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Abstract
Cyber Threat Intelligence (CTI) is information de-
scribing threat vectors, vulnerabilities, and attacks
and is often used as training data for AI-based cy-
ber defense systems such as Cybersecurity Knowl-
edge Graphs (CKG). There is a strong need to
develop community-accessible datasets to train
existing AI-based cybersecurity pipelines to effi-
ciently and accurately extract meaningful insights
from CTI. We have created an initial unstructured
CTI corpus from a variety of open sources that
we are using to train and test cybersecurity entity
models using the spaCy framework and exploring
self-learning methods to automatically recognize
cybersecurity entities. We also describe methods
to apply cybersecurity domain entity linking with
existing world knowledge from Wikidata. Our
future work will survey and test spaCy NLP tools,
and create methods for continuous integration of
new information extracted from text.

1. Introduction
Cyber Threat Intelligence (CTI) is data that has been ana-
lyzed to attempt to uncover the mechanics of and purpose
for a cyber-attack. CTI is vital to cybersecurity profession-
als for staying up to date on information about new attacks,
malware, and the actions of various threat actors. Profession-
als use this information in a variety of use cases, including
campaign tracking, threat monitoring, and actor profiling.
However, with a vast amount of CTI being released and
updated every day, it is increasingly challenging for human
analysts to track the data efficiently and effectively. It is
important to develop methods for automated cybersecurity
knowledge extraction, to consolidate CTI insights and make
it easier for experts to access and use.

Named Entity recognition (NER) is a critical component of
automated knowledge extraction, allowing natural language
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Figure 1. Text showing additional entity types found.

models to label instances of real-world entities in text. To ac-
complish this, Natural Language Processing (NLP) models
must be trained on very large corpora of human-annotated
text. There are a number of domain-agnostic text corpora
available for training models on generic entity types such as
Person, Organization, and Date. However, general domain
entity types are not sufficient for more specialized fields
like cybersecurity because they are unable to recognize
cybersecurity-specific entities such as malware-type, operat-
ing system, or attack-type. These are necessary for down-
stream tasks like malware analysis, attack and vulnerability
classification, and building cybersecurity knowledge graphs
(Mulwad et al., 2011; Joshi et al., 2013; Gao et al., 2021;
Georgescu et al., 2021). Unlike fields like medicine and law,
cybersecurity has few comprehensive training datasets that
are available and continuously updated.

Our goal is to extend existing entity recognition datasets for
the cybersecurity domain (Alam et al., 2022; Bridges et al.,
2014) to support a general module we call CyEnts that can
be used in systems that extract cybersecurity information
from text. Current public datasets do not recognize entities
such as threat actors, campaigns, or malware, imperative
for training machine learning systems that aim to understand
fine-grained threat actor tactics, techniques, and procedures
(TTPs). The kinds of entities we need to identify are also
more general and diverse than the "named entities" sought
by current NLP systems designed to extract information
from general domains.

Cyber analysts typically rely on both structured sources like
Common Vulnerabilities and Exposures (CVE) records, as
well as unstructured, free-text blogs like security vendor
blogs to obtain actionable intelligence. Most of the exist-
ing entity recognition datasets for the cybersecurity domain
target structured data, as the entities are formally defined,
providing concrete annotation mappings for entity types.
Our research focuses on extending entity recognition capa-



Table 1. New cybersecurity-relevant entity types complement the
Ontonotes types supported by spaCy and other NLP systems.

Malware_Name Campaign
Malware_Type IP_Address
Software_Name Protocol
Version_Tag Threat_Actor
Vulnerability Operating_System
Attack_Type Hash
Programming_Language URL
Email Path
File_Extension Function
CVE Port

bilities for unstructured sources, since these typically pro-
vide the most recent information for analysts. Before CTI is
concatenated into structured formats like CVE records, the
information is first released through online media.

To create a diverse dataset for malware analysis, we have ob-
tained articles, blog posts, and vendor reports from eight dif-
ferent sources, covering high level topics such as adversary
motives and origination, to technical analysis of malware
behaviors and campaigns. We develop a human annotation
study to create high-quality training datasets for machine
learning based entity recognition models, using the spaCy
framework. Table 1 shows the current list of cybersecurity
entity types we support in addition to spaCy’s OntoNotes
types (Pradhan et al., 2007). We take a data-centric ap-
proach when creating the training dataset, by using intensive
evaluation criteria for entity recognition annotations.

2. Related Work
2.1. AI-Based Cybersecurity

The variety and growth in cybersecurity exploits, vulner-
abilities, and threat actors has encouraged the integration
of AI-based cyber defense systems for safeguarding criti-
cal systems (Wirkuttis & Klein, 2017). The goal of these
systems is to provide actionable and relevant insights to
analysts that require the information for immediate opera-
tion. This is becoming especially critical, as the diversity
and amount of Cyber Threat Intelligence (CTI) is rapidly
expanding (Tounsi & Rais, 2018). CTI is often open sourced
and can include data sources such as application logs, mal-
ware binaries, network traffic data, and unstructured and
semi-structured text. This data is collectively shared across
multiple vendors, researchers, and cybersecurity profession-
als for enhanced situational awareness and intrusion detec-
tion and prevention. Examples of threat sharing platforms
include MISP (Wagner et al., 2016), STIX (Oasis, 2021),
and TAXII (Connolly et al., 2014).

In this paper, we focus on leveraging textual cybersecurity
data, which can be commonly found across security blogs,

Figure 2. Diagram of the proposed complete system

the dark web, and social media. There have been several
systems that have been developed that transform free-text cy-
bersecurity into more structured formats for AI-based cyber
defense system usage (Samtani et al., 2020b; Mittal et al.,
2016; Arnold et al., 2019; Ranade et al., 2021). In particu-
lar, several Cybersecurity Knowledge Graphs (CKGs) have
been developed to represent disparate CTI data in machine-
readable formats, and are used as training data for machine
learning systems (Mittal et al., 2019; Pingle et al., 2019;
Piplai et al., 2020).

2.2. Knowledge Representation

Ontologies are one of the primary building blocks of the
Semantic Web (Berners-Lee et al., 2001). When populat-
ing Ontologies with real world data, information can be
associated together and reasoned over through the web of
linked data (Berners-Lee et al., 2001). Examples of popular
knowledge graphs include DBPedia and Wikidata (Vran-
dečić & Krötzsch, 2014). Machine learning and semantic
technologies are more recently, jointly used together for
tasks such as language modeling (Agarwal et al., 2020),
question-answering (Wang et al., 2016), and information
retrieval (Wise et al., 2020).

3. System Overview
CyEnts will incorporate a continuous, up to date corpus of
ready to train entity recognition datasets, achieved through
a combination of web scraping and entity recognition tech-
niques. This data can then be used to form triples to populate
a knowledge graph, train other machine learning systems, as
well as link to Wikidata knowledge to provide extensibility
to other interoperable systems. In this section we discuss
more of how our system proposes to accomplish this.

3.1. Web Scraping

We use a combination of Python Requests and Beautiful-
Soup libraries to scrape web articles that contain CTI from



cybersecurity vendor reports/blogs. We regularly update
this corpus through periodic scraping to incorporate new
articles, preventing stale training data. Our growing corpus
can be considered a gold standard dataset for the cyberse-
curity community due to two primary factors: the source
reputability and their breadth of CTI examples. The first is
the popularity of the sources utilized across the greater cy-
bersecurity community. Vendor reports and blogs produced
by organizations such as McAfee, Mandiant, FireEye, and
Juniper Networks, describe up-to-date and pertinent vulnera-
bility, attack, and adversary information to aid cybersecurity
professionals in mitigating incoming attacks, quickly ad-
dressing open vulnerabilities, and thwarting future threats
(Samtani et al., 2020a). Secondly, vendor reports and blogs
do not follow a standard format and are therefore inherently
diverse in their communication of vulnerabilities, exploits,
and threats, providing the system with multiple perspectives
and examples.

We collect our data through RSS feeds, which list a number
of articles on each site, in order of publication. This text
is stored with no newline characters to simplify tasking for
the human annotations, described in Section 3.2.1. We use
spaCy facilities to split the text into sentences, and then
group the sentences by topic to produce “paragraphs” using
NLTK’s textiling tools (Loper & Bird, 2002). We currently
have about 25,000 sentences from over 380 text articles1

3.2. Entity Recognition

The first step in creating an entity recognition system is
to define the entity types to recognize. We have created a
set of entity types, listed in Table 1, after extensive litera-
ture review and multiple revisions. We include common
entity types such as Software_Name and Version_Tag, as
well as more fine-grained types, like Threat_Actor and Mal-
ware_Type. We believe this set of entity types to be gold
standard for malware analysis, due to the inclusion of de-
scriptive types for entities imperative for processing and
understanding malicious activity and file behavior. For ex-
ample, the operating system a malware targets, or the threat
actor involved, can provide additional real-world context to
a malware analysis task. We have created a spaCy pipeline
for recognizing these entity types through use of human
annotations of text, and rule based methods, detailed below.

3.2.1. HUMAN ANNOTATIONS

To create ground-truth annotations, we task a group of six
human annotators to recognize entities in the corpus data.
The annotators have backgrounds in Computer Science and
Cybersecurity. These annotations, along with the rule-based
methods described in Section 3.2.2, will later be used to

1Our textual data is available at https://github.com/
UMBC-Onramp/CyEnts-Cyber-Blog-Dataset

Figure 3. Components of the entity recognition pipeline

train machine-learning based methods.

To ensure quality annotations, each annotator received train-
ing, documentation detailing the definition of each entity
type, and multiple in-context examples. We divided the
human annotators into three groups. Each annotator within
a group was tasked to annotate the same text independently.
Once complete, we calculate the Inter Annotator Agreement,
which means that only entities that both annotators agreed
upon would be accepted into the final dataset. To conduct
our annotation task, we use the Prodigy annotation tool.
This tool allows for seamless integration with the spaCy
NLP framework. The resulting annotated compiled dataset
is used to train and test an entity recognizer model. The
architecture of the entity recognizer model we utilized is
displayed in Figure 3, and is further explained in the follow-
ing section. In the first round of annotations each annotator
was given the first ten paragraphs of ten randomly selected
articles, for a combined total of 1339 annotated sentences.
The results from the first round are provided in Section 3.3.

3.2.2. RULE BASED METHODS

We utilize spaCy pipelines, which are several in-built mod-
els and libraries utilized for different Natural Language
Processing (NLP) tasks. The available pipelines and the
specific models we implement are shown in Figure 3. The
Entity Recognizer model part of the NER pipeline is utilized
for our initial task of extracting and recognizing entities in
unstructured CTI. The model employs a transition-based
algorithm which utilizes a combination of Bloom Embed-
dings and a Residual Convolutional Neural Network (CNN)
(Lample et al., 2016). More specifically, spaCy employs
the Embed, Encode, Attend, Predict framework (Honnibal,
2016). Each token is first embedded using a Bloom filter,
which is a hashed embedding dictionary where word hashes,
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rather than the actual words, are set as keys.The words are
then encoded into a sentence matrix with a Residual CNN.
The sentence matrix is further reduced into a single vector
to be used in a feed-forward neural network for prediction.
This necessarily allows us to lose irrelevant information and
attend to the most useful features. We can then use the stan-
dard feed-forward neural network for inference, to predict
the target representation (entity label).

There are many entity types that can be recognized using
rule-based methods. The types fall into two major cate-
gories, those that have a finite number of relevant examples
and ones with a regular format. For the former category of
entities we can use Gazetteers (Song et al., 2020) of relevant
entities of a particular type. We have developed Gazetteers
for the entity types, Operating_System, File_Extension, At-
tack_Type, Programming_Language, Malware_Type, and
Protocol. The lists for the Gazetteers were created by query-
ing Wikidata to find the most prominent instances (direct or
inherited) of all of the types, to make sure that we include
entities that are relevant. More information on Wikidata en-
tity linking can be found in Section 3.2.3. These lists were
then manually reviewed to ensure they were encompassing.

The second category where rule-based methods are help-
ful are entities which have a strict format, such as IP ad-
dress, that can be recognized by regular expressions. We
use regular expressions with IP_Address, Hash, Port, and
CVE vulnerabilities (alongside regular entity recognition
for named vulnerabilities). We also use spaCy’s built-in
rule based recognition for Email addresses and URLs. We
included these recognizers in the pipeline used to prime
the second round annotations, so that the process was more
streamlined.

3.2.3. WIKIDATA ENTITY LINKING

Where possible, we link entity mentions to items in Wikidata
(Vrandečić & Krötzsch, 2014) which has about one billion
facts on about 100 million items. It has a Web interface to
support exploration and editing by people, a set of APIs to
access its information programmatically, and a SPARQL
endpoint for querying its RDF knowledge graph. Wikidata’s
ontology has a very fine-grained type system with more
than two million types and over 10,000 properties. The
properties of Wikidata items we primarily use are its types,
super-types, label, aliases, and description. Many other
Wikidata properties are available for future use.

Applying entity linking to a domain involves being able to
recognize both the Wikidata items and properties that are
very relevant to the domain as well as those that are likely
to be irrelevant. We identified custom sets of Wikidata
types and properties to support the cybersecurity domain for
this project. Given an entity mention, it uses Wikipedia’s
existing search APIs to retrieve an initial set of candidate

Table 2. Breakdown of number of annotations for each Entity Type

TYPE NUMBER TYPE NUMBER

VERSION_TAG 17 EVENT 1
MALWARE_TYPE 33 GPE 36
THREAT_ACTOR 24 LAW 0
VULNERABILITY 26 MONEY 3
FILENAME 37 ORG 149
PROTOCOL 29 PRODUCT 1
PORT 1 TIME 6
SOFTWARE_NAME 53 DATE 148
MALWARE_NAME 118 FAC 0
TOOL 1 LANGUAGE 4
CAMPAIGN 14 LOC 0
OPERATING_SYSTEM 35 NORP 10
FILEPATH 7 QUANTITY 0
PROCESS 10 PERSON 16
ATTACK_TYPE 2

entities, typically between 20 and 50. The API searches
against the text in labels, aliases, and description as well
some property values.

The results are then ranked using a variety of matching
features, item prominence, and the semantic similarity of
the entity’s text context compared to its Wikidata description
and initial sentence in its DBpedia (Lehmann et al., 2015)
abstract. This approach can help CyEnts successfully assign
the type Threat_Actor to Lazarus in the sentence

"Lazarus was behind the WannaCry attack"

and also link it to the North Korean hacker organization
Lazarus Group (Q19284445) even though Lazarus matches
all or part the names of more than 1,000 Wikidata items.

3.3. Evaluation

The initial Precision, Recall, and F-score for the first round
of the NER dataset is provided in Table 3. The breakdown
of the Precision, Recall, and F-score for each entity type is
listed in Table 4. We have omitted spaCy general types as
well as cybersecurity classes with low representation from
the table, due to lack of examples present for evaluation.
We discuss increasing the representation of sparse labels
and tuning the human evaluation study to produce better
annotations for training more robust models in Section 3.3.3.

Unlike entity recognition for more structured formats like
CVE records, blogs contain a greater degree of variety in
sentence structure, information, and style, adding increased
difficulty for recognizing relevant entities, in agreeable and
universal formats. We are improving our first round of
annotations by employing rule-based strategies, in addition
to aiding the annotators with further training. We discuss
other lessons learned from our first round below.



Table 3. Precision, recall, and F-score of our initial model

PRECISION RECALL F-SCORE

70.77 60.53 65.25

Table 4. Precision, Recall, and F-score for each entity type in our
initial model

ENTITY TYPE PRECISION RECALL F-SCORE

FILENAME 50.00 40.00 44.44
MALWARE_NAME 60.00 84.00 70.00
VULNERABILITY 57.14 100.00 72.73
OPERATING_SYSTEM 71.43 71.43 71.43
SOFTWARE_NAME 90.00 69.23 78.26
VERSION_TAG 25.00 33.33 28.57
FILEPATH 0.00 0.00 0.00
PROTOCOL 33.33 10.00 15.48
THREAT_ACTOR 100.00 100.00 100.00
CAMPAIGN 50.00 33.33 40.00
MALWARE_TYPE 0.00 0.00 0.00

3.3.1. REPRESENTATION OF ENTITY TYPES

Table 2 displays the number of annotations for each entity
type annotated during the first round of annotations. The
left half of the table includes cybersecurity domain entity
types that we defined. The right half of the table includes
general spaCy types that the out of the box model is trained
to recognize. The general types are pre-populated during the
annotation engine instantiation. We modified this provided
for the second round of annotations. More information on
modifications to this list is described in Section 3.3.3.

We observe that the occurrence of entity types in a document
can impact the number of annotations for certain types, un-
balancing the data distribution when training. For example,
we noticed limited occurrence of spaCy general types in
the CTI corpus. However, certain general types like ORG
and DATE have higher frequency. In terms of cybersecu-
rity specific types, we notice that Malware_Name has high
frequency, as most of the articles describe technical details
of APT groups and malware types. Since some of the less
frequent types did not have enough annotations to train the
Entity Recognizer model, the F score lowered as a result.

3.3.2. INTER-ANNOTATOR AGREEMENT

In addition, there was high disagreement between anno-
tators. Taking the maximum of each group’s annotations,
there was a total number of 1755 annotations. However
only 781 annotations were accepted, based on the Inter-
Annotator Agreement scores. One observation to explain
the disagreement is multiple definitions of entity types, such
as Product and Software Name. Broadly, there are many
variations for the methods in which one could annotate
these entities. For example, the annotators often defined
software libraries as products. In addition, discrepancies

such as Windows versus Windows OS, can drastically change
the distribution of the data. A similar conflation happened
between Software_Name and Tool. Another issue was in
entities that could be classified as multiple types. Consider
the following example: “Microsoft Word”. An annotator
could recognize is Microsoft an ORG and Word the Soft-
ware_name, or could merge the terms together as the name
of a single software type. Lastly, the final potential issue
was syntactical: if a process was called RunGame(), some
annotators would include the parentheses and some not.
The annotator disagreement issues also contributed to some
entity types lacking annotations in the final dataset.

3.3.3. IMPROVING HUMAN ANNOTATION STUDY

To improve our dataset we are undergoing a second round
of annotations, with comprehensive changes such as the
introduction of the rule-based entity pre-population, and
further annotator training. Another change we made was
modifying the initial list of entity types. For example, we
removed the type Tool because it was difficult to differen-
tiate it from Software, and in many cases the types were
semantically, the same. We deemed Process to be more
general and nebulous to annotate well, so we redefined it
into Function as it was more agreeable to multiple sub do-
main definitions. We also redefined Filepath to just Path,
and added the File_Extension type. To further help mitigate
annotator disagreement, we provided more in-depth training
and documentation to the annotators.

Our strategy for mitigating the lack of annotations for cer-
tain types is to implement rule-based recognition for these
types so they require fewer annotations to recognize at an
acceptable level. We especially target entities with low
annotation numbers for this, such as Attack_Type or Port.
These rule-based recognizers also correspond to entities that
had very low F-scores in 4. Entity types such as Filepath,
Malware_type, Protocol, and others which had low F-scores
are those that we are implementing rule-based recognizers
for in the updated pipeline, whereas entity types such as
Malware_Name, Software_Name, and others perform fairly
well without these and we believe will perform even better
with more annotations.

These rule-based recognizers were also applied during the
second round of annotation, which also helps reduce anno-
tator confusion as the entities are already labeled. Our final
measure was to increase the size of the annotation set to 150
paragraphs of text for each annotator to ensure each entity
receives a consistent set of annotations.

3.4. Conclusion

We described a preliminary framework for improving en-
tity recognition and linking for the cybersecurity domain.
We created a corpus of cyber threat intelligence, developed



a human annotator study to create high quality and share-
able cybersecurity entity recognition datasets, tested spaCy
framework capabilities to improve automatic entity extrac-
tion, and identified custom sets of Wikidata types and prop-
erties to support the cybersecurity domain.

In future work, we will integrate our Wikidata entity linker
into the pipeline, add a coreference module to link pronom-
inal and nominal mentions to entities, train a relation-
extraction module for the domain, and adapt our earlier
work to extract information on cybersecurity events (Satya-
panich et al., 2020). We also plan to develop a system
to automatically do periodic web scraping and processing
of the new text. The cybersecurity entities, relations, and
events will be used to populate and extend existing CKGs
(Piplai et al., 2020; Mitra et al., 2022).
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