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Abstract—Graph Neural Network (GNN) inference is used in
many real-world applications. Data sparsity in GNN inference,
including sparsity in the input graph and the GNN model,
offer opportunities to further speed up inference. Also, many
pruning techniques have been proposed for model compression
that increase the data sparsity of GNNs.

We propose Dynasparse, a comprehensive hardware-software
codesign on FPGA to accelerate GNN inference through dynamic
sparsity exploitation. For this, we decouple the GNN computa-
tion kernels from the basic computation primitives, and explore
hardware-software codesign as follows: 1) Hardware design: We
propose a novel unified accelerator design on FPGA to efficiently
execute various computation primitives. We develop a customized
soft processor that is tightly coupled with the accelerator to exe-
cute a runtime system. Moreover, we develop efficient hardware
mechanisms to profile the data sparsity and perform on-the-
fly data format transformation to prepare the input data for
various computation primitives; 2) Software design: We develop
a runtime system that works synergistically with the accelerator
to perform dynamic kernel-to-primitive mapping based on data
sparsity. We implement Dynasparse on a state-of-the-art FPGA
platform, Xilinx Alveo U250, and evaluate the design using
widely used GNN models (GCN, GraphSAGE, GIN and SGC).
For the above GNN models and various input graphs, the
proposed accelerator and dynamic kernel-to-primitive mapping
reduces the inference latency by 3.73 on the average compared
with the static mapping strategies employed in the state-of-
the-art GNN accelerators. Compared with state-of-the-art CPU
(GPU) implementations, Dynasparse achieves up to 56.9 (2.37)
speedup in end-to-end latency. Compared with state-of-the-art
FPGA implementations, Dynasparse achieves 2.7 speedup in
accelerator execution latency.

Index Terms—Graph neural network, hardware-software code-
sign, hardware architecture, runtime system

I. INTRODUCTION

Graph Neural Networks (GNNs) have achieved great suc-
cess in many real-world applications, such as recommenda-
tion systems, social media, etc. Low-latency GNN inference
is needed in many real-world applications, such as traffic
prediction [1], scientific simulation [2], etc.

While many techniques [3], [4], [5], [6], [7], [8], [9] have
been proposed to accelerate GNN inference, no work has
systematically studied the data sparsity in GNNs to reduce
the inference latency. GNNs ([10], [11]) involve various com-
putation kernels, where there are three types of data sparsity:
(1) Sparsity of graph structure: The graphs in the real-world
applications are usually sparse, as most vertices have a small
number of neighbors, (2) Sparsity of vertex features: The
vertex features have various sparsity depending on the property

of the graphs, activation function, etc., and (3) Sparsity of GNN
model: The weight matrices in GNN models can also have data
sparsity due to model pruning, etc. Moreover, the data sparsity
can vary significantly based on the input graphs and GNN
models (See Section II-B). Prior works directly map the GNN
kernels to computation primitives (See Section II-B), and do
not consider data sparsity, leading to potentially suboptimal
performance.

To efficiently utilize the data sparsity in GNN inference,
we propose to decouple the GNN kernels (feature aggregation
and feature transformation) from the basic primitives (dense-
dense matrix multiplication (GEMM), sparse-dense matrix
multiplication (SpDMM), sparse-sparse matrix multiplication
(SPMM)). A GNN kernel can be dynamically mapped to
a primitive according to the sparsity of the data. However,
there are several challenges: (1) While the sparsity of the
graph structure and GNN model is known before the execution
of inference (runtime), the sparsity of vertex features in the
intermediate layers is known only at runtime. Therefore,
static (compile time) kernel-to-primitive mapping may not be
optimal. (2) While the GNN kernels can be mapped to various
primitives, these primitives have different data formats and
layouts. Switching the data format and the data layout can
incur large overhead during execution. (3) Different primitives
have different computation patterns and memory access pat-
terns. While general purpose processors are efficient for dense
primitives (GEMM), their data path and cache organization are
inefficient for sparse primitives (SpDMM, SPMM).

To address the above challenges, we propose Dynasparse,
a hardware-software codesign, which can efficiently exploit
the data sparsity in GNN inference. For the hardware design,
we use Field Programmable Gate Array (FPGA) as the target
hardware platform. The programmability of FPGA allows us to
(1) develop a customized data path and memory organization
to support various computation primitives, (2) develop efficient
hardware mechanism for sparsity profiling and transforma-
tion of data format and data layout (Section V-A), and (3)
implement a lightweight and customized soft processor to
perform dynamic kernel-to-primitive mapping at runtime. We
summarize our main contributions as follows:

 We develop a complete system on FPGA with the fol-
lowing innovations in hardware design:

– a novel hardware architecture, named Agile Compu-
tation Module, consisting of multiple Computation
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Cores with flexible data path and memory organiza-
tion that can execute various computation primitives,
including GEMM, SpDMM and SPMM.

– an efficient hardware mechanism that supports fast
sparsity profiling and data format/layout transforma-
tion.

 We propose a soft processor and develop a runtime
system on the soft processor to enable dynamic sparsity
exploitation, including:

– dynamic kernel-to-primitive (K2P) mapping strategy
that automatically selects the optimal computation
primitive for a given kernel based on an analytical
performance model.

– task scheduling strategy that manages the execution
of the computation primitives on the accelerator to
achieve load balance across multiple Computation
Cores in the FPGA accelerator.

 We implement the proposed codesign on a state-of-the-
art FPGA, Xilinx Alveo U250. For various GNN models
and input graphs, the proposed accelerator and the dy-
namic kernel-to-primitive mapping reduce the inference
latency by 3.73 on the average compared with the
static mapping strategies employed in the state-of-the-
art GNN accelerators. Compared with state-of-the-art
CPU (GPU) implementations, Dynasparse achieves up to
56.9 (2.37) speedup in end-to-end latency. Compared
with state-of-the-art FPGA implementations, Dynasparse
achieves 2.7 speedup in accelerator execution latency.

II. BACKGROUND

A. Graph Neural Network

GNNs [10], [11] are proposed for representation learning
on graphs GV,E, and follow the message-passing paradigm
(Algorithm 1) in which the vertices recursively aggregate
information from the neighbors. hLv denotes the last-layer
embedding of the target vertex v. The Update() is usually
a Multi-Layer Perceptron that transforms the vertex features.
An element-wise activation function is applied to the feature
vectors after the Aggregate() and Update() in each layer. The
output embedding hLv can be used for many downstream tasks,
such as node classification ([11], [10]), link prediction, etc.
GCN [10], GraphSAGE [11], GIN [12], and SGC [13] are
some representative GNN models. Table I summarizes the
notations used in this paper.

TABLE I: Notations

Notation Description Notation Description

GV,E input graph vi ith vertex

V set of vertices eij edge from vi to vj

E set of edges L number of GNN layers

A graph adjacency matrix Ni the set of neighbors of vi

hl1
i input feature vector of vi at layer l W l weight matrix of layer l

Hl1 input feature matrix to layer l σ activation function

Algorithm 1 GNN Computation Abstraction

Input: Input graph: GV,E; vertex features: h0
1,h

0
2,h

0
3, ...,h

0
V;

Output: Output vertex features hL
1 ,h

L
2 ,h

L
3 , ...,h

L
V;

1: for l  1...L do
2: for each vertex v  V do
3: al

v  Aggregatehl1
u  u  Nv

4: zl
v  Updateal

v,W
l), hl

v  σz
l
v

B. Data Sparsity in GNN inference

The density of a matrix is defined as the total number of
non-zero elements divided by the total number of elements.
Note that, the sparsity is given by 1  density. The compu-
tation kernels in GNNs involve three types of matrices: graph
adjacency matrix A, vertex feature matrix H , and weight
matrix W . The adjacency matrix A of different graph datasets
[14] can have different densities. For a given adjacency matrix,
different parts of the matrix have different densities. Figure
2 shows the densities of feature matrices in GCN [10]. For
different graphs, the input feature matrices have different
densities. The feature matrices of different layers also have
different densities. For the weight matrices, prior works ([15],
[16]) have proposed various pruning techniques to reduce the
density of the weight matrices.

The density of A
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Fig. 1: The density and the visualization of graph adjacency
matrix A of various graphs [14]

The density of feature matrix (FM) in various layers
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Fig. 2: Density of the feature matrices in the GCN model [10]

C. GNN Acceleration based on Data Sparsity

Although there are various data sparsities in GNNs, no prior
work has systematically studied exploiting the data sparsity for
GNN inference acceleration. HyGCN [3] and BoostGCN [4]
map Aggregate() to SpDMM and map update() to GEMM,
ignoring the data sparsity in feature matrices and weight
matrices. AWB-GCN [17] maps both Aggregate() and update()
to SpDMM. Then, they propose an accelerator to efficiently
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import torch 

from torch_geometric.nn import GCNConv

class GCN(torch.nn.Module):    

def __init__(self, in_ch, hidden_ch, out_ch):

super().__init__()    

self.conv1 = GCNConv(in_ch, hidden_ch)  

self.conv2 = GCNConv(hidden_ch, out_ch) 

def forward(self, x:Tensor, edge_index: Tensor): 

x = self.conv1(x, edge_index).relu()

x = self.conv2(x, edge_index)

return x

user_model = GCN(128, 16, 16) 

dataset = Planetoid(root='.', name='Cora')

User-defined GNN model  and graph meta data Computation Graph

Input 
Parser

Optimized IR after data partitioning

GEMM

SpDMM
SPMM

PrimitivesAnalyzer

Scheduler

Accelerator
#Execution of an Aggregate kernel

Input: Graph adjacency matrix 𝐴
Feature matrix 𝐻𝑖𝑛

Output: Output feature matrix 𝐻𝑜𝑢𝑡

for 𝑖 = 1 to 
𝒱

𝑁1

for 𝑘 = 1 to 
𝑓1

𝑁2

Initialize 𝐻𝑖𝑘
𝑜𝑢𝑡 in Result Buffer

for 𝑗 = 1 to 
𝒱

𝑁1

Load 𝐴𝑖𝑗 and 𝐻𝑗𝑘
𝑖𝑛

𝐻𝑖𝑘
𝑜𝑢𝑡 += Matmul(𝐴𝑖𝑗 , 𝐻𝑗𝑘

𝑖𝑛)

write 𝐻𝑖𝑘
𝑜𝑢𝑡 back to DDR

Data partition 
of a kernel

Fig. 3: Proposed workflow

execute SpDMM. However, they do not exploit the data
sparsity in weight matrices. DeepBurning-GL [18] is a design
automation framework that generates the optimized hardware
accelerator given the information of the input graph and the
GNN model. However, their framework needs to regenerate the
optimized accelerator if the sparsity of the data is changed.
To summarize, prior GNN accelerators do not fully exploit
the data sparsity in GNNs, or are not flexible to exploit data
sparsity in GNN inference.

III. OVERVIEW

A. Problem Definition

The computation kernels in GNN inference are feature
aggregation and feature transformation which correspond to
Aggregate() and Update() in the message-passing paradigm of
GNN (Algorithm 1).
 Aggregate(): The input is graph adjacency matrix A and

feature matrix Hin. The output is Hout A Hin.
 Update(): The input is vertex feature matrix Hin and

weight matrix W . The output is Hout Hin W .
The computation primitives are GEMM, SpDMM and SPMM.
While all the primitives perform multiplication of two input
matrices to produce an output matrix, they have different
ways of dealing with the zero elements: (1) GEMM views the
two input matrices as dense matrices, and performs multiply-
accumulate for all the matrix elements no matter whether an
element is non-zero or not. (2) SpDMM views one input matrix
as sparse matrix and skips the computation operations for all
the zero elements in this input matrix. (3) SPMM takes two
input sparse matrices and skips the computation operations for
all the zero elements in the two input matrices.

This work targets full-graph inference: given a GNN model
and an input graph, we perform the message-passing paradigm
(Algorithm 1) in the full input graph to obtain the embeddings
of all the vertices. Full-graph inference has been widely
studied in the literature [3], [17], [4]. Our objective is to
exploit the data sparsity of GNN kernels to further accelerate
the inference process. We assume that the sparsity of the data is
unknown before the accelerator design or hardware execution.
Our intent is to develop a single hardware-software codesign
on FPGA that is efficient and flexible to support various

graphs and GNN models of various data sparsity. Therefore,
the proposed work does not require regenerating the FPGA
accelerator if data sparsity changes.

B. System Overview

GNN model Input graph

Input parser

IR

Data partitioning

Optimized IR
Compiler

Runtime System

Host 
Processor

FPGA External Memory

Soft
Processor

FPGA

Sparsity Info.
From Accelerator

Scheduler Control Signal for 
Accelerator

Analyzer

Accelerator

Software Design

PCIe AXI

Host Memory

Hardware System

Fig. 4: Overview of the proposed system

Figure 4 depicts the proposed system design. The software
comprises of a compiler and a runtime system. The hardware
system has three components:
 Host processor: The compiler is executed on the host

processor to perform compilation (preprocessing) for the
input GNN model and the input graph to generate the
intermediate representation (IR). The IR is sent to the
soft processor for execution.

 Soft Processor on FPGA: The runtime system is ex-
ecuted on the soft processor. It takes the IR as input,
and dynamically schedules the computation tasks on the
accelerator by sending control signals to the accelerator.

 Accelerator on FPGA: It executes the three computa-
tion primitives (GEMM, SpDMM, SPMM), profiles data
sparsity, and performs data layout/format transformation.
It receives the control signals from the soft processor to
execute the computation tasks, and also sends the data
sparsity information to the soft processor at runtime.

The workflow is illustrated in Figure 3. The execution of
GNN inference consists of two steps:



Step 1. Compilation/Preprocessing: The compiler (See Sec-
tion IV-A) performs the following preprocessing: 1 Generat-
ing intermediate representation (IR): It takes the specifica-
tions of the user-defined GNN model and the graph meta data
as input, and generates the IR for the GNN computation graph
(See Figure 3). 2 Data partitioning: The compiler performs
data partitioning for each kernel. Data partitioning is required
since (1) in real-world applications, the input graph can be very
large and the FPGA accelerator has limited on-chip memory,
(2) within a matrix, different parts of the matrix can have
different data sparsity. Data partitioning enables fine-grained
kernel-to-primitive mapping (See Section VI-B), leading to
more efficient sparsity exploitation. 3 Preprocessing of data
sparsity: When the compiler performs data partitioning, it uses
counters to profile the sparsity information of graph adjacency
matrix A, weight matrix W , and input feature matrix H0.
Note that the sparsity information of the feature matrices in
the intermediate layers H1, ...,HL is unknown at compile
time and is profiled by the accelerator at runtime.

Step 2. Runtime execution: At runtime, the soft processor
and the accelerator collaborate to perform GNN inference.
The runtime system on the soft processor consists of an
Analyzer and a Scheduler. The accelerator contains multiple
Computation Cores. The Analyzer takes the optimized IR
from the compiler and the data sparsity information from the
compiler and the accelerator to dynamically map a kernel to a
primitive based on a performance model. Then, the Scheduler
schedules the execution of the primitives on the accelerator
(Section VI-C). The runtime system performs dynamic kernel-
to-primitive (K2P) mapping. Note that the mapping must be
performed dynamically at runtime: (1) The densities of the
feature matrices in the intermediate layers H1, ...,HL are
unknown before runtime; (2) The Computation Core has vari-
ous execution modes (Section V-B) with each mode executing
a specific primitive. These execution modes have different
computation efficiency (See Section VI-A) with respect to
the density of data. As a result, for a computation kernel
of high density, executing it using GEMM primitive on the
Computation Core will be more efficient. For a GNN kernel
of low density, executing it using SpDMM or SPMM primitive
on the Computation Core will be more efficient. To handle this
scenario, we build an analytical performance model (Section
VI-B) to estimate the execution latency of a given primitive
on the Computation Core with respect to the data sparsity.

The rest of the paper is organized as follows: Section
IV covers the details of the compiler; Section V introduces
the proposed accelerator design; Section VI introduces the
proposed runtime system; Section VII and VIII describe the
implementation details and evaluation results, respectively.

IV. COMPILER

A. Intermediate Representation (IR)

We define the meta data in the IR in Table II, including the
meta data of the kernel and the meta data of the execution
scheme. The execution scheme of a kernel is the plan for

executing the kernel. The IR defines two types of kernels
– Aggregate and Update, corresponding to Aggregate and
Update in the GNN abstraction (See Algorithm 1).

TABLE II: Meta data of a kernel in the IR

Layer Type Aggregate(0), Update(1)
Layer ID 1,2,3,...
Input Dimension fin
Output Dimension fout
# of vertices V

# of edges E

Aggregation operator Max, Sum, Min, Mean
Activation type ReLU, PReLU
Activation enabled True, False
Meta data of execution scheme {...} (See Algorithm 2 and 3)

|𝒱|

|𝒱|

𝑁1

𝑁1

𝑁1

𝑁2
𝑁2

|𝒱|

𝑓1

𝑁2

𝑁2

𝑓1

𝑓2

block
fiber

subfiber

block

Graph adjacency matrix 𝐴 Feature matrix 𝐻

Weight matrix 𝑊

Fig. 5: Illustration of data and model partitioning

B. Compilation Process

The compilation process has two steps (See Figure 4):
 Step 1 (parsing the input): The compiler takes the

specification of the GNN model (Defined using Pytorch
Geometric Library [14]) and the graph meta data as input,
and generates the computation graph for GNN inference
(See the example in Figure 3). The computation graph
has Ll1 kl nodes, where L denotes the number of GNN
layers in the GNN model and kl denotes the number of
kernels in layer l (1  l  L). In the computation graph,
each node represents the IR of a kernel. An edge denotes
the data dependency between two kernels.

 Step 2 (data partitioning and execution scheme gener-
ation): The compiler performs data partitioning for each
kernel and generates the execution scheme for the kernel.
Then, the meta data of the execution scheme is stored in
the IR to produce the optimized IR (See Figure 3) that is
sent to the runtime system.

C. Data Partitioning

Figure 5 depicts the proposed data partition scheme. The
graph adjacency matrix A has the dimension V  V. A is
partitioned into blocks with each block having dimension of
N1N1. We use Aij to denote a block where Aij AiN1 

i  1  N1j  N1  j  1  N1. The feature matrix H
of dimension V  f1 is partitioned into fibers. Each fiber has
dimension N1N2 and Hij HiN1  i1N1jN2 



j  1  N2. We further partition each fiber into subfibers
where each subfiber has size N2 N2. Hijk denotes the kth

subfiber of Hij . We use Hik to denote the concatenation
of Hi1k, Hi2k, ..., H

i
N1
N2
k. The weight matrix W is

partitioned into blocks with each block having size of N2N2.
Wij W i N2  i  1 N2j N2  j  1 N2.

D. Execution Scheme

Based on the data partition scheme, the compiler generates
the execution plan for each computation kernel, shown in
Algorithm 2 and 3. The execution of a computation kernel is
decomposed into a set of independent computation tasks. Each
task performs the execution of an output data partition and
there is no data dependency among the tasks within a kernel.
Each task performs the multiplication of data partitions to
obtain an output data partition, and the computation primitive
to execute the matrix multiplication Matmul() is determined
by the Runtime System. We generalize the representation of
a task in Algorithm 4.

Algorithm 2 Execution scheme of an Aggregate kernel

Input: Graph adjacency matrix A; Input feature matrix H in;
Output: Output feature matrix Hout;

1: Execute the Aggregate kernel
2: for i  1 to V

N1
do

3: for k  1 to f1
N2

do
4: Initialize Hout

ik in the Result Buffer
5: for j  1 to V

N1
do

6: Load Aij and H in
jk

7: Hout
ik  MatmulAij ,H

in
jk

8: Write Hout
ik back to DDR memory

Task

Kernel

Algorithm 3 Execution scheme of an Update Kernel

Input: Input feature matrix H in; Weight matrix W ;
Output: Output feature matrix Hout;

1: Execute the Update kernel
2: for i  1 to V

N2
do

3: for k  1 to f2
N2

do
4: g   iN2

N1
, f  i%N1

N2


5: Initialize Hout
gkf in the Result Buffer

6: for j  1 to f1
N1

do
7: Load H in

gjf and Wjk

8: Hout
gkf MatmulH in

gjf ,Wjk

9: Write Hout
gkf back to DDR memory

Task

Kernel

Algorithm 4 A computation task

Input: Xi1, Xi2, ..., XiK and Y1j , Y2j , ..., XKj;
Output: Output matrix: Zij ;

1: Initialize Zij in the Result Buffer
2: for k  1 to K do
3: Load Xit and Ytj onto the on-chip buffer
4: Zij MatmulXit,Ytj

5: Write Zij back to DDR memory

V. ACCELERATOR DESIGN

In Section V-A, we introduce the data layout and data format
that are used by Dynasparse. In Section V-B1, we introduce
the Agile Computation Module which can execute three prim-
itives (GEMM, SpDMM, and SPMM). In Section V-B2, we
describe the hardware mechanism for sparsity profiling, and
data format/layout transformation.

A. Data format and data layout

Data format: We store the matrices using sparse format or
dense format. We use Coordinate (COO) format to represent a
sparse matrix where an nonzero element is represented using a
three-tuple col, row, value denoting the column index, row
index, and value, respectively. COO format is the standard data
format used in the state-of-the-art GNN libraries [14].
Data layout: It defines the order of storing the matrix ele-
ments. For a sparse matrix in the row-major order, the elements
within the same row are stored in contiguous locations.
Otherwise, it is column-major order. Similarly, row-major and
column-major order for a dense matrix can be derived.
Notations: For a matrix B, we use Bi to denote the ith row
of B and use Bi  j to denote the submatrix of B from ith

row to j1th row. We use Bij to denote the element of
B at the ith row and the jth column. An element j, i, value
in sparse B will also be denoted as Bij  value.

B. Microarchitecture

Each Computation Core (Figure 6) has an Agile Compu-
tation Module (ACM) and an Auxiliary Hardware Module
(AHM). The ACM has an ALU (Arithmetic Logic Unit) array
of dimension psys  psys and the interconnection among the
ALUs are shown in Figure 7. AHM performs sparsity profil-
ing, data layout and format transformation (Section V-B2).

1) Agile Computation Module (ACM): It has four data
buffers – BufferU, BufferO, BufferP and Result Buffer (RB).
Buffer[U/O/P] store the input matrices and RB stores the
output matrix. Each Buffer has psys memory banks (denoted
bank 0 to bank psys  1) for parallel on-chip memory ac-
cess. Each ALU can execute various arithmetic operations,
including multiplication, max, addition, etc. There are two
interconnection networks – Index Shuffle Network (ISN) and
Data Shuffle Network (DSN) – for data communication. The
ACM has three execution modes – GEMM mode, SpDMM
mode and SPMM mode. The required data format and layout
for various execution modes are summarized in Table III.
GEMM Mode: The ALU array is organized as a two-
dimensional systolic array (See Figure 7) to execute GEMM
using output stationary dataflow. The systolic array can execute
p2sys multiply-accumulate (MAC) operations per clock cycle.
SpDMM Mode: The ALU array is divided into psys2 Update
Units and psys2 Reduce Units. Each Update or Reduce Unit
has an ALU array of size psys22. Multiplication of a sparse
matrix with a dense matrix is executed using the Scatter-
Gather Paradigm shown in Algorithm 5. The sparse matrix
denoted as X (in BufferU) is stored in row-major order using
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Fig. 7: Various execution modes of a Computation Core

TABLE III: Buffer (data format) [data layout] requirement to
store the input/output matrices for executing Z  X  Y in
the three execution modes

X Y Z

GEMM BufferO (dense)
[row major]

BufferP (dense)
[column major]

Result Buffer (dense)
[row major]

SpDMM BufferU (sparse)
[row or column major]

BufferO (dense)
[row major]

Result Buffer (dense)
[row major]

SPMM BufferU (sparse)
[row major]

BufferO (sparse)
[row major]

Result Buffer (dense)
[row major]

Algorithm 5 SpDMM using Scatter-Gather Paradigm
Input: Sparse matrix (BufferU): X; Dense matrix (BufferO): Y ;
Output: Output matrix (Result Buffer): Z (Z X Y );

1: while not done do
2: for each ei, j, value in X Parallel do  Scatter Phase
3: Fetch Y i from BufferO  ISN routes e to BufferO
4: Form input pair (Y i, e)
5: # DSN routes input pair to Update Units
6: for each input pair Parallel do  Gather Phase
7: u←Update(Y i, e.value)  Update Unit
8: Fetch Zj from Result Buffer
9: Zj ← Reduce(u)  Reduce Unit

COO format. The dense matrix denoted as Y (in BufferO)
is stored in row-major order using dense format, and Y i
is stored in bank i mod psys of BufferO. Each non-zero
element ei, j,weight in X is fetched from the BufferU
(psys2 elements can be fetched from BufferU per cycle) and
sent to the ISN. Then e is routed to bank i mod psys for
fetching Y i, which forms the input data pair (Y i, e). The
input pair is routed to the j mod psys2

th Update Unit. The
Update Unit performs the multiplication of e.value and Y i
to produce the intermediate result u. Then the corresponding
Reduce Unit adds u to Zj. SpDMM Mode can efficiently
skip zero elements in the sparse matrix X . The SpDMM Mode
can execute p2sys2 MAC operations per clock cycle.
SPMM Mode: The ALU array is organized as psys parallel
Sparse Computation Pipelines (SCP) as shown in Figure 7.
Each SCP has two ALUs to perform multiplication of two
non-zero elements and the merging of intermediate results.
Each SCP also has a Sparse Data Queue (SQ) to store the
intermediate results in sparse format. The multiplication of
two input sparse matrices is executed using the Row-wise
Product with Scatter-Gather paradigm as shown in Algorithm
6. For Row-wise Product, an row Zj of output matrix Z is
calculated through:

Zj  
i

Xji Y i (1)

For calculating the output matrix Z, a SCP is assigned the



Algorithm 6 SPMM using Row-wise Product with Scatter-
Gather Paradigm
Input: Sparse matrix (BufferU): X; Sparse matrix (BufferO): Y ;
Output: Output matrix (In Result Buffer): Z X Y ;

1: for each row Zj in Z Parallel do
2: Assign the workload of Zj to SCPj%psys
3: load Zj to the Sparse Data Queue from Results Buffer
4: for each ei, j, value in Xj do  Scatter Phase
5: Fetch Y i from BufferO  ISN routes e to BufferO
6: Form input pair (Y i, e)  DSN routes input to SCPs
7: for each input pair (Y i, e) do  Gather Phase
8: for each non-zero Y ik in Y i do  SCP
9: Produce u← Update(e.value Y ik)

10: Merge Zjk ← Reduce(u)
11: Store Zj to the Result Buffer  Obtain Zj

workload of an row of output matrix (Equation 1). psys SCPs
can calculate psys output rows in parallel until all the rows of
the output matrices are calculated. To efficiently execute Row-
wise Product, all input sparse matrices (X , Y ) and output
matrix are stored using COO format in row-major order (See
Section V-A). Using SPMM Mode, we can skip the zero
elements in both the input matrices. SPMM Mode can execute
psys multiply-accumulate (MAC) operations per clock cycle.

Mode switching: The execution mode is set by the control
bits of the hardware multiplexers in ACM. The overhead of
switching execution modes is just one clock cycle.

Trade-off: The three execution modes have different ways
of dealing with non-zero elements in the two input matrices
(Section III-A). Therefore, their execution time of multiplying
two input matrices depends on the data sparsity. We analyze
the trade-off of the three execution modes w.r.t. data sparsity
in Section VI-A.

2) Auxiliary Hardware Module (AHM): While the ACM
can execute various primitives, the data format and layout
should meet the requirement of the execution modes (Table
III). Moreover, the soft processor needs the data sparsity
information at runtime for dynamic K2P mapping. To this
end, the AHM has the following hardware modules: (1) a
Layout Transformation Unit and a Layout Merger to transform
the data layout, (2) a Sparsity Profiler (SP) to obtain the
density of the intermediate results, (3) Format Transformation
Module (FTM), which contains a Sparse-to-Dense Module and
a Dense-to-Sparse Module.

Layout Transformation Unit (LTU): Transformation of the
data layout between row-major order and column-major order
is transposing a matrix. LTU is implemented using a streaming
permutation network [19] (See [19] for details) for efficient
layout transformation. Since most of the on-chip data are
stored using row-major order, we store all the data partitions
of (A, H , W ) in the external memory using row-major order
to minimize the effort for data layout transformation.

Layout Merger: When the accelerator executes a task (See al-
gorithm 4), the results Z can be in row-major or column-major
order. Therefore, in Results Buffer, we store two partial results

of Z in row-major and column-major order, respectively. The
two partial results of Z are merged by Layout Merger into
row-major order when Z is sent back to the external memory.
Note that the LTU is also used by BufferO to transform the
data layout for X

2 (column-major order of X2).
Sparsity Profiler: To profile the density of sparse matrix or
dense matrix, we use the adder tree based design for the
Sparsity Profiler. At the output port of the Result Buffer, we
implement a comparator array with an adder tree to count the
total number of non-zero elements. After obtaining the data
sparsity of the current output matrix, the sparsity information
is sent to the soft processor.
Dense-to-Sparse (D2S) Module: It transforms an array from
dense format to sparse format. Suppose the D2S Module can
read n elements per clock cycle. Then, the D2S Module has
logn pipeline stages. For an n-element array, we use the
value of Prefix-Sum to indicate the number of zeros before an
element in this array. An example is shown in Figure 8. In
Stage i 1  i  logn, an array element will be shifted left
by 2i1 positions if the i1th bit of Prefix Sum value is equal
to 1. The throughput of D2S Module is n elements per cycle.
For example, a DDR4 channel of the FPGA board can output
16 32-bit data per cycle. A D2S Module of n  16 is sufficient
to match the data rate of a DDR4 channel. The architecture
of S2D is similar to D2S, but in the reverse direction.

7 8 0 6 0 0 1
0 0 0 1 1 2 3

7 8 6 0 0 1
0 0 0 0 1 2

7 8 6 1
0 0 0 0

7 8 6 0 0 1
0 0 0 0 1 2Prefix-Sum

Array

If Prefix-Sum[0] == 1, shift 
left by 1 position

If Prefix-Sum[1] == 1, shift 
left by 2 position

1 2 3 4 5 6 7 1 2 4 5 6 7Column Index

1 2 4 5 6 7 1 2 4 7

Stage 1 Stage 2

Prefix-Sum
Array

Column Index

Fig. 8: Transforming dense format to sparse format

3) Double Buffering: We exploit double buffering tech-
nique for Buffer[U/O/P] and Results Buffer. Therefore, when
the Computation Core is executing the current task, the Buffers
can load the input data of the next task. The data sparsity
profiling, data layout and format transformation are streaming
processes that can be executed during the data loading/storing
process. Double Buffering not only overlaps the computation
and data communication, but also hides the overhead of
sparsity profiling and data layout/format transformation.

VI. RUNTIME SYSTEM

A. Performance Model

The performance model predicts the execution time of the
primitives for a given data sparsity. For analysis, we denote
the two input matrices to a Computation Core as X  Rmn
and Y  Rnd where X has the density αX 0  αX  1
and Y has the density αY 0  αY  1.

In the GEMM mode, the two input matrices are viewed
as dense matrices and the Computation Core can execute



TABLE IV: Performance model

GEMM SpDMM SPMM

MACs per cycle p2sys p2sys2 psys

Execution time
(cycles)

mnd
p2sys

αmin
2mnd
p2sys

, where

αmin MinαX , αY 
αXαY

mnd
psys

p2sys MACs per cycle. Therefore, the total execution time is
mnd
p2sys

cycles. In the SpDMM mode, the Computation Core can
skip the zero elements in one input matrix and can execute
p2sys2 MACs per cycle. We view the input matrix with lower
density as a sparse matrix and view another input matrix as a
dense matrix. Therefore, the total execution time is αmin

2mnd
p2sys

cycles where αmin  MinαX , αY . In the SPMM mode, the
Computation Core can skip the zero elements in both two input
matrices and can execute psys MACs per cycle. Therefore,
the total execution time is αXαY

mnd
psys

cycles. In the state-
of-the-art FPGA such as Xilinx Alveo U250, the dimension
of a Computation Core psys can be chosen to be  8. We
denote αmax  MaxαX , αY . To summarize, for executing
Z X Y on a Computation Core, when αmin 

1
2

, GEMM
Mode has the least execution time; When αmin 

1
2

and
αmax 

2
psys

, SpDMM Mode has the least execution time;
When αmin 

1
2

and αmax  2
psys

, SPMM Mode has the least
execution time. The three cases are non-overlapping and cover
all the points in the domain 0  αmin  αmax  1.

B. Dynamic Kernel-to-primitive Mapping

Algorithm 7 Dynamic kernel-to-primitive (K2P) mapping
Algorithm for a computation task

Input: Xi1, Xi2, ..., XiK and Y1j , Y2j , ..., XKj;
1: for t  1 to K do
2: TargetPrimitive(Xit, Ytj) ← NULL
3: The buffers to store Xit and Ytj : BXit , BYtj

4: αmin MinαXit , αYtj  αXit : The density of Xit

5: αmax MaxαXit , αYtj  αYtj : The density of Ytj
6: if αmin  0 then  Skip empty input matrix
7: Skip the multiplication of Xit and Ytj

8: if αmin 
1
2

then
9: TargetPrimitive(Xit, Ytj) ← GEMM

10: BXit ← BufferO and BYtj ← BufferP
11: else
12: if αmax 

2
psys

then
13: TargetPrimitive(Xit, Ytj) ← SpDMM
14: BargminαM  ← BufferU, (M  Xit,Ytj)
15: BargmaxαM  ← BufferO, (M  Xit,Ytj)
16: else
17: TargetPrimitive(Xit, Ytj) ← SPMM
18: BXit ← BufferU and BYtj ← BufferO

The Analyzer performs dynamic kernel-to-primitive (K2P)
mapping for each computation task shown in Algorithm 7.

For each pair of input matrices (Xit, Ytj), the runtime system
fetches their densities αXit

and αYtj . Then, the Analyzer
determines the target primitive for multiplying Xit and Ytj ,
and also determines which buffers to store Xit and Ytj .
The proposed dynamic K2P algorithm has the computation
complexity OK  O V

N1


f1
N2
 for a computation task,

which has small overhead compared with total computation
complexity of a task OV N2  f1 N

2
2 . See evaluation

results in Section VIII-C. There are several benefits: (1)
the proposed dynamic K2P mapping is fine-grained that for
different data partitions, we can use different primitives to
efficiently exploit the data sparsity in the input. (2) When
the accelerator is executing kernel l, the runtime system can
perform K2P mapping for kernel l1. Therefore, the overhead
of the runtime system can be hidden.

C. Task Scheduling

The scheduler performs scheduling of computation tasks
(See Section IV-A) on the parallel Computation Cores as
shown in Algorithm 8. The proposed task scheduling is a
dynamic task scheduling strategy. Each Computation Core
maintains an interrupt interface to trigger the interrupt han-
dling in the soft processor when the Computation Core is idle.
Then, the soft processor assigns a task to the Computation
Core.

Algorithm 8 Task scheduling

Input: Intermediate Representation of the GNN model: IR;
The number of computation kernels in the IR: L;

Output: Output of the GNN model;
1: for l  1 to L do
2: for each Task in kernel l of IR parallel do
3: if there is an idle CC: CCi then
4: Assign this Task to CCi
5: CCi executes this computation Task
6: Wait until all the Tasks in kernel l are executed

Partition size (N1, N2): The objectives of the data partition-
ing are to (1) enable fine-grained data sparsity exploitation,
(2) exploit data locality, and (3) maximize resource utilization
during dynamic task scheduling (Algorithm 8). Specifically, to
maximize resource utilization that keeps all the Computation
Cores busy, the compiler selects the partition configuration
(N1,N2) such that there will be at least ηNCC (η  1) tasks
in each computation kernel assigned to NCC Computation
Cores. η is a factor that is determined empirically. Since
different partitions can have different data sparsity leading to
the different workloads of the tasks, small η (e.g., η  1) can
potentially lead to long idle time for the Computation Cores
with small workloads. Therefore, we set η  4 following state-
of-the-art graph processing frameworks [20].

To meet the above three objectives, we use a heuristic
approach to determine the partition size as shown in Algorithm
9. As shown in Algorithm 2 (line 2-3), the number of tasks
of an Aggregate kernel is Ta 

Vf1
N1N2

. Also, as shown in
Algorithm 3 (line 2-3), the number of tasks of an Update



kernel is Tu 
Vf2
N2N2

. For simplicity, we use Q to denote
the workload of a kernel (e.g., Q  V  f1 or Q  V  f2),
and use Qk to denote the workload of kth (1  k  L) kernel.
We use p to denote the function that determines the number
of tasks of a kernel based on Q, N1, and N2. For example,
Ta  pQ,N1,N2 

Q
N1N2

and Tu  pQ,N2 
Q

N2N2
.

In line 9 and line 15 of Algorithm 9, the partition size of
each kernel is constrained by Nit  minNit,Nmax, where
minN ,Nmax is the largest partition size such that Nit  N 

and Nit  Nmax. N  N  ensures that there will be at least
ηNCC tasks of a kernel for load balance. Nit  Nmax ensures
that the data partition does not exceed the size of on-chip
memory. Lines 10 and 16 find a partition size N1 and N2 that
can be used for all the kernels.

Algorithm 9 Data partitioning algorithm
Input: On-chip memory size So; Computation workload of each

kernel: Qk  1  k  L; p: function that determines
the number of tasks of a kernel based on Q, N1 and N2; g:
function that determines the maximum partition size based on
the on-chip memory size So; η: factor for load balance.

Output: Partition size N1, N2;
1: Nmax ← gSo  Maximum partition size
2: //Objective: Maximize N1 and N2 to improve data locality
3: //Constraint 1 (Maximize utilization): Ta, Tu  η NCC

4: //Constraint 2 (Memory capacity): N1, N2  Nmax
5: ======= Step 1: determine N2 ========
6: N2 ← Nmax
7: for each Update kernel: kth kernel do
8: Choose largest N  such that Tuk  pQk,N   ηNCC

9: Nit ← minN ,Nmax

10: N2 ← minNit,N2

11: ======= Step 2: determine N1 ========
12: N1 ← Nmax
13: for each Aggregate kernel: kth kernel do
14: Choose largest N  such that Tak  pQk,N ,N2 

η NCC

15: Nit ← minN ,Nmax

16: N1 ← minNit,N1

VII. IMPLEMENTATION DETAILS

We implement the proposed accelerator on a state-of-
the-art FPGA board – Xilinx Alveo U250, which has four
Super Logic Regions (SLR) [21]. As shown in Figure 9,
we implement two Computation Cores (CC) in each SLR
except for SLR1, because the FPGA shell (which handles
the CPU-FPGA communication) and soft processor is placed
in SLR1. For each CC, psys  16. We develop the CC
using Verilog HDL, and implement the soft processor using
Xilinx Microblaze Soft IP core [22]. Each CC is connected
to the soft processor through the AXI4-Stream interface [22],
through which the soft processor sends the control signals to
CC and the CC sends the sparsity information to the soft
processor. We develop the compiler using Python. The IR
of a kernel is implemented as a Python object that stores the
meta data of a kernel and its execution scheme. We develop
the Runtime system on the soft processor using C in Xilinx
Vitis Unified Software Platform (version 2020.1). The Index

Shuffle Network and Data Shuffle Network are implemented
using a butterfly network with buffering to handle the routing
congestion. We perform synthesis and Place&Route using
Vivado 2020.1. The resource utilization is shown in Figure
9. The CCs run at 250 MHz.

SLR0SLR1SLR2SLR3

CC0

CC1CC2CC3

CC4

CC5

CC6
FPGA Shell + 

Soft
Processor

LUTs DSPs BRAMs URAMs

Soft 
Processor

5.5K 6 26 0

One CC 118K 1024 96 120

FPGA Shell 181K 13 447 0

Total 1011K 7187 1145 840

Available 1728K 12288 2688 960

Utilization 58.6% 58.4% 42.6% 87.5%

Fig. 9: The layout (FPGA chip) and resource utilization of
the proposed design on Xilinx Alveo U250. The Computation
Cores (CC0-CC6) are represented using different colors.

Soft processor: Our implementation achieves 370 MHz and
around 500 Million Instructions Per Second [22] performance.
It has two caches – an Instruction Cache (I-Cache) and a Data
Cache (D-Cache). I-Cache has size 32 KB which is sufficient
to hold the binary code of the runtime system after a warm-
up execution. D-Cache has the size 64 KB which stores the
sparsity of the data partitions. For large graphs that D-Cache
is not enough to hold the sparsity information of all the data
partitions, we store it in the external memory and prefetch
the sparsity information to the D-Cache. The soft processor
reads/writes the data from/to the AXI-stream interface through
the get and put instructions [22], which have one or two
clock cycles latency.

VIII. EVALUATION RESULTS

This Section is organized as follows: In Section VIII-B, we
measure of the impact of the dynamic K2P mapping strategy.
In Section VIII-C, we analyze the overhead of compilation
and runtime system. In Section VIII-D, we compare our work
with the state-of-the-art implementations.

A. Benchmarks and Baselines

Benchmarks: We evaluate Dynasparse on four widely used
GNN models – GCN [10], GraphSAGE (SAGE) [11], GIN
[12], and SGC [13]. Figure 10 shows the IR of various GNN
layers. We evaluate the design on six widely used graph
datasets – Cora (CO) [10], CiteSeer (CI) [10], PubMed (PU)
[10], Flickr (FL) [23], NELL (NE) [24], Reddit (RE) [11]. We
evaluate the 2-layer GNN models used in [10], [17], [3], [4],
where the hidden dimension for CO, CI and PU is set as 16,
and the hidden dimension for FL, NE and RE is set as 128.
Baselines: We compare our work with the state-of-the-art CPU
(AMD Ryzen 3990x), GPU (Nvidia RTX3090) and GNN
accelerators HyGCN [3], BoostGCN [4]. The details of the
platforms are shown in Table V.
Performance metric: Following the convention in [17], [3],
[4], we use latency (accelerator execution latency) as the met-
ric which is the duration from the time when the accelerator
starts to execute the optimized IR to the time all the inference
results are obtained. The preprocessing time by the compiler
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Fig. 10: The IR of various GNN layers

TABLE V: Specifications of platforms

CPU GPU [3] [4] Dynasparse

Platform Ryzen
3990x

Nvidia
RTX3090 ASIC Stratix 10

GX
Alveo
U250

Technology TSMC
7 nm

TSMC
7nm

TSMC
12 nm

Intel
14 nm

TSMC
16 nm

Frequency 2.90 GHz 1.7 GHz 1 GHz 250 MHz 250 MHz
Peak Performance

(TFLOPS) 3.7 36 4.608 0.64 0.512

On-chip Memory 256 MB 6 MB 35.8 MB 32 MB 45 MB
Memory Bandwidth 107 GB/s 936.2 GB/s 256 GB/s 77 GB/s 77 GB/s

is not included in the latency, because (1) the overhead of
generating the optimized IR is usually small (See Section
VIII-C) and the optimized IR can be stored and reused if
the sparsity of the input graph and GNN model changes, (2)
we follow the same convention in [17], [3], [4] for a fair
comparison.

B. Impact of Dynamic K2P Mapping Strategy

To demonstrate the impact of the proposed dynamic K2P
mapping strategy, we execute the following three K2P map-
ping strategies on our proposed accelerator:
 Static-1 (S1): It is used in [3], [4] that Aggregate()

is mapped to SpMM and Update() is mapped to GEMM.
 Static-2 (S2): It is used in [17] that both the Ag-

gregate() and Update() are mapped to SpDMM. For
Aggregate(A, H), it views A as sparse matrix and views
H as dense matrix. For Update(H , W ), it views H as
sparse matrix and views W as dense matrix.

 Dynamic: It is our proposed dynamic K2P mapping
strategy (Algorithm 7).

We use SO-S1 to denote the speedup of Dynamic over S1.
We use SO-S2 to denote the speedup of Dynamic over S2.
Evaluation on unpruned GNN models: We evaluate the
above three strategies using unpruned GNN models where all
the weight matrices have density 100%. The results are shown
in Table VII. Compared with S1 and S2, Dynamic achieves
2.13 and 1.59 speedup on the average (geometric mean),
respectively. Dynamic achieves limited speedup over S2 on
GCN because (1) for the first Update(H0, W 1) kernel of
GCN, there is high data sparsity in H0 of CI, CO, PU and
NE (See Table VI), (2) both Dynamic and S2 can exploit the
sparsity of feature matrix H0 while S1 does not exploit the
sparsity of H0. As the first Update(H0, W 1) kernel of GCN
consumes majority of the execution time, Dynamic achieves
very large speedup over S1 on GCN. Since the weight matrices
have density 100%, both Dynamic and S2 map Update(H0,
W 1) to SpDMM (for CI, CO, PU and NE), leading to similar
performance of Dynamic and S2 on GCN.

TABLE VI: Dataset Statistics

Dataset Vertices Edges Features Classes Density of
A

Density of
H0

CI 3327 4732 3703 6 0.08% 0.85%
CO 2708 5429 1433 7 0.14% 1.27%
PU 19717 44338 500 3 0.02% 10.0%
FL 89,250 899,756 500 7 0.01% 46.4%
NE 65,755 251,550 61,278 186 0.0058% 0.01%
RE 232,965 11  107 602 41 0.21% 100.0%

TABLE VII: The latency (ms) on the unpruned GNN models

CI CO PU FL NE RE

GCN [10]
S1 31E-1 9.6E-1 2.7E-1 10E0 83E2 9.3E1
S2 8.9E-3 5.6E-3 7.1E-3 9.9E0 5.4E0 12E1
Dynamic 7.7E-3 4.7E-3 6.3E-2 8.8E0 2.9E0 8.4E1

SO-S1 41.3 21.5 4.29 1.13 278 1.10
SO-S2 1.15 1.19 1.12 1.11 1.82 1.42

SAGE [11]
S1 74E-2 25E-2 65E-2 20E0 17E2 334E0
S2 75E-2 25E-2 69E-2 28E0 17E2 389E0
Dynamic 33E-2 11E-2 42E-2 19E0 83E1 331E0

SO-S1 1.93 1.72 1.56 1.02 2.05 1.01
SO-S2 1.94 1.73 1.65 1.41 2.05 1.17

GIN [12]
S1 4.3E-1 1.5E-1 4.1E-1 1.3E1 8.8E2 3.1E2
S2 7.4E-1 2.4E-1 6.5E-1 2.0E1 1.7E3 3.4E2
Dynamic 3.3E-1 1.1E-1 3.7E-1 1.2E1 8.3E2 2.7E2

SO-S1 1.30 1.40 1.11 1.13 1.06 1.15
SO-S2 2.26 2.31 1.76 1.73 2.05 1.25

SGC [13]
S1 5.3E-1 2.0E-1 5.5E-1 1.29E-1 9.33E2 5.7E2
S2 8.5E-1 3.0E-1 7.9E-1 2.18E-1 1.77E3 6.0E2
Dynamic 4.3E-1 1.5E-1 5.1E-1 1.27E-1 8.83E2 5.0E2

SO-S1 1.23 1.27 1.08 1.02 1.06 1.13
SO-S2 1.95 1.91 1.55 1.72 1.99 1.19

Evaluation on pruned GNN models: We evaluate the three
strategies using the pruned GNN models [15] where the weight
matrices are pruned to have various sparsity. Figures 11 and
12 show the speedup of Dynamic over S1&2. For evaluation,
all the weight matrices in a GNN model are pruned to have the
same sparsity, and the sparsity of weights in Figures 11&12
means the average sparsity of all the weight matrices in a
GNN model. Table VIII summarizes the average (geometric
mean) speedup under various sparsity of weight matrices. The
achieved speedup over S1 is because S1 cannot exploit the
data sparsity in feature matrices and weight matrices. The
achieved speedup over S2 is due to (1) when there is limited
data sparsity (density  50%) in Update(), executing Update()
using SpDMM primitive is not efficient. (2) In Aggregate(),
S2 does not exploit data sparsity in feature matrix H since
S2 views H as a dense matrix.

TABLE VIII: Average speedup (geometric mean)

Sparsity of weight matrices  50% 50%  70% 70%  90%  90%

SO-S1 2.16 4.36 10.77 15.96

SO-S2 1.38 1.64 2.11 5.03

In conclusion, the proposed dynamic K2P mapping strategy
leads to lower accelerator execution latency compared with
the static mapping strategies. Using dynamic K2P mapping
strategy, the execution latency reduces as the data sparsity
increases.
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Fig. 11: Speedup of Dynamic over S1 when there are various
sparsity (%) in the GNN weight matrices (X-axis)
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Fig. 12: Speedup of Dynamic over S2 when there are various
sparsity (%) in the GNN weight matrices (X-axis)

C. Analysis of Compiler and Runtime System

TABLE IX: The preprocessing time of the compiler (ms)

CI CO PU FL NE RE

GCN 2.5E-1 2.2E-2 5.7E-1 2.68E0 1.70E0 5.1E1
GraphSAGE 2.3E-1 2.6E-1 5.9E-1 2.58E0 1.65E0 4.9E1

GIN 2.4E-1 2.6E-3 5.8E-1 2.69E0 1.71E0 5.0E1
SGC 2.3E-1 2.4E-3 6.1E-1 2.74E0 1.73E0 5.2E1

Overhead of the compilation/preprocessing: Table IX shows
the overhead of the compiler on the host processor (Intel
Xeon 5120). The processing time includes the overheads of
generating IR, data partitioning, and preprocessing of data
sparsity. Compared with design automation framework [18]
which needs to regenerate FPGA accelerator if the graph or
GNN model changes, the overhead of the compiler in our
design is small.
Overhead of the Runtime System: We measure the overhead
of the runtime system, which is the execution time of dynamic
K2P mapping on the soft processor. See Figure 13. on the
average, the Runtime System takes 6.8% of the total execution
time and is hidden by the task scheduling (Section VI-C). For
the pruned GNN models, as the densities of weight matrices
decrease, the overhead of the Runtime System will decrease

since there will be more empty data partitions skipped by the
runtime system (Algorithm 7).

Overhead of the Runtime System 
divided by the total execution time

GCN GraphSAGE GIN SGC
0

0.1

0.2
CI CO PU FL NE RE

Fig. 13: Overhead of runtime system on unpruned GNNs

D. Comparison with the State-of-the-art

Fig. 14: Speedup over the CPU and GPU platforms (Some
results are not shown due to out of memory on CPU/GPU)

Comparison with CPU/GPU: We execute the state-of-the-art
GNN frameworks – Pytorch Geometric (PyG, version 1.11.0)
and Deep Graph library (DGL, version 0.8.0post2) on CPU
and GPU platforms (Table V). The evaluation results are
shown in Figure 14. We execute the same unpruned GNN
models on CPU, GPU and Dynasparse for a fair comparison.
Dynasparse achieves 306, 16.4, 141.9 and 35 speedup
compared with PyG-CPU, PyG-GPU, DGL-CPU and DGL-
GPU, respectively. Note the CPU and GPU have 7.2 and
70 higher peak performance than Dynasparse. The achieved
speedup is because Dynasparse can efficiently exploit the data
sparsity in graph structure, vertex features and weight matrices.
In contrast, PyG and DGL on CPU and GPU only exploit
the sparsity in the graph structure. Moreover, Dynasparse
exploits FPGA-specific optimizations: (1) customized data-
path with Index/Data Shuffle Networks to handle the irregular
memory access pattern of GNNs, (2) customized on-chip
memory management for exploiting data locality, (3) dedicated
hardware modules for sparsity profiling and layout/format
transformation; The proposed double buffering hides their
overheads, and (4) lightweight soft processor interacting with
Computation Cores with extreme low latency for dynamic
kernel-to-primitive mapping.
Comparison with GNN accelerators: Table X shows the
comparison of the latency with the state-of-the-art GNN
accelerators, which do not require regenerating accelerator
if the data sparsity changes. All the accelerators execute the



TABLE X: Comparison of latency with the state-of-the-art
GNN accelerators (using GCN model)

CI CO PU FL NE RE Peak Perf.
(TFLOPS)

BoostGCN [4] 1.9E-2 2.5E-2 1.6E-1 4.0E1 N/A 1.9E2 1.35
HyGCN [3] 2.1E-2 3E-1 6.4E1 N/A N/A 2.9E2 4.6

Dynasparse 7.7E-3 4.7E-3 6.3E-2 8.8E0 2.9E0 1.0E2 0.512

 N/A: not available.

same unpruned GCN models and graph datasets. Dynasparse
achieves 2.7, 171 speedup on the average than BoostGCN
and HyGCN, respectively. The platforms used in BoostGCN
and HyGCN have 1.25, 9 higher peak performance than
Dynasparse. The achieved speedup is because Dynasparse can
efficiently exploit data sparsity in vertex features. We expect to
achieve higher speedup when executing the same pruned GNN
models, since [4], [3] do not exploit the sparsity in weights.
Discussion of preprocessing and data communication over-
heads: We define the end-to-end latency as the sum of (1)
the overhead of compilation/preprocessing (Section VIII-C),
(2) the overhead of CPU-FPGA data movement (moving the
processed input graph, processed GNN model, and optimized
IR from the host memory to FPGA external memory), and (3)
execution latency of the accelerator. With respect to end-to-end
latency, Dynasparse still achieves 56.9, 2.37, 16.3, 1.37
speedup on the unpruned GNN models compared with PyG-
CPU, PyG-GPU, DGL-CPU, and DGL-GPU, respectively.
The preprocessing overhead, data movement overhead, and
execution latency contribute to 43.1%, 27.2%, 27.6% of the
total end-to-end latency on the average. The major overhead
in preprocessing is data partitioning that reorganizes the input
data into data partitions. It can be reduced by multi-threading
and increasing the host memory bandwidth.

Note that the CPU-FPGA data movement overhead depends
on the PCIe bandwidth. The sustained PCIe bandwidth of
the Alveo U250 FPGA board is around 11.2 GB/s while the
baseline GPU (Nvidia RTX3090) has PCIe bandwidth of 31.5
GB/s. The overhead of CPU-FPGA data movement can be
reduced by exploiting state-of-the-art CPU-FPGA interconnec-
tion techniques (offered by FPGA vendors), such as PCIe 5.0.
Since prior GNN accelerators [4], [3] do not include their
preprocessing overheads (data partitioning and CPU-FPGA
data movement), in Table X, we only compare the accelerator
execution latency with [4], [3] for a fair comparison.

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed a hardware-software codesign for
dynamic sparsity exploitation in GNN inference. The proposed
dynamic K2P mapping reduces the inference latency by 3.73
on the average compared with the static mapping strategies.
Compared with state-of-the-art CPU (GPU) implementations,
Dynasparse achieves up to 56.9 (2.37) speedup in end-
to-end latency. Compared with state-of-the-art FPGA imple-
mentations, Dynasparse achieves 2.7 speedup in accelerator
execution latency. In the future, we plan to extend Dynasparse
on heterogeneous platforms that consist of CPU, GPU and

FPGA, where GPU is effective for dense primitives, FPGA
is effective for sparse primitives and the CPU can execute
complex control flow (e.g., dynamic K2P mapping).
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