immediately after the graph events at ¢;. To model
DTDGs, static GNNs which operate in each graph snapshot
are combined with sequence models to generate dynamic node
embeddings at each snapshot. EvolveGCN [21] applies GRU
or LSTM to regulate the weight matrices in each static graph
snapshot. DySAT [22] applies self-attention directly on the
hidden features of each snapshot.

E. Related Works in Throughput Prediction

Throughput prediction [23]-[25] is a classic and important
problem in the networking domain. Traditional analytic al-
gorithms rely on Channel State Information (CSI) such as
SINR and RSSI to directly compute the channel throughput,
which is not sufficient to predict the throughput of current
dynamic and dense WLAN deployments. In fact, they even
fail in a simple two links system when the CSMA/CA feature
is enabled [5]. Owing to the drawbacks of traditional analytic
algorithms, researchers have directed attention to applying
ML methods as black boxes that directly map the WLAN
deployments to throughput. The works [5], [26] evaluated
the performance of popular ML methods including Support
Vector Regression, Random Forest, and Decision Tree. While
these methods outperform traditional analytic algorithms, they
only exploit partial contextual information in WLAN deploy-
ments and have unsatisfactory accuracy. In 2021, the Inter-
national Telecommunication Union (ITU) hosted an AI/ML

challenge [16] to predict the throughput on dense static WLAN
deployments with Dynamic Channel Bonding (DCB). ITU
also published the first large-scale datasets which contains
800 synthetic dense WLAN deployments with 4-12 APs
per deployment and 2-20 STAs per AP. The winning team
Ramon [16] adopted a Multi-Layer Perceptron (MLP) to
individually process the information in each Basic Service
Set (BSS). The second place team ATARI [15] proposed
the first GNN-based predictor which exploits both contextual
and structural information. However, neither of these existing
works model the important temporal information in WLAN
deployments as they only operate on independent snapshots.
As also observed in Lumos5G [27] throughput in 5G networks
is affected by mobility, which can only be captured by a
dynamic model. Similarly, the temporal information, such as
the mobility of the STAs or interference sources and the
changes in channel allocation, requires the ML model to take
the time-related information into consideration.

Another line of work aims at developing discrete event
simulators that simulate the low-level events of each trans-
mitted package and estimate the throughput. State-of-the-art
simulators [6], [7] support advanced features in the latest
802.11ax standard and their simulation results are within tiny
discrepancy from the real-world cases. However, these simula-
tors need order-of-magnitude more simulation time compared
with the transmission time, especially in high interference
dense deployments. As a result, they are usually used only
for verification purposes such as generating synthetic data to
supervise ML models.

III. APPROACH

Different GNN architectures are designed for various graph
applications. To design an efficient GNN architecture on the
DTDG of WLAN deployments, we first need to design the
static GNN that operates on a single snapshot. The general
message passing scheme of any GNN layer can be summarized
using the following equation

h =6 (hD0 ({hE D ueN@})). @

where hsjk) is the hidden feature of node v at layer k, ¢(:)
is the update function, v (-) is the aggregation function, and
N (v) is the set of 1-hop neighbors of node v. To design a
powerful GNN architecture on WLAN snapshots, we need to
answer two important questions:

o What is a good message passing scheme that allows the

GNN to maximize expressive power?

o How many layers does the GNN need to have?

We arrange the rest of this section as follows. We first pro-
vide answers to these questions by analyzing the discriminative
power of GNNs on WLAN graphs in Section III-A. Then,
in Section III-B, we propose HTNet—a maximally powerful
Heterogeneous Temporal GNN on WLAN graphs.

A. Designing Powerful GNN on WLAN Graph Snapshots

Recall that any static snapshot G(t) consists of connected
AP nodes and STA nodes, each connected only to its dedicated
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Fig. 1.

Overview of HTNet predicting the throughput on a dynamic WLAN deployment with two APs (star-shaped nodes), three static STAs (round-shaped

nodes), two moving STAs (round-shaped nodes with arrows), and one moving interference source (diamond-shaped node). The Ch x-y denotes that the AP
is currently using channel x to channel y. The shown neural architecture represents a 2-layer HTNet with two graph convolutional layers followed by one

LSTM layer.

AP node. We first formally define the static WLAN graphs as
linked stars graphs.

Definition IIL.1 (Star Graph). A star graph (star) S(NV, €) is
an undirected graph with the single internal node ng € N
connected to the rest of the nodes '\ ng by edges e € £.

Definition III.2 (Linked Star Graph). A linked star graph
GS({S;,0 < i < ns}, &) is an undirected graph with ng
stars where the internal nodes {ny} form an undirected fully-
connected graph with edges &;.

Remark. Linked stars graph are a special type of hetero-
geneous graph G({V;},{&;}). For example, in a WLAN
deployment, the linked star graph is a heterogeneous graph
with two node types (AP and STA) and two edge types (AP-
STA and AP-AP).

Despite the fact that star or star-structured graphs are widely
used in many applications [28], [29], the expressive power of
GNN on these graphs has not been analyzed. To fill this gap,
we show that certain GNNs are as powerful as the Weisfeiler-
Lehman (WL) test [30] that achieves maximal expressive
power on linked stars graphs by mapping any non-isomorphic
pair to different embeddings.

Theorem III.1. /-WL test can distinguish any two non-
isomorphic linked stars graphs.

Proof. We show that any pair of linked stars graphs that passes
the 1-WL test is isomorphic. The first 1-WL iteration checks
the degree distribution of the 1-hop neighbors. In a linked star
graph, all nodes v with with degree d,, > 2 are internal star
nodes and their induced subgraph of the node set {v,d, > 2}
is fully connected. Hence, for two linked star graphs with the
same degree distribution, the node mapping function that maps
the d > 2 nodes according to their degree and d = 1 nodes
according to the degree of their neighbors proves that the two
graphs are isomorphic. [

Recent works [31]-[34] have shown that the WL test and
GNN share many common properties due to their similar
propagation schemes. For a GNN that follows Equation 3
in the forward propagation, Keyulu et al. [31, Theorem 3]
prove that GNNs with injective ¢, v, and graph readout
function are as powerful as the 1-WL test. Hence, we can
conclude that GNNs with message passing schemes that meet
the aforementioned injective conditions can distinguish any
linked stars graphs by mapping them to different embeddings
and achieve maximum expressive power.

However, discrimination of non-isomorphic homogeneous
linked star graphs is not enough in the WLAN throughput pre-
diction problem. When the AP nodes aggregates information
from their heterogeneous neighbors, the node type (AP node or
STA node) can have antithetical influence on the throughput.
For example, two nearby AP-STA node pairs with the same
channels usually have high throughput while two nearby AP-
AP node pairs leads to high interference. The aggregation
function ¢(-) that operates on homogeneous neighbors cannot
map heterogeneous multisets into injective values, even with
an additional binary indicator node feature [15]. We address
this issue by using an additional injective aggregation function
~(+) to model the heterogeneity.

GNN Depth Since the maximum diameter of any linked star
graph is 3 (i.e., an STA-AP-AP-STA path), the receptive field
of a 3-layer GNN is large enough to cover the whole graph.
Without a dedicated graph readout function (which acts as
adding an extra node that is connected to all other nodes
in the graph), a shallow GNN can embed the whole graph
information into each node embedding. For a 3-layer GNN
with injective ¢ and ¢, the output node embeddings can
distinguish any differences in the graph structure or the node
features. However, for a less powerful GNN, more layers are
needed to compensate the lack of resolution in the aggregation
function, as shown in shaDow-GNN [35] where the extra
depth improves the performance of GNNs with bounded-
size receptive field. In experiments, we verify that a less



powerful GNN requires more number of layers to achieve
its best performance compared with a maximally expressive
GNN. We further discover that 2-layer HTNet which provides
information of all APs to each STA achieves comparable
accuracy as a 3-layer HTNet while requiring less runtime
and less amount of supporting features, due to the fact that
the initial AP features already includes a fair amount of
information from their corresponding STAs. Please refer to
Section IV-D for details.

B. HTNet Architecture

Figure 1 shows an overview of HTNet predicting the
throughput on a dynamic WLAN deployment with s 4 1
snapshots. We first introduce HTLayer (HTL) which is the
basic building block for HTNet. For reasons of expediency,
we omit the time t = tg,t1, -+ ,ts when introducing HTL.
HTL: Consider a WLAN snapshot G at time ¢ with n APs
and m STAs. We model the external interference sources
(red nodes in Figure 1 as close AP-STA pairs that occupy
all available channels. There are n(n — 1)/2 AP-AP edges
modeling the interference among APs and m STA-AP edges
modeling the transmission between STAs and APs. In the
message passing process, an undirected edge is treated as two
directed edges with opposite directions. Hence, we have three
types of directed edges: n(n—1) AP—AP edges, m STA—AP
edges, and m AP—STA edges. Let the node feature matrix
be {hf,o)} = H,SO) € R*t™dv and the edge feature matrix
be {h{%)} = H) € Rr(n=D+2m.de where d, and d, are the
lengths of node and edge feature vectors. Note that the directed
edges copied from the undirected edges in the message passing
process share the same edge feature matrix.

For each relation € {AP — AP, STA — AP, AP — STA},
we need to find an injective aggregation function t(-) that
operates on homogeneous neighbor multisets. The injective
combine function ¢(-) is replaced with a residual connection
and will be introduced later. Under the assumption of count-
able feature space, GIN [31] shows that the sum aggregator
is a universal injective function over homogeneous multisets.
To accommodate the edge features, we enhance the sum ag-
gregator with edge-aware heterogeneous attention mechanism
HEGATConv [36]. For the k-th HTL layer with input and
output node and edge dimensions di"®, @ou®  gin®) gout®) “the
hidden node features hf,k) (r) of relation r is updated by

h?(r) =ReLU [ Y auy WHBD 4 M) | 4)

ueN; (v)

where N,.(v) is the neighbor set of node v with relation r,
ng) € R4 is the learnable weight matrix of relation
T, b € RE"™ is the learnable bias matrix of relation 7. And
the edge feature-aware attention scores a,,, are computed by

tuy = wiVhif) )
h{%) = LeakyReLU (W(" [m{ D |[n VB 0]) . ©)

where w((lk) IS R4 is the learnable attention weight vector,
W,(lk) e RE"" 24344 ig the learnable edge weight matrix,
and || denotes the concatenation operation. Here the attention
weight vector W[(Lk) and the edge weight matrix W((lk) are
shared among all relations and the hidden edge features hq(ﬁj)
are updated for all edge types prior to the message passing
process of each relation.

For the heterogeneous combine function (-), since the
number of relations is only three, we simply choose the most
expressive concatenation function. The output node features
of the k-th HTL layer is

b = || h{"(r). ()

reR

For the STA nodes that only have one incoming AP—STA
edge, the missing h{(r) for r € {AP — AP, STA — AP} is
replaced with all zero vectors.
Over-Smoothing: The over-smoothing problem usually occurs
in deep GNNs when the node embeddings of all nodes con-
verge to the same vector and lose the ability to distinguish each
individual node. Although HTNet only requires 2 or 3 layers,
the special graph structure of WLAN deployments exacerbates
the over-smoothing problem. Any two STAs under the same
AP share the same sets of 1-hop and 2-hop neighbors. Any two
STAs under different APs even have a common 2-hop neighbor
set of all other APs. To mitigate the over-smoothing issue, we
adopt the JK-Net [19] setup to add a residual connection after
each HTL. The output node embedding of K-layer HTLs is

h, = ¢ ( I h&“) : (8)
0<k<K

where the injective ¢(-) function is implemented using a
1-layer MLP.

HTNet: After HTLs perform message passing on each WLAN
snapshot and obtain h! at ¢ = tg,¢,---,ts, we apply a
sequence model to capture the temporal information. Among
the popular sequence models, we find in experiments that
LSTM achieves the best performance compared with RNN,
GRU, and Transformer. Hence, we implement LSTM network
to compute the final dynamic node embedding flf)

£ = o (Whi + Urhi ™ + by) ©)
i, = o (Wih!, + Uih!! + b;) (10)
o, =0 (W,h! + Ugh! ™! +b,) (1)
c,=floc  +iloo (Wchg +Uchy ™ + bc) (12)
Bt = of oo (ch), (13)

where o(-) is the sigmoid function, o is the point-wise multi-
plication operator, W and U are the learnable weight matrices,
b is the learnable bias, ¢ — 1 denotes the previous timestamp,
and c! is initialized to be 0. We apply a linear layer to generate
the predicted throughput ¢ and add a softplus function to
ensure that the predicted throughput is strictly positive

9t = log (1 +exp (Wyflf})> . (14)



We apply batch normalization with learnable affine parameters
after each HTL. All the learnable parameters in HTNet are
trained end-to-end supervised by the ground truth throughput
y! in the training set. The loss function is to minimize the
Root Mean Square Error (RMSE) of all target STAs across all
the time

_ Z’u Zt (yzt; - ?35)2
=TT

Comparison with ATARI: HTNet and ATARI [15] both apply
GNN to extract features from graph-structured WLAN data
and predict the throughput. However, HTNet considers the
heterogeneity between AP and STA nodes and adopts atten-
tion mechanism in aggregation, which are proven to achieve
maximized expressiveness on WLAN graphs. In addition,
HTNet also captures the temporal information jointly with the
structural and contextual information in WLAN graphs.

HTNet Applications: HTNet can be widely applied to many
WLAN problems. In the first place, as a throughput predictor,
HTNet can be used to determine the reward in Reinforcement
Learning (RL) algorithms [37], [38] to learn channel allocation
policies. More generally, the dynamic node embeddings h!,
generated by HTNet, by virtue of their high expressiveness in
low-dimensional spaces, can be directly used in downstream
applications, such as channel allocation, link scheduling,
power control, beamforming, and network flow optimization.

5)

IV. EXPERIMENTS

We arrange the section as follows. We first introduce the
dataset in Section IV-A. Then, we introduce the baseline
methods in Section IV-B. In Section IV-C, we discuss the
implementation of HTNet and the baselines. Lastly, we present
the results and ablation study in Section IV-D. The codes and
dataset are publicly available at GitHub'.

A. Dataset

HTNet is the first work that considers the dynamics in
WLAN deployments and to the best of our knowledge, there
are no existing WLAN deployment datasets that include
temporal information. Fortunately, discrete event simulators
can be used to generate large-scale synthetic data for the
ML models. We choose Komondor [6], the fastest discrete
event simulator that supports 802.11ax features, which has
been cross-validated with ns-3 [7] and real-world test-benches.
Note that HTNet is a supervised model and its performance
can be further improved through more accurate training data
such as real-world WLAN deployments. There are three types
of dynamics in WLAN deployments: (1) mobility of STAs.
For example, a customer streams music using a smart phone
while walking in a department store. (2) dynamic interference
sources, e.g., an external Device-to-Device (D2D) network
with dynamic channel and power configurations. In this work,
we only focus on mobile dynamic interference sources with
fixed power and channel configurations. (3) dynamic channel

Uhttps://github.com/tedzhouhk/HTNet

allocation, i.e., the available channels are dynamically config-
ured by APs.

To cover a wide range of real-world dynamic WLAN
deployments, we generate a dynamic dataset with six setups.
Setups 1-2 cover the case of mobile STAs. Setup 3 covers
the case of mobile interference sources. Setup 4 covers the
case of dynamic channel configuration. Setups 5-6 cover more
complex cases with both mobile STAs and dynamic channel
configurations. To generate these dynamic setups, we use the
six training scenarios in the ITU AI/ML Challenge dataset [16]
as a starting point. These six training scenarios contain 500
static dense WLAN deployments with the map sizes ranging
from 80 by 60 to 40 by 20 meters, number of APs per
deployment ranging from 8 to 12, and number of STAs per AP
ranging from 5 to 20. We adopt the same WLAN configuration
as in the ITU AI/ML Challenge — 802.11ax Wi-Fi with
8 consecutive 20MHz 5G channels and Always Max Log2
dynamic channel bonding mechanism. The traffic is set to be
full-buffered downlink UDP traffic. Starting from these 500
static deployments, we generate six dynamic setups. The first
four setups focus on different dynamic scenarios while the last
two setups cover more general use cases.

o Setup 1: mobile STAs (within AP). In setupl, STAs are
moving along straight lines. We randomly pick 50% of
the STAs of each AP to be the mobile STAs while the
remaining 50% are static. The trajectory of these mobile
STAs are straight lines pointing at random directions.
Starting from the 500 initial WLAN deployments, the
moving speeds are chosen uniformly randomly from 0.1-
0.5 meters and are fixed in the dynamic sequences. If an
STA is moving out of the coverage range of its AP, it
stops moving. In setup 1, 16% of the total movements
result in out of coverage and are stopped.

o Setup 2: mobile STAs (across AP). Setup 2 is similar
to setup 1 where there are 50% of mobile STAs moving
along random directions. However, in setup 2, we double
the upper bound of their moving speeds, ranging from
0.1-1 meters per snapshot. In addition, if one STA is
moving out of the coverage range of its AP, it is handed-
over to the closest AP that can cover the STA. The STA
will stop moving only if it moves out of the coverage
range of all APs in the deployment. In setup 2, 6% of
the total movements result in out of coverage and are
stopped.

o Setup 3: mobile interference sources. Setup 3 covers

Sequence Mean Thpt. STD Thpt.  # Deployments
Length (Mbps) (Mbps) Train/val/test
Setup 1 10 6.02 3.56 3000/1000/1000
Setup 2 10 5.82 3.35 3000/1000/1000
Setup 3 10 5.35 2.93 3000/1000/1000
Setup 4 10 4.11 2.63 3000/1000/1000
Setup 5 10 2.94 225 3000/1000/1000
Setup 6 100 2.48 1.89 300/100/100
TABLE I

DATASET STATISTICS.
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Fig. 2. Average dynamic throughput (Mbps) in each setup. The shaded regions show the standard deviations in each snapshot.

the cases of dynamic interference sources. As mentioned
above, in this work, we only consider mobile interference
source with fixed power and channel. Specifically, we
simulate an external interference source as a AP-STA
pair capturing all available 8 channels placed very close
to each other (the STA is placed lcm above the AP.)
with the largest transmission power available. In setup
3, we randomly place 3 interference sources in each
deployment. These interference sources are moving along
random directions with constant speeds chosen uniformly
from 1-3 meters per snapshot at random.

o Setup 4: dynamic channel allocation. Setup 4 covers
the cases where APs are actively changing the available
channels during transmission. We adopt a random channel
allocation scheme: In each snapshot, the APs have equal
probability to (1) increase minimum available channel
number, (2) decrease minimum available channel number,
(3) increase maximum available channel number, (4)
decrease maximum available channel, or (5) add an offset
to both the minimum or maximum available channel
numbers.

o Setup 5: mobile STAs + dynamic channel allocation.
Setup 5 is a combination of setups 2 and 4.

o Setup 6: long sequence. Setup 6 is also a combination
of setups 2 and 4, but with longer sequence.

The sequence length is 10 snapshots for setups 1-5 and 100
snapshots for setup 6 where each snapshot represents 10
seconds in the real world. Random movement directions are
chosen for the first snapshot and remain fixed for the remaining
snapshots. For setups 1-5, we generate 10 different dynamic
WLAN deployments from one static WLAN deployment,
while for setup 6 we only generate 1. The dataset statistics are
shown in Table I and the average throughput in each snapshot
is shown in Figure 2. We use a server with dual AMD EPYC
7763 CPU and 1TB of DDR4 memory to run the simulation.
We launch 128 independent Komondor simulation processes
at the same time to fully utilize the 128 cores. The whole
simulation process takes around one week.

B. Baseline Methods

To compare the performance of HTNet with existing works,
we choose four baselines.
o SINR is based on the theoretical single link channel
capacity equation ¢ = I"log(1 + SINR).
o GBRT [5] uses Gradient Boosted Regression Trees which
predict the throughput through multiple independent re-
gression trees. We choose GBRT as it achieves the best

performance among the out-of-the-box ML methods [5],
[26].

o ATARI [15] is the second place winner in the ITU AI/ML
challenge. ATARI applies GNN to solve the WLAN
throughput prediction problem.

« Ramon [16] is the first place winner in the ITU AI/ML
challenge. Ramon uses a feed-forward deep learning
algorithm to predict throughput from signal quality and
AP bandwidth.

We also extend ATARI and Ramon to capture temporal infor-
mation by adding an additional LSTM model (ATARI+LSTM
and Ramon+LSTM). The number of parameters in each
model is shown in Table II.

C. Implementation

We predict the current throughput of the target STAs given
the current and all previous snapshots. The ground truth
throughput of previous snapshots is not used as input data as it
is not available in most real-world use cases. However, HTNet
can be easily adapted to different problem setups such as the
extrapolation setup which predicts future throughput without
the future snapshots. To ensure a fair comparison, we make
sure that HTNet and all baseline methods share the same set of
input features. We first define the node and edge features for
the graph-based methods ATARI, ATARI+LSTM, and HTNet.
As mentioned in Section II-B, the heterogeneous nodes and
edges have the same feature vectors to be compatible with
homogeneous GNNs. In this work, the input node features are
21-dimensional floating point vectors including the following
information:

o Node type (1-dimensional): O for AP, 1 for STA.

« Position (2-dimensional): z and y position of the AP or

STA.

o Primary channel (8-dimensional): one-hot vector indicat-

ing the primary channel.

e Available channels (8-dimensional): multi-hot vector in-

dicating the available channels.

o Airtime (1-dimensional): airtime for AP, O for STA.

o SINR (1-dimensional): SINR for STA, 0 for AP.

The input edge features are 4-dimensional floating point
vectors including the following information:

o Edge type (1-dimensional): O for AP-STA, 1 for AP-AP.

« Distance (1-dimensional): physical distance between two

nodes.

e RSSI (1-dimensional): RSSI for AP-STA, O for AP-AP.

o Interference (1-dimensional): interference for AP-AP, 0

for AP-STA.
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25 é@ £% || 4 param Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6
SHEEES "|| RMSE MAE |RMSE MAE |RMSE MAE |RMSE MAE |RMSE MAE |RMSE MAE
SINR | (V) - 5.3280 3.7653 | 5.2527 3.6073 | 4.8163 3.3863 | 4.0335 2.4572 | 3.4028 2.0480 | 2.7934 1.7096
GBRT | v - 4.4906 3.0936|4.5773 3.0761 | 4.1263 2.8456 | 3.2776 1.9163|2.7991 1.5650 | 2.2748 1.2934
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Fig. 3. Average inference time per sequence compared with the simulation time of the Komondor simulator. The solid lines denote the actual time of the

dynamic deployment.

The airtime, SINR, RSSI, and interference are generated by
Komondor in the simulation process. Note that we use a
one-hot vector for primary channel and a multi-hot vector
for available channels instead of scalars as in ATARI [15],
since the channels are independent of each other. For the
non-graph methods (GBRT, Ramon, Ramon+LSTM), the in-
put features are the concatenation of the node features and
the edge features of the corresponding AP-STA edges. All
experiments are performed on dual AMD EPYC 7763 CPU
with 1TB of DDR4 memory and an RTX A6000 GPU with
48GB of GDDR6 memory. The SINR and GBRT baselines
are implemented on CPU while the other methods including
HTNet are implemented on GPU. Please refer to our open-
sourced codes for more implementation details.

D. Results

Accuracy: To compare the accuracy of HTNet with the
baselines, we set the number of layers K to be 2
and hidden feature dimensions do"'® d%® (o be 128
for the neural network-based methods (ATARI, Ramon,
ATARI+LSTM, Ramon+LSTM, and HTNet). The LSTM
model in ATARI+LSTM, Ramon+LSTM, and HTNet also
has two layers with 128 hidden dimension. We train these
methods with 0.001 as the learning rate and O as the dropout
rate for 150 epochs until convergence. For GBRT, we uses
100 gradient boosted trees with maximum depth of 4. Table
IT shows the Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) of HTNet and the baselines on the six
setups. We also show the type of input information considered
by these methods. HTNet is the only method that considers
the complete contextual, structural, and temporal information.
ATARI operates on homogeneous graphs which only captures

partial structural information while SINR only captures partial
contextual information. On all six setups, HTNet achieves the
lowest prediction error with an average of 1.7345 RMSE and
0.3721 MAE improvement compared with the most accurate
baselines. Ramon+LSTM achieves the lowest RMSE among
the baselines on setups 1, 2, 3, and 6 while RAMON achieves
the lowest RMSE on setups 4 and 5. The baseline methods
ATARI and Ramon, when attached with a LSTM network
to capture the temporal information, outperform their original
static version, which is solid evidence that capturing temporal
information is important in the WLAN throughput prediction
problem. We observe that when the channel configuration
is dynamically allocated (setups 4-6), temporal information
needs to be combined with structural information to generate
accurate throughput prediction. On the more general setups
5 and 6, HTNet achieves significantly better accuracy than
all the baseline methods due to its high generalizability and
robustness. We also test the static version of HTNet by
removing the LSTM layer and compare the result with ATARI.
On six datasets, HTNet without LSTM achieves an average
of 37.1% improvement than ATARI, which verified that the
heterogeneous GNN architecture in HTNet is superior than
the homogeneous GNN architecture used in ATARI.

Runtime: Figure 3 shows the average inference time ti, per
dynamic WLAN deployment snapshot. The simulation time
of Komondor is more than 10 times longer compared with
the real-world transaction time and becomes the bottleneck
when applied in WLAN optimizations problems. SINR, due
to its simplicity, requires less than 0.lms inference time
on all six setups. Ramon and Ranmon+LSTM are in the
second tier with less than Ims inference time, since they
do not require aggregation from neighbor nodes. Graph-based
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Fig. 4. Test RMSE and inference time of ATARI, ATARI+LSTM, and HTNet with different number of GNN layers.

methods ATARI, ATARI+LSTM, and HTNet are in the third
tier with 4-8ms inference time. Note that although the message
passing scheme in HTNet is more complex than in ATARI,
the runtime of HTNet is only 10.5% longer since the most
time-consuming operation on GPU is the sparse-dense matrix
operation which is the same for both. GBRT that operates on
CPU is the slowest method. We believe the inference time of
all ML methods meet the requirements of various downstream
applications.

Number of GNN layers: We study the accuracy and inference
time of graph-based methods ATARI, ATARI+LSTM, and
HTNet with different number of GNN layers. We vary the
number of GNN layers from 1 to 12 and show the results in
Figure 4. Since we are performing full-batch inference (predict
the throughput of all STAs at the same time), the runtime is
linear with the number of GNN layers for all methods. HTNet
with 3 GNN layers is proven to achieve maximal expressive
power and achieves the highest test RMSE. In practice, the 2-
layer HTNet achieves similar test RMSE as a 3-layer version
but only requires the STA nodes of the same AP and the AP
nodes as the supporting nodes and has the best accuracy-to-
runtime ratio. Note that the accuracy of deeper HTNets drops
due to a combination effect of over-smoothing and inferior
convergence, especially in simple WLAN deployments (setups

| Setup 1
HTNet | 14705

w/o SINR | 1.3980
w/o airtime | 1.5278
w/o RSSI | 1.4635
w/o channel | 1.6845
w/o position | 1.7141

3.8147
3.6467

Setup 2
1.9040

1.9085
2.0154
1.9045
2.3125
24012

42100 3.6845

3.9963 4.1085

TABLE III

TEST RMSE OF HTNET WITH DIFFERENT SET OF INPUT FEATURES. ‘W/0’
DENOTES WITHOUT WHILE ‘O’ DENOTES ONLY.

Setup 3
1.7928

1.9215
1.9858
2.0154
2.1023
2.3142

Setup 4 Setup 5 Setup 6
1.9760 1.7102 1.5559

2.0145 1.8239 1.5645
2.1003 1.8124 1.5784
20112 19112 1.6125
24156 1.9652 1.7254
2.3241 19532 1.7098

3.5487 3.3489 2.9896
3.4637 3.0012 2.8711

o channel
o position

1-3). On the other hand, less powerful GNNs ATARI and
ATARI+LSTM require more number of layers to compensate
the lack of expressive power in their message passing schemes.
Although the temporal information in ATARI+LSTM makes
up the deficiency, in complex WLAN deployments (setups 5-
6), it still requires more than 10 layers for its best accuracy.

Input features: We also perform ablation study on the con-
tribution of each input feature and show the results in Table
III. We first remove the SINR, airtime, RSSI, channel con-
figuration (including primary channel and available channels,
denoted as ‘channel’ in Table III), and location information
(including position and distance, denoted as ‘position’ in Table
IIT) one at a time from the input features. Removing SINR
from the input features only has mild affect on the accuracy,
except on setup 3 with mobile interference source. Channel
configuration and location are important input features, and
channel configuration is the most important input feature on
setups 4-6 with dynamic channel allocation.

V. CONCLUSION

We proposed HTNet — the first HTGNN-based dynamic
WLAN performance predictor. We designed a special message
passing scheme and proved that it achieved maximal expres-
sive power on dynamic WLAN deployment graphs. We gen-
erated the first dynamic WLAN throughput prediction dataset
which contains more than 25 thousand dynamic WLAN de-
ployments. HTNet outperformed state-of-the-art methods in
all six experimental setups. We believe that the high quality
dynamic embeddings and the accurate throughput prediction
in HTNet can benefit many important network problems.
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