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Abstract

Only a subset of infections is actually observed in an out-
break, due to multiple reasons such as asymptomatic cases
and under-reporting. Therefore, reconstructing an epidemic
cascade given some observed cases is an important step in
responding to such an outbreak. A maximum likelihood so-
lution to this problem (referred to as CASCADEMLE) can
be shown to be a variation of the classical Steiner subgraph
problem, which connects a subset of observed infections. In
contrast to prior works on epidemic reconstruction, which
consider the standard Steiner tree objective, we show that a
solution to CASCADEMLE, based on the actual MLE objec-
tive, has a very different structure. We design a logarithmic
approximation algorithm for CASCADEMLE, and evaluate it
on multiple synthetic and social contact networks, including a
contact network constructed for a hospital. Our algorithm has
significantly better performance compared to a prior baseline.

Introduction
In most outbreaks (of diseases, pests, or pathogens), such
as COVID-19 (Shaman et al. 2020), Hospital Associated
Infections (HAIs), such as Methicillin-resistant Staphylo-
coccus aureus (MRSA), and biological invasions (Robin-
son et al. 2017) only a subset of infections is known in a
timely manner, due to multiple reasons, including asymp-
tomatic cases (Jang et al. 2021), and lack of resources for
tracing or inspection. Such events require a prompt response,
such as isolation of infected patients (important in the case
of HAIs, since hospitalized patients are very vulnerable) and
corresponding measures in the case of crops and livestock.
Therefore, reconstructing an epidemic cascade which iden-
tifies missing infections (or infestations), and explains the
pattern of spread an important problem.

The problems of reconstructing an epidemic cascade and
identifying the source have been studied extensively for both
SI and SIR models on networks (Rozenshtein et al. 2016;
Jang et al. 2021; Zhu and Ying 2014; Shah and Zaman
2011). These works assume partial information is available
about the cascade, e.g., a subset of nodes which are known
to be infected (Jang et al. 2021), or both infection state and
time of infection (Rozenshtein et al. 2016; Zhu and Ying
2014; Shah and Zaman 2011).
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In the simplest SIR type network model of epidemic
spread (also referred to as the independent cascade (IC)
model), where a disease spreads on each edge of a con-
tact network G = (V,E) with probability p, this recon-
struction problem (referred to as CASCADEMLE) involves
finding a connected subgraph T = (V (T ), E(T )) such that
S ⊆ V (T ), where S is the subset of observed infections. Us-
ing the natural maximum likelihood estimation (MLE) ap-
proach, the goal of the CASCADEMLE problem is to find
a connected Steiner subgraph T such that S ⊆ V (T ), and
Pr[T ] is maximized—this can be expressed as an equiva-
lent problem of minimizing cost of T , denoted by Cost(T ).
As discussed later in the Preliminaries section, Cost(T ) in-
cludes cost of edges e ∈ E(T ), as well as cost of edges
= (u, v) 6∈ E(T ) not in T , but with {u, v}∩V (T ) 6= ∅ (i.e.,
at least one end point of e is in E(T )). This makes Cost(T )
quite different from the standard Steiner tree objective (Karp
1972), which has been very well studied. Most prior work
on reconstructing epidemic cascades in the SIR model has
mainly been restricted to the regular Steiner tree objective,
e.g., (Jang et al. 2021; Rozenshtein et al. 2016); this imme-
diately connects with the vast literature on algorithms for the
Steiner tree problem. We note that Zhu and Ying (2014) con-
sider the actual cost, but mainly focus on trees for rigorous
analysis (which is then extended to general graphs through
various heuristics).
Our Contributions. We study the CASCADEMLE problem
of finding an MLE solution for reconstructing an epidemic
cascade for the independent cascade (IC) model.

• We show that the solution to CASCADEMLE can have
a very different structure from the solution to the reg-
ular Steiner tree objective. In particular, there exist in-
stances where the solution to CASCADEMLE has diam-
eter Θ(n), where as the Steiner tree solution can have
constant diameter. We observe a significant difference in
real instances as well.

• We study the conditions under which the MLE solution
to the cascade reconstruction problem will fail. We find
that the MLE based approach is not good in many classes
of instances.

• The CASCADEMLE hasn’t been studied before. We
show that it is NP-hard. For the independent cascade
model, we present an algorithm with a logarithmic ap-



proximation factor, under natural assumptions about the
structure of social contact networks.

• Finally, we evaluate our formulation and algorithms for
several synthetic and realistic contact networks, includ-
ing a contact network for the University of Virginia
(UVA) hospital, constructed using Electronic Health
Record (EHR) data. Our results show improved perfor-
mance compared to a prior baseline in identifying miss-
ing infections.

Related Work
Our paper is most closely related to the work on cas-
cade reconstruction and source identification on networks
where only a partial set of nodes are observed. Rozenshtein
et al. (2016) introduce a directed Steiner tree based algo-
rithm, CULT, for reconstructing an epidemic cascade, where
the underlying network is dynamic, and a subset of infec-
tions, along with their infection times, is given. They do
not make any assumptions about the diffusion model. Jang
et al. (2021) consider this problem in the asymptomatic in-
fection setting and propose taking into account the individ-
ual’s risk factors in the form of node attributes. They formu-
late this as a directed prize-collecting Steiner tree problem
on a temporal contact network with outbreaks starting in-
dependently from multiple sources. However, both of these
works minimize the regular Steiner tree objective, which
consists of only the costs of edges within the subgraph.
In contrast, we consider the true MLE cost which includes
the costs from edges outside the subgraph corresponding to
failed infection attempts.

Shah and Zaman (2011) were the first to study the source
detection problem. They consider the SI model, and assume
all the infections are given, and the goal is to determine the
source. They study the ML estimator for the source detec-
tion problem, and show that it can be solved exactly on trees
using a notion of rumor centrality. Zhu and Ying (2014) ex-
tend this work to the SIR model. They develop an optimal
sample-path-based approach to source detection.

A related line of research is the problem of sampling from
the space of all cascades that explain the given observations.
Xiao, Aslay, and Gionis (2018) map the problem of com-
puting the node infection probabilities, given partial obser-
vations, to the problem of sampling Steiner trees. However,
in their target sampling distribution, they only consider the
contributions of edges within the tree, and ignore the con-
tribution from edges outside the tree corresponding to failed
infection attempts.

Preliminaries
Spread model. We consider the simplest form of the
Susceptible-Infected-Recovered (SIR) model called the In-
dependent Cascade model on a contact graph G = (V,E).
In this model, each node is in one of Susceptible (S), Infec-
tious (I) or Recovered (R) state. We start off with all nodes
in Susceptible state except the single source node which is
in Infected state. At each time-step, an infected node u can
infect each susceptible neighbor v with probability pu,v , in-
dependent of other neighbors of v. Each infected node gets

Figure 1: In this example, node 1 is the source,
the red nodes are the infections, and the brown
edges represent the infection cascade T . Here, δT
is {(2, 4), (3, 4), (1, 8), (5, 9), (5, 7)}, and λT is
{(4, 5), (6, 5)}. Each edge e in T contributes a cost ce
to Cost(T ). Edges in δT and λT contribute de costs, except
for edge (4, 5). Neighbors 4 and 5 get infected at the same
time, so they cannot attempt to infect each other.

only one opportunity to spread the infection following which
they enter into Recovered state.
Probability of a cascade. An outbreak, starting at a node
r, is referred to as a cascade, and can be represented as a
subgraph Tr = (V (Tr), E(Tr)), rooted at r. Let δTr

be the
set of edges not in Tr with exactly one endpoint in Tr, i.e.,
δTr

= {(u, v) ∈ E \ E(Tr) : u ∈ V (Tr), v /∈ V (Tr)}. Let
λTr be the set of edges not in Tr with both endpoints in Tr,
i.e. λTr = {(u, v) ∈ E \ E(Tr) : u, v ∈ V (Tr). Under the
IC dynamics, the probability of the cascade Tr is:

P (Tr) =
∏

e∈E(Tr)

pe
∏
e∈δTr

(1− pe)
∏

e=(u,v)∈λTr ,
dTr (r,u)6=dTr (r,v)

(1− pe)

(1)

where dTr (r, u) denotes the distance between root node r
and u, in the subgraph Tr. The first term corresponds to the
contribution of edges in the subgraph. Since every infected
node gets a single chance to infect a susceptible neighbor, we
have two kinds of (1 − pe) terms contributed by edges not
in Tr: (a) with exactly one endpoint in Tr, and (b) with both
endpoints in Tr, as long as they are at different distances
from the root. Let λ′Tr

denote the set of edges of type (b).
MLE solution. We assume that subsets S0, S1 are given
where S0 is a set of nodes which are known not to be in-
fected in the outbreak, while S1 is a set of nodes known to
be infected. We also assume the outbreak starts at a single
node, which need not be in S. We say that a cascade Tr is
consistent with (S0, S1) if S1 ⊂ V (T ) and S0 ⊂ V \ V (T ).
The MLE problem involves finding a connected subgraph
Tr = (V (Tr), E(Tr)) rooted at a node r which is consis-
tent with the given (S0, S1), and maximizes P (Tr); this is
equivalent to the optimal sample path detection problem as
described in (Zhu and Ying 2014). Taking the log of the
probabilities in P (Tr), we can define the cost of Tr as

Cost(Tr) =
∑

e∈E(Tr)

ce +
∑
e∈δTr

de +
∑

e=(u,v)∈λTr ,
dTr (r,u) 6=dTr (r,v)

de

(2)



Here, ce = − log pe is the cost of including an edge e in
the subgraph and de = − log (1− pe) is the cost of exclud-
ing an edge e from the subgraph. In Figure 1, we have an
illustrative example.
The CASCADEMLE problem. Given subsets S0, S1, the
goal is to find a connected subgraph Tr rooted at some
node r, which is consistent with (S0, S1), and minimizes
Cost(Tr).

Theorem 1. CASCADEMLE is NP-hard.

Proof. (Sketch) We show this by a reduction from the stan-
dard Steiner tree problem which is NP-hard (Karp 1972).
Consider the class of instances of CASCADEMLE where
the homogeneous edge probability is p = 1

4n2 , n being
the number of nodes in the graph. Thus, c = 2 log 2n and
d = − log(1− 1

4n2 ) ≤ 2
4n2 for large n. The CASCADEMLE

problem is to find the consistent subgraph which minimizes

Cost(Tr) ≤ 2 log 2n|E(Tr)|+
1

2n2
|δTr
∪ λ′Tr

|

≤ 2 log 2n|E(Tr)|+
1

2n2
.n2

= 2 log 2n|E(Tr)|+
1

2

We use the fact that there can be at most n2 edges in δTr
∪

λ′Tr
. It can be verified that Cost(Tr) ≥ D if and only if

|E(Tr)| ≥ D for any integer D ≤ n − 1. The NP-hardness
of CASCADEMLE follows from it.

We say a solution Tr is an α-approximation if
Cost(Tr) ≤ αCost(T ?r?), where T ?r? is an optimal solution
to the instance of CASCADEMLE. Note that the root of Tr
and T ?r? need not be the same; we only need that Tr be con-
sistent with (S0, S1).
Remark. In practice, the costs of exclusion of the
edges between same-level nodes in the cascade,∑

(u,v)∈λT ,dT (r,u)=dT (r,v) d(u,v), is a very small frac-
tion of Cost(Tr) (as we verify in our experiments). This is
also supported by the analysis of (Adcock, Sullivan, and
Mahoney 2013) that many realistic social and information
networks are tree-like, where this condition will hold. In
such a setting, P (T ) is a good approximation to Pr(Tr):

P (T ) =
∏

e∈E(T )

pe
∏
e∈δT

(1− pe)
∏
e∈λT

(1− pe). (3)

Observe that P (T ) does not depend on the root. We consider
the corresponding cost,

Cost(T ) =
∑

e∈E(T )

ce +
∑
e∈δT

de +
∑
e∈λT

de (4)

and will focus on minimizing Cost(T ).
Algorithm 1 (described in the Approach section) consid-

ers the setting where we are given an undirected contact
graph G = (V,E) with each edge e having an infection
probability pe , and a set of observed infections S ⊂ V . The

set of observed infected nodes S forms the terminal set in
the output Steiner tree. For a node u, let Ne(u) denote the
set of edges connecting to its neighbors. In Algorithm 2, we
show that with a slight modification, our approach extends
to the setting where we are also given the set of observed
uninfected nodes.

Difference between CASCADEMLE and
Steiner Tree Solutions

As mentioned earlier, previous works (Rozenshtein et al.
2016; Jang et al. 2021) minimize the regular Steiner tree cost
which consists of only the first term in Cost(Tr), namely
Costst(T ) =

∑
e∈E(T ) ce. Here we show that a solution

which minimizes Costst(T ), can have a very different struc-
ture than that which minimizes Cost(Tr). Next we study the
conditions under which the MLE approach will fail by show-
ing that there exist instances in which a CASCADEMLE so-
lution does not recover the ground truth cascade.

Observation 1. There exist instances in which a CAS-
CADEMLE solution Tr = arg minT ′r Cost(T ′r) has di-
ameter Θ(n), while a Steiner tree solution Tst =
arg minT ′ Costst(T

′) has diameter Θ(1).

Proof. Consider the class of graphs in Figure 2 where A1 ∪
A2 form a complete bipartite graph with |A1| = |A2| =
N + 1 and terminal node set S = {r, t}. Assume the homo-
geneous setting i.e. ce = c, de = d for every e ∈ E. Con-
sider trees T1 = (r, w1, w

′
1, t), and T2 = (r, u1, . . . , uN , t).

Observe that Costst(T1) = 3c and Costst(T2) = (N + 1)c.
It can be verified that T1 minimizes the Costst(·) objective.
On the other hand, we have Cost(T1) = 3c + 2Nd + 2d
and Cost(T2) = (N + 1)c + 2d. It can be verified that
there exists a sufficiently large value of p for which T2
minimizes Cost(·), and thus, is a CASCADEMLE solution.
Hence, there exist regimes in which the CASCADEMLE so-
lution has a diameter Θ(n), while the Steiner tree solution
has a diameter Θ(1).

Observation 2. There exist instances in which a CAS-
CADEMLE solution does not recover the true cascade.

Proof. Consider the class of graphs in Figure 2. Suppose T1
is the ground-truth cascade comprising nodes {r, t, w1, w

′
1}.

Given terminal set S = {r, t}, the MLE approach will pick
T2 over T1, unless the cost of excluding the bipartite edges
is insignificant, i.e., p is small enough. Thus, there exist
regimes in which the MLE solution fails to recover any part
of the ground truth cascade.

Our Approach
Assumption 1. For every edge in the network, pe ≤ 1/2.
Equivalently, c(e) ≥ d(e), for all e ∈ E.

Lemma 1. Under Assumption 1, a CASCADEMLE solution
T ? is a tree.



Figure 2: In this example, node r is the root, and S = {r, t}
is the set of terminals. A1 ∪A2 is a complete bipartite graph
on nodesw1, . . . , wN+1, and nodesw′1, . . . , w

′
N+1. T1 is the

purple path between r, t through w1, w
′
1, while T2 is the red

path between r, t through nodes u1, .., uN .

Assumption 1 states that the cost of including an edge is
greater than than the cost of excluding it. This implies that
an optimal subgraph is a tree, as we can always reduce the
cost of the subgraph by excluding (rather than including)
any edge that forms part of a cycle. Without this assump-
tion, there exist instances where an optimal solution could
have cycles. For example, in the homogeneous setting where
all edges have the same costs c and d and c < d, an op-
timal solution could be one which spans the whole graph.
Thus, under Assumption 1, we leverage a reduction from the
CASCADEMLE problem to the node-weighted Steiner tree
problem in our algorithm MINCOSTSTEINERTREE.

In Algorithm 1, we construct a node and edge-weighted
graph by weighing each node with the sum of the costs of
exclusion of each of its incident edges, and each edge with
the difference between its costs of inclusion and exclusion.
Under Assumption 1, these edge weights are non-negative.
Converting this to a purely node-weighted graph, this be-
comes a node weighted Steiner tree problem, where the goal
is to find the minimum-weighted Steiner tree with terminal
set S.

Algorithm 1 runs in polynomial time as we can construct
the node-weighted graph in polynomial time and the Klein
and Ravi (1995) algorithm has a polynomial time implemen-
tation. We now prove that this algorithm has a logarithmic
approximation factor.

Theorem 2. Let T̂ be the tree returned by Algorithm 1,
and let T ∗ be an optimal solution to the CASCADEMLE
instance. Then T̂ is consistent with S, and

Cost(T ∗) ≤ Cost(T̂ ) ≤ 4 ln |S| · Cost(T ∗) (5)

Proof. For any Steiner tree T ,∑
u∈V (T )

w(u) +
∑

e∈E(T )

w(e)

=
∑

u∈V (T )

∑
e∈Ne(u)

de +
∑

e∈E(T )

(ce − de)

Algorithm 1: MINCOSTSTEINERTREE

Input: An undirected contact graph G = (V,E) with edge
probabilities pe and a set of observed infected nodes S
Output: Tree Tr consistent with S

1: for each edge e do
2: Compute the cost of inclusion ce = − log pe and cost

of exclusion de = − log (1− pe)
3: end for
4: Construct a node and edge-weighted graph G′ from G,

by assigning weights as below:
5: for each node u do
6: w(u)←

∑
e∈Ne(u)

de
7: end for
8: for each edge e do
9: w(e)← ce − de

10: end for
11: Convert G′ to a purely node-weighted graph Ĝ by split-

ting each edge with a new node having the same weight.
12: Find the minimum weighted Steiner tree T̂ in Ĝ with

terminal set S, using Klein and Ravi’s (1995) algorithm
for the node-weighted Steiner tree problem.

13: Let r be any node in T̂
14: return T̂ , with root r

=
∑

u∈V (T )

∑
e∈Ne(u)∩E(T )

de +
∑

u∈V (T )

∑
e∈Ne(u)∩λT

de

+
∑

u∈V (T )

∑
e∈Ne(u)∩δT

de +
∑

e∈E(T )

(ce − de)

= 2
∑

e∈E(T )

de + 2
∑
e∈λT

de +
∑
e∈δT

de +
∑

e∈E(T )

(ce − de)

=
∑

e∈E(T )

ce +
∑

e∈E(T )

de + 2
∑
e∈λT

de +
∑
e∈δT

de

= Cost(T ) +
∑

e∈E(T )

de +
∑
e∈λT

de (6)

⇒ Cost(T ) ≤
∑

u∈V (T )

w(u) +
∑

e∈E(T )

w(e)

Continuing from (6) and using Assumption 1,∑
u∈V (T )

w(u) +
∑

e∈E(T )

w(e)

≤ Cost(T ) +
∑

e∈E(T )

ce +
∑
e∈λT

de

= 2Cost(T )−
∑
e∈δT

de ≤ 2 Cost(T )

Thus, for any Steiner tree T , we have shown that

Cost(T ) ≤
∑

u∈V (T )

w(u) +
∑

e∈E(T )

w(e) ≤ 2 Cost(T ) (7)

This holds for the Steiner tree returned by the algorithm, T̂ .

Cost(T̂ ) ≤
∑

u∈V (T̂ )

w(u) +
∑

e∈E(T̂ )

w(e) (8)



Klein and Ravi’s algorithm has a worst-case approximation
factor of 2 ln |S|. Hence,∑

u∈V (T̂ )

w(u) +
∑

e∈E(T̂ )

w(e)

≤ 2 ln |S|
( ∑
u∈V (T∗)

w(u) +
∑

e∈E(T∗)

w(e)
)

≤ 4 ln |S|Cost(T ∗) (9)

Combining (8) and (9),

Cost(T̂ ) ≤ 4 ln |S|Cost(T ∗) (10)

Observed Uninfected Nodes
Our approach extends easily to the setting where we are
given the set of observed uninfected nodes S0 in addition
to the set of observed infected nodes S1. Our goal is to find
an optimal subgraph consistent with S0 and S1. Here we
assume the observed uninfected nodes were never part of
the cascade, i.e., they remained uninfected throughout the
spreading process.

Let κ = {(u, v) ∈ E \ E(T ) : u ∈ S0, v ∈ T} be
the set of edges with one endpoint in S0 and the other in
the cascade T . In this setting, define δT as the set of edges
not in cascade, with one endpoint in cascade and the other
in V \ (S0 ∪ V (T )), i.e., δT = {(u, v) ∈ E \ E(T ) : u ∈
V (T ), v ∈ (V \(S0∪V (T ))}. Here λT is the same as before,
i.e, λT = {(u, v) ∈ E \ E(T ) : u, v ∈ T}. Then the cost of
a subgraph T , under IC dynamics, can be defined as:

Cost(T ) =
∑

e∈E(T )

ce +
∑
e∈λT

de +
∑
e∈δT

de +
∑
e∈κ

de (11)

Our goal is to find a connected subgraph consis-
tent with (S0, S1), and which minimizes Cost(T ). Here
we present Algorithm 2, MINCOSTSTEINERTREE-OBS-
UNINFECTED, which is only a slight modification of our
previous algorithm: we remove the nodes known to be un-
infected (and their edges), after constructing the node and
edge-weighted graph. This ensures that the graph weighting
takes into account the removed edges and the returned tree
is consistent with S0 and S1.

Algorithm 2 has the same approximation factor as the pre-
vious algorithm.

Theorem 3. Let T̂ be the tree returned by Algorithm 2,
and let T ∗ be an optimal solution to the CASCADEMLE
instance. Then T̂ is consistent with S0, S1, and

Cost(T ∗) ≤ Cost(T̂ ) ≤ 4 ln |S1| · Cost(T ∗) (12)

The proof is similar to that for Theorem 2.

Experimental Results
Dataset and Methods
We experimentally study the CASCADEMLE problem and
evaluate the performance of MINCOSTSTEINERTREE algo-
rithm on several real-world and synthetic networks. The net-
works are listed in Table 1 and described here.

Algorithm 2: MINCOSTSTEINERTREE-OBS-UNINFECTED

Input: An undirected contact graph G = (V,E) with edge
probabilities pe, set of observed uninfected nodes S0, a set
of observed infected nodes S1

Output: Tree Tr consistent with S0, S1.
1: for each edge e do
2: Compute the cost of inclusion ce = − log pe and cost

of exclusion de = − log (1− pe)
3: end for
4: Construct a node and edge-weighted graph G′ from G,

by assigning weights as below:
5: for each node u do
6: w(u)←

∑
e∈Ne(u)

de
7: end for
8: for each edge e do
9: w(e)← ce − de

10: end for
11: Remove all the nodes in S0 (and their edges) from G′.
12: Convert G′ to a purely node-weighted graph Ĝ by split-

ting each edge with a new node having the same weight.
13: Find the minimum weighted Steiner tree T̂ in Ĝ with

terminal set S1, using Klein and Ravi’s (1995) algorithm
for the node-weighted Steiner tree problem.

14: Let r be any node in T̂
15: return T̂ , with root r

1. arXiv High Energy Physics-Theory (HEP-TH): This is
an academic collaboration network in the High En-
ergy Physics-Theory community based on the citations
in the arXiv preprints published between January 1993
and April 2004 (Gehrke, Ginsparg, and Kleinberg 2003;
Leskovec and Krevl 2014). Taking the largest connected
component, we generate a subgraph with n = 500 nodes,
obtained by BFS starting from a random node. We refer
to it as arxiv.

2. Erdős-Rényi random graphs: We generate several
G(n, q) graphs for evaluating the performance of our
method and include results for G(n = 300, q = 0.02).

3. Hospital ICU network: This is a contact network of pa-
tients and healthcare providers built using the Electronic
Health Records (EHR) of the UVA Hospital’s ICU be-
tween Jan 1, 2018 and Jan 8, 2018. We choose the largest
connected component for our experiments and refer to it
as hospital-icu.

4. Power-law networks: We generate power-law networks
with n = 1000 nodes, varying the exponent γ in the
range [1.5, 3.5].

First, we study the error in approximation of the cost
by comparing the true Cost and our approximation Cost.
The MINCOSTSTEINERTREE algorithm is evaluated with
respect to network structure, diffusion model parameters,
and the observation set. We compare our method against
CULT (Rozenshtein et al. 2016) which is the state-of-the-
art Steiner tree-based cascade reconstruction method. Since
CULT takes an additional time-of-report information while



MINCOSTSTEINERTREE does not, we consider three vari-
ants of this method:
1. CULT-DEL: all nodes are reported as infected at the last

time step,
2. CULT-RAND: each node is reported as infected at a time

step chosen randomly in between the time of infection
and the last time step, and

3. CULT-NOS: all nodes reported as infected at the time
step of infection (NOS means No-Shift).

Note that these CULT variants are ordered in the increasing
amount of information provided to the algorithm.
We use the homogeneous probability setting for our exper-
iments where we set the diffusion probability p across all
edges to be the same. We generate the infection cascades
under IC dynamics for a single source chosen uniformly at
random. In our experiments for evaluating the algorithm, we
have considered cascade sizes to be within (0.02n, 0.1n),
where n is the network size so that sufficient number of ob-
served nodes can be extracted from the cascade.

Next, to create the observation node sets from the gener-
ated infection cascades, we use two different schemes:

(a) random: We randomly sample a fixed % of nodes from
the infected node set to form the observed node set.

(b) frontier: Here, nodes in the cascade at a distance at
least d from the source are chosen as observed. This cor-
responds to the scenario in which we have observed the
more recent infections and our goal is to infer the rest.

These schemes are inspired from Rozenshtein et al. (2016),
and can help evaluate the performance of our method in two
distinct observational settings.
We choose Matthews correlation coefficient (MCC)
(Matthews 1975) and F1-score as in (Rozenshtein et al.
2016; Jang et al. 2021), to evaluate the quality of the
reconstructed cascades with the ground-truth. All reported
values are averaged over 100 trials.

Results
Difference between Cost(T ) and Cost(T ). We created
several power-law networks on 1000 nodes for various val-
ues of the power-law exponent γ in the range [1.5, 3.5]. We
generated cascades starting from a source chosen uniformly
at random, varying the probability p from 0.05 to 0.49. For
each such cascade, we computed the error between the two
costs. Representative results are in Figure 3 (the results are
consistent across replicates of the networks). We observe
that the difference in the costs depends on both the proba-
bility p as well as the network structure (which is decided
by γ). We recall that the difference between the two costs
is d = − log(1 − p) times the number of node pairs in the
cascade that satisfy the property that both nodes are at equal
distance from the source. For very low values of p, the dif-
ference is low across networks as the cost of including an
edge c = − log(p)� d. As p increases, we observe that the
network structure comes into play. For very low values of
the power-law exponent γ, there are several nodes with high
degree leading to the presence of dense subgraphs. This in-
creases the chances of node pairs where the nodes at equal
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Figure 3: Percentage error between Cost(T ) and Cost(T )
for cascades on random power-law graphs with varying dif-
fusion probability p and power-law exponent.

distance from the source of the cascade, and in turn, leads to
a larger difference in the two costs. On the other hand, for
lower γ (2.5–3.5), the graph is more tree-like, and therefore,
we see a very low error even for probability approaching 0.5.
For γ = 2 in particular, we note that the error is 10% for p
as high as 0.3.

Performance of MINCOSTSTEINERTREE. In Figure 4,
the MCC scores are plotted for MINCOSTSTEINERTREE
and CULT for the two observation schemes and a diffu-
sion probability of 0.1. We observe that MINCOSTSTEIN-
ERTREE performance is superior compared to CULT-DEL
across observation schemes, networks and diffusion prob-
abilities. We recall that the MINCOSTSTEINERTREE al-
gorithm accounts for the diffusion model while the ver-
sions of CULT do not. However, CULT-NOS and, to
some extent CULT-RAND, account for the time of in-
fection. In particular, for the G(300, 0.02) graph and the
hospital-icu, we observe that the performance of MIN-
COSTSTEINERTREE is much better than that of CULT. We
note that arxiv has a large average shortest path length
(and low diameter) compared to the other two networks
even though its clustering coefficient is large. Even though
hospital-icu has a large clustering coefficient, it has
a small average shortest path length like G(300, 0.02). In
Figure 5, we have representative plots of the MCC and F1-
scores under diffusion probabilities 0.05 and 0.20. The per-
formance is similar to that in Figure 4 for G(300, 0.02) and
hospital-icu. For the higher probability, we observe
inferior performance in the case of arxiv as the distance
from source increases under the frontier observation
scheme.

Impact of different types of observations. For the
random observation scheme, we observe that MINCOST-
STEINERTREE performance drastically increases with in-
crease in the number of observed nodes. This is particularly
true for the real-world networks. Typically, we see good per-



Graph Name Nodes Edges Clustering
coefficient

Average
shortest
path length

G(n, q) random graph 300 897∗ 0.015 3.45
arxiv 500 895 0.52 12.5

hospital-icu 879 3575 0.59 4.31
Power-law networks 1000 660–6613 – –

∗Average value reported.

Table 1: Networks and their properties
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Figure 4: Performance of MINCOSTSTEINERTREE
for random and frontier observation schemes.
(a) G(300, 0.02); (b) arxiv; and (c) hospital-icu,
with fixed p = 0.10

formance when at least 40% of the infected nodes are ob-
served. In the case of FRONTIER observation scheme, we
observe that when the distance from the source is ≥ 4, the
cascades constructed are quite inferior. This puts emphasis
on early discovery of the outbreak.

Conclusions
We studied the problem of reconstructing an epidemic cas-
cade given a subset of infections as observed nodes under
IC dynamics. We presented an algorithm with a logarithmic
approximation factor using a node-weighted Steiner tree ap-
proach, and evaluated its performance on several synthetic
and real-world networks. An important future direction is to
extend our approach to reconstruct cascades resulting from
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Figure 5: Performance of MINCOSTSTEINERTREE for
(a) G(300, 0.02) with p = 0.05; (b) arxiv with p = 0.20;
and (c) hospital-icu with p = 0.05.

more complex SEIR processes with delayed recovery, SI,
and the SIS models. Another direction is to incorporate addi-
tional information about the cascade such as reporting time
or order of infections that can help overcome the limits of
the MLE problem studied here.
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