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Abstract

This paper investigates conservative exploration

in reinforcement learning where the performance

of the learning agent is guaranteed to be above

a certain threshold throughout the learning pro-

cess. It focuses on the tabular episodic Markov

Decision Process (MDP) setting that has finite

states and actions. With the knowledge of an ex-

isting safe baseline policy, an algorithm termed as

StepMix is proposed to balance the exploitation

and exploration while ensuring that the conserva-

tive constraint is never violated in each episode

with high probability. StepMix features a unique

design of a mixture policy that adaptively and

smoothly interpolates between the baseline policy

and the optimistic policy. Theoretical analysis

shows that StepMix achieves near-optimal regret

order as in the constraint-free setting, indicating

that obeying the stringent episode-wise conser-

vative constraint does not compromise the learn-

ing performance. Besides, a randomization-based

EpsMix algorithm is also proposed and shown to

achieve the same performance as StepMix. The al-

gorithm design and theoretical analysis are further

extended to the setting where the baseline policy

is not given a priori but must be learned from an

offline dataset, and it is proved that similar con-

servative guarantee and regret can be achieved if

the offline dataset is sufficiently large. Experi-

ment results corroborate the theoretical analysis

and demonstrate the effectiveness of the proposed

conservative exploration strategies.
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1. Introduction

One of the major obstacles that prevent state-of-the-art re-

inforcement learning (RL) algorithms from being deployed

in real-world systems is the lack of performance guarantee

throughout the learning process. In particular, for many

practical systems, a reasonable albeit not necessarily opti-

mal baseline policy is often in place, and RL is later brought

in as a (supposedly) superior solution to replace the base-

line. System designers want the potentially better RL policy,

but are also wary of the possible performance degradation

incurred by exploration during the learning process. This

dilemma exists in many domains, including digital market-

ing, robotics, autonomous driving, healthcare, and network-

ing; see Garcıa & FernÂandez (2015); Wu et al. (2016) for a

detailed discussion of practical examples. It is desirable to

have the RL algorithm perform nearly as well (or better) as

the baseline policy at all times.

To address this challenge, conservative exploration has re-

ceived increased interest in RL research over the past few

years (Garcelon et al., 2020a; Yang et al., 2021b; Efroni

et al., 2020; Zheng & Ratliff, 2020; Xu et al., 2020; Liu

et al., 2021). In the online learning setting, exploration of

the unknown environment is necessary for RL to learn about

the underlying Markov Decision Process (MDP). However,

ªfreeº exploration provides no guarantee on the RL perfor-

mance, particularly in the early phases where the knowledge

of the environment is minimal and the algorithm tends to

explore almost randomly. To solve this problem, the vast

majority of the conservative exploration literature relies on

a key idea of invoking the baseline policy early on to build a

conservative budget, which can be spent in later episodes to

take explorative actions. This intuition, however, critically

depends on the definition of the conservative constraint be-

ing the cumulative expected reward over a horizon falling

below a certain threshold. If a more stringent constraint

defined on a per episode basis is adopted, this idea becomes

infeasible and it is unclear how conservative exploration can

be achieved.

In this paper, we focus on conservative exploration in an

episodic MDP with finite states and actions. Unlike most

of the prior works, we enforce a more strict conservative

constraint that the expected reward of the RL policy cannot
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Table 1. Comparison of Related Algorithms

Algorithm (Reference) Regret Violation Constraint-type Baseline Assumption

BPI-UCBVI (MÂenard et al., 2021) Õ
(√

H3SAK
)

N/A N/A N/A

OptPess-LP (Liu et al., 2021) Õ( 1κ
√
H6S3AK) 0 Episodic, general constraint Type I

DOPE (Bura et al., 2022) Õ( 1κ
√
H6S2AK) 0 Episodic, general constraint Type I

Budget-Exporation (Yang et al., 2021b) Õ
(√

H3SAK + H3SA∆0

κ(κ+∆0)

)

0 Cumulative, conservative constraint Type I

StepMix / EpsMix (this work) Õ
(√

H3SAK + H3SA∆0

κ2

)

0 Episodic, conservative constraint Type I and II

Lower bound (Yang et al., 2021b) Ω
(√

H3SAK + H3SA∆0

κ(κ+∆0)

)

0 Cumulative, conservative constraint Type I

∆0: suboptimality gap for the baseline policy; κ: tolerable reward loss from the baseline policy or the Slater parameter. Type I assumes a known safe baseline policy. Type II

assumes availability of an offline dataset generated by an unknown safe behavior policy. The lower bound automatically applies to our problem, due to its weaker constraint.

be much worse than that of a baseline policy for every

episode. One fundamental question we aim to answer is:

Is it possible to design a conservative exploration

algorithm to achieve the optimal learning regret while

satisfying the episode-wise conservative constraint

throughout the learning process?

In this work, we provide an affirmative answer to this ques-

tion. Our main contributions are summarized as follows.

• First, we investigate the scenario where a safe baseline

policy is explicitly given upfront, and propose a model-

based learning algorithm coined StepMix. In contrast to

conventional linear programming or primal-dual based

approaches in constrained MDPs (Liu et al., 2021; Bura

et al., 2022; Wei et al., 2022; Efroni et al., 2020), StepMix

features several unique design components. First, in order

to achieve the optimal learning regret, StepMix relies

on a Bernstein inequality-based design to closely track

the estimation uncertainty in learning and construct an

efficient optimistic policy correspondingly. Then, a set of

candidate policies are explicitly constructed by smoothly

interpolating between the safe baseline policy and the

optimistic policy. Finally, a mixture of two candidate

policies is obtained when necessary to achieve the near-

optimal tradeoff between safe exploration and efficient

exploitation.

• Second, we theoretically analyze the performance of Step-

Mix, and rigorously show that it achieves Õ(
√
H3SAK)

regret, which is the order-optimal learning regret in the

unconstrained setting, while never violating the conser-

vative constraint during the learning process with high

probability. The conservative constraint turns out to only

incur an additive regret term, as opposed to a multiplica-

tive coefficient in Bura et al. (2022); Liu et al. (2021).

Furthermore, the additive term differs from that in the

lower bound in Yang et al. (2021b) by a small constant

factor, while our constraint is more stringent. Besides, we

extend the analysis to a randomization mechanism-based

EpsMix algorithm and show that it achieves the same

learning regret as StepMix and satisfies the conservative

constraint as well. A comparison of our work and these

relevant papers is presented in Table 1.

• Next, instead of assuming a safe baseline policy is explic-

itly provided, we investigate the scenario where the agent

only has access to an offline dataset collected under an

unknown safe behavior policy. The agent thus needs to

first extract an approximately safe baseline policy from

the dataset and then to use it as an input to the StepMix or

EpsMix algorithm. We explicitly characterize the impact

of the dataset size and the quality of the behavior policy

on the safety and regret of StepMix/EpsMix. Our results

indicate that similar regret and safety guarantees can be

achieved, as long as the dataset is sufficiently large.

• Finally, due to the explicit algorithmic design of the op-

timistic policy, the candidate policies and the mixture

policies, we are able to implement StepMix and EpsMix

efficiently and validate their performances through syn-

thetic experiments. The experimental results corroborate

our theoretical findings, and showcase the superior perfor-

mances of StepMix/EpsMix compared with other baseline

algorithms.

2. Related Works

In this section, we briefly discuss existing works that are

most relevant to our work. A detailed literature review is

deferred to Appendix A.

Unconstrained Episodic Tabular MDPs. Unconstrained

tabular MDPs have been well studied in the literature. For

an episodic MDP with S states, A actions and horizon H ,

the minimax regret lower bound scales in Ω(
√
H3SAK)

(Domingues et al., 2021a), where K denotes the number

of episodes. Several algorithms have been proposed and

shown to achieve the minimax lower bound (and thus order-

optimal), including Azar et al. (2017); Zanette & Brunskill

(2019); MÂenard et al. (2021).
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Conservative Exploration. Conservative exploration cor-

responds to the setting where a good baseline policy that

may not be optimal is available, and the agent is required

to perform not much worse than the baseline policy dur-

ing the learning process. Such conservative scenario has

been studied in bandits (Wu et al., 2016; Kazerouni et al.,

2017; Garcelon et al., 2020b) and tabular MDPs (Garcelon

et al., 2020a). Garcelon et al. (2020a) investigate both the

average reward setting and the finite horizon setting. Yang

et al. (2021b) propose a reduction-based framework for

conservative bandits and RL, which translates a minimax

lower bound of the non-conservative setting to a valid lower

bound for the conservative case. It also proposes a Budget-

Exporation algorithm and shows that its regret scales in

Õ
(√

H3SAK + H3SA∆0

κ(κ+∆0)

)

for tabular MDPs, where ∆0

is the suboptimality gap of the baseline policy, and κ is the

tolerable performance loss from the baseline. However, all

these works assume cumulative conservative constraint. As

discussed in Section 1, our episodic-wise constraint is more

stringent, and correspondingly the algorithms and the regret

analysis are also different from the prior works.

Constrained MDP with Baseline Policies. Conservative

exploration studied in this paper can be viewed as a spe-

cific case of the Constrained Markov Decision Process

(CMDP) (Altman, 1999; Liu et al., 2021; Efroni et al.,

2020; Wei et al., 2022), where the goal is to maximize

the expected total reward subject to constraints on the ex-

pected total costs in each episode. Assuming a known safe

baseline policy that satisfies the corresponding constraints,

OptPess-LP (Liu et al., 2021) is shown to achieve an regret

of Õ( 1κ
√
H6S3AK) without any constraint violation with

high probability, while DOPE (Bura et al., 2022) improves

the regret to Õ( 1κ
√
H6S2AK), where κ denotes the Slater

parameter. We note that both algorithms do not achieve the

optimal regret in the unconstrained counterpart.

3. Problem Formulation

We consider an episodic MDP M = (S,A, H, P, r, s1),
where S and A are the sets of states and actions, respec-

tively, H ∈ Z+ is the length of each episode, P = {Ph}Hh=1

and r = {rh}Hh=1 are respectively the state transition prob-

ability measures and the reward functions, and s1 is a

given initial state. We assume that S and A are finite sets

with cardinality S and A respectively. Moreover, for each

h ∈ [H], Ph(·|s, a) denotes the transition kernel over the

next states if action a is taken for state s at step h ∈ [H],
and rh : S×A → [0, 1] is the deterministic reward function

at step h which is assumed be known for simplicity. Our

result can be easily generalized to random and unknown

reward functions. We consider the learning problem where

S and A are known while P are unknown a priori.

A policy π is a set of mappings {πh : S → ∆(A)}h∈[H],

where ∆(A) is the set of all probability distributions over

the action space A. In particular, πh(a|s) denotes the prob-

ability of selecting action a in state s at time step h.

An agent interacts with this episodic MDP as follows. In

each episode, the environment begins with a fixed initial

state s1. Then, at each step h ∈ [H], the agent observes

the state sh ∈ S, picks an action ah ∈ A, and receives

a reward rh(sh, ah) ∈ [0, 1]. The MDP then evolves to a

new state sh+1 that is drawn from the probability measure

Ph(·|sh, ah). The episode terminates after H steps.

For each h ∈ [H], we define the state-value function V π
h :

S → R as the expected total reward received under policy

π when starting from an arbitrary state at the h-th step until

the end of the episode. Specifically, ∀s ∈ S, h ∈ [H],

V π
h (s) := Eπ

[ H∑

h′=h

rh′(sh′ , ah′)

∣
∣
∣
∣
sh = s

]

, (1)

where we use Eπ[·] to denote the expectation over states

and actions that are governed by π and P . Since the MDP

begins with the same initial state s1, to simplify the notation,

we use V π to denote V π
1 (s1) without causing ambiguity.

Correspondingly, we define the action-value function Qπ
h :

S × A → R at step h as the expected total reward under

policy π after taking action a at state s in step h, that is:

Qπ
h(s, a) :=Eπ

[ H∑

h′=h

rh′(sh′ , ah′)

∣
∣
∣
∣
sh = s, ah = a

]

=rh(s, a) + [PhV
π
h+1](s, a),

where [PhV
π
h+1](s, a) := Es′∼Ph(·|s,a)[V

π
h+1(s

′)]. Since

the action space and the episode length are both finite, there

always exists an optimal policy π⋆ that gives the optimal

value V ⋆
h (s) = supπ V

π
h (s) for all s ∈ S and h ∈ [H].

Conservative Constraint. While there could be vari-

ous forms of constraints imposed on the RL algorithms,

in this work, we focus on a baseline policy-based con-

straint (Garcelon et al., 2020c; Yang et al., 2021b). In many

applications, it is common to have a known and reliable

baseline policy that is potentially suboptimal but satisfac-

tory to some degree. Therefore, for applications of RL

algorithms, it is important that they are guaranteed to per-

form not much worse than the existing baseline throughout

the learning process. Denote the baseline policy as πb and

the corresponding expected total reward obtained under πb

in an episode as V πb

1 . Then, throughout the entire learn-

ing process, we require that the expected total reward for

each episode k is at least γ with high probability, where

κ := V πb

1 − γ > 0 characterizes how much risk the algo-

rithm can take during the learning process. A policy π that

achieves expected total reward at least γ is considered to

3



Near-optimal Conservative Exploration under Episode-wise Constraints

be ªsafeº, and we emphasize that our proposed algorithms

do not require the knowledge of V πb

1 . Let πk be the policy

adopted by the agent during episode k ∈ [K]. Mathemati-

cally, we formulate the conservative constraint as

P

[

V πk

1 ≥ γ, ∀k ∈ [K]
]

≥ 1− δ, where δ ∈ (0, 1). (2)

Comparison with Previous Conservative Constraints.

The conservative constraint in Equation (2) is more restric-

tive compared with Garcelon et al. (2020c); Yang et al.

(2021b), where the constraint is imposed on the cumulative

expected reward over all experienced episodes instead of

on each episode. We note that this stringent constraint has

a profound impact on the algorithm design. While the pre-

vious cumulative conservative constraint enables the idea

of saving the conservative budget early on and spending it

later to play explorative actions, it cannot guarantee that

in each episode, the expected total reward is above a cer-

tain threshold. Our constraint in Equation (2), in contrast,

requires the expected total reward to be above a threshold

in each episode. Hence, the idea of saving budget from

early episodes for exploration in future episodes cannot be

adopted, and it requires a more sophisticated algorithm de-

sign to control the budget spending within each episode and

ensure the safety of all executed policies.

In addition, the per-episode conservative constraint in our

work is more practical than the cumulative reward-based

constraints. This is because each episode in the episodic

MDP setting corresponds to the learning agent interacting

with the environment from the beginning to the end, e.g., a

robot walks from a starting point to the end point. Guarantee-

ing the performance in every episode has physical meanings,

e.g., making sure that the robot does not suffer any damage

while learning how to walk. This cannot be captured by the

long-term constraint that spans many episodes.

Learning Objective. Under the given episodic MDP setting,

the agent aims to learn the optimal policy by interacting

with the environment during a set of episodes, subject to

the conservative constraint. The difference between V πk

1

and V ⋆
1 serves as the expected regret or the suboptimality

of the agent in the k-th episode. Thus, after playing for K
episodes, the total expected regret is

Reg(K) := KV ⋆
1 −

K∑

k=1

V πk

1 . (3)

Our objective is to minimize Reg(K) while satisfying Equa-

tion (2) for any given δ ∈ (0, 1).

4. The StepMix Algorithm

In this section, we aim to design a novel safe exploration

algorithm to satisfy the episodic conservative constraint and

achieve the optimal learning regret.

4.1. Challenges

For unconstrained episodic MDPs with finite states and ac-

tions, in order to achieve the minimax regret lower bound

Ω(
√
H3SAK), the core design principle (Azar et al., 2017;

Zanette & Brunskill, 2019; MÂenard et al., 2021) is to

construct a Bernstein inequality-based Upper Confidence

Bound (UCB) for the action-state value function under the

optimal policy (i.e., Q⋆
h), and then to execute an optimistic

policy that maximizes the UCB in each step. Such a UCB

takes the variance of the corresponding estimated value

function into consideration, leading to a more efficient ex-

ploration policy.

Intuitively, in order to achieve the same learning regret, the

safe exploration policy should follow a similar Bernstein-

inequality based design principle. However, this may lead

to several technical challenges, as elaborated below.

First, we note that in conventional CMDP problems under

episodic cost constraints (Bura et al., 2022; Liu et al., 2021),

the exploration policy in each episode k is usually obtained

by solving a constrained optimization problem in the form

of πk = argmaxπ∈Πk
V π(P k), where P k is the estimated

model and Πk is the set of estimated safe policies. For

given P k, both the objective function and the constraint set

can be expressed as a linear function of π or of occupancy

measures, and thus can be solved efficiently. However, if

Bernstein inequality is adopted to construct a tighter con-

fidence set of the value functions (and hence Πk), it can

no longer be formulated as a linear programming problem,

resulting in unfavorable computational complexity in each

iteration.

Second, in order to keep track of the estimation error un-

der the adopted exploration policy πk, it is necessary to

bound (P̂ k
h − Ph)V

πk

h+1 for each h ∈ [H]. In order to

achieve the optimal dependence on S, a common technique

is to decompose it into two terms, (P̂ k
h − Ph)V

π◦

h+1 and

(P̂ k
h −Ph)(V

πk

h+1−V π◦

h+1), where π◦ is a fixed policy that is

independent with the historical data, and then bound them

separately. Intuitively, π◦ should be a policy ªcloseº to πk,

so that as P̂ k
h converges to Ph, both terms converge to zero

and the overall learning regret can thus be bounded. In the

unconstrained case, π◦ is naturally set to be the optimal pol-

icy π⋆. However, under the episodic conservative constraint

in our setting, the selection of π◦ is more delicate. This is

because πk may be very different from π⋆, especially at the

beginning of the learning stage when little information of

the underlying MDP is known. Therefore, how to construct

a good ªanchorº policy π◦ that stays close to πk throughout

the learning process becomes challenging.

Finally, in order to ensure the safety of the exploration pol-
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icy πk in each episode, it is necessary to obtain a pessimistic

estimation of the corresponding value function and to make

sure it is above the threshold γ. While the Lower Confi-

dence Bound (LCB) under the optimal policy π⋆ can be

constructed in a symmetric manner as UCB, it is not im-

mediately clear how to construct a Bernstein-type LCB for

V πk , as πk is not fixed but dependent on history, and it may

deviate from the optimistic policy significantly due to the

episodic conservative constraint.

4.2. Algorithm Design

In this subsection, we explicitly address the aforementioned

challenges and present a novel algorithm termed as StepMix.

Before we proceed to elaborate the design of StepMix, we

first introduce the definition of step mixture policies.

Definition 4.1 (Step Mixture Policies). The step mixture

policy of two Markov policies π1 and π2 with parameter ρ,

denoted by ρπ1+(1−ρ)π2, is a Markov policy such that the

probability of choosing an action ah given a state sh under

the step mixture policy is ρπ1
h(ah|sh) + (1− ρ)π2

h(ah|sh).

StepMix is a model-based algorithm that features a unique

design of the candidate policies and safe exploration policies.

In the following, we elaborate its major components.

Model Estimation. At each episode k, the agent uses the

available dataset to obtain an estimate of the transition ker-

nel. Specifically, let nk
h(s, a) =

∑k−1
τ=1 1{sτh = s, aτh = a}

and nk
h(s, a, s

′) =
∑k−1

τ=1 1{sτh = s, aτh = a, sτh+1 = s′}
be the visitation counters. The agent estimates P̂ k

h (s
′|s, a)

as

P̂ k
h (s

′|s, a) =
{

nk
h(s,a,s

′)

nk
h
(s,a)

, if nk
h(s, a) > 1,

1
S , otherwise.

(4)

Bernstein-type Optimistic Policy Identification. With

the updated model estimates P̂ k, the agent then tries to

construct an optimistic policy. We note that this optimistic

policy may not be identical to the exploration policy selected

afterwards. However, it provides important information re-

garding the model estimate accuracy and will be leveraged

to construct an efficient yet safe exploration policy. Specifi-

cally, we first denote

Var
P̂k
h
(Ṽ k

h+1)(s,a)=E
s′∼P̂k

h
(·|s,a)

[(Ṽ k
h+1(s

′)−E
s′∼P̂k

h
(·|s,a)

[Ṽ k
h+1(s

′)])2],

which captures the variance of Ṽ k
h+1 under transition kernel

P̂ k
h given (skh, a

k
h) = (s, a).

Then, with Ṽ k
H+1(s) =

˜
V k
H+1(s) = 0, ∀s ∈ S, for each

h ∈ [H], (s, a) ∈ S ×A, we recursively define

Q̃k
h(s,a)≜min

(
H,rh(s,a)+3

√

Var
P̂k
h
(Ṽ k

h+1)(s,a)
β⋆

nk
h
(s,a)

+14H2 β

nk
h
(s,a)

+ 1
H

P̂k
h (Ṽ k

h+1−
˜
V k
h+1)(s,a)+P̂k

h Ṽ k
h+1(s,a)

)

Algorithm 1 The StepMix Algorithm

Input: πb, γ, β, β⋆, D0 = ∅.
for k = 1 to K do

Update model estimate P̂ according to Equation (4).

# Optimistic policy identification

Ṽ k
H+1(s) =

˜
V k
H+1(s) = 0, ∀s ∈ S .

for h = H to 1 do

Update Q̃k
h(s, a),

˜
Qk

h(s, a), ∀(s, a) ∈ S×A accord-

ing to Equation (5).

π̄k
h(s) ← argmaxa Q̃

k
h(s, a), Ṽ k

h (s) ←
Q̃k

h(s, π̄
k
h(s)), ˜

V k
h (s)←

˜
Qk

h(s, π̄
k
h(s)), ∀s ∈ S .

end for

# Candidate policy construction and evaluation

for h0 = 0 to H do

πk,h0 = {πb
1, π

b
2, · · · , πb

h0
, π̄k

h0+1, · · · , π̄k
H−1, π̄

k
H}.

˜
V k,h0 = PolicyEva(P̂ k, πk,h0).

end for

# Safe exploration policy selection

if {h |
˜
V k,h
1 ≥ γ, h = 0, 1, . . . , H} = ∅ then

πk = πb.

else

hk = min{h |
˜
V k,h
1 ≥ γ, h = 0, 1, . . . , H}.

if hk = 0 then

πk = π̄k.

else

Set πk according to Equation (7).

end if

end if

Execute πk and collect {(skh, akh, skh+1)}Hh=1.

Dn ← Dn−1 ∪ {(skh, akh, skh+1)}Hh=1.

end for

˜
Qk

h(s,a)≜max
(
0,rh(s,a)−3

√

Var
P̂k
h
(Ṽ k

h+1)(s,a)
β⋆

nk
h
(s,a)

−22H2 β

nk
h
(s,a)

− 2
H

P̂k
h (Ṽ k

h+1−
˜
V k
h+1)(s,a)+P̂k

h
˜
V k
h+1(s,a)

)
, (5)

and obtain an optimistic policy π̄k by setting π̄k
h(s) =

argmaxa∈A Q̃k
h(s, a). After that, we set Ṽ k

h (s) =

Q̃k
h(s, π̄

k
h(s)), and

˜
V k
h (s) =

˜
Qk

h(s, π̄
k
h(s)).

Intuitively speaking, Q̃k
h(s, a) serves as a Bernstein-type

UCB for the true value function under the optimal policy,

i.e., Q⋆(s, a), while
˜
Qk

h(s, a) serves as the corresponding

LCB. We note that the designs of Q̃k
h(s, a) and

˜
Qk

h(s, a)
are not symmetric, i.e., the coefficients associated with the

Bernstein-type bonus terms are not exactly opposite. Actu-

ally, this unique selection of the bonus terms is critical for

us to obtain a valid LCB not just for the optimal value func-

tion, but also for those value functions under the exploration

policy πk, as elaborated below.

Candidate Policy Construction and Evaluation. Once

the agent obtains the optimistic policy π̄k, it will proceed to
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construct a set of candidate policies denoted as {πk,h0}Hh0=0,

where πk,h0 = {πb
1, · · ·πb

h0
, π̄k

h0+1, · · · , π̄k}. We note that

πk,h0 follows the safe baseline πb for the first h0 steps, after

which it switches to the optimistic policy π̄k. Besides, πk,h0

and πk,h0+1 only differ at step h0+1. As h0 sweeps from H
to 0, πk,h0 essentially forms a smooth interpolation between

the safe baseline πb and the optimistic policy π̄k.

For each candidate policy πk,h0 , we obtain UCB and

LCB on the two corresponding true value functions de-

noted as Qk,h0 and V k,h0 respectively, by invoking the

PolicyEva subroutine (See Algorithm 3 in Appendix C).

Specifically, PolicyEva recursively updates Q̃k,h0

h (s, a)

and
˜
Qk,h0

h (s, a) in the same form as in Equation (5),

while Ṽ k,h0

h (s) ≜ ⟨πk,h0

h (·|s), Q̃k,h0

h (s, ·)⟩,
˜
V k,h0

h (s) ≜

⟨πk,h0

h (·|s),
˜
Qk,h0

h (s, ·)⟩.
We design the set of candidate policies in order to explic-

itly address the second challenge in Section 4.1, i.e., it is

desirable to obtain a fixed ªanchorº policy that stays close

to πk throughout the learning process. Intuitively, in order

to satisfy the conservative constraint in each episode, πk

would stay at πb when it has not collected enough infor-

mation of the environment; As k proceeds, it is desirable

to have πk evolve to the optimal policy π⋆, in order to

achieve the optimal learning regret. Thus, it may not be

reasonable to expect that a single fixed anchor policy would

stay close to πk in every episode. Instead, we construct

a set of anchor policies denoted as {π⋆,h0}Hh0=0, where

π⋆,h0 = {πb
1, · · ·πb

h0
, π⋆

h0+1, · · · , π⋆
H}. Essentially, πk,h0

is the optimistic version of π⋆,h0 . Thus, the estimation er-

ror in (P̂ k
h − Ph)V

πk,h0

h+1 can be decomposed with respect

to V π⋆,h0

h+1 and then be bounded separately. As πk dynami-

cally evolves in between πb and π̄, we expect that it stays

close to πk,h0 for certain h0, and thus the estimation error

in (P̂ k
h − Ph)V

πk

h+1 can be effectively bounded as well.

Safe Exploration Policy Selection. After constructing and

evaluating the set of candidate policies, we then design a

safe exploration policy by mixing two neighboring candi-

date policies.

Specifically, the learner will compare
˜
V k,h0

1 with the thresh-

old γ for h0 = 0, 1, . . . , H . If it is above the threshold,

it indicates that with high probability the candidate policy

πk,h0 will satisfy the conservative constraint. Let hk be

the smallest h0 such that
˜
V k,h0

1 ≥ γ. Then, we have the

following cases:

• If hk = 0, it indicates that the LCB of the optimistic

policy π̄ is above the threshold. Thus the learner executes

π̄k.

• If hk ∈ [1 : H], it indicates that πk,hk

is safe but πk,hk−1

may be not. More importantly, they only differ in a single

step hk. Then, the learner would construct a mixture of

πk,hk

and πk,hk−1 as follows:

ρ = ˜
V k,hk

1 (s1)− γ

˜
V k,hk

1 (s1)−
˜
V k,hk−1
1 (s1)

, (6)

πk = (1− ρ)πk,hk

+ ρπk,hk−1. (7)

• If none of
˜
V k,h0 is above the threshold, it indicates that

the LCB of V πb

is below the threshold, which occurs

when the estimation has high uncertainty. The learner will

then resort to πb for conservative exploration.

Once policy πk is executed and a trajectory is collected, the

learner moves on to the next episode.

4.3. Theoretical Analysis

The performance of StepMix is stated in the following theo-

rem.

Theorem 4.2 (Informal). With probability at least 1 − δ,

StepMix (Algorithm 1) simultaneously (i) satisfies the con-

servative constraint in Equation (2), and (ii) achieves a total

regret that is at most

Õ
(√

H3SAK +H3S2A+H3SA∆0

(
1
κ2 + S

κ

))
,

where ∆0 := V ⋆
1 − V πb

1 is the suboptimality gap of the

baseline policy and κ := V πb

1 −γ is the tolerable value loss

from the baseline policy.

Remark 4.3. Theorem 4.2 indicates that StepMix achieves

a near-optimal regret in the order of Õ(
√
H3SAK), while

ensuring zero constraint violation with high probability.

Compared with BPI-UCBVI (MÂenard et al., 2021), the

conservative exploration only leads to an additive constant

term Õ(H3SA∆0(
1
κ2 + S

κ )) in the learning regret bound.

The additive term matches with that in the lower bound un-

der the weaker cumulative conservative constraint in Yang

et al. (2021b) up to a constant, indicating our result is near-

optimal. For the special case when γ = 0, the LCBs esti-

mated in StepMix will always be greater than γ; thus the

optimistic policy is always safe. Therefore, the algorithm

reduces to an optimistic algorithm and the additive term

becomes zero. Further discussion on this can be found in

Corollary C.11.

The proof of Theorem 4.2 is provided in Appendix C. We

outline the major steps of the proof as follows.

As discussed in Section 4.2, one pivotal component in

StepMix is the construction of the candidate policies. As

a result, in our proof, we first extend the good event re-

lated to (P̂ k
h − Ph)V

⋆
h+1 to H + 1 good events related to

(P̂ k
h − Ph)V

⋆,h0

h+1 , h0 = 0, 1, . . . , H . Since π∗,h0 is a fixed

anchor policy, (P̂ k
h − Ph)V

⋆,h0

h+1 can be bounded for all h0.

6
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Next, we show that Q̃k,h0 and
˜
Qk,h0 are valid UCB and

LCB of Qk,h0 and Q⋆,h0 respectively, in the sense that

˜
Qk,h0 ≤ Qk,h0 ≤ Q⋆,h0 ≤ Q̃k,h0 . Meanwhile, we show

that Q̃k,h0 and
˜
Qk,h0 are sufficiently tight, as Q̃k,h0−

˜
Qk,h0

is bounded and will converge to zero sufficiently fast. Fur-

thermore, with the properties of our constructed step mix-

ture policy, we can obtain tight UCB and LCB for the step

mixture policies as well.

Finally, we show that πk only stays at πb or the mixture

policy for finite number of episodes. This is due to the fact

that V ⋆,h0

1 ≥ V πb

1 for any h0 = 0, 1, . . . , H . Thus, with

high probability,
˜
V k,h0

1 ≥ γ when k is sufficiently large. As

a result, the agent will then select the optimistic policy π̄k

in most of the episodes. Thus, the regret of StepMix has the

same leading term as that under the optimistic policy, which

will then be bounded efficiently.

5. The EpsMix Algorithm

In this section, we briefly introduce another algorithm

named EpsMix and defer the detailed design and analy-

sis to Appendix D. Different from StepMix in Algorithm 1,

EpsMix does not construct step mixture policies during the

learning process. Rather, it adopts a randomization mecha-

nism at the beginning of each episode, and designs episodic

mixture policies (Wiering & Van Hasselt, 2008; Baram et al.,

2021) defined as follows.

Definition 5.1 (Episodic Mixture Policy). Given two poli-

cies π1 and π2 with parameter ρ ∈ (0, 1), the episodic

mixture policy, denoted by ρπ1 ⊕ (1 − ρ)π2, randomly

picks π1 with probability ρ and π2 with probability 1 − ρ
at the beginning of an episode and plays it for the entire

episode.

The EpsMix algorithm is presented in Algorithm 4 in Ap-

pendix D, and it proceeds as follows. Similar to StepMix,

at the beginning of each episode k, it first constructs an

optimistic policy, denoted as π̄k. It then evaluates the LCB

of the expected total rewards under both π̄k and πb, de-

noted as
˜
V k
1 and

˜
V k,b
1 respectively. If

˜
V k
1 is above the

threshold γ, it indicates that the optimistic policy π̄k satis-

fies the conservative constraint with high probability. The

learner thus executes π̄k in the following episode k. Oth-

erwise, if
˜
V k,b
1 is above the threshold while

˜
V k
1 is not, it

constructs an episodic mixture policy ρkπ̄
k⊕ (1− ρk)π

b so

that ρk
˜
V k
1 + (1− ρk)

˜
V k,b
1 = γ. It implies that the episodic

policy satisfies the conservative constraint in expectation

with high probability. If neither
˜
V k
1 nor

˜
V k,b is above the

threshold, EpsMix will resort to the baseline policy to col-

lect more information.

Our theoretical analysis shows that EpsMix has the same

performance guarantees as StepMix. At the same time,

we note that EpsMix is less conservative than StepMix in

the sense that, the expected return under a selected policy

in an episode may be below the threshold when
˜
V k
1 < γ.

However, when taking the randomness in the policy mixture

procedure into consideration, we can still guarantee that the

expected total return under an episodic mixture policy is

above the threshold with probability at least 1− δ.

6. From Baseline Policy to Offline Dataset

Both EpsMix and StepMix critically depend on the baseline

policy πb to achieve the desired conservative guarantee. In

reality, however, a baseline policy that provably satisfies the

conservative constraint may not always be explicitly given to

the algorithm. Instead, the learning agent may have access

to an offline dataset that is collected from the target environ-

ment by executing an unknown behavior policy µ, and the

goal is to design a conservative exploration algorithm that

satisfies Equation (2) only using the offline dataset.

A natural approach to solve this problem is to first learn

a baseline policy from the dataset, and then use it as an

input to EpsMix or StepMix. The challenge, however, is

that instead of having full confidence in the conservative

guarantee of πb, we must deal with the safety uncertainty of

the learned baseline policy, that is introduced by using the

offline dataset as well as the offline learning algorithm that

produces the baseline policy. Fortunately, we prove that for

StepMix, the uncertainty of learning a safe baseline policy

from the offline dateset does not affect the conservative

constraint violation or the regret order if the offline dataset

is sufficiently large.

Theorem 6.1. Let π̂ be the output of the offline VI-LCB

algorithm (Xie et al., 2021) (see Algorithm 5 in Appendix E)

with n = Θ̃(H
5SA
κ̄2 )1 offline trajectories. If we replace

the baseline policy πb used in Algorithm 1 by π̂, then with

probability at least 1 − δ, StepMix can simultaneously (i)

satisfy the conservative constraint in Equation (2), and (ii)

achieve a total regret that is at most

Õ
(√

H3SAK +H3S2A+H3SA∆̄0

(
1
κ̄2 + S

κ̄

))

,

where κ̄ = (V µ
1 − γ)/2 > 0 and ∆̄0 = V ⋆

1 − V µ
1 + κ̄.

A similar result for EpsMix can be established, and is given

as Theorem E.7 in Appendix E. We see that n scales in-

versely proportional to κ2, suggesting that a good behavior

policy would require small amount of data and vice versa.

Besides, the additive term in the regret becomes larger com-

pared with that in Theorem 4.2. In general, a large n serves

two purposes: First, it reduces the safety uncertainty due

to offline learning, such that the impact on the safety con-

straint violation is negligible compared with that caused

by the (online) StepMix policy. Second, it ensures that the

1We hide the logarithm factor for simplicity.
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regret bound is dominated by the number of online episodes

K. We also note that although both Theorem 6.1 and The-

orem E.7 depend on using VI-LCB as the offline learning

algorithm, the conclusion can be extended to general offline

algorithms as long as they can produce an approximately

safe policy from the pre-collected data with high probability.

7. Experimental Results

7.1. Performance Evaluation of StepMix and EpsMix

Synthetic Environment. We generate a synthetic envi-

ronment to evaluate the proposed algorithms. We set the

number of states S to be 5, the number of actions A for

each state to be 5, and the episode length H to be 3. The

reward rh(s, a) for each state-action pair and each step is

generated independently and uniformly at random from

[0, 1]. We also generate the transition kernel Ph(·|s, a) from

an S-dimensional simplex independently and uniformly at

random. Such procedure guarantees that the synthetic envi-

ronment is a proper tabular MDP.

Baseline Policy. We adopt the Boltzmann policy (Thrun,

1992) as the baseline policy in our algorithms. Under the

Boltzmann policy, actions are taken randomly according to

πh(a|s) = exp{ηQ⋆
h(s,a)}

∑

a∈A exp{ηQ⋆
h
(s,a)} , where a larger η leads to a

more deterministic policy and higher expected value.

Results. We first evaluate the proposed StepMix and

EpsMix, and compare with BPI-UCBVI (MÂenard et al.,

2021). For each algorithm, we run 10 trials and plot the

average expected return per episode.

In Figure 1, we track the expected return obtained in each

episode with different baseline parameter η and conserva-

tive constraint γ. We have the following observations. First,

both StepMix and EpsMix converge to the optimal policy

with no constraint violation in all settings. Between StepMix

and EpsMix, the latter exhibits slightly faster convergence.

They both tend to stay on the baseline policy when the in-

formation is not sufficient, implied by the constant expected

return at the beginning of the learning process. When more

information is collected, these two algorithms will devi-

ate from the baseline policy and converge to the optimal

policy. In contrast, BPI-UCBVI converges to the optimal

policy as well, but violates the conservative constraints in

earlier episodes. Besides, more stringent constraint γ makes

StepMix and EpsMix more conservative. Both algorithms

experience delayed convergence when γ increases. Mean-

while, a better baseline policy also leads to better learning

performance throughout the learning process.

We report the performance of learning with an offline dataset

in Figure 2. We use the baseline Boltzmann policy with

η = 10 and η = 15 to collect the offline dataset. The

numbers of offline trajectories are set to be 5000 and 8000,

respectively. The conservative constraint γ is set to be 2.2.

Figure 2 shows that learning a baseline policy from the of-

fline dataset and using it as an input to StepMix and EspMix

does not affect their performances significantly. With more

offline trajectories collected, the algorithms start from a

better baseline and converge to the optimal policy faster.

7.2. Empirical Comparison with DOPE and OptPess-LP

In this subsection, we empirically compare the learning per-

formances of StepMix, EpsMix, DOPE (Bura et al., 2022)

and OptPess-LP (Liu et al., 2021).

Synthetic Homogeneous Environment. In this experiment,

we set S to be 4, A to be 2, and H to be 3. In order to match

the homogeneous environment assumption under DOPE and

OptPess-LP, we set Ph = P and rh = r for any h ∈ [H],
and randomly generate P an r as in Section 7.1. As DOPE

and OptPess-LP are both developed to solve CMDP prob-

lems with general cost functions, to match the conservative

constraint considered in this work, we set the corresponding

cost function as c(s, a) = 1− r(s, a) and set the constraint

as Eπ[
∑H

h=1 c(sh, ah)] ≤ H − γ.

Results. We adopt the Boltzmann policy from Section 7.1 as

the baseline policy and set η to be 5. We run each algorithm

for 10 trials and plot the average regrets in Figure 3(a) and

the average expected return of each episode in Figure 3(b).

We observe that all four algorithms achieve the same per-

formance at the beginning of the learning process, implying

that they all adopt the baseline policy initially. After that,

DOPE is the first algorithm to deviate from the baseline

and explore other safe policies, followed by StepMix and

EpsMix. Although DOPE starts the exploration earlier, it ac-

tually renders much higher regret than StepMix and EpsMix.

This implies that the exploration under DOPE is not as effi-

cient as the near-optimal exploration strategies adopted by

StepMix and EpsMix. On the other hand, OptPess-LP stays

on the baseline throughout the learning horizon, leading to a

linearly increasing regret. This is because OptPess-LP does

not explore sufficiently, and thus is unable to identify a safe

exploration policy other than the baseline in this scenario.

Similar phenomenon has been observed in Bura et al. (2022).

Figure 3(b) also shows that the constraint violation is zero

throughout the learning horizon under all four algorithms.

8. Conclusions

We investigated conservative exploration in episodic tab-

ular MDPs. Different than the majority of existing lit-

erature, we considered a stringent episodic conservative

constraint, which motivated us to incorporate mixture poli-

cies in conservative exploration. We proposed two model-

based algorithms, one with step mixture policies and the

other with episodic randomization. Both algorithms were
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(a) η = 5, γ = 2.0 (b) η = 5, γ = 2.2 (c) η = 10, γ = 2.0 (d) η = 10, γ = 2.2

Figure 1. Average expected return of each episode under StepMix, EpsMix, and BPI-UCBVI with different constraint γ and baseline

parameter η. Numbers of violations are stated in the legend.

(a) η = 10, n = 5000 (b) η = 10, n = 8000 (c) η = 15, n = 5000 (d) η = 15, n = 8000

Figure 2. Average expected return of each episode under StepMix, EpsMix, and BPI-UCBVI with offline dataset.

(a) (b)

Figure 3. Performance comparison between StepMix, EpsMix,

DOPE, and OptPess-LP. (a) Average regret. (b) Average expected

return per episode.

proved to achieve near-optimal regret order as that under the

constraint-free setting, while never violating the conserva-

tive constraint in the learning process. We also investigated

a practical case where the baseline policy is not explicitly

given to the algorithm, but must be learned from an offline

dataset. We showed that as long as the dataset is sufficiently

large, the offline learning step does not affect the conser-

vative constraint or the regret of our proposed algorithms.

Experimental results in a synthetic environment corrobo-

rated the theoretical analysis and shed some interesting light

on the behavior of our algorithms.
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A. Related Works

Constrained RL with Baseline Policies. Conservative exploration studied in this paper can be viewed as a specific case

of the Constrained Markov Decision Process (CMDP) (Altman, 1999), which has been investigated in both offline and

online settings. In the offline setting, a given baseline policy produces a set of trajectories for the agent to learn a policy

that is guaranteed to perform at least as good as the baseline with high probability without actually interacting with the

MDP (Bottou et al., 2013; Thomas et al., 2015b;a; Swaminathan & Joachims, 2015; Petrik et al., 2016; Laroche et al., 2019;

Simão & Spaan, 2019). It can also be extended to the semi-batch setting (Pirotta et al., 2013). In the online setting, the agent

has to trade off exploration and exploitation while interacting with the MDP. Several algorithms have been proposed in the

literature (Garcelon et al., 2020c; Yang et al., 2021b). Garcelon et al. (2020c) introduce a Conservative Upper-Confidence

Bound for Reinforcement Learning (CUCRL2) algorithm for both finite horizon and average reward problems with O(
√
T )

regret. Yang et al. (2021b) propose a reduction-based framework for conservative bandits and RL, which translates a

minimax lower bound of the non-conservative setting to a valid lower bound for the conservative case. They also propose a

Budget-Exploration algorithm and show that its regret scales in Õ
(√

H3SAK + H3SA∆0

κ(κ+∆0)

)

for tabular MDPs, where ∆0 is

the suboptimality gap of the baseline policy, and κ is the tolerable performance loss from the baseline. However, all these

works assume cumulative conservative constraint.

Other Forms of Constraints. Beside the constraint imposed by a baseline policy, which is generally ªalignedº with the

learning goal, CMDP also studies the case where the algorithm must satisfy a set of constraints that potentially are not

aligned with the reward. In general, both cumulative cost constraints (Efroni et al., 2020; Turchetta et al., 2020; Zheng &

Ratliff, 2020; Qiu et al., 2020; Ding et al., 2020; Kalagarla et al., 2020; Liu et al., 2021; Wei et al., 2022; Ghosh et al., 2022)

and episodic cost constraints (Liu et al., 2021; Bura et al., 2022; Huang et al., 2022) have been investigated. Assuming a

known safe baseline policy that satisfies the corresponding constraints, OptPess-LP (Liu et al., 2021) is shown to achieve a

regret of Õ( 1κ
√
H6S3AK) without any constraint violation with high probability, while DOPE (Bura et al., 2022) improves

the regret to Õ( 1κ
√
H6S2AK), where κ denotes the Slater parameter. We note that both algorithms do not achieve the

optimal regret in the unconstrained counterpart, due to the adopted linear programming-based approaches. Beyond tabular

setting, CMDP has also been discussed in linear (Ding et al., 2021; Ghosh et al., 2022; Amani et al., 2021; Yang et al.,

2021b) or low-rank models (Huang et al., 2022). Other formulations different from conservative exploration or CMDP,

such as minimizing the variance of expected return (Tamar et al., 2012) or generally, maximizing some utility function of

state-action pairs (Ding et al., 2021), have also been investigated. Lastly, Yang et al. (2021a) study constrained reinforcement

learning with a baseline policy that may not satisfy the given set of constraints.

Safe Bandits. Bandits problem is a standard RL problem where it interacts with a stationary environment, which reduces

the difficulties of learning. Several constraints are considered in the bandits setting. The first is that the cumulative expected

reward of an agent should exceed a certain threshold. This setting is originally studied in Wu et al. (2016), which adopts

an UCB type of exploration and checks whether the policy satisfies the conservative constraint. Kazerouni et al. (2017);

Garcelon et al. (2020b); Pacchiano et al. (2021) then extend the conservative setting to contextual linear bandits. The second

constraint is much stronger, as it requires that each arm played by the learning agent be safe given the baseline or the

threshold. Amani et al. (2019) and Khezeli & Bitar (2020) both use an LCB type of algorithm to ensure the arms selected by

the algorithms are safe under linear bandits setting. Du et al. (2021) consider conservative exploration with a sample-path

constraint on the actual observed rewards rather than in expectation.

Policy Optimization. This is another research direction in RL that utilizes baseline policies (Schulman et al., 2015).

However, the focus and assumptions of these papers are very different from this work. For example, Zhong et al. (2021)

and Luo et al. (2021) focus on the non-stationary and adversary environments, respectively. While policy optimization can

achieve sublinear regret under certain MDP models (Shani et al., 2020), it usually lacks performance guarantees during the

learning process, which is in stark contrast to our results.

Other LCB Techniques. We highlight the differences between the LCBs used in our online algorithms StepMix and

EpsMix and two LCB techniques used in Xie et al. (2021; 2022). First and foremost, Xie et al. (2021; 2022) study offline

RL problems. They both impose a coverage assumption on the behavior policy in order to bound the estimation error of the

pessimistic policy constructed from the offline dataset. On the other hand, our LCB has no such coverage assumption for the

behavior policy, since the LCB constructed in our work is a lower bound of the value function under the online exploration

policy πk. Second, the reference value functions in this work are different than those in Xie et al. (2021), which constructs a

reference function based on an LCB algorithm so that it can derive the pessimistic policy and utilize Bernstein’s inequality.

In our work, however, the reference functions are the true value functions of candidate policies, which are chosen from a
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series of policies mixed by the baseline policy and optimistic policy produced from a Bernstein-style UCB algorithm. Last

but not the least, our LCB expression is more computationally efficient than that in Xie et al. (2022).

B. Notations

We list the notations of common quantities as follows.

Notation Meaning Definition

rh(s, a) reward -

Ph(s
′|s, a) transition probability -

nk
h(s, a) visitation count

∑k−1
τ=1 1{sτh = s, aτh = a}

nk
h(s, a, s

′) visitation-transition count
∑k−1

τ=1 1{sτh = s, aτh = a, sτh+1 = s′}

P̂ k
h (s

′|s, a) empirical estimate of transition probability
nk
h(s,a,s

′)

nk
h
(s,a)

if nk
h(s, a) ≥ 1; 1

S , otherwise

dπh(s, a) occupancy measure under policy π Eπ[1{sh = s, ah = a}]
dkh(s, a) occupancy measure under policy πk dπ

k

h (s, a)

n̄k
h(s, a) expected visitation count

∑k−1
τ=1 d

τ
h(s, a)

Qπ
h(s, a) true Q function Eπ[

∑H
i=h ri(si, ai)|sh = s, ah = a]

V π
h (s) true V function Eπ[

∑H
i=h ri(si, ai)|sh = s]

π⋆ optimal policy argmaxπ V
π
1 (s1)

πb baseline policy -

π⋆,h0 step-wise optimal policy {πb
1, · · · , πb

h0
, π⋆

h0+1, · · · , π⋆
H}

π̄k global optimistic policy constructed from Algorithm 2

πk,h0 step-wise optimistic policy {πb
1, · · · , πb

h0
, π̄k

h0+1, · · · , π̄k
H}

Qk,h0 , V k,h0 , Q⋆,h0 , V ⋆,h0 corresponding true value functions Qπk,h0
, V πk,h0

, Qπ⋆,h0
, V π⋆,h0

Q̃k,h0 , Ṽ k,h0 Upper Confidence Bounds defined in Equations (8) and (10)

˜
Qk,h0 ,

˜
V k,h0 Lower Confidence Bounds defined in Equations (9) and (11)

Gk,h0 G function defined in Equation (24)

β(n, δ) logarithm term involved in E log(SAH/δ) + S log(8e(n+ 1))

βcnt(δ) logarithm term involved in Ecnt log(SAH/δ)

β⋆(n, δ) logarithm term involved in E⋆ log(SAH/δ) + log(8e(n+ 1))

We also adopt the following min,max notations:

a ∧ b = min(a, b), a ∨ b = max(a, b).

For any given policy π and Q function, we denote

πhQh(s) = ⟨πh(·|s), Qh(s, ·)⟩ =
∑

a∈A

πh(a|s)Qh(s, a).

For any given transition kernel Ph and value function Vh+1, we define the variance of PhVh+1(s, a) as follows.

VarPh
(Vh+1)(s, a) = Es′∼Ph(·|s,a)[(Vh+1(s

′)− Es′∼Ph(·|s,a)[Vh+1(s
′)])2].
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At last, we introduce three types of good events and their notations that will be intensively used in the following proofs.

The first type of good events characterizes the connection between the true visitation counts and the expected visitation

counts:

Ecnt(δ) ≜

{

∀k ∈ [K], ∀h ∈ [H], ∀(s, a) ∈ S ×A : nk
h(s, a) ≥

1

2
n̄k
h(s, a)− βcnt(δ)

}

,

where βcnt = log(SAH/δ), nk
h(s, a) denotes the number of visitations of state-action pair (s, a) and n̄k

h(s, a) denotes the

expected visitation count.

The second type of good events, defined as follows, upper bounds the KL divergence between the estimated transition

distribution and the true transition distribution.

E(δ) ≜
{

∀k ∈ [K], ∀h ∈ [H], ∀(s, a) ∈ S ×A : KL(P̂ k
h (·|s, a), Ph(·|s, a)) ≤

β(nk
h(s, a), δ)

nk
h(s, a)

}

,

where β(n, δ) = log(SAH/δ) + S log(8e(n+ 1)).

The third type of good events provides a Bernstein-style concentration guarantee, defined as follows.

E⋆(V, δ) ≜
{

∀k ∈ [K], ∀h ∈ [H], ∀(s, a) ∈ S ×A,∈ [H] ∪ {0} :
∣
∣
∣(P̂ k

h − Ph)Vh+1(s, a)
∣
∣
∣ ≤

min

{

H,

√

2VarPh
(Vh+1)(s, a)

β⋆(nk
h(s, a), δ)

nk
h(s, a)

+ 3H
β⋆(nk

h(s, a), δ)

nk
h(s, a)

}}

,

where β⋆(n, δ) = log(SAH/δ) + log(8e(n+1)) and V is a value function independent with P̂ k
h and bounded by H . Later,

V will be chosen separately in StepMix or EpsMix.

C. Algorithm Design and Analysis of StepMix

We first recall the StepMix algorithm (Algorithm 2) and provide the PolicyEva subroutine in Algorithm 3.

Based on the construction of πk,h0 in Algorithm 2, we define the following Q-value functions and value functions.

Q̃k,h0

h (s, a) ≜min

(

H, rh(s, a) + 3

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 14H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
1

H
P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + P̂ k
h Ṽ

k,h
h+1(s, a)

) (8)

˜
Qk,h0

h (s, a) ≜max

(

0, rh(s, a)− 3

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

− 22H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

− 2

H
P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + P̂ k
h
˜
V k,h0

h+1 (s, a)

) (9)

Ṽ k,h0

h (s) ≜ ⟨πk,h0

h (·|s), Q̃k,h0

h (s, ·)⟩ (10)

˜
V k,h0

h (s) ≜ ⟨πk,h0

h (·|s),
˜
Qk,h0

h (s, ·)⟩. (11)

We point out that, since the definitions of Equations (8) and (9) are the same as Equation (5) used in Algorithm 2,
˜
V k,h0

defined in Equation (11) is consistent with the same quantity used in Algorithm 2. Moreover, when h > h0, we have

πk,h0

h = π̄k
h, which implies that Q̃k,h0

h = Q̃k
h and πk,h0

h (s) = argmaxa Q
k,h0

h (s, a).

Before proceeding to the formal proof, we outline its major steps as follows.

Step one: In Appendix C.1, we verify that the good events happen with high probability and introduce the linearity of the

ocupancy measure and the value function of the step-mix policies.
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Algorithm 2 The StepMix Algorithm

Input: πb, γ, β, β⋆, D0 = ∅.
for k = 1 to K do

Update model estimate P̂ according to Equation (4).

# Optimistic policy identification

Ṽ k
H+1(s) =

˜
V k
H+1(s) = 0, ∀s ∈ S .

for h = H to 1 do

Update Q̃k
h(s, a),

˜
Qk

h(s, a), ∀(s, a) ∈ S ×A according to Equation (5).

π̄k
h(s)← argmaxa Q̃

k
h(s, a), Ṽ

k
h (s)← Q̃k

h(s, π̄
k
h(s)), ˜

V k
h (s)←

˜
Qk

h(s, π̄
k
h(s)), ∀s ∈ S .

end for

# Candidate policy construction and evaluation

for h0 = 0 to H do

πk,h0 = {πb
1, π

b
2, · · · , πb

h0
, π̄k

h0+1, · · · , π̄k
H−1, π̄

k
H}.

˜
V k,h0 = PolicyEva(P̂ k, πk,h0).

end for

# Safe exploration policy selection

if {h |
˜
V k,h
1 ≥ γ, h = 0, 1, . . . , H} = ∅ then

πk = πb.

else

hk = min{h |
˜
V k,h
1 ≥ γ, h = 0, 1, . . . , H}.

if hk = 0 then

πk = π̄k.

else

Set πk according to Equation (7).

end if

end if

Execute πk and collect {(skh, akh, skh+1)}Hh=1.

Dn ← Dn−1 ∪ {(skh, akh, skh+1)}Hh=1.

end for

Algorithm 3 PolicyEva Subroutine

Input: P̂ k, π
Initialization: Set Ṽ k

H+1(s) and
˜
V k
H+1(s) to be 0 for any s ∈ S .

for h = H to 1 do

Update Q̃k
h(s, a),

˜
Qk

h(s, a), ∀(s, a) ∈ S ×A:

Q̃k
h(s,a)≜min

(

H,rh(s,a)+3
√

Var
P̂k
h
(Ṽ k

h+1)(s,a)
β⋆

nk
h
(s,a)

+14H2 β

nk
h
(s,a)

+ 1
H

P̂k
h (Ṽ k

h+1−
˜
V k
h+1)(s,a)+P̂k

h Ṽ k
h+1(s,a)

)

˜
Qk

h(s,a)≜max

(

0,rh(s,a)−3
√

Var
P̂k
h
(Ṽ k

h+1)(s,a)
β⋆

nk
h
(s,a)

−22H2 β

nk
h
(s,a)

− 2
H

P̂k
h (Ṽ k

h+1−
˜
V k
h+1)(s,a)+P̂k

h
˜
V k
h+1(s,a)

)

Ṽ k
h (s)← ⟨Q̃k

h(s, ·), πh(·|s)⟩,
˜
V k
h (s)← ⟨

˜
Qk

h(s, ·), πh(·|s)⟩, ∀s ∈ S .

end for

Output:
˜
V1

Step two: In Appendix C.2, we prove that Q̃k,h0

h and
˜
Qk,h0

h are valid UCB and LCB of the true Q-value functions of both

the step-wise optimal policies π⋆,h0 and the step-wise optimistic policies πk,h0 , respectively, and provide a bound for the

gap between Q̃k,h0

h and
˜
Qk,h0

h .

Step three: In Appendix C.3, we leverage the bound for the gap between Q̃k,h0

h and
˜
Qk,h0

h to show a sublinear ªweakº

regret of the online policies πk, where the regret is defined in terms of the performance difference V πb − V πk

. Hence,
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we can prove that there are only finite episodes in which the executed policy is not equal to the optimistic policy (finite

non-optimistic policy lemma; cf. Lemma C.9).

Step four: In Appendix C.4, based on the bound of the gap between Q̃k,h0

h and
˜
Qk,h0

h and the finite non-optimistic policy

lemma, we prove the regret stated in Theorem 4.2.

C.1. Step One: Good Events and Basic Properties of Step Mixture Policies

We first prove the following lemma which shows that the good events defined in Appendix B occur with high probability.

Lemma C.1 (Good Events). Let E , Ecnt, and E⋆ be the events defined in Appendix B. Then, under Algorithm 1, with

probability at least 1− δ, the following good events occur simultaneously:

E
(
δ

3

)

, Ecnt

(
δ

3

)

, E⋆
(

V ⋆,h0 ,
δ

3(H + 1)

)

, ∀h0 ∈ [H] ∪ {0}.

Proof. From Theorem F.7, Theorem F.8, and Theorem F.9, we have E( δ3 ) , Ecnt( δ3 ), and ∩h0∈[H]∪{0}E⋆(V ⋆,h0 , δ
3(H+1) )

occur with probability at least 1−δ/3, respectively. Then, by taking a union bound, all those good events occur simultaneously

with probability at least 1− δ.

Then, we provide several useful lemmas that capture the favorable properties of the step mixture policies πk,h0 and step-wise

optimal policies π∗,h0 .

The following lemma establishes the optimality of policy π⋆,h0 .

Lemma C.2 (Optimality of Step-wise Optimal Policies). Define Πh0
:= {π|πh = πb

h, ∀h ≤ h0}. Then, for any π ∈ Πh0
,

we must have

Q⋆,h0

h (s, a) ≥ Qπ
h(s, a),

V ⋆,h0

h (s) ≥ V π
h (s).

Proof. Using the performance difference lemma (Kakade & Langford, 2002), for any π ∈ Πh0 we have

V π
h (s)− V ⋆,h0

h (s) =

H∑

m=h

Eπ[Q
⋆,h0
m (sm, am)− V ⋆,h0

m (sm)|sh = s].

For the case where h > h0, π⋆,h0

h = π⋆
h, and thus Q⋆,h0

h (s, a) = Q⋆
h(s, a), ∀h ≥ h0, ∀s, a. In addition, π⋆(s) =

argmaxa Q
⋆(s, a). Thus, Eπ[Q

⋆,h0

h (sh, ah)− V ⋆,h0(sh)] ≤ 0, ∀h ≥ h0.

For the case where h ≤ h0, we have πh = π⋆,h0

h = πb
h, Eπ[Q

⋆,h0

h (sh, ah)− V ⋆,h0(sh)] = 0, ∀h < h0.

Combining the results for both cases, we have

V π
h (s)− V ⋆,h0

h (s) =

H∑

m=h

Eπ[Q
⋆,h0
m (sm, am)− V ⋆,h0

m (sm)|sh = s] ≤ 0.

Following the same argument, we can prove that Q⋆,h0

h (s, a) ≥ Qπ
h(s, a).

The next lemma characterizes the property of the step mixture policies obtained by mixing two policies that are one-step

different.

Lemma C.3. If π = ρπ1 + ρπ2, where π1 and π2 differ only at step h0, and let d1h(s, a) and d2h(s, a) be the occupancy

measure of π1 and π2. Then we have

dπh(s, a) = ρd1h(s, a) + (1− ρ)d2h(s, a),

where dπh(s, a) = Eπ[1{sh = s, ah = a}] is the occupancy measure under policy π.
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Proof. Based on the definition of π, we consider the following possible cases.

When h < h0, we have π1
h = π2

h = πh. Thus the corresponding occupancy measures should also be the same, i.e.,

d1h(s, a) = d2h(s, a) = dπh(s, a) = ρd1h(s, a) + (1− ρ)d2h(s, a).

When h = h0, we have πh0
= ρπ1

h0
+ (1− ρ)π2

h0
. Using the fact that d1h0−1(s, a) = d2h0−1(s, a) = dπh0−1(s, a), we have

dπh0
(s, a) =

∑

s′,a′

πh0
(a|s)Ph0−1(s|s′, a′)dπh0−1(s

′, a′)

=
∑

s′,a′

(ρπ1
h0
(a|s) + (1− ρ)π2

h0
(a|s))Ph0−1(s|s′, a′)dπh0−1(s

′, a′)

=ρ
∑

s′,a′

π1
h0
(a|s)Ph0−1(s|s′, a′)d1h0−1(s

′, a′) + (1− ρ)
∑

s′,a′

π2
h0
(a|s)Ph0−1(s|s′, a′)d2h0−1(s

′, a′)

=ρd1h0
(s, a) + (1− ρ)d2h0

(s, a).

When h > h0, we again have π1
h = π2

h = πh. We then prove the equality through induction. Assume dπh−1(s, a) =
ρd1h−1(s, a) + (1− ρ)d2h−1(s, a), ∀h− 1 ≥ h0, which holds when h− 1 = h0 based on the analysis above. Then,

dh(s, a) =
∑

s′,a′

πh(a|s)Ph−1(s|s′, a′)dπh−1(s
′, a′)

=
∑

s′,a′

πh(a|s)Ph−1(s|s′, a′)(ρd1h−1(s, a) + (1− ρ)d2h−1(s, a))

=ρ
∑

s′,a′

π1
h(a|s)Ph−1(s|s′, a′)d1h−1(s, a) + (1− ρ)

∑

s′,a′

π2
h(a|s)Ph−1(s|s′, a′)d2h−1(s, a)

=ρd1h(s, a) + (1− ρ)d2h(s, a),

which completes the proof.

The above lemma shows that the occupancy measure of a step mixture policy obtained by mixing two policies that are

one-step different is a linear combination of the occupancy measures of the corresponding policies. Such linearity also holds

for the corresponding value functions, as shown in the following proposition.

Proposition C.4. With the same condition as in Lemma C.3, the following equality holds:

V π
1 = ρV π1

1 + (1− ρ)V π2

1 .

Proof. By the definition of V π
1 and dπh(s, a), we have V π

1 =
∑H

h=1

∑

s,a d
π
h(s, a)rh(s, a). Hence,

V π
1 =

H∑

h=1

∑

s,a

dπh(s, a)rh(s, a)

=
H∑

h=1

∑

s,a

(
ρd1h(s, a) + (1− ρ)d2h(s, a)

)
rh(s, a)

=ρV π1

1 + (1− ρ)V π2

1 .

C.2. Step Two: Confidence Bounds

In this step, we validate the UCBs and LCBs constructed in Equations (8) to (11), and provide bounds for the estimation

error induced by the pairs of UCBs and LCBs.
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Recall that the upper confidence bounds of value functions of each policy πk,h0 are







Q̃k,h0

h (s, a) ≜ min

(

H, rh(s, a) + 3

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 14H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
1

H
P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + P̂ k
h Ṽ

k,h0

h+1 (s, a)

)

,

Ṽ k,h0

h (s) ≜ ⟨πk,h0

h (·|s), Q̃k,h0

h (s, ·)⟩,

(12)

where δ′ = δ
3(H+1) and

πk,h0

h (s) =

{
πb
h(s), if h ≤ h0,

argmaxa∈A Q̃k,h0

h (s, a), if h > h0.
(13)

Meanwhile, the lower confidence bounds of the the same value functions are







˜
Qk,h0

h (s, a) ≜ max

(

0, rh(s, a)− 3

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

− 22H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

− 2

H
P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + P̂ k
h
˜
V k,h0

h+1 (s, a)

)

,

˜
V k,h0

h (s) ≜ ⟨πk,h0

h (·|s), Q̃k,h0

h (s, ·)⟩.

(14)

The following lemma shows that the above construction are valid UCBs and LCBs.

Lemma C.5 (UCB and LCB). With Q̃k,h0 ,
˜
Qk,h0 , Ṽ k,h0 ,

˜
V k,h0 defined in Equations (12) and (14), the true value functions

Qk,h0 , V k,h0 , Q⋆,h0 , V ⋆,h0 can be bounded as:

˜
Qk,h0

h (s, a)
(i)

≤ Qk,h0

h (s, a)
(ii)

≤ Q⋆,h0

h (s, a)
(iii)

≤ Q̃k,h0

h (s, a), (15)

˜
V k,h0

h (s)
(iv)

≤ V k,h0

h (s)
(v)

≤ V ⋆,h0

h (s)
(vi)

≤ Ṽ k,h0

h (s). (16)

Proof. First, we note that due to Lemma C.2, inequalities (ii) and (v) hold for any h ∈ [1 : H].

We then use induction to prove the other four inequalities hold. More specifically, we prove that: 1) if (iv) and (vi) hold for

h+ 1, ∀h ∈ [1 : H], then (i) and (iii) must hold for h, and 2) if (i) and (iii) hold for any h ∈ [1 : H], then (iv) and (vi)
must hold for h as well. For the base case h = H +1, all value functions are zeros. Thus, (iv) and (vi) hold for h = H +1.

We now assume (iv) and (vi) is true for any h+ 1, and prove 1) and 2) recursively through induction.

Step 1), part 1, inequality (iii): We prove that inequality (iii) in Equation (15) holds for any h ∈ [1 : H]. It suffices to

consider the case when Q̃k,h0

h < H . We have

Q̃k,h0

h −Q⋆,h0

h =3

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 14H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
1

H
P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + P̂ k
h Ṽ

k,h0

h+1 (s, a)− PhV
⋆,h0

h+1 (s, a)

=3

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 14H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
1

H
P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + P̂ k
h (Ṽ

k,h0

h+1 − V ⋆,h0

h+1 )(s, a) + (P̂ k
h − Ph)V

⋆,h0

h+1 (s, a). (17)

Under good event E⋆(V ⋆,h0 , δ′), we can bound the last term (P̂ k
h − Ph)V

⋆,h0

h+1 (s, a) as follows:

|(P̂ k
h − Ph)V

⋆,h0

h+1 (s, a)| ≤
√

2VarPh
(V ⋆,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 3H
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

. (18)
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We further bound the true variance VarPh
(V ⋆,h0

h+1 )(s, a) with the empirical variance VarP̂h
(Ṽ k,h0

h+1 )(s, a) as follows:

VarPh
(V ⋆,h0

h+1 )(s, a)
(a)

≤2VarP̂h
(V ⋆,h0

h+1 )(s, a) + 4H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

(b)

≤4VarP̂h
(Ṽ ⋆,h0

h+1 )(s, a) + 4HP̂ k
h |Ṽ k,h0

h+1 − V ⋆,h0

h+1 |(s, a) + 4H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

(c)

≤4VarP̂h
(Ṽ ⋆,h0

h+1 )(s, a) + 4HP̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + 4H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

,

where (a) follows from Lemma F.1 and the definition of good event E(δ/3), (b) is due to Lemma F.2, and (c) is due to the

induction hypothesis.

Plugging the bound of variance to Equation (18) and applying the facts that
√
x+ y ≤ √x +

√
y ,
√
xy ≤ x + y and

β⋆ < β, we have

|(P̂ k
h −Ph)V

⋆,h0

h+1 (s, a)| ≤ 3

√

VarP̂h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+
1

H
P̂ k
h (Ṽ

k,h0

h+1 −˜
V k,h0

h+1 )(s, a)+14H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

.

(19)

Now, plugging Equation (19) back to Equation (17), we have

Q̃k,h0

h −Q⋆,h0

h ≥ P̂ k
h (Ṽ

k,h0

h+1 − V ⋆,h0

h+1 )(s, a) ≥ 0,

where Ṽ k,h0

h+1 − V ⋆,h0

h+1 ≥ 0 comes from the induction hypothesis.

Step 1), part 2, inequality (i): For inequality (i) in Equation (15), it suffices to consider the case when
˜
Qk,h0

h > 0. We have

Qk,h0

h (s, a)−
˜
Qk,h0

h (s, a) =(Ph − P̂ k
h )V

⋆,h0

h+1 (s, a) + (Ph − P̂ k
h )(

˜
V k,h0

h+1 − V ⋆,h0

h+1 )(s, a) + Ph(V
k,h0

h+1 − ˜
V k,h0

h+1 )(s, a)

+ 3

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 22H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
2

H
P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a).

(20)

We have established a bound for |(Ph − P̂ k
h )V

⋆,h0

h+1 (s, a)| in Equation (19). It then suffice to bound |(Ph − P̂ k
h )(˜

V k,h0

h+1 −
V ⋆,h0

h+1 )(s, a)| as follows.

Because of Lemma F.3, together with good event E(δ/3), we have

|(Ph − P̂ k
h )(

˜
V k,h0

h+1 − V ⋆,h0

h+1 )(s, a)| ≤
√

2VarPh
(V ⋆,h0

h+1 − ˜
V k,h0

h+1 )(s, a) +
2

3
H

β(nk
h(s, a), δ

′)

nk
h(s, a)

. (21)

Moreover, by Lemma F.1,

VarPh
(V ⋆,h0

h+1 − ˜
V k,h0

h+1 )(s, a) ≤ 2VarP̂k
h
(V ⋆,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + 4H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

. (22)

Plugging Equation (22) into Equation (21) and applying
√
x+ y ≤ √x +

√
y and

√
xy ≤ x + y, we can bound

|(Ph − P̂ k
h )(˜

V k,h0

h+1 − V ⋆,h0

h+1 )(s, a)| as follows:

|(Ph − P̂ k
h )(

˜
V k,h0

h+1 − V ⋆,h0

h+1 )(s, a)| ≤
1

H
P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + 8H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

. (23)

Now, plugging Equation (23) and Equation (19) back to Equation (20), we have

Qk,h0

h (s, a)−
˜
Qk,h0

h (s, a) ≥ Ph(V
k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) ≥ 0,

19
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where V k,h0

h+1 − ˜
V k,h0

h+1 ≥ 0 comes from the induction hypothesis.

Step 2): With all inequalities in Equation (15) being proved, we use them to prove inequalities (iv) and (vi) in Equation (16).

Since
˜
V k,h0

h (s) and V k,h0

h (s) share the same policy πk,h0

h , inequality (iv) can be derived from
˜
Qk,h0

h (s, a) ≤ Qk,h0

h (s, a).
That is,

˜
V k,h0

h (s) = ⟨πk,h0

h (·|s),
˜
Qk,h0

h (s, ·)⟩ ≤ ⟨πk,h0

h (·|s), Qk,h0

h (s, ·)⟩ = V k,h0

h (s).

To show inequality (vi), we consider two cases: h > h0 and h ≤ h0. When h > h0, policy πk,h0

h is the optimistic policy

corresponding to Q̃k,h0

h . Therefore, we have

Ṽ k,h0

h (s) = Q̃k,h0

h (s, πk,h0

h (s)) ≥ Q̃k,h0

h (s, π⋆
h(s)) ≥ Qk,h0

h (s, π⋆
h(s)) = V k,h0

h (s).

When h ≤ h0, both policies π⋆,h0

h and πk,h0

h are the baseline policy πb
h. Thus, we can use Q⋆,h0

h ≤ Q̃k,h0

h from Equation (15)

to derive V ⋆,h0

h (s) ≤ Ṽ k,h0

h (s). That is,

V ⋆,h0

h (s) = ⟨πb
h(·|s), Q⋆,h0

h (s, ·)⟩ ≤ ⟨πb
h(·|s), Q̃k,h0

h (s, ·)⟩ = Ṽ k,h0

h (s).

Combining these two cases, we have established V ⋆,h0

h (s) ≤ Ṽ k,h0

h (s) for any h.

After verifying the validity of UCBs and LCBs in Lemma C.5, we provide the following lemma to quantify the estimation

error induced by the lower bound.

Lemma C.6. Define Gk,h0

h as

Gk,h0

h (s, a) = min

(

H, 6

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+36H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+

(

1 +
3

H

)

P̂ k
hπ

k,h0

h+1G
k,h0

h+1(s, a)

)

.

(24)

Then, the estimation error between Q⋆,h0

h , V ⋆,h0

h (s) and
˜
Qk,h0

h ,
˜
V k,h0

h can be bounded as

Q⋆,h0

h (s, a)−
˜
Qk,h0

h (s, a) ≤ Gk,h0

h (s, a),

V ⋆,h0

h (s)−
˜
V k,h0

h (s) ≤ ⟨πk,h0

h (·|s), Gk,h0

h (s, ·)⟩.

Proof. Q⋆,h0

h (s, a)−
˜
Qk,h0

h (s, a) can be directly calculated as follows.

Q⋆,h0

h (s, a)−
˜
Qk,h0

h (s, a)
(a)

≤ Q̃k,h0

h (s, a)−
˜
Qk,h0

h (s, a)

(b)

≤ P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + 6

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 36H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
3

H
P̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a)

≤6
√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 36H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+ (1 +
3

H
)P̂ k

h (Ṽ
k,h0

h+1 − ˜
V k,h0

h+1 )(s, a),

where (a) follows from Lemma C.5 and (b) follows from the definitions of Q̃k,h0

h (s, a) and
˜
Qk,h0

h (s, a) in Equation (12) and

Equation (14), respectively.

Then, following the same argument, for V functions, we have

V ⋆,h0

h (s)−
˜
V k,h0

h (s) ≤ Ṽ k,h0

h (s)−
˜
V k,h0

h (s) ≤ ⟨πk,h0

h (·|s), (Q̃k,h0

h −
˜
Qk,h0

h )(s, ·)⟩.
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Combining the above two inequalities with the definition of Gk,h0

h , we have

Q⋆,h0

h (s, a)−
˜
Qk,h0

h (s, a) ≤ Gk,h0

h (s, a),

V ⋆,h0

h (s)−
˜
V k,h0

h (s) ≤ ⟨πk,h0

h (·|s), Gk,h0

h (s, ·)⟩,

which completes the proof.

In the following lemma, we aim to upper bound πk,h0

1 Gk,h0

1 .

Lemma C.7 (Bounding πk,h0

1 Gk,h0

1 ). For any k and h0, we have

πk,h0

1 Gk,h0

1 (s1) ≤24e13
H∑

h=1

∑

s,a

dk,h0

h (s, a)

√

VarPh
(V k,h0

h+1 )(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dk,h0

h (s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

,

where Gk,h0

h is defined in Equation (24) and dk,h0

h is the occupancy measure under policy πk,h0 .

Proof. From the definition of Gk,h0

h in Equation (24), we have

Gk,h0

h (s, a)

≤ 6

√
√
√
√
√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
︸ ︷︷ ︸

(I)

β⋆(nk
h(s, a), δ

′)

nk
h(s, a)

+ 36H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+

(

1 +
3

H

)

P̂ k
hπ

k,h0

h+1G
k,h0

h+1(s, a)
︸ ︷︷ ︸

(II)

. (25)

In order to bound term (II), we use Lemma F.3 and the fact that
√
xy ≤ x+ y to obtain

(P̂ k
h − Ph)π

k
h+1G

k,h0

h+1(s, a) ≤
√

2VarPh
(πk

h+1G
k,h0

h+1)(s, a)
β(nk

h(s, a), δ
′)

nk
h(s, a)

+
2

3
H

β(nk
h(s, a), δ

′)

nk
h(s, a)

≤ 1

H
Phπ

k
h+1G

k,h0

h+1(s, a) + 3H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

.

(26)

For term (I), we have

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
(a)

≤2VarPh
(Ṽ k,h0

h+1 )(s, a) + 4H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

(b)

≤4VarPh
(V ⋆,h0

h+1 )(s, a) + 4HPh|Ṽ k,h0

h+1 − V ⋆,h0

h+1 |(s, a) + 4H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

(c)

≤4VarP̂h
(Ṽ ⋆,h0

h+1 )(s, a) + 4HP̂ k
h (Ṽ

k,h0

h+1 − ˜
V k,h0

h+1 )(s, a) + 4H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

,

where (a) follows from Lemma F.1, (b) follows from Lemma F.2, and (c) follows from Lemma C.5.

Moreover, we can use
√
x+ y ≤ √x+

√
y,
√
xy ≤ x+ y to obtain

√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

≤ 2

√

VarPh
(V k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 6H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
1

H
Phπ

k,h0

h+1G
k,h0

h+1(s, a).

(27)
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Applying Equation (26) and Equation (27) to Equation (25), we have

Gk,h0

h (s, a)

≤6
√

VarP̂k
h
(Ṽ k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 36H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+

(

1 +
3

H

)

P̂ k
hπ

k,h0

h+1G
k,h0

h+1(s, a)

≤12
√

VarPh
(V k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 36H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
6

H
Phπ

k,h0

h+1G
k,h0

h+1(s, a)

+ 36H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+

(

1 +
3

H

)

Phπ
k,h0

h+1G
k,h0

h+1(s, a)

+

(

1 +
3

H

)(
1

H
Phπ

k
h+1G

k,h0

h+1(s, a) + 3H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

)

≤12
√

VarPh
(V k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 84H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+

(

1 +
13

H

)

Phπ
k
h+1G

k,h0

h+1(s, a).

In addition, since Gk,h0

h is upper bounded by H by definition, and β(nk
h(s, a), δ

′) > β⋆(nk
h(s, a), δ

′), we have

Gk,h0

h (s, a)

≤min

{

12

√

VarPh
(V k,h0

h+1 )(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 84H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+

(

1 +
13

H

)

Phπ
k
h+1G

k,h0

h+1(s, a), H

}

≤12
√

VarPh
(V k,h0

h+1 )(s, a)

(
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

∧ 1

)

+ 84H2

(
β(nk

h(s, a), δ
′)

nk
h(s, a)

∧ 1

)

+

(

1 +
13

H

)

Phπ
k
h+1G

k,h0

h+1(s, a).

Using (1 + 13
H )H ≤ e13 and unfolding the above inequality, we have

πk,h0

1 Gk,h0

1 (s1) ≤12e13
H∑

h=1

∑

s,a

dk,h0

h (s, a)

√

VarPh
(V k,h0

h+1 )(s, a)

(
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

∧ 1

)

+ 84e13H2
H∑

h=1

∑

s,a

dk,h0

h (s, a)

(
β(nk

h(s, a), δ
′)

nk
h(s, a)

∧ 1

)

.

Finally, we use Lemma F.5 to transform nk
h(s, a) to n̄k

h(s, a) and obtain

πk,h0

1 Gk,h0

1 (s1) ≤24e13
H∑

h=1

∑

s,a

dk,h0

h (s, a)

√

VarPh
(V k,h0

h+1 )(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dk,h0

h (s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

,

which completes the proof.

C.3. Step Three: Finite Episodes for Step Mixture Policies

In the previous section, we have characterized the UCBs and LCBs for the step-wise optimistic policies (πk,h0 ) and bound

the corresponding estimation errors. In this step, we extend the result for πk,h0 to step mixture policies πk and prove that the

number of the episodes of which the executed policy πk is not equal to the optimistic policy π̄k (i.e., πk,0), is finite under

the StepMix algorithm. We refer to this result as the finite non-optimistic policy lemma.

To establish the finite non-optimistic policy lemma, we first extend the result of Lemma C.7 from πk,h0 to step mixture

policies.
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Lemma C.8. For a step mixture policy πk mixed from two policies πk,h0 and πk,h0−1, denoted as πk = (1− ρ)πk,h0 +
ρπk,h0−1 for some ρ ∈ (0, 1), the following inequality holds:

(1−ρ)πk,h0

1 Gk,h0

1 (s1) + ρπk,h0−1
1 Gk,h0−1

1 (s1)

≤ 24e13H

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

,
(28)

where dkh(s, a) is the occupancy measure under policy πk and Gk,h0

h is defined in Equation (24).

Proof. Since πk = (1− ρ)πk,h0 + ρπk,h0−1 is the step mixture policy mixed from two policies that differ at only one step,

by Lemma C.3, the occupancy measure under πk satisfies

dkh(s, a) = (1− ρ)dk,h0(s, a) + ρdk,h0−1(s, a).

Using Lemma C.7, we have

(1− ρ)πk,h0

1 Gk,h0

1 (s1) + ρπk,h0−1
1 Gk,h0−1

1 (s1)

≤ρ
(

24e13
H∑

h=1

∑

s,a

dk,h0−1
h (s, a)

√

VarPh
(V k,h0−1

h+1 )(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dk,h0−1
h (s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

))

+ (1− ρ)

(

24e13
H∑

h=1

∑

s,a

dk,h0

h (s, a)

√

VarPh
(V k,h0

h+1 )(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dk,h0

h (s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

))

.

(29)

It is worth noting that

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

= ρ
H∑

h=1

∑

s,a

dk,h0−1
h (s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ (1− ρ)
H∑

h=1

∑

s,a

dk,h0

h (s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

.

(30)

Thus, to prove Equation (28), it suffices to show that

H∑

h=1

∑

s,a

ρdk,h0−1
h (s, a)

√

VarPh
(V k,h0−1

h+1 )(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+

H∑

h=1

∑

s,a

(1− ρ)dk,h0

h (s, a)

√

VarPh
(V k,h0

h+1 )(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

≤ H

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

. (31)
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Due to the Cauchy’s inequality, we have

LHS of (31) ≤

√
√
√
√

H∑

h=1

∑

s,a

ρdk,h0−1
h (s, a)VarPh

(V k,h0−1
h+1 )(s, a) + (1− ρ)dk,h0

h (s, a)VarPh
(V k,h0

h+1 )(s, a)

×

√
√
√
√

H∑

h=1

∑

s,a

(ρdk,h0−1
h (s, a) + (1− ρ)dk,h0

h (s, a))

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

.

(32)

Besides, due to Lemma F.4, we have

H∑

h=1

∑

s,a

dk,h0

h (s, a)VarPh
(V k,h0

h+1 )(s, a) ≤ Eπk,h0





(
H∑

h=1

rh(sh, ah)− V k,h0

1 (s1)

)2


 ≤ H2.

Similarly, we also have
∑H

h=1

∑

s,a d
k,h0−1
h (s, a)VarPh

(V k,h0−1
h+1 )(s, a) ≤ H2. Together with Equation (30), we have

RHS of (32) ≤ H

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

,

which completes the proof.

Equipped with Lemma C.8, we are ready to establish the finite non-optimistic policy lemma, which states that for step

mixture policies, there are only finite episodes in which πk ̸= πk,0.

Lemma C.9 (Finite non-optimistic policy lemma). Define N = {k|k ∈ [K], πk ̸= πk,0}. Then, the cardinality of N is

upper bounded by

|N | ≤
(
4608e26

κ2
+

2688e13S

κ

)

H3SA log2(K + 1) = Õ

((
1

κ2
+

S

κ

)

H3SA

)

,

where κ = V πb

1 − γ.

Proof. By the definition of N , we have

|N |κ
(a)

≤
∑

k∈N

(

V πb

1 − (ρ
˜
V k,h0−1
1 + (1− ρ)

˜
V k,h0

1 )
)

(33)

(b)

≤
∑

k∈N

(

(ρV ⋆,h0−1
1 + (1− ρ)V ⋆,h0

1 )− (ρ
˜
V k,h0−1
1 + (1− ρ)

˜
V k,h0

1 )
)

=
∑

k∈N

(

ρ(V ⋆,h0−1
1 −

˜
V k,h0−1
1 ) + (1− ρ)(V ⋆,h0

1 −
˜
V k,h0

1 )
)

(c)

≤
∑

k∈N

(

ρπk,h0−1
1 Gk,h0−1

1 + (1− ρ)πk,h0

1 Gk,h0

1

)

(34)

(d)

≤ 24e13H
∑

k∈N

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

(e)

≤ 24e13H
√

|N |

√
√
√
√
∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)
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+ 336e13H2
∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

, (35)

where (b) follows from Lemma C.2, (c) is due to Lemma C.6, (d) follows from Lemma C.8, (e) is due to the Cauchy’s

inequality. For inequality (a), by the design of StepMix, when πk ̸= πk,0, we must have ρ
˜
V k,h0−1
1 + (1− ρ)

˜
V k,h0

1 = γ or

ρ
˜
V k,h0−1
1 + (1− ρ)

˜
V k,h0

1 =
˜
V πk,H

1 ≤ γ. Both cases indicate that inequality (a) holds.

We can also bound the summation as follows:

∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

≤
H∑

h=1

∑

s,a

∑

k∈N

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

≤β⋆(K, δ′)

H∑

h=1

∑

s,a

∑

k∈N

(
dkh(s, a)

n̄k
h(s, a) ∨ 1

)

(a)

≤ β⋆(K, δ′)

H∑

h=1

∑

s,a

4 log (|N |+ 1)

≤ 4HSAβ⋆(K, δ′) log (|N |+ 1), (36)

where inequality (a) follows from Lemma F.6.

Similar to Equation (36), we also have

∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

≤ 4HSAβ(K, δ′) log (|N |+ 1). (37)

Hence, putting the bound of summations into Equation (35), we have

|N |κ ≤ 48e13
√

|N |
√

H3SAβ⋆(K, δ′) log (|N |+ 1) + 1344e13H3SAβ(K, δ′) log (|N |+ 1).

Rearranging the terms, we conclude that |N | ≤ ( 4608e
26

κ2 + 2688e13S
κ )H3SA log2(K + 1) = Õ

((
1
κ2 + S

κ

)
H3SA

)
, which

completes the proof.

C.4. Step Four: Putting Everything Together

Finally, with all the results above, we can prove Theorem 4.2.

Theorem C.10 (The complete version of Theorem 4.2). Given δ ∈ (0, 1), set δ′ = δ
3(H+1) , β = log(SAH/δ′) +

S log(8e(K + 1)), and β⋆ = log(SAH/δ′) + log(8e(K + 1)). Then, with probability at least 1 − δ, StepMix satisfies

constraint in (2) and achieves a regret upper bounded as

Reg(K) ≤Õ
(√

H3SAK +H3S2A+H3SA∆0

(
1

κ2
+

S

κ

))

,

where ∆0 = V ⋆
1 − V πb

1 and κ = V πb

1 − γ.

Proof. We use the same notations specified in Appendix B. Then, under the previously defined good events (which occur

with probability at least 1− δ), we have

Reg(K) =

K∑

k=1

(V ⋆
1 − V πk

1 )

(a)
=
∑

k/∈N

(V ⋆,0 − V k,0) +
∑

k∈N

(V ⋆ − V πb

) +
∑

k∈N

(V πb − V πk

)
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(b)

≤
∑

k/∈N

(V ⋆,0 −
˜
V k,0) + |N |∆0 +

∑

k∈N

(ρπk,h0−1
1 Gk,h0−1

1 + (1− ρ)πk,h0

1 Gk,h0

1 )

(c)

≤
K∑

k=1

(ρπk,h0−1
1 Gk,h0−1

1 + (1− ρ)πk,h0

1 Gk,h0

1 ) + |N |∆0

(d)

≤
K∑

k=1

(

24e13H

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

))

+ |N |∆0, (38)

where (a) is due to that π⋆,0 = π⋆ and πk = πk,0 when k /∈ N ; (b) follows from the fact that
˜
V k,0
1 is the LCB of V k,0

1 and

Equation (33) to Equation (34) in the proof of Lemma C.9; (c) is due to V ⋆,0
1 −

˜
V k,0
1 ≤ πk,0

1 Gk,0
1 as shown in Lemma C.6,

and (d) is from Lemma C.8.

Using Equations (36) and (37) from the proof of Lemma C.9, we obtain

K∑

k=1



24e13H

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)




≤ 48e13
√

H3SAKβ⋆(K, δ′) log (K + 1) + 1344e13H3SAβ(K, δ′) log (K + 1). (39)

Plugging (39) and the result of Lemma C.9 into Equation (38), we further have:

Reg(K) ≤ 48e13
√

H3SAKβ⋆(K, δ′) log (K + 1) + 1344e13H3SAβ(K, δ′) log (K + 1)

+

(
4608e26

κ2
+

2688e13S

κ

)

H3SA log(K + 1)∆0

= Õ

(√
H3SAK +H3S2A+H3SA∆0

(
1

κ2
+

S

κ

))

.

Finally, we prove that StepMix satisfies the constraint episodically. Specifically, for any online policy πk, we have

V πk

1 = ρV k,h0−1
1 + (1− ρ)V k,h0

1 ≥ ρ
˜
V k,h0−1
1 + (1− ρ)

˜
V k,h0

1 .

If πk = πk,H = πb, πk must satisfy the constraint, because πb is assumed to be safe. Otherwise, if h0 = 0, that means πk =

πk,0 and
˜
V k,0
1 > γ, so πk must be safe; if h0 ̸= 0, we have

˜
V k,h0

1 ≥ γ and
˜
V k,h0−1
1 < γ, so that ρ = ˜

V
k,h0
1 (s1)−γ

˜
V

k,h0
1 (s1)−

˜
V

k,h0−1
1

guarantees that γ = ρ
˜
V k,h0−1
1 + (1− ρ)

˜
V k,h0

1 . Since ρ
˜
V k,h0−1
1 + (1− ρ)

˜
V k,h0

1 ≤ ρV k,h0−1
1 + (1− ρ)V k,h0

1 = V πk

1 , πk

is also safe.

We remark that when γ = 0 the additive term Õ
(
H3SA∆0

(
1
κ2 + S

κ

))
in Theorem 4.2 can be dropped, as formally stated

in the following corollary.

Corollary C.11 (Vanishing additive term). When γ = 0, with all the parameters specified in Theorem 4.2, StepMix satisfies

constraint (2) and achieves a regret upper bounded as

Reg(K) ≤Õ
(√

H3SAK +H3S2A
)

,

where ∆0 = V ⋆
1 − V πb

1 , κ = V πb

1 − γ.

Proof. If γ = 0, based on the definition of
˜
Qk,h0

h in Equation (14), we have
˜
Qk,h0

h ≥ 0 = γ for any k, h0 and h.

Thus, under StepMix, the executed policy πk must be the optimistic policy π̄k. Recall that the definition of N is

N = {k|k ∈ [K], πk ̸= π̄k}. Therefore, we have N = ∅ and |N | = 0.
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With |N | = 0 and Equation (38), we have

Reg(K) ≤
K∑

k=1



24e13H

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)




+ |N |∆0

=

K∑

k=1



24e13H

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)




(a)

≤ 48e13
√

H3SAKβ⋆(K, δ′) log (K + 1) + 1344e13H3SAβ(K, δ′) log (K + 1)

= Õ
(√

H3SAK +H3S2A
)

,

where (a) is due to Equations (36) and (37).

D. Algorithm Design and Analysis of EpsMix Algorithm

In this section, we present the detailed design and analysis of the EpsMix algorithm.

D.1. Algorithm Design

The EpsMix algorithm is presented in Algorithm 4. The update rule of Q̃k
h,

˜
Qk

h is given below, where δ′ = δ/4.

Q̃k
h(s, a) ≜ min

(

H, rh(s, a) + 3

√

VarP̂k
h
(Ṽ k

h+1)(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 14H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
1

H
P̂ k
h (Ṽ

k
h+1 −

˜
V k
h+1)(s, a) + P̂ k

h Ṽ
k
h+1(s, a)

)

,

˜
Qk

h(s, a) ≜ max

(

0, rh(s, a)− 3

√

VarP̂k
h
(Ṽ k

h+1)(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

− 22H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

− 2

H
P̂ k
h (Ṽ

k
h+1 −

˜
V k
h+1)(s, a) + P̂ k

h
˜
V k
h+1(s, a)

)

.

(40)

Similarly, the update rule of Q̃k,b
h and

˜
Qk,b

h is defined as

Q̃k,b
h (s, a) ≜ min

(

H, rh(s, a) + 3

√

VarP̂k
h
(Ṽ k,b

h+1)(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 14H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+
1

H
P̂ k
h (Ṽ

k,b
h+1 − ˜

V k,b
h+1)(s, a) + P̂ k

h Ṽ
k,b
h+1(s, a)

)

,

˜
Qk,b

h (s, a) ≜ max

(

0, rh(s, a)− 3

√

VarP̂k
h
(Ṽ k,b

h+1)(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

− 22H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

− 2

H
P̂ k
h (Ṽ

k,b
h+1 − ˜

V k,b
h+1)(s, a) + P̂ k

h
˜
V k,b
h+1(s, a)

)

.

(41)

D.2. Theoretical Analysis

The performance of the EpsMix Algorithm is characterized in the following theorem.

Theorem D.1 (Regret of EpsMix). Given δ ∈ (0, 1), set δ′ = δ
4 , β = log(SAH/δ′) + S log(8e(K + 1)), and β⋆ =

log(SAH/δ′) + log(8e(K + 1)). Then, with probability at least 1− δ, EpsMix (Algorithm 4) simultaneously (i) satisfies
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Algorithm 4 The EpsMix Algorithm

Input: πb, γ, β, β⋆, D0 = ∅
for k = 1 to K do

Update the model estimate

P̂ k
h (s

′|s, a) =
{

nk
h(s, a, s

′)/nk
h(s, a), if nk

h(s, a) > 0,

1/S, if nk
h(s, a) = 0.

# Optimistic policy identification

Q̃k
H+1 =

˜
Qk

H+1 = 0.

for h = H to 1 do

Update Q̃k
h(s, a),

˜
Qk

h(s, a), ∀(s, a) ∈ S ×A according to Equation (40).

π̄k
h(s)← argmaxa Q̃

k
h(s, a), Ṽ

k
h (s)← Q̃k

h(s, π̄
k
h(s)), ˜

V k
h (s)←

˜
Qk

h(s, π̄
k
h(s)), ∀s ∈ S .

end for

# Evaluate the baseline policy

Q̃k,b
H+1 =

˜
Qk,b

H+1 = 0.

for h = H to 1 do

Update Q̃k,b
h (s, a),

˜
Qk,b

h (s, a), ∀(s, a) ∈ S ×A according to Equation (41).

Ṽ k,b
h (s)← Q̃k,b

h (s, πb
h(s)), ˜

V k,b
h (s)←

˜
Qk,b

h (s, πb
h(s)), ∀s ∈ S .

end for

# Safe exploration policy selection

if
˜
V k
1 ≥ γ then

πk = π̄k.

else if
˜
V k,b
1 < γ then

πk = πb.

else

ρ = ˜
V k,b
1 (s1)−γ

˜
V k,b
1 (s1)−

˜
V k
1

,

πk = ρπ̄k ⊕ (1− ρ)πb.

end if

Execute πk and collect {(skh, akh, skh+1)}Hh=1.

Dn ← Dn−1 ∪ {(skh, akh, skh+1)}Hh=1.

end for

the conservative constraint in (2), and (ii) achieves a total regret that is upper bounded by

Õ

(√
H3SAK +H3S2A+H3SA∆0

(
1

κ2
+

S

κ

))

,

where ∆0 = V ⋆
1 − V πb

1 is the suboptimality gap of the baseline policy, and κ = V πb

1 − γ is the tolerable value loss from the

baseline policy.

Before we proceed to prove Theorem D.1, we sketch the proof as follows: First, we establish the UCBs and LCBs of the

value functions for the baseline policy πb and the optimal policy π⋆ in each episode, following similar approaches as in the

proof of Theorem 4.2. We then show that the total number of episodes where the algorithm executes πb or the episodic

mixture policy is bounded, which ensures that the performance degradation compared with BPI-UCBVI (MÂenard et al.,

2021) is bounded. Finally, the established LCBs ensure that the conservative constraint is satisfied in each episode.

Lemma D.2. With probability at least 1− δ, the following good events occur simultaneously:

E(δ′), Ecnt(δ′), E⋆(V ⋆, δ′), E⋆(V πb

, δ′),

where δ′ = δ/4.

Proof. This result can be obtained by noting that each of those events hold with probability at least 1−δ/4 under Theorem F.7,

Theorem F.8 and Theorem F.9, and then taking the union bound.

28



Near-optimal Conservative Exploration under Episode-wise Constraints

In the following proof of EpsMix, we set δ′ = δ/4. We note that Equation (40) and Equation (41) are defined in a similar

form as Equation (8). As a result, Lemmas C.5 to C.7 can be directly extended for EpsMix, as stated below. We note that

Qk,h0 need to be bounded for every h0 ∈ [H] ∪ {0} in StepMix, while in EpsMix, we only need to bound Qk and Qk,b.

Lemma D.3 (UCB and LCB for EpsMix). The relationship between Q̃k
h,

˜
Qk

h, Ṽ k
h ,

˜
V k
h and the corresponding true value

functions Qk
h, V k

h , Q⋆
h, V ⋆

h are specified in the following inequalities:

˜
Qk

h(s, a) ≤ Qk
h(s, a) ≤ Q⋆

h(s, a) ≤ Q̃k
h(s, a),

˜
V k
h (s) ≤ V k

h (s) ≤ V ⋆
h (s) ≤ Ṽ k

h (s),

In addition, the relationships between Q̃k,b
h ,

˜
Qk,b

h , Ṽ k,b
h ,

˜
V k,b
h , and the true value functions Qπb

h , V πb

h are specified in the

following inequalities:

˜
Qk,b

h (s, a) ≤Qπb

h (s, a) ≤ Q̃k,b
h (s, a),

˜
V k,b
h (s) ≤V πb

h (s) ≤ Ṽ k,b
h (s).

Lemma D.4. Define Gk
h and Gk,b

h as

Gk
h(s, a) = min

(

H, 6

√

VarP̂k
h
(Ṽ k

h+1)(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 36H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+ (1 +
3

H
)P̂ k

hπ
k
h+1G

k
h+1(s, a)

)

,

(42)

Gk,b
h (s, a) = min

(

H, 6

√

VarP̂k
h
(Ṽ k,b

h+1)(s, a)
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

+ 36H2 β(n
k
h(s, a), δ

′)

nk
h(s, a)

+ (1 +
3

H
)P̂ k

hπ
k,b
h+1G

k,b
h+1(s, a)

)

.

(43)

Then, the estimation error between Q⋆
h, V ⋆

h and
˜
Qk

h,
˜
V k
h can be bounded as

Q⋆
h(s, a)−

˜
Qk

h(s, a) ≤ Gk
h(s, a),

V ⋆
h (s)−

˜
V k
h (s) ≤ ⟨π̂k

h(·|s), Gk
h(s, ·)⟩.

Moreover, the estimation error between Qπb

h , V πb

h (s) and
˜
Qk,b

h ,
˜
V k,b
h can be bounded as

Qπb

h (s, a)−
˜
Qk,b

h (s, a) ≤ Gk,b
h (s, a),

V πb

h (s)−
˜
V k,b
h (s) ≤ ⟨πb

h(·|s), Gk,b
h (s, ·)⟩.

Lemma D.5 (Bounding πk
1G

k
1 and πk,b

1 Gk,b
1 ). Recall the functions of Gk and Gk,b in Equations (42) and (43). We have

πk
1G

k
1(s1) ≤24e13

H∑

h=1

∑

s,a

dkh(s, a)

√

VarPh
(V k

h+1)(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

,

and

πk,b
1 Gk,b

1 (s1) ≤24e13
H∑

h=1

∑

s,a

dbh(s, a)

√

VarPh
(V k,b

h+1)(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dbh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

,

where dkh and dbh are the occupancy measures under policy π̄k and πb, respectively.
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The proofs of the above three lemmas follow the same approaches as those for StepMix, and thus are omitted.

Besides, although the construction of the mixture policy under EpsMix is different from that under StepMix, the linearlity of

the occupancy measure and the corresponding value function is preserved under EpsMix.

Lemma D.6. Let π = ρπ1⊕ (1−ρ)π2, and d1h(s, a) and d2h(s, a) be the occupancy measures under π1 and π2, respectively.

Then, the following equality holds:

dπh(s, a) = ρd1h(s, a) + (1− ρ)d2h(s, a).

Recall that the occupancy measure under a policy π is defined as dπh(s, a) = Eπ[1{sh = s, ah = a}].

Proof. Let Bρ be an independent Bernoulli random variable with mean ρ, and let π be π1 if Bρ = 1 and be π2 otherwise.

Then,

dπh(s, a) =Eπ[1{sh = s, ah = a}]
=Eπ[1{sh = s, ah = a}|Bρ = 1]P[Bρ = 1] + Eπ[1{sh = s, ah = a}|Bρ = 0]P[Bρ = 0]

=Eπ1 [1{sh = s, ah = a}] · ρ+ Eπ2 [1{sh = s, ah = a}](1− ρ)

=ρd1h(s, a) + (1− ρ)d2h(s, a).

Proposition D.7. Under the same condition as in Lemma D.6, the following equality holds:

V π
1 = ρV π1

1 + (1− ρ)V π2

1 .

Based on the linearity shown in Lemma D.6, we obtain a result similar to that in Lemma C.8 for episodic mixture policies.

Lemma D.8. For an episodic mixture policy πk mixed from two policies π̄k and πb, defined as πk = (1− ρ)πb ⊕ ρπ̄k, the

following bound holds:

(1− ρ)πb
1G

k,b
1 (s1) + ρπ̄k

1G
k
1(s1)

≤ 24e13H

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

,
(44)

where dkh(s, a) is the occupancy measure under policy πk.

Lemma D.8 can be proved following a similar approach as in the proof of Lemma C.8.

Now we establish the EpsMix version of the finite non-optimistic policy lemma.

Lemma D.9. Define N = {k|k ∈ [K], πk ̸= π̄k}. Then, the cardinality of N in the EpsMix algorithm can be bounded as

|N | ≤
(
4608e26

κ2
+

2688e13S

κ

)

H3SA log2(K + 1) = Õ

((
1

κ2
+

S

κ

)

H3SA

)

,

where κ = V πb

1 − γ.

Proof. If πk ̸= π̂k, we must have
˜
V k
1 < γ = V πb

1 −κ. There are two possible cases for
˜
V k,b
1 . Case 1:

˜
V k,b
1 < γ = V πb

1 −κ.

For this case, the algorithm will choose πk = πb. Thus, V πb

1 −
˜
V k,b
1 > κ. Case 2:

˜
V k,b
1 ≥ γ. For this case, the

algorithm will choose πk = ρπ̄k ⊕ (1 − ρ)πb. The design of ρ ensures that ρ
˜
V k
1 + (1 − ρ)

˜
V k,b
1 = γ. Therefore,

V πb

1 − (ρ
˜
V k
1 +(1−ρ)

˜
V k,b
1 ) = κ. We note that πk = πb can also be viewed as 1 ·πb⊕0 · π̄k. Thus, for any k ∈ N , we have

V πb

1 − (ρ
˜
V k
1 + (1− ρ)

˜
V k,b
1 ) ≥ κ.

Furthermore, due to the optimality of π⋆, we have V πb

1 ≤ ρV ⋆
1 + (1− ρ)V πb

1 . Thus,

|N |κ ≤
∑

k∈N

(

V πb

1 − (ρ
˜
V k
1 + (1− ρ)

˜
V k,b
1 )

)
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≤
∑

k∈N

(

(ρV ⋆
1 + (1− ρ)V πb

1 )− (ρ
˜
V k
1 + (1− ρ)

˜
V k,b
1 )

)

=
∑

k∈N

(

ρ(V ⋆
1 −

˜
V k
1 ) + (1− ρ)(V πb

1 −
˜
V k,b
1 )

)

(a)

≤
∑

k∈N

(

ρπ̄k
1G

k
1 + (1− ρ)πb

1G
k,b
1

)

,

where inequality (a) is based on Lemma D.4.

Then, leveraging Lemma D.8, we have

|N |κ ≤ 24e13H
∑

k∈N

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

(b)

≤ 24e13H
√

|N |

√
√
√
√
∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

,

where inequality (b) follows from the Cauchy’s inequality and δ′ = δ/4.

Similar to Equation (36) and Equation (37) in Lemma C.9, we have

∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

≤ 4HSAβ⋆(K, δ′) log (|N |+ 1), (45)

and

∑

k∈N

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

≤ 4HSAβ(K, δ′) log (|N |+ 1). (46)

Therefore, we have

|N |κ ≤ 48e13
√

|N |
√

H3SAβ⋆(K, δ′) log (|N |+ 1) + 1344e13H3SAβ(K, δ′) log (|N |+ 1).

By rearranging terms, we conclude that |N | ≤ ( 4608e
26

κ2 + 2688e13S
κ )H3SA log2(K + 1) = Õ(( 1

κ2 + S
κ )H

3SA).

Finally, we are ready to prove the regret upper bound of EpsMix.

Proof of Theorem D.1. First, we have

K∑

k=1

(

V ⋆
1 − V πk

1

)

=
∑

k/∈N

(

V ⋆
1 − V πk

1

)

+
∑

k∈N

(

V ⋆
1 − V πb

1

)

+
∑

k∈N

(

V πb

1 − V πk

1

)

≤
∑

k/∈N

(
V ⋆
1 −

˜
V k
1

)
+
∑

k∈N

(

ρk(V ⋆
1 −

˜
V k
1 ) + (1− ρk)(V πb

1 −
˜
V k,b
1 )

)

+ |N |∆0

=

K∑

k=1

(

ρk(V ⋆
1 −

˜
V k
1 ) + (1− ρk)(V πb

1 −
˜
V k,b
1 )

)

+ |N |∆0

(a)

≤
K∑

k=1

(

ρkπ̄k
1G

k
1 + (1− ρk)πb

1G
k,b
1

)

+ |N |∆0,

where inequality (a) follows from Lemma D.4.
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Then, we use Lemma D.8 and the result of Lemma D.9 to bound the regret as follows:

K∑

k=1

(

V ⋆
1 − V πk

1

)

≤
K∑

k=1

(

24e13H

√
√
√
√

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

))

+

(
4608e26

κ2
+

2688e13

κ

)

H3SA log(K + 1)∆0

≤24e13H
√
K

√
√
√
√

K∑

k=1

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+ 336e13H2
K∑

k=1

H∑

h=1

∑

s,a

dkh(s, a)

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

+

(
4608e26

κ2
+

2688e13S

κ

)

H3SA log(K + 1)∆0,

where the last inequality is due to the Cauchy’s inequality. Then we use the bound of summation in Lemma D.9 and plug

Equations (45) and (46) into the above inequality, to conclude that

Reg(K) =

K∑

k=1

(

V ⋆
1 − V πk

1

)

≤ 48e13
√

H3SAKβ⋆(K, δ′) log (K + 1) + 1344e13H3SAβ(K, δ′) log (K + 1)

+

(
4608e26

κ2
+

2688e13S

κ

)

H3SA log2(K + 1)∆0

= Õ

(√
H3SAK +H3S2A+H3SA∆0

(
1

κ2
+

S

κ

))

.

E. From Baseline Policy to Offline Dataset

E.1. Offline Algorithm

The offline VI-LCB algorithm is detailed in Algorithm 5.

Algorithm 5 Offline VI-LCB (Algorithm 3 in Xie et al. (2021))

Require: Dataset D = {(s(i)h , a
(i)
h , r

(i)
h , s

(i)
h+1)

H
h=1}ni=1 collected using an unknown baseline policy µ

Randomly divide D into H sets {Dh}Hh=1 such that |Dh| = n/H .

Estimation P̂h(s
′|s, a) and bh(s, a) using Dh.

Set V̂H+1(s, a) = 0, ∀s, a.

for h = H to 1 do

Q̂h(s, a) = max(0, rh(s, a) + P̂hV̂h+1(s, a)− bh(s, a)), ∀s, a.

Let π̂h(s) = argmaxa Q̂h(s, a), ∀s.

V̂h(s) = Q̂h(s, π̂h(s)), ∀s.

end for

Return π̂.

E.2. Theoretical Analysis

In Algorithm 5, P̂h(s
′|s, a) and bh(s, a) are defined as:

P̂h(s
′|s, a) = nh(s, a, s

′)

1 ∨ nh(s, a)
, bh(s, a) = c

√

H2ι

nh(s, a) ∨ 1
,
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where ι = log(HSA/δ), nh(s, a) =
∑

sh,ah∈Dh
1{sh = s, ah = a} is the count of visitations of state-action pair (s, a) at

step h, and nh(s, a, s
′) =

∑

sh,ah,sh+1∈Dh
1{sh = s, ah = a, sh+1 = s′} is the count of visiting state-action pair (s, a) at

step h while having state s′ as the next state. Both counts are only for samples in dataset Dh.

Following the approach in Xie et al. (2021), we first define the good events as follows.

Lemma E.1 (Lemma B.1 in Xie et al. (2021)). With probability at least 1− δ, there exists a finite constant c such that the

following good events hold:

∀h ∈ [H], (s, a) ∈ S ×A, |(Ph − P̂h)V̂h+1(s, a)| ≤ c

√

H2ι

nh(s, a)
= bh(s, a),

1

nh(s, a)
≤ c

Hι

ndµ(s, a)
,

where ι = log(HSA/δ) and dµ(s, a) is the occupancy measure under the behavior policy µ.

Under the good events, Q̂h(s, a) can be proved to be the lower confidence bound of Qπ̂
h(s, a) as shown in the following

lemma.

Lemma E.2 (Lemma B.2 in Xie et al. (2021)). Let Q̂h(s, a) = max(0, rh(s, a) + P̂hV̂h+1(s, a)− bh(s, a)). Then, under

the good events defined in Lemma E.1, we have

Q̂h(s, a) ≤ Qπ̂
h(s, a).

The above two lemmas are the same as Xie et al. (2021), and thus we omit the proofs.

We first bound the value difference V µ
1 − V π̂

1 with the offline estimation bonus bkh(s, a) in the following lemma.

Lemma E.3. Suppose there are n trajectories collected under the behavior policy µ. Then, under the good events defined in

Lemma E.1, the extracted policy π̂ satisfies

V µ
1 − V π̂

1 ≤ 2

H∑

h=1

∑

(s,a)∈S×A

dµh(s, a)bh(s, a),

where bh(s, a) = c
√

H2ι
nh(s,a)∨1 .

Proof. We directly calculate the suboptimality gap as follows

V µ
h (s)− V π̂

h (s) =V µ
h (s)−max

a
Qπ̂

h(s, a)

≤Ea∼µh(·|s)[Q
µ
h(s, a)−Qπ̂

h(s, a)]

≤Ea∼µh(·|s)[bh(s, a) + PhV
µ
h+1(s, a)− P̂hV̂h+1(s, a)]

=Ea∼µh(·|s)[bh(s, a) + Ph(V
µ
h+1 − V̂h+1)(s, a) + (Ph − P̂h)V̂h+1(s, a)]

≤2Ea∼µh(·|s)[bh(s, a)] + Ea∼µh(·|s),s′∼P (·|s,a)[V
µ
h+1(s

′)− V π̂
h+1(s

′)].

Recursively unfolding the above inequality from h = 1, we have:

V µ
1 − V π̂

1 ≤ 2

H∑

h=1

∑

(s,a)∈S×A

dµh(s, a)bh(s, a).

The following theorem establishes an upper bound for the gap between the learned policy π̂ and the behavior policy µ.

Theorem E.4 (Adapted from Theorem 1 in Xie et al. (2021)). Suppose n trajectories are collected in the offline dataset

collected under policy µ. Then, with probability at least 1− δ, the output policy π̂ of the offline Algorithm VI-LCB satisfies

V µ
1 − V π̂

1 ≤ 2cι

√

H5SA

n
,

where ι = log(HSA/δ).
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Proof. Under the good events defined in Lemma E.1, we have

V µ
1 − V π̂

1

(a)

≤ 2

H∑

h=1

∑

(s,a)∈S×A

dµh(s, a)bh(s, a)

≤ 2c

H∑

h=1

∑

(s,a)∈S×A

dµh(s, a)

√

H2ι

nh(s, a) ∨ 1

(b)

≤ 2c
√
H2ι

H∑

h=1

∑

(s,a)∈S×A

dµh(s, a)

√

Hι

ndµh(s, a)

≤ 2cι

√

H3

n

H∑

h=1

∑

(s,a)∈S×A

√

dµh(s, a)

(c)

≤ 2cι

√

H3

n

√
√
√
√

H∑

h=1

∑

(s,a)∈S×A

1

√
√
√
√

H∑

h=1

∑

(s,a)∈S×A

dµh(s, a)

= 2cι

√

H5SA

n
,

where (a) is from Lemma E.3, (b) follows from the definition of good events in Lemma E.1, and (c) is based on the Cauchy’s

inequality.

Based on the above theorem, we have the following corollary regarding the sample complexity.

Corollary E.5. With probability at least 1− δ/2, if n ≥ 16c2ι′2H5SA
(V µ

1 −γ)2
and V µ

1 > γ, the output π̂ of offline VI-LCB satisfies

V π̂
1 ≥ (V µ

1 + γ)/2, where ι′ = log(2HSA/δ).

Proof. To ensure V π̂
1 > (V µ

1 + γ)/2, we need to establish V µ
1 − V π̂

1 < (V µ
1 − γ)/2. We note that if

2cι

√

H5SA

n
< (V µ

1 − γ)/2, (47)

then V µ
1 − V π̂

1 < (V µ
1 − γ)/2. Rearranging the terms in Equation (47) leads to

n >
16c2ι′2H5SA

(V µ
1 − γ)2

,

which completes the proof.

Combining Corollary E.5 and Theorem 4.2, we can prove the following theorem.

Theorem E.6. Assume that there are at least n ≥ 16c2ι′2H5SA
(V µ

1 −γ)2
offline trajectories collected under a safe behavior policy µ.

If we let Algorithm 5 run on the offline dataset and pass the output π̂ to Algorithm 1 as the baseline πb, then, with probability

at least 1− δ, StepMix does not violates the constraint in Equation (2) and achieves a regret that scales in

Õ

(√
H3SAK +H3S2A+H3SA∆̄0

(
1

κ̄2
+

S

κ̄

))

,

where κ̄ = (V µ
1 − γ)/2 > 0 and ∆̄0 = V ⋆

1 − V µ
1 + κ̄.

Proof. Corollary E.5 states that with n ≥ 16c2ι′2H5SA
(V µ

1 −γ)2
offline trajectories, P[V π̂

1 > (V µ
1 + γ)/2] ≥ 1− δ/2. Denote A the

event that π̂ satisfies V π̂ > (V µ
1 + γ)/2. Then, we have P[A] ≥ 1− δ/2.
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Theorem 4.2 states that if V π̂ > (V µ
1 + γ)/2 > γ, with probability 1− δ/2, StepMix does not violate the constraint and

achieves a regret at most

48e13
√

H3SAKβ⋆(K, δ′) log (K + 1) + 1344e13H3SAβ(K, δ′) log (K + 1)

+

(
4608e26

κ̄2
+

2688e13S

κ̄

)

H3SA log2(K + 1)∆0

= Õ

(√
H3SAK +H3S2A+H3SA∆̄0

(
1

κ̄2
+

S

κ̄

))

,

where δ′ = δ
6(H+1) , V π̂

1 − γ ≥ κ̄ = (V µ
1 − γ)/2, and ∆̄0 = V ⋆

1 − V µ
1 + κ̄.

Since we use π̂ as baseline, by letting B denote the event that StepMix achieves the regret in Theorem E.6 and does not

violate the constraint, we have P[B|A] ≥ 1− δ/2. Because P[B] = P[B|A]P[A] = (1− δ/2)(1− δ/2) ≥ 1− δ, we have

that, with overall probability at least 1 − δ, when StepMix uses the output of offline UCB-VI as the baseline policy, it

achieves a regret that is at most

Õ

(√
H3SAK +H3S2A+H3SA∆̄0

(
1

κ̄2
+

S

κ̄

))

without violating the constraint.

We can also combine Corollary E.5 and Theorem D.1 to prove the following theorem for EpsMix, which is similar to

Theorem E.6 for StepMix.

Theorem E.7. Assume that there are at least n ≥ 16c2ι′2H5SA
(V µ

1 −γ)2
trajectories collected under a safe behavior policy µ. If we

let Algorithm 5 run on the offline dataset and pass the output π̂ to Algorithm 4 as the baseline πb, then, with probability at

least 1− δ, EpsMix does not violate the constraint in Equation (2) and achieves a regret that scales in

Õ

(√
H3SAK +H3S2A+H3SA∆̄0

(
1

κ̄2
+

S

κ̄

))

,

where κ̄ = (V µ
1 − γ)/2 > 0 and ∆̄0 = V ⋆

1 − V µ
1 + κ̄.

The proof is similar to that of Theorem E.6 and is thus omitted.

F. Technical Lemmas

In this section, we list several technical lemmas that are used in the main proof.

Lemma F.1 (Lemma 11 in MÂenard et al. (2021)). Let p and q be two probability distributions supported by the state set S ,

and f be a function on S . If KL(p, q) ≤ α, 0 ≤ f(s) ≤ b, ∀s ∈ S , we have

Varq(f) ≤ 2Varp(f) + 4b2α,

Varp(f) ≤ 2Varq(f) + 4b2α.

Lemma F.2 (Lemma 12 in MÂenard et al. (2021)). Let p and q be two probability distributions supported by the state set S ,

and f, g be functions on S . If 0 ≤ g(s), f(s) ≤ b, ∀s ∈ S , we have

Varp(f) ≤ 2Varp(g) + 2bEp[|f − g|],

Varq(f) ≤ Varp(f) + 3b2 ∥p− q∥1 .
Lemma F.3 (Lemma 10 in MÂenard et al. (2021)). Let p and q be two probability distributions supported by the state set S ,

and f be a function on S . If KL(p, q) ≤ α and 0 ≤ f ≤ b, we have

|Ep[f ]− Eq[f ]| ≤
√

2Varq(f)α+
2

3
bα.
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Lemma F.4 (Lemma 6 in Huang et al. (2022)). Given transition kernel Ph, policy π and reward rh : S ×A → [0, 1], we

have:
H∑

h=1

∑

s,a

dπh(s, a)VarPh
(V π

h+1)(s, a) = Eπ,P





(
H∑

h=1

rh(sh, ah)− V π
1 (s1)

)2


 ≤ H,

where dπh is the occupancy measure under policy π and V π
h is the value function.

Lemma F.5. Under event Ecnt and using the same notations defined in Appendix B, we have

(
β(nk

h(s, a), δ
′)

nk
h(s, a)

∧ 1

)

≤ 4

(
β(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

.

Similarly, for β⋆, the following inequality holds:

(
β⋆(nk

h(s, a), δ
′)

nk
h(s, a)

∧ 1

)

≤ 4

(
β⋆(n̄k

h(s, a), δ
′)

n̄k
h(s, a) ∨ 1

)

.

Proof. Event Ecnt means that

nk
h(s, a) ≥

1

2
n̄k
h(s, a)− βcnt(δ′).

If βcnt(δ′) ≤ 1
4 n̄

k
h(s, a), we directly have the result nk

h(s, a) ≥ 1
4 n̄

k
h(s, a), which proves

(
β(nk

h(s,a),δ
′)

nk
h
(s,a)

∧ 1
)

≤
4
(

β(n̄k
h(s,a),δ

′)

n̄k
h
(s,a)∨1

)

. On the other hand, if βcnt(δ′) ≥ 1
4 n̄

k
h(s, a), based on the fact that β(nk

h(s, a), δ
′) ≥ βcnt(δ′) > 1,

we have that
(

β(nk
h(s,a),δ

′)

nk
h
(s,a)

∧ 1
)

≤ 1 ≤ 4
(

β(n̄k
h(s,a),δ

′)

n̄k
h
(s,a)∨1

)

. The same arguments can also be applied to the inequality with

β⋆.

Lemma F.6. For any state-action pair (s, a), step h and a subset of episodes N ⊆ [K], we have

∑

k∈N

dkh(s, a)

n̄k
h(s, a) ∨ 1

≤ 4 log(|N |+ 1),

where dh(s, a) is the occupancy measure, n̄k
h(s, a) is the expected visitation count.

Proof. We have

∑

k∈N

dkh(s, a)

n̄k
h(s, a) ∨ 1

=
∑

k∈N

dkh(s, a)

(
∑h−1

t=1 dkt (s, a)) ∨ 1

≤
∑

k∈N

dkh(s, a)

(
∑

t∈N ,t<k d
k
t (s, a)) ∨ 1

≤
∑

k∈N

4dkh(s, a)

2
∑

t∈N ,t<k d
k
t (s, a) + 2

≤ 4
∑

k∈N

dkh(s, a)
∑

t∈N ,t<k d
k
t (s, a) + dkh(s, a) + 1

≤ 4
∑

k∈N

dkh(s, a)
∑

t∈N ,t≤k d
k
t (s, a) + 1

.

Then, by noting f(k) =
∑

t∈N ,t≤k d
k
t (s, a) and k′ = maxt{t ∈ N ∪ {0}|t < k}, we have

4
∑

k∈N

dkh(s, a)
∑

t∈N ,t≤k d
k
t (s, a) + 1

≤ 4
∑

k∈N

f(k)− f(k′)

f(k) + 1
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≤ 4
∑

k∈N

∫ f(k)

x=f(k′)

dx

x+ 1

≤ 4

∫ |N |+1

x=1

1

x
dx

= 4 log(|N |+ 1).

Theorem F.7 (Proposition 1 in Jonsson et al. (2020)). For a categorical distribution with probability distribution p ∈ Σm,

denoting P̂n as a frequency estimation of p, we have

P

(

∃n ∈ N
⋆, nKL(P̂n, p) > log(1/δ) + (m− 1) log(e(1 + n/(m− 1))

)

≤ δ.

Theorem F.8 (Lemma F.4 in Dann et al. (2017)). Let {Ft}nt=1 be a filtration, {Xt}nt=1 be a series of Bernoulli random

variables with P[Xt = 1|Ft−1] = pt, where pt is Ft−1-measurable. Then

∀δ > 0,P

(

∃n :
n∑

t=1

Xt <
n∑

t=1

pt/2− log(1/δ)

)

≤ δ.

Theorem F.9 (Theorem 5 in MÂenard et al. (2021), Lemma 3 in (Domingues et al., 2021b)). Suppose (Yt)t∈N and (wt)t∈N

are two sequences from filtration (Ft)t∈N, subject to wt ∈ [0, 1], |Yt| ≤ b and E[Yt|Ft] = 0. Define

St =
t∑

s=1

wsYs, Vt =
t∑

s=1

w2
sE[Y

2
s |Fs],

then, for any δ ∈ (0, 1), we have

P

(

∃t ≥ 1, (Vt/b2 + 1)h

(
b|St|
Vt + b2

)

≥ log(1/δ) + log(4e(2t+ 1))

)

≤ δ,

where h(x) = (x+ 1) log(x+ 1)− x.

This result can be equivalently stated as: with probability at least 1− δ, the following inequality holds:

|St| ≤
√

2Vt log 4e(2t+ 1)/δ + 3b log(4e(2t+ 1)/δ).
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