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Abstract

Healthcare acquired infections (HAIs) (e.g., Methicillin-
resistant Staphylococcus aureus infection) have complex
transmission pathways, spreading not just via direct person-
to-person contacts, but also via contaminated surfaces. Prior
work in mathematical epidemiology has led to a class of mod-
els – which we call load sharing models – that provide a
discrete-time, stochastic formalization of HAI-spread on tem-
poral contact networks. The focus of this paper is the source
detection problem for the load sharing model. The source de-
tection problem has been studied extensively in SEIR type
models, but this prior work does not apply to load sharing
models.
We show that a natural formulation of the source detection
problem for the load sharing model is computationally hard,
even to approximate. We then present two alternate formu-
lations that are much more tractable. The tractability of our
problems depends crucially on the submodularity of the ex-
pected number of infections as a function of the source set.
Prior techniques for showing submodularity, such as the “live
edge” technique are not applicable for the load sharing model
and our key technical contribution is to use a more sophisti-
cated “coupling” technique to show the submodularity result.
We propose algorithms for our two problem formulations by
extending existing algorithmic results from submodular opti-
mization and combining these with an expectation propaga-
tion heuristic for the load sharing model that leads to orders-
of-magnitude speedup. We present experimental results on
temporal contact networks based on fine-grained EMR data
from three different hospitals. Our results on synthetic out-
breaks on these networks show that our algorithms outper-
form baselines by up to 5.97 times. Furthermore, case studies
based on hospital outbreaks of Clostridioides difficile infec-
tion show that our algorithms identify clinically meaningful
sources.

Introduction
Healthcare acquired infections (HAIs) such as Methicillin-
resistant Staphylococcus aureus infection (MRSA) and
Clostridioides difficile infection (CDI) pose a significant
burden on our healthcare infrastructure (Centers for Disease
Control and Prevention 2019). Unlike respiratory infections
such as SARS-CoV-2 and Influenza, HAIs such as MRSA
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and CDI have complex transmission pathways (Plipat et al.
2013; Li et al. 2009; Jang et al. 2019) that involve contam-
inated surfaces in addition to direct person-to-person con-
tacts. As a result, HAIs have been difficult to model, detect,
and control. Recent work, e.g., (Plipat et al. 2013; Jang et al.
2019), has shown that standard SEIR type models (Hethcote
2000) are not very suitable for modeling HAI spread; we
will describe a load sharing model (Jang et al. 2019) later.

Most hospitals have limited testing and when some infec-
tions are detected in the hospital, a lot of effort is invested
into rapidly identifying the source of infection. This is done
so that strategies such as isolation precautions can be im-
posed in order to limit the spread of the infection. This,
of course, corresponds to the classical “source detection”
problem, which has been studied extensively in data mining
and network science, e.g., (Prakash, Vreeken, and Faloutsos
2014; Shah and Zaman 2010; Lappas et al. 2010). However,
all prior work on source detection problems has been re-
stricted to Susceptible-Exposed-Infected-Recovered (SEIR)
type compartmental models, and cannot be easily adapted
for HAIs. For instance, the Minimum Description Length
(MDL) approach of (Prakash, Vreeken, and Faloutsos 2014)
is crucially tied to the structure of SEIR type models. Thus
the source detection problem remains open for HAIs, and is
the focus of our paper.

Motivated by the approach of (Lappas et al. 2010), we
use a risk minimization type formulation for the source de-
tection problem on load sharing models for HAIs. We de-
scribe this informally below and more formally later. Let
G = (G0, G1, . . . , GT−1) be a temporal network, where the
network Gt = (Pt, Lt, Et) represents interactions among a
set Pt of people (e.g., patients, nurses, physicians) and be-
tween people and a set of locations Lt, in time step t. Let
Pos be the set of observed positive HAI cases during the
time window [0, T − 1], and let Neg = (

⋃
t Pt) \ Pos.

LetM be an instance of a load sharing model. For a source
set S, let InfM(S) ⊆

⋃
t Pt denote the (random) subset

of people who get infected according to model M due to
disease starting at S. For any v ∈

⋃
t Pt, let α(v, S) :=

Prob[v ∈ InfM(S)]. To measure how good the source set
S is, at explaining the observations Pos, we define two
quantities: g(S) :=

∑
v∈Pos α(v, S), the expected number

of infections according to M, that are also observed, and
f(S) :=

∑
v∈Neg α(v, S), the expected number of infec-



tions according toM, that are not observed. The overall goal
of this paper is to solve the following (informally stated)
SOURCEDETECTION problem.

SOURCEDETECTION (SD) (informal)
Given a temporal network G = (G0, G1, . . . , GT−1), a
load sharing modelM, and a set of observed HAI cases
Pos, find a source set S that makes g(S) large while
keeping f(S) small.

The main contributions of our paper are as follows:
• Problem Formulations: We show that a natural formu-

lation of the SOURCEDETECTION problem for the load
sharing model is computationally very hard, even to ap-
proximate. We then present two natural, alternate formu-
lations (SD±KNAP and SD±RATIO) that are much more
tractable, both in a theoretical and practical sense.

• Submodularity result: The tractability of our formula-
tions depends crucially on a submodularity result that we
show. We show that for the load sharing model, the ex-
pected number of infections that are also observed and
the expected number of infections that are not observed,
are both submodular functions of the source set. These
functions are analogous to the expected number of infec-
tions in the Independent Cascade model (Kempe, Klein-
berg, and Tardos 2003), which has been shown to be
submodular, using the “live edge” technique. However,
this technique does not work for our load sharing model,
since there is no “live edges” interpretation of infec-
tion flow in the load sharing model. Instead, we need to
use a more sophisticated coupling technique, motivated
by (Mossel and Roch 2007). As far as we know, this is
the first submodularity result for a disease-spread model
involving the transfer and sharing of pathogen loads.

• Scalable implementations with strong worst-case
guarantees: We use the submodularity of f(·) and g(·)
to design multi-criteria approximation algorithms for the
SD±KNAP and SD±RATIO problems. The worst case
approximation guarantees we obtain depend on a notion
of curvature of f(·) and g(·), but for our problem settings
the function curvatures are such that we obtain strong
guarantees. We significantly improve the running time of
our algorithms for the SD±KNAP and SD±RATIO prob-
lems using a heuristic that we call truncated expectation
propagation. This heuristic allows us to shortcut expen-
sive simulations of the load sharing model, and leads to
orders-of-magnitude speedup.

• Experimental Results: We evaluate our algorithms on
real-world contact network datasets from three hospitals.
Our experiments on synthetic outbreaks on real hospi-
tal contact data show that our approaches significantly
outperforms baselines – by up to 6 times. Furthermore,
we demonstrate that our approaches identify clinically
meaningful sources on an actual in-hospital CDI out-
break.

Due to the space limit, all proofs appear in the Technical
Appendix.

Background
Load sharing model
Traditional compartmental models for disease-spread via
person-to-person contact (e.g., SI, SIS, SIR, and SEIR) (Het-
hcote 2000) have a long history, dating back to the early 20th
century. However, these have been found to be inadequate
for modeling transmission of diseases which need to take
the environment into account (Li et al. 2009; Tien and Earn
2010; Plipat et al. 2013; Wang and Ruan 2017; Kraay et al.
2018; Jang et al. 2019), such as HAIs.

We now formally describe a load sharing model that was
proposed for MRSA transmission in (Plipat et al. 2013; Jang
et al. 2019). For any y ∈ Pt ∪ Lt, let Ly(t) denote the HAI
pathogen load at node y at time t. Load dynamics can then
be described by the following stochastic recurrence:

Ly(t+ 1) = (1− d)Ly(t)−
∑

x:{x,y}∈Et

ρy,x · Ly(t)

+
∑

x:{x,y}∈Et

ρx,y · Lx(t) + Iinf · q (1)

Here d ∈ (0, 1) is a die-off parameter, and the term (1 −
d)Ly(t) denotes the pathogen load remaining after die-off at
time t + 1. The next two terms represent pathogen transfer.
For each time-t edge (interaction) {x, y} that y participates
in, a fraction ρy,x ∈ (0, 1) of loadLy(t) is transferred from y
to x and a fraction ρx,y ∈ (0, 1) of load Lx(t) is transferred
from x to y. In (Plipat et al. 2013; Jang et al. 2019) the trans-
fer parameter ρx,y depends on the contact area of “touch” in-
teraction, the total area of entity x, and the transfer efficiency
between the two touching surfaces. The last term denotes the
(stochastic) shedding of pathogen load due to infection. The
pathogen loadLy(t) at person node y ∈ Pt at time t stochas-
tically determines if y becomes infected at time t + 1. If y
is infected at time t + 1 then, for some shedding parameter
q > 0, y sheds q units of pathogen, i.e., q units are added
to y’s pathogen load. Whether y becomes infected is deter-
mined by a dose-response function p : R+ → [0, 1]. (See
(Brouwer et al. 2017) for a systematic study of dose response
functions for infectious diseases.) Thus, a person node y be-
comes infected at time t+ 1 with probability p(Ly(t)). The
quantity Iinf appearing in the last term is the indicator ran-
dom variable indicating if y is infected in time t + 1. Thus,
Prob[Iinf = 1] = p(Ly(t)) if y ∈ Pt and 0 otherwise (i.e.,
if y is a location).

For ease of exposition we assume the same n nodes are
present in all T times stamps1. Then, this recurrence can be
compactly rewritten as a stochastic matrix recurrence

L(t+ 1) = (B(t) +D(t)) · L(t) + q · I(t). (2)

Here L(t) is a length-n vector representing loads at the
nodes at time t. B(t) is an n × n matrix with entry [x, y]
equal to ρx,y if {x, y} is an edge inGt and 0 otherwise. D(t)
is an n×n diagonal matrix with non-zero entries [y, y] equal

1In reality and in our datasets, patients are admitted and dis-
charged and healthcare professionals may also change. Thus the
number of nodes may change from one time step to the next.



to (1− d−
∑
x ρy,x); in this expression the sum

∑
x is over

all neighbors x of y in Gt. We restrict the model parameters
so that 0 ≤ (d+

∑
x ρy,x) ≤ 1, thus ensuring that the out-

going load does not cause load at node to become negative.
Finally, I(t) is a length-n random indicator variable vector
with entry [y] equal to 1 with probability p(Ly(t)) if y ∈ Pt
and 0 otherwise. This models the fact that only people (not
locations) can become infected and subsequently shed.

In (Jang et al. 2019), an exponential dose response func-
tion (p(z) = 1− e−πz) and a truncated linear dose response
function (p(z) = min(πz, 1)) are evaluated for an infectiv-
ity parameter π > 0. See Fig 1 and Table 1 in the Technical
Appendix for an illustration of the load sharing model, and
symbols and notation we use in this paper, respectively.

Problem Formulations
Intractability of a natural formulation
We start by presenting the hardness of a natural formulation
of the source detection problem. Inspired by the k-effectors
problem in (Lappas et al. 2010) and the Positive-Negative
Partial Set Cover problem (denoted ±PSC) defined in (Mi-
ettinen 2008), we define the SD±PSC problem as follows.

SD±PSC
Given a temporal network G = (G0, G1, . . . , GT−1), a
load sharing model M, 0 ≤ τ1 < τ2 < T , and an ob-
served (positive) set Pos ⊆ ∪t∈[τ2,T−1]Pt, find a source
set S∗ ⊆ ∪t∈[0,τ1]Pt that minimizes∑

v∈Pos
(1− α(v, S)) +

∑
v∈Neg

α(v, S). (3)

The first term in the objective function is the expected
number of observed positive cases not infected by an in-
fection starting at source set S and the second term is the
expected number of negative cases infected, by an infec-
tion starting at source set S. While this objective func-
tion is a simple and natural model for the SOURCEDETEC-
TIONproblem, we prove the following hardness of approx-
imation result that shows that no reasonable approximation
exists for the problem.

Theorem 1. For any ε > 0, the SD±PSC problem does
not have an α-approximation for any α = O(2log

1−ε n4

),
where n is the number of nodes in G0, unless NP ⊆
DTIME(npolylog(n)). This is true even for an instance of the
SD±PSC problem with 3 time stamps.

In (Lappas et al. 2010) it is claimed that the k-effectors
problem does not have a β-approximation for any β > 0
for the independent cascade (and similar) models. The proof
of this claim and the NP-hardness claim it depends on seem
incorrect (see the Technical Appendix for details) and so we
use a different reduction to prove Theorem 1.

Two tractable problem formulations
In light of the hardness result in the previous section,
we present two formulations of the informally stated

SOURCEDETECTION problem that can be viewed as compu-
tationally tractable surrogates for the problem. The tractabil-
ity of these formulations relies crucially on the submodular-
ity of the functions f and g, which is shown in Theorem 2.

In the SD±KNAP problem defined below, instead of in-
cluding both the positive and negative set of observations
in the objective function (as in SD±PSC), we impose con-
straints that bound the number of people outside the set
of observed cases that are reached by the infection start-
ing at the source set. Let Post ⊆ Pt denote the set of ob-
served cases at time t and let Negt = Pt \ Post. Then let
ft(S) :=

∑
v∈Negt α(v, S) denote the expected number of

infections in the negative set at time t.

SD±KNAP
Given temporal graph G = (G0, G1, . . . , GT−1), where
Gt = (Pt, Lt, Et), integers τ1, τ2, 0 ≤ τ1 < τ2 < T ,
an observed set Post ⊆ Pt of cases, positive reals kt, for
each t ∈ [τ2, T−1], find S∗ = argmaxs g(S) such that S
satisfies the constraints ft(S) ≤ kt for all t ∈ [τ2, T −1].

We next define the SD±RATIO problem. The goal of
SD±RATIO is to find a source set S that maximizes the ra-
tio of g(S) (the expected number of infections in Pos) to∑
t γt · ft(S), a linear combination of the expected num-

ber infections in Negt for values of t in the observation pe-
riod [τ2, T − 1]. The coefficients γt can be viewed as penal-
ties, which could vary with time – the penalty for getting it
wrong in later time steps could be smaller than the penalty of
getting it wrong in earlier time steps. This problem is sim-
ilar in spirit to the problems of maximizing the difference
g(S)−f(S). However, as pointed out by Bai et al. (Bai et al.
2016) there is an important difference in the approximability
of the ratio problem and the difference problem for submod-
ular functions. While the ratio problem has algorithms with
bounded approximation ratio for submodular functions, the
difference version does not. This motivates the use of the
SD±RATIO problem for source detection.

SD±RATIO
Given temporal graph G = (G0, G1, . . . , GT−1), where
Gt = (Pt, Lt, Et), integers τ1, τ2, 0 ≤ τ1 < τ2 < T , an
observed set Post ⊆ Pt of cases and positive reals γt, for
each t ∈ [τ2, T − 1], find

S∗ = argmax
s

g(S)
T−1∑
t=τ2

γt · ft(S)
(4)

Methods
Submodularity of expected infections
In this section we show that the function g(S) denoting the
expected number of infections in the positive set is a mono-
tone, submodular set function for any load sharing model
that uses a concave dose response function. This result holds
for the functions f(S) and ft(S) as well. A concave dose re-
sponse function models “diminishing response” to marginal
increase in pathogen load. It is easy to see that functional



forms such as exponential and linear, mentioned earlier, are
concave functions. A key aspect of our proof consists of
showing that if loads at nodes are monotone, submodular
functions of the source set and the dose response function is
concave, then g(S) is submodular. Showing that the loads
are submodular needs new ideas because the “live edge”
technique used in the classical results of (Kempe, Klein-
berg, and Tardos 2003) for the independent cascade model
and linear threshold model does not seem to apply here. In
particular, there seems to be no apriori setting of the ran-
dom bits that fixes node-infectivity and shedding, thereby
yielding a deterministic version of node loads that can be
easily shown to be submodular. To get around this obstacle,
we base our proof on the “coupling” technique of (Mossel
and Roch 2007). To show the submodularity of loads us-
ing the diminishing returns definition of submodularity, we
need to consider 4 source sets S, S+v,Q, andQ+v, where
S ⊆ Q and v 6∈ Q. The key idea we use is the coupling of the
stochastic decisions made by the 4 disease-spread processes
starting from each of these source sets. With this 4-way cou-
pling in place and using induction over time, we are able
to show the submodularity of loads. The full proof is in the
Technical Appendix.

Theorem 2. Let τ1, τ2 be integers satisfying 0 ≤ τ1 < τ2 <
T . For any concave function p : R+ → [0, 1], and any load
sharing modelM using dose response function p, the func-
tions g(S), f(S), and ft(S) for t ∈ [τ2, T −1] are all mono-
tone and submodular.

Algorithms for SD±KNAP

Since g(·) and ft(·) have been shown to be submodular, it
follows that SD±KNAP is a problem of maximizing a sub-
modular function subject to multiple submodular knapsack
constraints. Even a special case of this problem, with a sin-
gle cardinality constraint, is well known to be NP-complete
(Feige 1998). So we seek an approximation algorithm for
SD±KNAP that provides strong worst-case guarantees, but
is also practical and scalable. For this purpose we adapt
the gradient ascent type framework of (Iyer and Bilmes
2013a,b), which has been proposed for the problem of max-
imizing a submodular function subject to a single submod-
ular knapsack constraint. When used for SD±KNAP, each
ascent step of the algorithm requires the solution of a sim-
pler submodular function maximization problem with mul-
tiple linear constraints. The result of Bilmes and Iyer only
works for a single constraint, for which they are able to use
a natural greedy algorithm for the ascent step; this does not
provide approximation guarantees for the problem with mul-
tiple constraints. Multilinear relaxation plus rounding (Ku-
lik, Shachnai, and Tamir 2009) is a well known approach to
solving the submodular maximization problem with multi-
ple linear constraints. However, while this approach is the-
oretically elegant, it does not scale to our input sizes. So
we use a simple approach based on the multiplicative up-
date method that has been shown to provide a O(1)-factor
approximation to the problem in (Azar and Gamzu 2012).

Algorithm 1 shows a high level description of our algo-
rithm MUKnapsackSD for solving SD±KNAP. Given a

Algorithm 1: MUKnapsackSD
Input: G, τ1, τ2, Pos, and kt for each t ∈ [τ2, T − 1]
Output: A seed set S

1: S ← ∅
2: while S has not converged do
3: Compute a linear function f̂t defined as

f̂t(Y ) := ft(S)−
∑
j∈S\Y

ft(j|S \ j) +
∑
j∈Y \S

ft(j|∅)

4: S ← MultiplicativeUpdate(g, f̂t, ∀t ∈ [τ2, T − 1])
5: end while
6: return S

current solution S, we compute in Line 3, a modular up-
per bound f̂t of each submodular function ft that is guar-
anteed to be tight at S. In Line 4, we use the multiplica-
tive update algorithm to solve the problem of maximizing
the submodular function g(X) subject to linear constraints
f̂t(X) ≤ kt. Below we show that MUKnapsackSD yields
the following multicriteria approximation guarantee, where
Kft := max{|X| : ft(X) ≤ kt} and κft is the curva-
ture of the set function ft : 2V → R defined as κft :=

1−minv∈V
ft(v|V \v)
ft(v)

.

Theorem 3. Algorithm MUKnapsackSD returns a solution
SA such that g(SA) ≥ 1

2(e(T−τ2)+1) · g(Ŝ). Here, Ŝ is an
optimal solution to the problem of maximizing g(S) subject
to constraints

ft(S) ≤ nt
1 + (Kft − 1)(1− κft)

Kft

for all t ∈ [τ2, T − 1].

Our observations of positive cases typically come from a
small time window [τ2, T − 1]. For example, in our exper-
iments this time window has size 2. Thus, for all practical
purposes, the fraction 1/2(e(T − τ2)+1) in the approxima-
tion ratio is a constant. In our setting, kt tends to be fairly
small because we don’t want to allow the infection of too
many negative cases. As a result, Kft will also tend to be
quite small. Since the fraction 1+(Kft−1)(1−κft )

Kft
is bounded

below by 1/Kft , it is reasonable to expect the constraint vi-
olation in the multicriteria approximation is only a constant
factor.

Additionally, we also implemented an algorithm called
GreedyKnapsackSD, where we use a greedy heuristic in-
stead of multiplicative update, for the ascent step. See the
Technical Appendix for further details.

Algorithms for SD±RATIO

We use the simple, greedy algorithm from (Bai et al. 2016)
as solution to SD±RATIO. For the problem of maximiz-
ing the ratio g(S)/f(S), it is shown in (Bai et al. 2016)
that their algorithm yields an approximation ratio of 1 −



1/e1−κf . For the SD±RATIO, this immediately translates
to an approximation ratio of 1 − 1/e1−κf′ , where f ′(S) =∑T−1
t=τ2

γtft(S). While this approximation factor may be
tight in the worst case, in the following we show that it can
be restated in terms of the curvature of f ′ at the optimal so-
lution. This quantity can be in general much smaller than
κf ′ and can therefore lead to a much better approximation
ratio. For a set function f : 2V → R and X ⊆ V define the
curvature of f at X , denoted κf (X), as

κf (X) := 1−min
v∈X

f(v | X \ v)
f(v)

.

In our setting, it is reasonable to expect f(v | V \ v) to
be near-0 for some v ∈ V . This is because f(v | V \ v)
represents the marginal increase in the expected number of
infected when the set of sources contains all but one nodes
and we add that last node as a source. On the other hand, for
most HAI applications we are interested in, S∗ will be small
and f(v | S∗ \ v) may be relatively large for all v ∈ S∗. As
a result, we expect that in practice κf ′(S∗) � κf ′ . We use
the name GreedyRatioSD to denote the greedy algorithm
that we implemented for SD±RATIO problem.
Theorem 4. The algorithm GreedyRatioSD yields a
(1 − 1/e1−κf′ (S

∗))-approximation for solving SD±RATIO,
where S∗ is an optimal solution.

It is possible for the g(S)/f(S) ratio to be very high, even
when g(S) is very small. Thus, GreedyRatioSD may re-
turn a solution S with very small value of g(S), which may
be considered unsatisfactory for the SD±RATIO problem.
So we have also implemented a variant of GreedyRatioSD,
called CoverRatioSD, that is forced to return a solution S
for which g(S) is at least a prescribed fraction of the num-
ber of observed cases. See the Technical Appendix for more
details.

Truncated expected load propagation
A significant bottleneck in the running time of all our algo-
rithms is the fact that the functions f and g are stochastic
and obtaining good estimates requires a substantial number
of simulations. We use a simple expected load propogation
heuristic, described below, that allows us to shortcut costly
simulations, while preserving solution quality.

Given loads at all nodes at time t, the expected load
E[Ly(t+ 1)] at node y at time t+ 1 can be written as

(1−d)Ly(t)+
∑
x

(ρy,xLx(t)− ρx,yLy(t)) + q · p(Ly(t)) .

Pushing the expectations through the right hand side and
approximating the value of the dose response function
p(Ly(t)) by p(E[Ly(t)]), we get a deterministic recurrence

E[Ly(t+ 1)] = (1− d)E[Ly(t)] +
∑
x

(ρy,xE[Lx(t)]

−
∑
x

ρx,yE[Ly(t)]) + q · p(E[Ly(t)])

We use this recurrence to propagate expected loads from
time stamp 0 to time stamp τ2 − 1 and then run simula-
tions only for time stamps in [τ2, T ] in order to find the

set Inf([τ2, T ]|S,M). Due to a somewhat subtle issue with
this heuristic, we implement a “truncated” version of it, de-
scribed in the Technical Appendix. As shown in Figure 3,
this enables 17× speedup of our algorithms, without a no-
ticeable degradation in quality of solution.

Experiments
We design extensive experiments to compare and contrast
the performance of our algorithms against baselines in a
variety of outbreak scenarios. Our code and public data is
available for academic purposes 2.
Baselines: Despite there not being a direct competitor, we
compare performance of our algorithms against a wide range
of methods. CuLT (Rozenshtein et al. 2016) is the state-
of-the-art cascade reconstruction approach that uses a di-
rected Steiner-tree algorithm to span the observed infec-
tion set Pos. Similarly, NetSleuth (Prakash, Vreeken, and
Faloutsos 2012) is an MDL-based approach which returns
a set of source nodes that “best” describe the observations.
PathFinder simply selects top-k candidate source nodes
with the highest number of reachable nodes in Pos. Finally,
LOS (Length of Stay) selects patients from the first few
time-stamps as sources, who remain longest in the hospital.
Data: We run our methods and the baselines in real and sim-
ulated HAI outbreaks on a number of datasets. We used a
total of 31 daily snapshots in each of our datasets. UIHC
(10.4K nodes, 13.8K edges per day) consists of daily inter-
actions between healthcare workers (HCWs), patients, and
locations within the University of Iowa Hospitals and Clin-
ics. The interactions were reconstructed from HCW logins
and patient admission-discharge-transfer (ADT) records.
UIHCUNIT (789 nodes, 526 edges per day) is a subset of
UIHC. It corresponds to the unit with the history of high-
est number of CDI cases. UVAPRECOVID (2.4K nodes,
430 edges per day) consists of interactions between pa-
tients, HCWs and locations in the Cardiology department
of the University of Virginia Hospital. These interactions
were recorded in March 2011. UVAPOSTCOVID (0.9K
nodes, 396 edges per day) was collected in the same unit as
UVAPRECOVID, but in January 2020. Note that COVID-19
pandemic had already started when the interactions in this
dataset occurred. Finally, CARILION (Jiménez, Lewis, and
Eubank 2012) (2.3K nodes, 30K edges per day) consists of
daily snapshots of interactions generated from mobility log
obtained from Carilion Hospital in Roanoke, VA. There are a
total of 72K unique locations and 89K unique individuals in
this dataset. We extract a densely connected subgraph from
the largest connected component of the dynamic interaction
network.

Quality of the detected sources
Our goal here is to quantify the goodness of the sources
inferred by our approaches and the baselines. Although
we have real HAI outbreaks in some of our datasets, true
“ground truth” sources are unavailable. Hence, in these sets
of experiments we rely on simulated outbreaks. We run a

2https://github.com/HankyuJang/Detecting-Sources-of-
Healthcare-Associated-Infections



Figure 1: The performance of our approaches KnapsackSD and RatioSD and the baselines on various datasets in terms of
F1-score (see the Technical Appendix for MCC results). The size of the ground-truth source set in the top row is 2 and that of
the bottom row is 6. Only our approaches perform consistently well across different settings.

well-calibrated version of the load sharing model (see Sec-
tion “Background”) with an arbitrary set S+ of sources se-
lected from among nodes appearing in time window [0, τ1].
From this run we obtain the sets of infections Pos and non-
infectionsNeg for the time window [τ2, T−1]. Each method
m is given sets Pos and Neg and returns a source set Sm.

A straightforward metric to measure success is the in-
tersection between Sm and S+. However, it is in general
impossible for any algorithm to do well with respect to
this metric because the “ground truth” source set S+ may
be quite poor in explaining the observed cases and non-
observed cases relative to other source sets. In fact, we
see this in our experiments, where we consistently discover
source sets that have much higher probability of leading to
observed cases and avoiding non-observed cases than the
“ground truth” source set. So we use two other natural met-
rics to measure performance. First, we propose to measure
the overlap between the ground truth Pos and Neg sets
and the sets of infections Posm and non-infections Negm
caused by an outbreak starting from the source set Sm se-
lected by methodm. Second, we use the “distance” between
S+ and Sm as a metric of success (see the Technical Ap-
pendix for results from this second metric).

We run 100 simulations starting from Sm for each method
m to obtain Posim and Negim for 1 ≤ i ≤ 100. From these,
we compute the averaged true positive ATPm, true negative
ATNm, false positiveAFPm, and false negativeAFNm for
each method m. Finally, we compute average F1-Score and
average MCC score (see the Technical Appendix for pre-
cise definitions of these scores). Our experiments on all the
datasets set |S+| to 2 and 6. We set τ1 = 1 (source set comes
from the first two time steps) and τ2 = 29 (observations
come from last two time steps). In all settings, the calibrated
simulations yield about 5-10% infection in the last snapshot,
as is the case for a typical HAI outbreak (Jarvis et al. 2007;
Clabots et al. 1992). Our results are summarized in Figure 1.

In the rest of the paper and in the figures, we use
KnapsackSD to denote our better-performing algorithm for
SD±KNAP (we implemented two) and RatioSD to denote
our better-performing algorithm for SD±RATIO (we imple-
mented two). The solid horizontal line represents perfor-

mance of the ground truth seed set S+ and the dotted hori-
zontal line represents performance of a random seed set av-
eraged over 30 times. These two lines represent the empiri-
cal “hardness” of the problem instance; a poor performance
of ground truth indicates that the problem instance is hard
and conversely a good performance of random source sets
represent easier problem instance. The primary take-away
from the results is that both of our approaches KnapsackSD
and RatioSD consistently outperform all baselines regard-
less of instance hardness and performance metric. One can
observe that CuLT and NetSleuth are inconsistent. We hy-
pothesize that in settings where load transfer along multiple
pathways plays role in infections, their performance drop as
they are unable to model this phenomenon. Performance of
other two baselines LOS and PathFinder are also similar.
See the Technical Appendix for additional results.

Case study on a CDI outbreak
We perform a case study in UIHCUNIT to qualitatively
explore the sources detected by our approaches in an ac-
tual CDI outbreak. In our UIHCUNIT dataset, there were
a total of five CDI positive tests. One positive test (with
anonymized ID 214) was recorded on day 1, whereas the
remaining 4 were on day 25. We make the 4 observed posi-
tive cases on day 25 available to both of our methods and ask
them to infer sources in days 0 and 1. The sources returned
by our approaches did not include the infection observed in
time 1. However, they included patients with (anonymized)
IDs 753 and 409 (see Fig 2). Digging deeper into these pa-
tients medical history, we find that both patients had high
co-morbidity scores at admission time. Patient 753’s visit
was later marked as a high severity admission by the Agency
of Health Research and Quality (AHRQ). We also find that
patient 409 was transferred to UIHC from an external acute-
care hospital with inpatient facilities. In other words, both
patients identified as sources had several of the known risk
factors for CDI.

To check the quality of patients 409 and 753 as poten-
tial sources, we simulated two sets of 1000 outbreaks each
with source set {409, 753} and source set {214}. We ob-
serve that simulations starting from seeds detected from our



methods (409 and 753) are much better at “hitting” observed
infections on day 25: 807 times for {409, 753} versus 373
times for {214}. Similarly, simulations starting from with
source set {409, 753} “hit” unobserved infections a total of
2228 times versus 2765 times by simulations with source
set {214}. Figure 2 illustrates one simulation with source
set {409, 753}. Our conclusion is that patients 409 and 753
are clinically meaningful potential sources.

Figure 2: An illustration of one simulation for the CDI out-
break in UIHCUNIT. The sources (blue nodes) {409, 753}
identified by our algorithm were able to infect 3 out of 4
observed infections (red nodes) on day 25. Additionally, in
this simulation there were only 3 spurious infections (green
nodes) out of a total 43 patients not observed to be cases.

Speed-up due to expected load propagation
A big computational bottleneck for our algorithms is the
number of simulations required to get good estimates of the
stochastic functions g(S) and f(S). The truncated expec-
tation propagation heuristic described earlier allowed us to
shortcut costly simulations and was a key factor in our being
able run all our experiments. Next we compute the speed-
ups due to the lazy evaluation (Minoux 1978) and expected
load propagation on UIHCUNIT. To show the kind of speed-
ups this heuristic leads to, we demonstrate some experiments
on UIHCUNIT. We start by running the vanilla version of
KnapsackSD, its “lazy greedy” version, and a version aug-
mented with both “lazy greedy” and truncated expected load
propagation. The results are presented in Figure 3 As we can
see lazy evaluation leads to the 1.09× speedup while lazy
+ expected load prorogation leads to 17.2× speedup. For
RatioSD, we compare the performance of the vanilla ver-
sion and the one augmented with truncated expected load
propagation. Note that RatioSD does not have a lazy ver-
sion. Here the expected load propagation version results in
5.6× speed up. These results highlight the importance of
expected load propagation on speeding up our algorithms.
While “lazy greedy” provides non-trivial speed-up, it is the
truncated expected load propagation heuristic in addition to
the “lazy greedy” that leads to an enormous speed-up.

Related Works
Data Mining for Hospital Acquired Infections: Several
recent works have leveraged data mining and machine learn-

Figure 3: Running time and F1 score for various versions of
KnapsackSD and RatioSD on UIHCUNIT. We achieved
dramatic speedups by employing expected load propagation
and lazy evaluations, with no sacrifice on the performance.

ing techniques for HAI related problems. These include out-
break detection (Adhikari et al. 2019), case predictions (Li
et al. 2019; Brodzicki et al. 2020), and inferring latent
cases (Makar, Guttag, and Wiens 2018; Jang et al. 2021).
Jang et al. used agent based simulation to determine the ef-
fect of architectural changes on methicin-resistant Staphy-
loccus aureus (MRSA) outbreaks (Jang et al. 2019).
Source Detection: Detecting patient-zero in epi-
demics (Lappas et al. 2010; Shah and Zaman 2011;
Jiang et al. 2016) has been well studied for the Independent
Cascade (IC) and the Susceptible-Infected (SI) models.
Several past works employ maximum likelihood estima-
tion (Shah and Zaman 2011, 2012),Minimum Description
Length (Prakash, Vreeken, and Faloutsos 2012), en-
tropy (Zhang et al. 2021). Other commonly used approaches
include label propagation (Wang et al. 2017) and monte
carlo algorithms (Agaskar and Lu 2013) and divide and
conquer using a reverse model (Zang et al. 2015).
Dynamics over Temporal Networks: Dynamical Processes
over temporal networks have been well studied including in
information diffusion (Tong et al. 2016), epidemiology (Volz
and Meyers 2007), and malwares (Wen et al. 2012). Epi-
demic threshold on temporal networks are also well stud-
ied (Prakash et al. 2010; Leitch, Alexander, and Sengupta
2019; Valdano et al. 2015). Subsequently, dynamics over
temporal networks have been used for many applications
including viral marketing (Zhuang et al. 2013), community
detection (Sattari and Zamanifar 2018), network compres-
sion (Adhikari et al. 2017), and so on.

Conclusion
We consider the well-known source detection problem, but
for a new and fundamentally different disease-spread model
called the load sharing model. We showed that a natural
formulation of the problem is intractable, but present two
tractable formulations. The tractability of these formula-
tions critically depends on the submodularity of the expected
number of infections as a function of the source set. We were
able to show submodularity despite not being able to use
standard techniques such as the “live edge” technique. We
design scalable algorithms that leverage submodularity and
speed these up significantly by using a novel heuristic. Ex-
tensive experiments on real and simulated outbreaks on three
different hospital contact networks demonstrate significant
advantages of our approach over the baselines.
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Prakash, B. A. 2019. Fast and near-optimal monitoring for
healthcare acquired infection outbreaks. PLoS computa-
tional biology, 15(9): e1007284.
Adhikari, B.; Zhang, Y.; Bharadwaj, A.; and Prakash, B. A.
2017. Condensing temporal networks using propagation. In
SDM 2017, 417–425. SIAM.
Agaskar, A.; and Lu, Y. M. 2013. A fast Monte Carlo al-
gorithm for source localization on graphs. In Wavelets and
Sparsity XV, volume 8858, 88581N. SPIE.
Azar, Y.; and Gamzu, I. 2012. Efficient Submodular Func-
tion Maximization under Linear Packing Constraints. In
ICALP.
Bai, W.; Iyer, R.; Wei, K.; and Bilmes, J. 2016. Algorithms
for optimizing the ratio of submodular functions. In ICML,
2751–2759. PMLR.
Brodzicki, A.; Jaworek-Korjakowska, J.; Kleczek, P.; Gar-
land, M.; and Bogyo, M. 2020. Pre-trained deep convolu-
tional neural network for clostridioides difficile bacteria cy-
totoxicity classification based on fluorescence images. Sen-
sors, 20(23): 6713.
Brouwer, A. F.; Weir, M. H.; Eisenberg, M. C.; Meza, R.;
and Eisenberg, J. N. S. 2017. Dose-response relationships
for environmentally mediated infectious disease transmis-
sion models. PLOS CompBio, 13(4): 1–28.
Centers for Disease Control and Prevention. 2019. Antibi-
otic Resistance Threats in the United States.
Clabots, C. R.; Johnson, S.; Olson, M. M.; Peterson, L. R.;
and Gerding, D. N. 1992. Acquisition of Clostridium dif-
ficile by hospitalized patients: evidence for colonized new
admissions as a source of infection. Journal of infectious
diseases, 166(3): 561–567.
Feige, U. 1998. A Threshold of Ln n for Approximating Set
Cover. J. ACM, 45(4): 634–652.
Hethcote, H. W. 2000. The Mathematics of Infectious Dis-
eases. SIAM Rev.
Iyer, R.; and Bilmes, J. 2013a. Submodular Optimization
with Submodular Cover and Submodular Knapsack Con-
straints. In NeurIPS.

Iyer, R.; and Bilmes, J. 2013b. Submodular optimiza-
tion with submodular cover and submodular knapsack con-
straints. arXiv.
Jang, H.; Justice, S.; Polgreen, P. M.; Segre, A. M.; Sewell,
D. K.; and Pemmaraju, S. V. 2019. Evaluating architectural
changes to alter pathogen dynamics in a dialysis unit. In
ASONAM, 961–968. IEEE.
Jang, H.; Pai, S.; Adhikari, B.; and Pemmaraju, S. V. 2021.
Risk-aware Temporal Cascade Reconstruction to Detect
Asymptomatic Cases. In ICDM.
Jarvis, W. R.; Schlosser, J.; Chinn, R. Y.; Tweeten, S.;
and Jackson, M. 2007. National prevalence of methicillin-
resistant Staphylococcus aureus in inpatients at US health
care facilities, 2006. American journal of infection control,
35(10): 631–637.
Jiang, J.; Wen, S.; Yu, S.; Xiang, Y.; and Zhou, W. 2016.
Identifying propagation sources in networks: State-of-the-
art and comparative studies. IEEE Communications Surveys
& Tutorials, 19(1): 465–481.
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