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Abstract

This paper investigates conservative exploration
in reinforcement learning where the performance
of the learning agent is guaranteed to be above
a certain threshold throughout the learning pro-
cess. It focuses on the tabular episodic Markov
Decision Process (MDP) setting that has finite
states and actions. With the knowledge of an ex-
isting safe baseline policy, an algorithm termed as
StepMix is proposed to balance the exploitation
and exploration while ensuring that the conserva-
tive constraint is never violated in each episode
with high probability. StepMix features a unique
design of a mixture policy that adaptively and
smoothly interpolates between the baseline policy
and the optimistic policy. Theoretical analysis
shows that StepMix achieves near-optimal regret
order as in the constraint-free setting, indicating
that obeying the stringent episode-wise conser-
vative constraint does not compromise the learn-
ing performance. Besides, a randomization-based
EpsMix algorithm is also proposed and shown to
achieve the same performance as StepMix. The al-
gorithm design and theoretical analysis are further
extended to the setting where the baseline policy
is not given a priori but must be learned from an
offline dataset, and it is proved that similar con-
servative guarantee and regret can be achieved if
the offline dataset is sufficiently large. Experi-
ment results corroborate the theoretical analysis
and demonstrate the effectiveness of the proposed
conservative exploration strategies.
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1. Introduction

One of the major obstacles that prevent state-of-the-art re-
inforcement learning (RL) algorithms from being deployed
in real-world systems is the lack of performance guarantee
throughout the learning process. In particular, for many
practical systems, a reasonable albeit not necessarily opti-
mal baseline policy is often in place, and RL is later brought
in as a (supposedly) superior solution to replace the base-
line. System designers want the potentially better RL policy,
but are also wary of the possible performance degradation
incurred by exploration during the learning process. This
dilemma exists in many domains, including digital market-
ing, robotics, autonomous driving, healthcare, and network-
ing; see Garcia & Ferndndez (2015); Wu et al. (2016) for a
detailed discussion of practical examples. It is desirable to
have the RL algorithm perform nearly as well (or better) as
the baseline policy at all times.

To address this challenge, conservative exploration has re-
ceived increased interest in RL research over the past few
years (Garcelon et al., 2020a; Yang et al., 2021b; Efroni
et al., 2020; Zheng & Ratliff, 2020; Xu et al., 2020; Liu
et al., 2021). In the online learning setting, exploration of
the unknown environment is necessary for RL to learn about
the underlying Markov Decision Process (MDP). However,
“free” exploration provides no guarantee on the RL perfor-
mance, particularly in the early phases where the knowledge
of the environment is minimal and the algorithm tends to
explore almost randomly. To solve this problem, the vast
majority of the conservative exploration literature relies on
a key idea of invoking the baseline policy early on to build a
conservative budget, which can be spent in later episodes to
take explorative actions. This intuition, however, critically
depends on the definition of the conservative constraint be-
ing the cumulative expected reward over a horizon falling
below a certain threshold. If a more stringent constraint
defined on a per episode basis is adopted, this idea becomes
infeasible and it is unclear how conservative exploration can
be achieved.

In this paper, we focus on conservative exploration in an
episodic MDP with finite states and actions. Unlike most
of the prior works, we enforce a more strict conservative
constraint that the expected reward of the RL policy cannot
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Table 1. Comparison of Related Algorithms

Algorithm (Reference) Regret Violation Constraint-type Baseline Assumption
BPI-UCBVI (Ménard et al., 2021) 0 (m) N/A N/A N/A
OptPess-LP (Liu et al., 2021) O(%\/m ) 0 Episodic, general constraint Type 1
DOPE (Bura et al., 2022) O(%\/m ) 0 Episodic, general constraint Type 1
Budget-Exporation (Yang et al., 2021b) 0 (\/m + IP:I(:;S_{‘AAO(;) 0 Cumulative, conservative constraint Type I
StepMix / EpsMix (this work) 0 (\/m + %) 0 Episodic, conservative constraint Type I and IT
Lower bound (Yang et al., 2021b) Q <\/m + f&i"‘ﬁ)g) 0 Cumulative, conservative constraint Type I

Ag: suboptimality gap for the baseline policy; «: tolerable reward loss from the baseline policy or the Slater parameter. Type I assumes a known safe baseline policy. Type II
assumes availability of an offline dataset generated by an unknown safe behavior policy. The lower bound automatically applies to our problem, due to its weaker constraint.

be much worse than that of a baseline policy for every
episode. One fundamental question we aim to answer is:

Is it possible to design a conservative exploration
algorithm to achieve the optimal learning regret while
satisfying the episode-wise conservative constraint
throughout the learning process?

In this work, we provide an affirmative answer to this ques-
tion. Our main contributions are summarized as follows.

* First, we investigate the scenario where a safe baseline
policy is explicitly given upfront, and propose a model-
based learning algorithm coined StepMix. In contrast to
conventional linear programming or primal-dual based
approaches in constrained MDPs (Liu et al., 2021; Bura
et al., 2022; Wei et al., 2022; Efroni et al., 2020), StepMix
features several unique design components. First, in order
to achieve the optimal learning regret, StepMix relies
on a Bernstein inequality-based design to closely track
the estimation uncertainty in learning and construct an
efficient optimistic policy correspondingly. Then, a set of
candidate policies are explicitly constructed by smoothly
interpolating between the safe baseline policy and the
optimistic policy. Finally, a mixture of two candidate
policies is obtained when necessary to achieve the near-
optimal tradeoff between safe exploration and efficient
exploitation.

* Second, we theoretically analyze the performance of Step-
Mix, and rigorously show that it achieves O (v H3SAK)
regret, which is the order-optimal learning regret in the
unconstrained setting, while never violating the conser-
vative constraint during the learning process with high
probability. The conservative constraint turns out to only
incur an additive regret term, as opposed to a multiplica-
tive coefficient in Bura et al. (2022); Liu et al. (2021).
Furthermore, the additive term differs from that in the
lower bound in Yang et al. (2021b) by a small constant
factor, while our constraint is more stringent. Besides, we
extend the analysis to a randomization mechanism-based

EpsMix algorithm and show that it achieves the same
learning regret as StepMix and satisfies the conservative
constraint as well. A comparison of our work and these
relevant papers is presented in Table 1.

* Next, instead of assuming a safe baseline policy is explic-
itly provided, we investigate the scenario where the agent
only has access to an offline dataset collected under an
unknown safe behavior policy. The agent thus needs to
first extract an approximately safe baseline policy from
the dataset and then to use it as an input to the StepMix or
EpsMix algorithm. We explicitly characterize the impact
of the dataset size and the quality of the behavior policy
on the safety and regret of StepMix/EpsMix. Our results
indicate that similar regret and safety guarantees can be
achieved, as long as the dataset is sufficiently large.

* Finally, due to the explicit algorithmic design of the op-
timistic policy, the candidate policies and the mixture
policies, we are able to implement StepMix and EpsMix
efficiently and validate their performances through syn-
thetic experiments. The experimental results corroborate
our theoretical findings, and showcase the superior perfor-
mances of StepMix/EpsMix compared with other baseline
algorithms.

2. Related Works

In this section, we briefly discuss existing works that are
most relevant to our work. A detailed literature review is
deferred to Appendix A.

Unconstrained Episodic Tabular MDPs. Unconstrained
tabular MDPs have been well studied in the literature. For
an episodic MDP with S states, A actions and horizon H,
the minimax regret lower bound scales in (v H3SAK)
(Domingues et al., 2021a), where K denotes the number
of episodes. Several algorithms have been proposed and
shown to achieve the minimax lower bound (and thus order-
optimal), including Azar et al. (2017); Zanette & Brunskill
(2019); Ménard et al. (2021).
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Conservative Exploration. Conservative exploration cor-
responds to the setting where a good baseline policy that
may not be optimal is available, and the agent is required
to perform not much worse than the baseline policy dur-
ing the learning process. Such conservative scenario has
been studied in bandits (Wu et al., 2016; Kazerouni et al.,
2017; Garcelon et al., 2020b) and tabular MDPs (Garcelon
et al., 2020a). Garcelon et al. (2020a) investigate both the
average reward setting and the finite horizon setting. Yang
et al. (2021b) propose a reduction-based framework for
conservative bandits and RL, which translates a minimax
lower bound of the non-conservative setting to a valid lower
bound for the conservative case. It also proposes a Budget-
Exporation algorithm and shows that its regret scales in

0) <\/ H3SAK + HSSAAO) for tabular MDPs, where A

Kk(k+A0)
is the suboptimality gap of the baseline policy, and & is the
tolerable performance loss from the baseline. However, all
these works assume cumulative conservative constraint. As
discussed in Section 1, our episodic-wise constraint is more
stringent, and correspondingly the algorithms and the regret
analysis are also different from the prior works.

Constrained MDP with Baseline Policies. Conservative
exploration studied in this paper can be viewed as a spe-
cific case of the Constrained Markov Decision Process
(CMDP) (Altman, 1999; Liu et al., 2021; Efroni et al.,
2020; Wei et al., 2022), where the goal is to maximize
the expected total reward subject to constraints on the ex-
pected total costs in each episode. Assuming a known safe
baseline policy that satisfies the corresponding constraints,
OptPess-LP (Liu et al., 2021) is shown to achieve an regret
of O(%\/ H653AK) without any constraint violation with
high probability, while DOPE (Bura et al., 2022) improves
the regret to (N)(%\/ H6S?2AK), where « denotes the Slater
parameter. We note that both algorithms do not achieve the
optimal regret in the unconstrained counterpart.

3. Problem Formulation

We consider an episodic MDP M = (S, A, H, P,r,s1),
where S and A are the sets of states and actions, respec-
tively, H € Z is the length of each episode, P = { P, }}_,
and r = {r;, }}L_, are respectively the state transition prob-
ability measures and the reward functions, and s; is a
given initial state. We assume that S and A are finite sets
with cardinality S and A respectively. Moreover, for each
h € [H], Pyn(|s, a) denotes the transition kernel over the
next states if action a is taken for state s at step h € [H],
and rp, : S x A — [0, 1] is the deterministic reward function
at step i which is assumed be known for simplicity. Our
result can be easily generalized to random and unknown
reward functions. We consider the learning problem where
S and A are known while P are unknown a priori.

A policy 7 is a set of mappings {7, : S — A(A)}nein)»
where A(A) is the set of all probability distributions over
the action space A. In particular, 7 (a|s) denotes the prob-
ability of selecting action a in state s at time step h.

An agent interacts with this episodic MDP as follows. In
each episode, the environment begins with a fixed initial
state s1. Then, at each step h € [H], the agent observes
the state s;, € S, picks an action a;, € A, and receives
a reward rp(sp, ap) € [0,1]. The MDP then evolves to a
new state sp 4 that is drawn from the probability measure
Py, (+|sn, an). The episode terminates after H steps.

For each h € [H], we define the state-value function V;" :
S — R as the expected total reward received under policy
m when starting from an arbitrary state at the h-th step until
the end of the episode. Specifically, Vs € S, h € [H],

H

V}ZT(S) = Eﬂ—|: Z rh/(sh/,ah/)

h'=h

Sh = 8], ey

where we use E,[-] to denote the expectation over states
and actions that are governed by 7 and P. Since the MDP
begins with the same initial state s, to simplify the notation,
we use V7™ to denote V" (s1) without causing ambiguity.
Correspondingly, we define the action-value function Q7 :
S x A — R at step h as the expected total reward under
policy 7 after taking action a at state s in step h, that is:

H

Qr(s,a) ::EW{ Z rhe(Shryans)

h'=h
=rn(s,a) + [PnVyi4](s, a),

Sp = S, ap = a:l

where [P, V[T 1](s,a) := Egp,(|s,a0)[Vi1(s")]. Since
the action space and the episode length are both finite, there
always exists an optimal policy 7* that gives the optimal
value V;*(s) = sup, V" (s) forall s € Sand h € [H].

Conservative Constraint. While there could be vari-
ous forms of constraints imposed on the RL algorithms,
in this work, we focus on a baseline policy-based con-
straint (Garcelon et al., 2020c; Yang et al., 2021b). In many
applications, it is common to have a known and reliable
baseline policy that is potentially suboptimal but satisfac-
tory to some degree. Therefore, for applications of RL
algorithms, it is important that they are guaranteed to per-
form not much worse than the existing baseline throughout
the learning process. Denote the baseline policy as 7° and
the corresponding expected total reward obtained under 7°
in an episode as Vfrb. Then, throughout the entire learn-
ing process, we require that the expected total reward for
each episode k is at least y with high probability, where
K = Vfrb — v > 0 characterizes how much risk the algo-
rithm can take during the learning process. A policy 7 that
achieves expected total reward at least vy is considered to
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be “safe”, and we emphasize that our proposed algorithms
do not require the knowledge of Vf’b. Let 7% be the policy
adopted by the agent during episode k € [K|. Mathemati-
cally, we formulate the conservative constraint as

PV > q,Vk € [K]} >1-6, where § € (0,1). (2)

Comparison with Previous Conservative Constraints.
The conservative constraint in Equation (2) is more restric-
tive compared with Garcelon et al. (2020c); Yang et al.
(2021b), where the constraint is imposed on the cumulative
expected reward over all experienced episodes instead of
on each episode. We note that this stringent constraint has
a profound impact on the algorithm design. While the pre-
vious cumulative conservative constraint enables the idea
of saving the conservative budget early on and spending it
later to play explorative actions, it cannot guarantee that
in each episode, the expected total reward is above a cer-
tain threshold. Our constraint in Equation (2), in contrast,
requires the expected total reward to be above a threshold
in each episode. Hence, the idea of saving budget from
early episodes for exploration in future episodes cannot be
adopted, and it requires a more sophisticated algorithm de-
sign to control the budget spending within each episode and
ensure the safety of all executed policies.

In addition, the per-episode conservative constraint in our
work is more practical than the cumulative reward-based
constraints. This is because each episode in the episodic
MDP setting corresponds to the learning agent interacting
with the environment from the beginning to the end, e.g., a
robot walks from a starting point to the end point. Guarantee-
ing the performance in every episode has physical meanings,
e.g., making sure that the robot does not suffer any damage
while learning how to walk. This cannot be captured by the
long-term constraint that spans many episodes.

Learning Objective. Under the given episodic MDP setting,
the agent aims to learn the optimal policy by interacting
with the environment during a set of episodes, subject to
the conservative constraint. The difference between V{“k
and V}* serves as the expected regret or the suboptimality
of the agent in the k-th episode. Thus, after playing for K
episodes, the total expected regret is

K
Reg(K) = KVi = > V[ 3)
k=1

Our objective is to minimize Reg(K') while satisfying Equa-
tion (2) for any given § € (0,1).

4. The StepMix Algorithm

In this section, we aim to design a novel safe exploration
algorithm to satisfy the episodic conservative constraint and

achieve the optimal learning regret.

4.1. Challenges

For unconstrained episodic MDPs with finite states and ac-
tions, in order to achieve the minimax regret lower bound
Q(vV H3SAK), the core design principle (Azar et al., 2017;
Zanette & Brunskill, 2019; Ménard et al., 2021) is to
construct a Bernstein inequality-based Upper Confidence
Bound (UCB) for the action-state value function under the
optimal policy (i.e., ), and then to execute an optimistic
policy that maximizes the UCB in each step. Such a UCB
takes the variance of the corresponding estimated value
function into consideration, leading to a more efficient ex-
ploration policy.

Intuitively, in order to achieve the same learning regret, the
safe exploration policy should follow a similar Bernstein-
inequality based design principle. However, this may lead
to several technical challenges, as elaborated below.

First, we note that in conventional CMDP problems under
episodic cost constraints (Bura et al., 2022; Liu et al., 2021),
the exploration policy in each episode & is usually obtained
by solving a constrained optimization problem in the form
of 7% = argmax, ¢y, V™ (P*), where P* is the estimated
model and Il is the set of estimated safe policies. For
given P¥, both the objective function and the constraint set
can be expressed as a linear function of 7 or of occupancy
measures, and thus can be solved efficiently. However, if
Bernstein inequality is adopted to construct a tighter con-
fidence set of the value functions (and hence Ilj), it can
no longer be formulated as a linear programming problem,
resulting in unfavorable computational complexity in each
iteration.

Second, in order to keep track of the estimation error un-
der the adopted exploration policy 7*, it is necessary to
bound (P} — P,)V;7, for each h € [H]. In order to
achieve the optimal dependence on S, a common technique
is to decompose it into two terms, (PF — Py)Vir, | and
(PF — Py) (Vi) — Vi, ), where 7° is a fixed policy that is
independent with the historical data, and then bound them
separately. Intuitively, 7° should be a policy “close” to 7%,
so that as P}’f converges to P, both terms converge to zero
and the overall learning regret can thus be bounded. In the
unconstrained case, 7° is naturally set to be the optimal pol-
icy m*. However, under the episodic conservative constraint
in our setting, the selection of 7° is more delicate. This is
because 7% may be very different from 7*, especially at the
beginning of the learning stage when little information of
the underlying MDP is known. Therefore, how to construct
a good “anchor” policy 7° that stays close to 7" throughout
the learning process becomes challenging.

Finally, in order to ensure the safety of the exploration pol-
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icy 7, in each episode, it is necessary to obtain a pessimistic
estimation of the corresponding value function and to make
sure it is above the threshold v. While the Lower Confi-
dence Bound (LCB) under the optimal policy 7* can be
constructed in a symmetric manner as UCB, it is not im-
mediately clear how to construct a Bernstein-type LCB for
V™ as 7y is not fixed but dependent on history, and it may
deviate from the optimistic policy significantly due to the
episodic conservative constraint.

4.2. Algorithm Design

In this subsection, we explicitly address the aforementioned
challenges and present a novel algorithm termed as StepMix.
Before we proceed to elaborate the design of StepMix, we
first introduce the definition of step mixture policies.

Definition 4.1 (Step Mixture Policies). The step mixture
policy of two Markov policies 7' and 72 with parameter p,
denoted by prt+(1—p)72, is a Markov policy such that the
probability of choosing an action a;, given a state s; under
the step mixture policy is pri (an|sp) + (1 — p)mi(an|sp)-

StepMix is a model-based algorithm that features a unique
design of the candidate policies and safe exploration policies.
In the following, we elaborate its major components.

Model Estimation. At each episode k, the agent uses the
available dataset to obtain an estimate of the transition ker-
nel. Specifically, let n’fllgsia) =Y 1{s] = s, af = a}
and ny(s,a,8') = > U{s] =s, aj, =a, sj ., =5}
be the visitation counters. The agent estimates Pf(s'|s, a)
as

n¥ (s,a,s") ek
P,’f(s’\s,a) = 7’1’2(5,@) o if (s a) > 1, @)
%, otherwise.

Bernstein-type Optimistic Policy Identification. With
the updated model estimates 15"', the agent then tries to
construct an optimistic policy. We note that this optimistic
policy may not be identical to the exploration policy selected
afterwards. However, it provides important information re-
garding the model estimate accuracy and will be leveraged
to construct an efficient yet safe exploration policy. Specifi-
cally, we first denote

Varﬁilf (Vlf’-*—l)(s’a):Es/Nﬁ}’j(.|s,a) [(V}f+1(s/)7ﬂzsl~p’lf(.‘sya) [‘7}54_1(5/)])2]

which captures the variance of V;* ’, 1 under transition kernel
Pk o k ky
Ph given (81L7 ah) - (87 a)'

Then, with V5, ,(s) = Vi, ,(s) = 0, Vs € S, for each
h € [H],(s,a) € S x A, we recursively define

~ . ~ *
Qﬁ(s,a)émln (H,Th,(s,a)+3\/Varpk;bC (Vf_‘_l)(s,a)n;i/iﬁ

+14H £ +%P}If(‘7}?+1_Y}ic+1)(5,a)+15;’f‘~/}i€+1(Saa)>

nk(s,a)

Algorithm 1 The StepMix Algorithm

Input: 7°, v, 38, 8*, Dy = 0.
for k=1to K do
Update model estimate P according to Equation (4).
# Optimistic policy identification
VI§+1(5) = y[’}+1<5) =0,VseS.
for h=Hto1ldo
Update QF (s,a), Q¥ (s,a),¥(s,a) € S x A accord-
ing to Equation (5).
Th(s) <« argmax, Qf(s,a), VF(s) <«
Qk (5,71 (5)). Vi (5) ¢ Qfi(s,Th(5)), Vs € S.
end for )
# Candidate policy construction and evaluation
for hop =0to H do
akho — {71-117, ﬂ-g’ e 7”2077_"ZO+17 ..
Vk:ho = PolicyEva(P*, wkho),
end for
# Safe exploration policy selection

it {h|V" >~ h=0,1,...,H} = () then

—k —k
sTH-_15TH -

7Tk = 7Tb.
else
hk = min{h|ylk’h >~v,h=0,1,...,H}.
if h* = 0 then
7wk =7k,
else
Set ¥ according to Equation (7).
end if
end if

Execute 7% and collect {(s}, af, sf, | ) L.
Dy, <~ Dp—1 U {(Sﬁvalfiv Sﬁ-&-l)}i[:l'
end for

Qﬁ(s,a)émax (O,Th(s,a)f?)\/Varﬁ’;Lc (V}iﬂrl)(s,a)nh%:a)

—22H £ —%P})f(V}iﬂrl—E/Ierl)(s,a)—Q—P}]fl/,erl(s,a)), (5)

nﬁ(s,a)

and obtain an optimistic policy 7% by setting 75(s) =
argmax,c 4 QF(s,a).  After that, we set V/F(s) =
Qj (s, 75 (), and V¥ (s) = Q7 (s, 7} ().

Intuitively speaking, Q’;(& a) serves as a Bernstein-type
UCB for the true value function under the optimal policy,
ie., Q*(s,a), while Qﬁ(s, a) serves as the corresponding
LCB. We note that the designs of Q¥ (s,a) and Q’,ﬁ(s, a)
are not symmetric, i.e., the coefficients associated with the
Bernstein-type bonus terms are not exactly opposite. Actu-
ally, this unique selection of the bonus terms is critical for
us to obtain a valid LCB not just for the optimal value func-
tion, but also for those value functions under the exploration
policy 7%, as elaborated below.

Candidate Policy Construction and Evaluation. Once
the agent obtains the optimistic policy 7%, it will proceed to
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construct a set of candidate policies denoted as { 7% }g} —0
where "0 = {zb ...7) 7E .-, @} We note that
7k:Po follows the safe baseline 7® for the first hg steps, after
which it switches to the optimistic policy 7*. Besides, %"
and "o+ 1 only differ at step ho+1. As hg sweeps from H
to 0, k"0 essentially forms a smooth interpolation between
the safe baseline 7* and the optimistic policy 7*.

For each candidate policy 7%/, we obtain UCB and
LCB on the two corresponding true value functions de-
noted as Q"0 and V*/0 respectively, by invoking the
PolicyEva subroutine (See Algorithm 3 in Appendix C).
Specifically, PolicyEva recursively updates Qk h"( a)
and QZ ho(s,a) in the same form as in Equation (5),
while V"0 (s) 2 (xFho([s), QR0 (s,.)), VFho(s) 2
k,h k,ho
(m, " (+15), @70 (s, )

We design the set of candidate policies in order to explic-
itly address the second challenge in Section 4.1, i.e., it is
desirable to obtain a fixed “anchor” policy that stays close
to 7% throughout the learning process. Intuitively, in order
to satisfy the conservative constraint in each episode, 7"
would stay at 7° when it has not collected enough infor-
mation of the environment; As k proceeds, it is desirable
to have 7% evolve to the optimal policy 7*, in order to
achieve the optimal learning regret. Thus, it may not be
reasonable to expect that a single fixed anchor policy would
stay close to ¥ in every episode. Instead, we construct
a set of anchor policies denoted as {7* ’hO}H he—o» Where

oo = {mb,...x) wh 4, m) ). Essentially, 7%
is the optimistic version of 7*"0. Thus, the estimation er-

ror in (PF — P,)V;L1 can be decomposed with respect
to Vh’i’lho and then be bounded separately. As 7% dynami-

cally evolves in between 7* and 7, we expect that it stays
close to 7k-ho foi certain hg, and thus the estimation error
in (P} — P,)V;T,, can be effectively bounded as well.

Safe Exploration Policy Selection. After constructing and
evaluating the set of candidate policies, we then design a
safe exploration policy by mixing two neighboring candi-
date policies.

Specifically, the learner will compare Ylk’ho with the thresh-
old v for hg = 0,1,..., H. If it is above the threshold,
it indicates that with high probability the candidate policy
7k will satisfy the conservative constraint. Let h* be
the smallest hg such that Ylk’h” > ~. Then, we have the
following cases:

o If h* = 0, it indicates that the LCB of the optimistic
policy 7 is above the threshold. Thus the learner executes
—k
.

o If k¥ € [1 : HJ, it indicates that k" s safe but whh" —1

may be not. More importantly, they only differ in a single
step h*. Then, the learner would construct a mixture of

k,hF—1

75h" and as follows:
b= Vi (s1) = ©)
VI (s1) = T (s1)
k= (1- p)wk,h" _i_pﬂk,hk—l. 7)

« If none of V%" is above the threshold, it indicates that
the LCB of V”b is below the threshold, which occurs
when the estimation has high uncertainty. The learner will
then resort to 7° for conservative exploration.

Once policy 7* is executed and a trajectory is collected, the
learner moves on to the next episode.

4.3. Theoretical Analysis

The performance of StepMix is stated in the following theo-
rem.

Theorem 4.2 (Informal). With probability at least 1 — 6,
StepMix (Algorithm 1) simultaneously (i) satisfies the con-
servative constraint in Equation (2), and (ii) achieves a total
regret that is at most

O(VH3SAK + H3S?A+ H*SANo (% + 2)),

Vi -
baseline policy and k := V"
from the baseline policy.

where Ay = is the suboptimality gap of the

. v is the tolerable value loss

Remark 4.3. Theorem 4.2 indicates that StepMix achieves
a near-optimal regret in the order of O(v H3SAK), while
ensuring zero constraint violation with high probability.
Compared with BPI-UCBVI (Ménard et al., 2021), the
conservative exploration only leads to an additive constant
term O(HsSAAo(K% + ) in the learning regret bound.
The additive term matches with that in the lower bound un-
der the weaker cumulative conservative constraint in Yang
et al. (2021b) up to a constant, indicating our result is near-
optimal. For the special case when v = 0, the LCBs esti-
mated in StepMix will always be greater than -y; thus the
optimistic policy is always safe. Therefore, the algorithm
reduces to an optimistic algorithm and the additive term
becomes zero. Further discussion on this can be found in
Corollary C.11.

The proof of Theorem 4.2 is provided in Appendix C. We
outline the major steps of the proof as follows.

As discussed in Section 4.2, one pivotal component in
StepMix is the construction of the candidate policies. As
a result, in our proof, we first extend the good event re-
lated to (P} — P,)V;* \1 to H + 1 good events related to

(PF — Ph)Vh*ff, ho = 0,1,..., H. Since 7*"° is a fixed

anchor policy, (PF — Py,) V5 1’ can be bounded for all hy.
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Next, we show that kaho and Q%" are valid UCB and
LCB of Q*"0 and Q*"0 respectively, in the sense that
kaho < Qkho < Q*ho < QFho Meanwhile, we show
that Q%" and Q"0 are sufficiently tight, as Q¥ — Qk:ho
is bounded and will converge to zero sufficiently fast. Fur-
thermore, with the properties of our constructed step mix-
ture policy, we can obtain tight UCB and LCB for the step
mixture policies as well.

Finally, we show that 7, only stays at 7° or the mixture
policy for finite number of episodes. This is due to the fact
that Vl*’ho > V™ for any hg = 0,1,..., H. Thus, with
high probability, Ylk’ho > ~ when k is sufficiently large. As
a result, the agent will then select the optimistic policy 7%
in most of the episodes. Thus, the regret of StepMix has the
same leading term as that under the optimistic policy, which
will then be bounded efficiently.

5. The EpsMix Algorithm

In this section, we briefly introduce another algorithm
named EpsMix and defer the detailed design and analy-
sis to Appendix D. Different from StepMix in Algorithm 1,
EpsMix does not construct step mixture policies during the
learning process. Rather, it adopts a randomization mecha-
nism at the beginning of each episode, and designs episodic
mixture policies (Wiering & Van Hasselt, 2008; Baram et al.,
2021) defined as follows.

Definition 5.1 (Episodic Mixture Policy). Given two poli-
cies 7! and 72 with parameter p € (0,1), the episodic
mixture policy, denoted by pr! @ (1 — p)n?, randomly
picks 7! with probability p and 72 with probability 1 — p
at the beginning of an episode and plays it for the entire
episode.

The EpsMix algorithm is presented in Algorithm 4 in Ap-
pendix D, and it proceeds as follows. Similar to StepMix,
at the beginning of each episode k, it first constructs an
optimistic policy, denoted as 7*. It then evaluates the LCB
of the expected total rewards under both 7% and 7°, de-
noted as V} and V" respectively. If V}* is above the
threshold 7, it indicates that the optimistic policy 7* satis-
fies the conservative constraint with high probability. The
learner thus executes 7% in the following episode k. Oth-
erwise, if Ylk’b is above the threshold while V¥ is not, it
constructs an episodic mixture policy px7* @ (1 — py )7’ so
that p V¥ + (1 — pk)ylk’b = ~. It implies that the episodic
policy satisfies the conservative constraint in expectation
with high probability. If neither V¥ nor V** is above the
threshold, EpsMix will resort to the baseline policy to col-
lect more information.

Our theoretical analysis shows that EpsMix has the same
performance guarantees as StepMix. At the same time,
we note that EpsMix is less conservative than StepMix in

the sense that, the expected return under a selected policy
in an episode may be below the threshold when VI < ~.
However, when taking the randomness in the policy mixture
procedure into consideration, we can still guarantee that the
expected total return under an episodic mixture policy is
above the threshold with probability at least 1 — 6.

6. From Baseline Policy to Offline Dataset

Both EpsMix and StepMix critically depend on the baseline
policy 7® to achieve the desired conservative guarantee. In
reality, however, a baseline policy that provably satisfies the
conservative constraint may not always be explicitly given to
the algorithm. Instead, the learning agent may have access
to an offline dataset that is collected from the target environ-
ment by executing an unknown behavior policy p, and the
goal is to design a conservative exploration algorithm that
satisfies Equation (2) only using the offline dataset.

A natural approach to solve this problem is to first learn
a baseline policy from the dataset, and then use it as an
input to EpsMix or StepMix. The challenge, however, is
that instead of having full confidence in the conservative
guarantee of 77°, we must deal with the safety uncertainty of
the learned baseline policy, that is introduced by using the
offline dataset as well as the offline learning algorithm that
produces the baseline policy. Fortunately, we prove that for
StepMizx, the uncertainty of learning a safe baseline policy
from the offline dateset does not affect the conservative
constraint violation or the regret order if the offline dataset
is sufficiently large.

Theorem 6.1. Let 7 be the output of the offline VI-LCB
algorithm (Xie et al., 2021) (see Algorithm 5 in Appendix E)
with n = é(%)l offline trajectories. If we replace
the baseline policy ©° used in Algorithm 1 by #, then with
probability at least 1 — §, StepMix can simultaneously (i)
satisfy the conservative constraint in Equation (2), and (ii)
achieve a total regret that is at most

R

O (VHSSAR + HOS? A+ H3S AR (% + 2)).
where i = (V{' —7)/2 > 0and Do = Vi — V' + &

A similar result for EpsMix can be established, and is given
as Theorem E.7 in Appendix E. We see that n scales in-
versely proportional to 2, suggesting that a good behavior
policy would require small amount of data and vice versa.
Besides, the additive term in the regret becomes larger com-
pared with that in Theorem 4.2. In general, a large n serves
two purposes: First, it reduces the safety uncertainty due
to offline learning, such that the impact on the safety con-
straint violation is negligible compared with that caused
by the (online) StepMix policy. Second, it ensures that the

'We hide the logarithm factor for simplicity.
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regret bound is dominated by the number of online episodes
K. We also note that although both Theorem 6.1 and The-
orem E.7 depend on using VI-LCB as the offline learning
algorithm, the conclusion can be extended to general offline
algorithms as long as they can produce an approximately
safe policy from the pre-collected data with high probability.

7. Experimental Results
7.1. Performance Evaluation of StepMix and EpsMix

Synthetic Environment. We generate a synthetic envi-
ronment to evaluate the proposed algorithms. We set the
number of states S to be 5, the number of actions A for
each state to be 5, and the episode length H to be 3. The
reward 7, (s, a) for each state-action pair and each step is
generated independently and uniformly at random from
[0, 1]. We also generate the transition kernel P, (-|s, a) from
an S-dimensional simplex independently and uniformly at
random. Such procedure guarantees that the synthetic envi-
ronment is a proper tabular MDP.

Baseline Policy. We adopt the Boltzmann policy (Thrun,
1992) as the baseline policy in our algorithms. Under the
Boltzmann policy, actions are taken randomly according to

7 (als) = Z;Tizﬁ%%g()jﬂ)} , where a larger 7 leads to a

more deterministic policy and higher expected value.

Results. We first evaluate the proposed StepMix and
EpsMix, and compare with BPI-UCBVI (Ménard et al.,
2021). For each algorithm, we run 10 trials and plot the
average expected return per episode.

In Figure 1, we track the expected return obtained in each
episode with different baseline parameter 1 and conserva-
tive constraint y. We have the following observations. First,
both StepMix and EpsMix converge to the optimal policy
with no constraint violation in all settings. Between StepMix
and EpsMix, the latter exhibits slightly faster convergence.
They both tend to stay on the baseline policy when the in-
formation is not sufficient, implied by the constant expected
return at the beginning of the learning process. When more
information is collected, these two algorithms will devi-
ate from the baseline policy and converge to the optimal
policy. In contrast, BPI-UCBVI converges to the optimal
policy as well, but violates the conservative constraints in
earlier episodes. Besides, more stringent constraint v makes
StepMix and EpsMix more conservative. Both algorithms
experience delayed convergence when -y increases. Mean-
while, a better baseline policy also leads to better learning
performance throughout the learning process.

We report the performance of learning with an offline dataset
in Figure 2. We use the baseline Boltzmann policy with
n = 10 and n = 15 to collect the offline dataset. The
numbers of offline trajectories are set to be 5000 and 8000,

respectively. The conservative constraint 7 is set to be 2.2.
Figure 2 shows that learning a baseline policy from the of-
fline dataset and using it as an input to StepMix and EspMix
does not affect their performances significantly. With more
offline trajectories collected, the algorithms start from a
better baseline and converge to the optimal policy faster.

7.2. Empirical Comparison with DOPE and OptPess-LP

In this subsection, we empirically compare the learning per-
formances of StepMix, EpsMix, DOPE (Bura et al., 2022)
and OptPess-LP (Liu et al., 2021).

Synthetic Homogeneous Environment. In this experiment,
we set S to be 4, A tobe 2, and H to be 3. In order to match
the homogeneous environment assumption under DOPE and
OptPess-LP, we set P, = P and r, = r for any h € [H],
and randomly generate P an r as in Section 7.1. As DOPE
and OptPess-LP are both developed to solve CMDP prob-
lems with general cost functions, to match the conservative
constraint considered in this work, we set the corresponding
cost function as ¢(s,a) = 1 — r(s,a) and set the constraint

as B [S2F csn,an)] < H — .

Results. We adopt the Boltzmann policy from Section 7.1 as
the baseline policy and set 77 to be 5. We run each algorithm
for 10 trials and plot the average regrets in Figure 3(a) and
the average expected return of each episode in Figure 3(b).

We observe that all four algorithms achieve the same per-
formance at the beginning of the learning process, implying
that they all adopt the baseline policy initially. After that,
DORPE is the first algorithm to deviate from the baseline
and explore other safe policies, followed by StepMix and
EpsMix. Although DOPE starts the exploration earlier, it ac-
tually renders much higher regret than StepMix and EpsMix.
This implies that the exploration under DOPE is not as effi-
cient as the near-optimal exploration strategies adopted by
StepMix and EpsMix. On the other hand, OptPess-LP stays
on the baseline throughout the learning horizon, leading to a
linearly increasing regret. This is because OptPess-LP does
not explore sufficiently, and thus is unable to identify a safe
exploration policy other than the baseline in this scenario.
Similar phenomenon has been observed in Bura et al. (2022).
Figure 3(b) also shows that the constraint violation is zero
throughout the learning horizon under all four algorithms.

8. Conclusions

We investigated conservative exploration in episodic tab-
ular MDPs. Different than the majority of existing lit-
erature, we considered a stringent episodic conservative
constraint, which motivated us to incorporate mixture poli-
cies in conservative exploration. We proposed two model-
based algorithms, one with step mixture policies and the
other with episodic randomization. Both algorithms were
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proved to achieve near-optimal regret order as that under the
constraint-free setting, while never violating the conserva-
tive constraint in the learning process. We also investigated
a practical case where the baseline policy is not explicitly
given to the algorithm, but must be learned from an offline
dataset. We showed that as long as the dataset is sufficiently
large, the offline learning step does not affect the conser-
vative constraint or the regret of our proposed algorithms.
Experimental results in a synthetic environment corrobo-
rated the theoretical analysis and shed some interesting light
on the behavior of our algorithms.
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A. Related Works

Constrained RL with Baseline Policies. Conservative exploration studied in this paper can be viewed as a specific case
of the Constrained Markov Decision Process (CMDP) (Altman, 1999), which has been investigated in both offline and
online settings. In the offline setting, a given baseline policy produces a set of trajectories for the agent to learn a policy
that is guaranteed to perform at least as good as the baseline with high probability without actually interacting with the
MDP (Bottou et al., 2013; Thomas et al., 2015b;a; Swaminathan & Joachims, 2015; Petrik et al., 2016; Laroche et al., 2019;
Simdo & Spaan, 2019). It can also be extended to the semi-batch setting (Pirotta et al., 2013). In the online setting, the agent
has to trade off exploration and exploitation while interacting with the MDP. Several algorithms have been proposed in the
literature (Garcelon et al., 2020c; Yang et al., 2021b). Garcelon et al. (2020c) introduce a Conservative Upper-Confidence
Bound for Reinforcement Learning (CUCRL2) algorithm for both finite horizon and average reward problems with O(v/T)
regret. Yang et al. (2021b) propose a reduction-based framework for conservative bandits and RL, which translates a
minimax lower bound of the non-conservative setting to a valid lower bound for the conservative case. They also propose a

Budget-Exploration algorithm and show that its regret scales in 0 (\/ H3SAK + g&i‘ﬁg) for tabular MDPs, where A is

the suboptimality gap of the baseline policy, and « is the tolerable performance loss from the baseline. However, all these
works assume cumulative conservative constraint.

Other Forms of Constraints. Beside the constraint imposed by a baseline policy, which is generally “aligned” with the
learning goal, CMDP also studies the case where the algorithm must satisfy a set of constraints that potentially are not
aligned with the reward. In general, both cumulative cost constraints (Efroni et al., 2020; Turchetta et al., 2020; Zheng &
Ratliff, 2020; Qiu et al., 2020; Ding et al., 2020; Kalagarla et al., 2020; Liu et al., 2021; Wei et al., 2022; Ghosh et al., 2022)
and episodic cost constraints (Liu et al., 2021; Bura et al., 2022; Huang et al., 2022) have been investigated. Assuming a
known safe baseline policy that satisfies the corresponding constraints, OptPess-LP (Liu et al., 2021) is shown to achieve a
regret of O(%\/ H653 AK) without any constraint violation with high probability, while DOPE (Bura et al., 2022) improves

the regret to O(%\/ H652AK), where x denotes the Slater parameter. We note that both algorithms do not achieve the
optimal regret in the unconstrained counterpart, due to the adopted linear programming-based approaches. Beyond tabular
setting, CMDP has also been discussed in linear (Ding et al., 2021; Ghosh et al., 2022; Amani et al., 2021; Yang et al.,
2021b) or low-rank models (Huang et al., 2022). Other formulations different from conservative exploration or CMDP,
such as minimizing the variance of expected return (Tamar et al., 2012) or generally, maximizing some utility function of
state-action pairs (Ding et al., 2021), have also been investigated. Lastly, Yang et al. (2021a) study constrained reinforcement
learning with a baseline policy that may not satisfy the given set of constraints.

Safe Bandits. Bandits problem is a standard RL problem where it interacts with a stationary environment, which reduces
the difficulties of learning. Several constraints are considered in the bandits setting. The first is that the cumulative expected
reward of an agent should exceed a certain threshold. This setting is originally studied in Wu et al. (2016), which adopts
an UCB type of exploration and checks whether the policy satisfies the conservative constraint. Kazerouni et al. (2017);
Garcelon et al. (2020b); Pacchiano et al. (2021) then extend the conservative setting to contextual linear bandits. The second
constraint is much stronger, as it requires that each arm played by the learning agent be safe given the baseline or the
threshold. Amani et al. (2019) and Khezeli & Bitar (2020) both use an LCB type of algorithm to ensure the arms selected by
the algorithms are safe under linear bandits setting. Du et al. (2021) consider conservative exploration with a sample-path
constraint on the actual observed rewards rather than in expectation.

Policy Optimization. This is another research direction in RL that utilizes baseline policies (Schulman et al., 2015).
However, the focus and assumptions of these papers are very different from this work. For example, Zhong et al. (2021)
and Luo et al. (2021) focus on the non-stationary and adversary environments, respectively. While policy optimization can
achieve sublinear regret under certain MDP models (Shani et al., 2020), it usually lacks performance guarantees during the
learning process, which is in stark contrast to our results.

Other LCB Techniques. We highlight the differences between the LCBs used in our online algorithms StepMix and
EpsMix and two LCB techniques used in Xie et al. (2021; 2022). First and foremost, Xie et al. (2021; 2022) study offline
RL problems. They both impose a coverage assumption on the behavior policy in order to bound the estimation error of the
pessimistic policy constructed from the offline dataset. On the other hand, our LCB has no such coverage assumption for the
behavior policy, since the LCB constructed in our work is a lower bound of the value function under the online exploration
policy 7. Second, the reference value functions in this work are different than those in Xie et al. (2021), which constructs a
reference function based on an LCB algorithm so that it can derive the pessimistic policy and utilize Bernstein’s inequality.
In our work, however, the reference functions are the true value functions of candidate policies, which are chosen from a
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series of policies mixed by the baseline policy and optimistic policy produced from a Bernstein-style UCB algorithm. Last
but not the least, our LCB expression is more computationally efficient than that in Xie et al. (2022).

B. Notations

We list the notations of common quantities as follows.

Notation Meaning Definition
ri(s,a) reward -
Pn(s'|s,a) transition probability -
nk (s, a) visitation count S s] = s5,a] = a}
ny(s,a,s’) visitation-transition count le;i 1{s}, = s,a}, = a,5},,, = §'}
Pf(s'|s, a) empirical estimate of transition probability % if nfi(s,a) > 1; £, otherwise
d7(s,a) occupancy measure under policy 7 E;[1{sy, = s,an = a}]
d¥ (s, a) occupancy measure under policy 7% 5" (s, a)
nr (s, a) expected visitation count Sk dr(s,a)
Q5 (s,a) true Q function E. [Zih ri(8:,a:)|sp = s, an, = al
VT (s) true V function E, [Zfih ri(8i,a:)|sn = 9]
™ optimal policy argmax, Vi"(s1)
I baseline policy -
m*oho step-wise optimal policy (b, TRt T )
Tk global optimistic policy constructed from Algorithm 2
mk-ho step-wise optimistic policy EPRRRI Ny SRTRTRI 9
who o

QF-ho Vkho Qriho yxho corresponding true value functions

k,h, k,h
Qﬂ- O’Vﬂ- 07Q7T 7V

Qo Vk:ho Upper Confidence Bounds defined in Equations (8) and (10)
Qo Y’“ ho Lower Confidence Bounds defined in Equations (9) and (11)
GF-ho G function defined in Equation (24)
B(n, o) logarithm term involved in £ log(SAH/$) + Slog(8e(n + 1))

B(0) logarithm term involved in £ log(SAH/)
B*(n,9) logarithm term involved in £* log(SAH/$) + log(8e(n + 1))

We also adopt the following min, max notations:

a A'b=min(a,b),a Vb= max(a,b).

For any given policy 7 and () function, we denote

T Qn(s) = (Tn(-19), Qu(s, ) = Y malals)Qn(s,a).

acA
For any given transition kernel P, and value function V}, 1, we define the variance of PV} 11(s,a) as follows.
Varp, (Vit1)(s,a) = By, (1s,0) (Va1 (5") = By, (15,00 Va1 ()]

13
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At last, we introduce three types of good events and their notations that will be intensively used in the following proofs.
The first type of good events characterizes the connection between the true visitation counts and the expected visitation

counts:

ENM(0) & {Vk € [K],Yh € [H],Y(s,a) € S x A:nf(s,a) > =nr(s,a) — ﬂcm(é)} ,

DO =

where 3" = log(SAH/S), n} (s, a) denotes the number of visitations of state-action pair (s, a) and 7} (s, a) denotes the
expected visitation count.

The second type of good events, defined as follows, upper bounds the KL divergence between the estimated transition

distribution and the true transition distribution.

HOE {ij € [K],Vh € [H],¥(s,a) € S x A: KL(P{(|s,a), Pu(:|s,a)) < W},
ni(s,a

e

where 5(n,d) = log(SAH/J) + Slog(8e(n + 1)).

The third type of good events provides a Bernstein-style concentration guarantee, defined as follows.

£5(V, ) é{Vk; € [K],Vh € [H],¥(s,a) € S x A, & [H]U{0}: |(P} - Ph)VhH(s,a)’ <

min {H7 \/2Varph(Vh+1)(s,a)Ws’a)’5) + ‘3,}[5*(”];?(87CL)’(S)}}7

ng(s,a) nk(s,a)

E

where 8*(n, §) = log(SAH /) +log(8e(n+ 1)) and V is a value function independent with P and bounded by H. Later,
V' will be chosen separately in StepMix or EpsMix.
C. Algorithm Design and Analysis of StepMix

We first recall the StepMix algorithm (Algorithm 2) and provide the PolicyEva subroutine in Algorithm 3.

Based on the construction of %0 in Algorithm 2, we define the following Q-value functions and value functions.

~ - * (kK 1 k /
Qﬁ’ho (s,a) Zmin| H,74(s,a) + 3 Varpk(th_;_}io)(S,a)—ﬁ (nz(s, @), %") +14H? 75(7%16(8’ a),9)
h ny (s, a) ny (s, a)
(®)
1 ., =~ Ay~
+ PV = G (s, 0) + IV s, a>>
k,ho 7k, ho B*(nk(sva)vdl) B(nk(s7a>7§/)
Qy (s,a) = max (O,rh(s,a) — 3\/Varp},f(Vh+1 )(&a)W - 22H2W
9
2 . - ~
— 2 BRI~ V) o)+ BEVE s, “‘))
Ve (s) £ (met (-]s), Q" (s, ) (10)
Vit (s) & (mp (]s), @ (s,))- (11)

We point out that, since the definitions of Equations (8) and (9) are the same as Equation (5) used in Algorithm 2, V*:ho

defined in Equation (11) is consistent with the same quantity used in Algorithm 2. Moreover, when h > hg, we have
7" = 7% which implies that Q" = QF and 7" (s) = arg max, Q" (s, a).

Before proceeding to the formal proof, we outline its major steps as follows.
Step one: In Appendix C.1, we verify that the good events happen with high probability and introduce the linearity of the

ocupancy measure and the value function of the step-mix policies.
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Algorithm 2 The StepMix Algorithm
Input: 7°, v, 38, 8*, Dy = 0.
for k=1to K do X
Update model estimate P according to Equation (4).
# Optimistic policy identification
VE(s)=VE (s)=0,Vs€S.
for h = H to 1do
Update Qj (s,a), Qf (s, a),¥(s,a) € S x Aaccording to Equation (5).
7 (s) « argmax, Qf (s, a), VF(s) < QF (s, 7 (s)), ViF(s) « QF (s, 7 (s)),Vs € S.
end for

# Candidate policy construction and evaluation
for ho =0to H do

ko — (b b b~k & =k
TR0 = @y, Ty, M T s T T )
Vkho = PolicyBva(PF, wk:ho),

end for

# Safe exploration policy selection
it {h|V" >~ h=0,1,...,H} = () then

™ =T,
else
Wk = min{h | V" >~y h=0,1,..., H}.
if h* = 0 then
7wk =7k,
else
Set ¥ according to Equation (7).
end if
end if

Execute 7% and collect {(s}, af, sf, | )L .

Dy, <~ Dp—1 U {(Slfiﬂalfw s§+1)}hH:1-
end for

Algorithm 3 PolicyEva Subroutine

Input: P*,
Initialization: Set V% | (s) and V& (s) tobe 0 forany s € S.
for h=Hto1ldo

Update QF (s, a), Qi (s,a),¥(s,a) € S x A:

~ . ~ 1 * 2k o . Akvrk
Qﬁ(s,a)émm (H,T-h(s,a)+3\/Var}5}?( h’f+1)(s,tl) n’;ﬁs,a) +14H? n}ﬁ(‘:a) +%P,’f(\/}f+1 _%5+1)(37a)+P};;‘/35+1(57a)

. ~ * ~ ~ A
Q% (5,0)2max (oms,a)s\/Var,s;f (V) (o.0) a5 =228 el = B P (V= Vi) (s 4P yﬁl(s,a))

Vit (s) = (Q5 (s, ), mn(-]5)), ViE(s) = (@F(5,-), ma(:s)), Vs € S,
end for
Output:

Step two: In Appendix C.2, we prove that Q’Z’ho and Qﬁ’ho are valid UCB and LCB of the true Q-value functions of both

the step-wise optimal policies 7*h0 and the step-wise optimistic policies "0, respectively, and provide a bound for the
gap between QZ’h" and Qﬁ’h’o.

Step three: In Appendix C.3, we leverage the bound for the gap between Qﬁ’h" and Qi’h“ to show a sublinear “weak”

. .. . . . b k
regret of the online policies 7%, where the regret is defined in terms of the performance difference V™ — V™ . Hence,
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we can prove that there are only finite episodes in which the executed policy is not equal to the optimistic policy (finite
non-optimistic policy lemma; cf. Lemma C.9).

Step four: In Appendix C.4, based on the bound of the gap between Q;?ho and Q’;’ho and the finite non-optimistic policy
lemma, we prove the regret stated in Theorem 4.2.
C.1. Step One: Good Events and Basic Properties of Step Mixture Policies

We first prove the following lemma which shows that the good events defined in Appendix B occur with high probability.

Lemma C.1 (Good Events). Let £,E™, and £* be the events defined in Appendix B. Then, under Algorithm 1, with
probability at least 1 — §, the following good events occur simultaneously:

5(2)5(3)5 (V*’ho, 3(H‘5+1)>,\7h0 € [H]u{0}.

Proof. From Theorem F.7, Theorem F.8, and Theorem F.9, we have S(g) , 5““(%), and ﬂhOE[H]U{O}S*(V*’hO, L)

3(H+1)
occur with probability at least 1—4 /3, respectively. Then, by taking a union bound, all those good events occur simultaneously
with probability at least 1 — 4. O

Then, we provide several useful lemmas that capture the favorable properties of the step mixture policies %70 and step-wise
optimal policies 7.

The following lemma establishes the optimality of policy 7*"°.

Lemma C.2 (Optimality of Step-wise Optimal Policies). Define I, := {r|m), = 7, Yh < ho}. Then, for any w € I},
we must have
2 (s,a) > QF (s, a),

Vi (s) > ViF(s).

Proof. Using the performance difference lemma (Kakade & Langford, 2002), for any 7 € II;, we have

H
Vir(s) = Vi (s) = D En[Qy (s am) — V" (sm) s = 5.
m=h

For the case where h > hy, W;’ho = 7y, and thus Q;‘L’h"(s,a) = Q}(s,a),Yh > hg,Vs,a. In addition, 7*(s) =
arg max, Q* (s, a). Thus, E | Z’h"(sh, ap) — V*ho(sy)] < 0,Vh > hg.

For the case where h < hg, we have 7, = W;’ho =7, EW[Q;‘L’hO(sh, ap) — V*ho(s)] = 0,Yh < ho.

Combining the results for both cases, we have

H
Vi (s) — Vh*,h0 (s) = Z Er [Q:fzho (8ms@m) — V%7h0 ($m)|sn = s] <0.
m=h
Following the same argument, we can prove that QZ’hO (s,a) > Q% (s,a). O

The next lemma characterizes the property of the step mixture policies obtained by mixing two policies that are one-step
different.

Lemma C.3. If 7 = pr' + pr?, where ©' and w* differ only at step ho, and let dj (s, a) and d3 (s, a) be the occupancy
measure of ' and m2. Then we have

dj.(s,a) = pdj,(s,a) + (1 = p)dj (s, a),
where df (s,a) = Ex[1{s, = s, an, = a}] is the occupancy measure under policy 7.
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Proof. Based on the definition of 7, we consider the following possible cases.

When h < hg, we have 1} = 77 = 7. Thus the corresponding occupancy measures should also be the same, i.e.,

dy,(s,a) = dj,(s,a) = dji(s,a) = pd},(s,a) + (1 = p)dj (s, a).
When h = hg, we have 7, = pm; + (1 — p)mj . Using the fact that dj, _,(s,a) = dj _,(s,a) = dj; _, (s, a), we have

Zo (S,(L) = Z The (a‘S)PhO,1(8|S/, a/)d2071(8/7a/>

s’,a’

= (pmi,(als) + (1 = p)mis, (als)) Pug—1(s]s",a')dfy, 1 (', )

—p 3w (als) P (sls',a )b, 1 (s, a) + (L= p) 3 77, (als) Phga (sl @)}, (s, )

S’,(L’ s’,a’

=pd}, (s,0) + (1~ p)d}, (5.a).

When h > hg, we again have 7}, = 72 = m,. We then prove the equality through induction. Assume df_,(s,a) =
pd} _,(s,a) + (1 — p)ds_,(s,a),Yh — 1 > hg, which holds when h — 1 = h based on the analysis above. Then,

dn(s,a) =Y mn(als)Ph-1(s]s’,a')df_y(s',a')

= malals)Pa-s(sls’,a')(pdy_y(s,@) + (1 = p)ds_y (s, a))
=p Y mi(als)Puo1(sls’,a')dj_y (s,a) + (1= p) D _ i (als) Pu—r (s]s',a')d_y (s, a)

=pdy,(s,a) + (1 — p)dj, (s, a),

which completes the proof. O

The above lemma shows that the occupancy measure of a step mixture policy obtained by mixing two policies that are
one-step different is a linear combination of the occupancy measures of the corresponding policies. Such linearity also holds
for the corresponding value functions, as shown in the following proposition.

Proposition C.4. With the same condition as in Lemma C.3, the following equality holds:
s 7'|'1 71'2
Vit=pV" + (1 =p)V7" .
Proof. By the definition of V7" and d7, (s, a), we have V| = Zle Y s.adr(s,a)ry(s,a). Hence,
H

Vit = Z Zd;zr(& a)ri(s, a)

h=1 s,a

C.2. Step Two: Confidence Bounds

In this step, we validate the UCBs and LCBs constructed in Equations (8) to (11), and provide bounds for the estimation
error induced by the pairs of UCBs and LCBs.
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Recall that the upper confidence bounds of value functions of each policy 7% are

~ﬁ””’(sva)AHﬂ“<Harh(s,a)+3\/Vf’“”f»,f(ff;ﬁhf’)(s?a)’B*(n%(S’a)’él) T 14p2B0(50).5)
) h

ng (s, a) ’fl(s a)
1~ - \p o~ (12)
+ o PRV = Vi) (s.0) + BV (s, a)) :
Vit (s) &m0 (1), Q™ (s,)),
where ¢ = ﬁ and
b .
k,ho ACHP if h < ho,
: _ ) 1
™ (5) { arg maxge A Qﬁ’ho (s,a), if h > hy. (13)
Meanwhile, the lower confidence bounds of the the same value functions are
k.h k,ho B*(nf(s,a),d) B(ny(s,a),d)
Qy"°(s,a) £ max (O,rh(s,a) - 3\/Varp};f(Vh+1 ) (s, a)W 22H2W
2 k,h kh kb (14)
—gih (Vh+10 Vh+10)(3 a) + Ph Vh+10(s a) |,
Vi (5) 2 (n " (1s), Q57 5, )

The following lemma shows that the above construction are valid UCBs and LCBs.
Lemma C.5 (UCB and LCB). With Qk’ho, Qk’h“, Vkho, Y"”ho defined in Equations (12) and (14), the true value functions
QFlo YEho o Yrho can be bounded as:
(i98) .
Ji’ho(s a) < Qk ho(s,a) < Q* ho(s,a) < Qk h”( a), (15)

(i) @) (vi)
Vilo(s) < VPt (s) < vt (s) < TR (s). (16)

Proof. First, we note that due to Lemma C.2, inequalities (¢7) and (v) hold for any h € [1 : H].

We then use induction to prove the other four inequalities hold. More specifically, we prove that: 1) if (iv) and (vi) hold for
h+1,Vh € [1: H], then (i) and (¢4¢) must hold for h, and 2) if (¢) and (i4¢) hold for any h € [1 : H], then (iv) and (v7)
must hold for h as well. For the base case h = H + 1, all value functions are zeros. Thus, (iv) and (vi) hold for h = H + 1.
We now assume (iv) and (v?) is true for any h + 1, and prove 1) and 2) recursively through induction.

Step 1), part 1, inequality (i7i): We prove that inequality (i4¢) in Equation (15) holds for any h € [1 : H]. It suffices to
consider the case when Qﬁ’ho < H. We have

k k /
~k,ho *,ho =k, ho (nh( ,a),0") o B(ny(s,a),0")
0 — =34/ Vars. (V," USRS A har A R AR V) & e A A
S \/ wrp V) nk(s.0)
1 .~ - -
DRV = Vi) (s.0) + BV (s,0) = PV (s5,0)
k k !
_ (7k,h (nh( ’ ) ) 25(nh(8’a)76)
_3\/Vafﬁ:f<vh+l°><8’ CE T R T

+ Ph(V;m” — Vi) (s a) + PE(VEY = Vi) (s,) + (B = PV (s,0). (17)

Under good event £*(V*"0_§'), we can bound the last term (PF — PV, +h1 (s, a) as follows:

B (nh(5,0).0) o B*(n(s,0),0)

(18)
ni(s,a ny (s, a)

e

(P = Pu) Vi (s,0)| < \/ 2Varp, (V;57)(s,a)

e
—

18



Near-optimal Conservative Exploration under Episode-wise Constraints

We further bound the true variance Varp, (V}:‘Jrhl0 )(s, ) with the empirical variance Var 5, (V,irhlo )(s, a) as follows:

(a) k 5/
Varp, (V;i0)(s,a) <2Varp (Vi) (s a) + 41280 (5,0),9)

ny (s, a)
(b) k 5/
<V, (V119 (5s0) + AFPET = Vil (s, ) + a2 000D
ny(s,a)
() *.ho k,h k,h B( ”k(saa) )
<dVarp (Vii'0)(s,a) + AHPE(VHR = Vi) (s, a) +4H2W,
h

where (a) follows from Lemma F.1 and the definition of good event £(6/3), (b) is due to Lemma F.2, and (c) is due to the
induction hypothesis.

Plugging the bound of variance to Equation (18) and applying the facts that \/z +y < /z + /¥, /2y < = + y and
B* < (8, we have

ﬁ*(n;i(s)a)a&) 1 k,ho E,ho 25(”;1(5 a),d’)
nh(s,a) + th (Vh+1 Vh+1 )(S a)+14H nZ(S ll) .

(19)

E

|(PF Ph)Vh °(s,a)| < 3\/Varp (Vthl )(s,a)

Now, plugging Equation (19) back to Equation (17), we have
~k,h h Sk kb h
h ‘- QZ °> Pilf(vh+10 - Vh*ﬂo)(saa) >0,
where th +h1° — V}:tho > (0 comes from the induction hypothesis.

Step 1), part 2, inequality (¢): For inequality (¢) in Equation (15), it suffices to consider the case when Q’; 10 > 0. We have
w0 (s,a) = Qp" (s,a) =(Pu = PRV (s,0) + (Pu = PRV = Vi) (s,

a)
+ 3\/ Varpy (770) (s, 0) 20500 0) g o B (5:0). )
ng(s,a) nk (s, a)

+ Py th+h10 thﬁo)(s a)

2 ..
+ ﬁpilf(vhkﬁo - th#}io)(sv a).
(20)

We have established a bound for | (P, — Pk)V}: +hl° (s,a)| in Equation (19). It then suffice to bound | (P, — PF )(V:ﬁ“ -
V,:_;_}llo )(s,a)| as follows.

Because of Lemma F.3, together with good event £(4/3), we have

» *,ho *,ho 0 5/
(= DL — Vil ol < y/2Varn, (el — Vi )+ 520 0D)
r\S,y

Moreover, by Lemma F.1,

nk(s,a),d’
Varp, (Ve = Vi) (5,0) < 2Varpy (Vi = Vi) (5,0) 4+ a2 U800 0)

nE(s,a) 22

Plugging Equation (22) into Equation (21) and applying /z +y < /z + ,/y and \/zy < x + y, we can bound
|(P, — P,f)(y,ﬁ’;ﬂ Vh*Jrhl")(s a)| as follows:

n’fb(s, a), 5').

(P — PRVt = Vi) (s, a)] < —Ph<v,m° _ykhey s, a) + 87D ( 23)

n¥(s,a)
Now, plugging Equation (23) and Equation (19) back to Equation (20), we have

QZ’ho(s,a) -G I;’ho (s,a) > Ph(thJ:io th:io)(s a) =0,
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where th +hl° Vh 20> () comes from the induction hypothesis.

Step 2): With all inequalities in Equation (15) being proved, we use them to prove inequalities (iv) and (v¢) in Equation (16).

Since Y,f’hU (s) and th’ho (s) share the same policy 7rh’ "0 inequality (iv) can be derived from Qi’ho(s, a) < Qi’ho (s,a).
That is,

Vi (s) = (my™ (1), @ (5,)) < (my™ (1), Q"0 (s,)) = Vi (5).

To show inequality (vi), we consider two cases: b > hg and h < hg. When h > hy, policy W,’f’ho is the optimistic policy
corresponding to Q’fb’ho. Therefore, we have

Vi (s) = Q" (s,my "0 (s) = Q" (5,7 () = Q™ (5,7 (5)) = V™ (s).

When h < hy, both policies w,:’ho and 7rk "0 are the baseline policy 7% . Thus, we can use QZ’hO < Q;?ho from Equation (15)
to derive V" (s) < V"™ (s). That is,

Vi (s) = (mh (1), @30 (5,)) < (mh (1), @47 (s,)) = Vi (s).

Combining these two cases, we have established V" mo(s) < }f 0 () for any h. O

After verifying the validity of UCBs and LCBs in Lemma C.5, we provide the following lemma to quantify the estimation
error induced by the lower bound.

Lemma C.6. Define Gﬁ’ho as

(s,a) nfb(s a) Tht1

Then, the estimation error between Q) rho Ve ho( ) and Qﬁ’ho, th’ho can be bounded as

*(mk B} /
Gi’h"(s,a) = min (H,G\/Varlg,k (thﬁ”)(s a)—ﬁ (n,}i(s @), )+36H276( (5,0),0 )+<1 + ;) P}’f k, h"Glflff(s,a)
h

(24)

*ho(s,a) kho(s a) < G’C ho(s a),

Vo (s) = Vo (s) < (a0 (]s), GR (s, ).

03

Proof. Q;‘L’h” (s,a) = G ﬁ’h" (s,a) can be directly calculated as follows.

Q1" (s,a) — QEM (s,a) <QF"(s,a) — QFM(s,a)

nj (s, a)
B(ni(s,a),d’ 3 . o ho
+36H2 ( h%((s 63) ) + E }}:(th+}zl - th-i,-hl )(870')
i “(nh(5,0,0) B(nk(s,a), )
< L (VE-ho M 2R T )
_6\/Varphr(vh+1 )(s,a) nﬁ 5, a + 36 n’fb(s,a)

3
+ 1+ P = V) (s 0),

where (a) follows from Lemma C.5 and (b) follows from the definitions of Q;‘;’ho (s,a) and Qﬁ’ho (s,a) in Equation (12) and
Equation (14), respectively.

Then, following the same argument, for V' functions, we have

Vi (s) = V" (s) S Vi (s) = Vi (s) < (m ™ Cls). (@K™ = @) (s.))-
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Combining the above two inequalities with the definition of Gﬁ’ho , we have

P ho(saa’) T z,ho(s’a) S szho(saah

Vit (s) = Va (s) < (m"° (1s), G (s,),

which completes the proof.

In the following lemma, we aim to upper bound 71'1c ho Gk ho,
Lemma C.7 (Bounding 7""*G¥"°). For any k and hg, we have
k,ho kb 13 k,h k,h B*(ng (s, a),8")
m G (1) <24e Z Z dy " (s,a)y [ Varp, (V,77°)(s, a) <kh1>
= ni(s,a) Vv
~k
1y, (s, a),0')
+ 336613H2 dk ho (s,a) (hi ,
h=1 s,a
where Gfl’ho is defined in Equation (24) and dfb’ho is the occupancy measure under policy wF"o.
Proof. From the definition of G ° in Equation (24), we have
Gy (s, a)
= kh B*(nf(s,a),0") 2 B(nk(s,a),d) k_k.ho ksh (25)
SG Varﬁ,};;(vh_i_lo)(s,a)w—i—?)ﬁf‘f W+ ]."V_ Ph hJ,-thJ,-i)(s’a’)‘
@

an

In order to bound term (II), we use Lemma F.3 and the fact that ,/zy < z 4 y to obtain

(B — Pk G s, )_\/QVarp,xwzHGiff)(s,a)/W 2 g Bnils ). 9)

+ZH
nk (s, a) 3 nk(s,a) 26)
1 k k,h 26(712(5’@)75/)
Sﬁphﬂ'h"rlGh-‘rg( )+3H W
For term (I), we have
' @ Bk (s,a), )
k,h
Varﬁ;j (Viii")(s,a) < QVMP;I,(V}LH )(s,a) + 4H2W
(d) - k o
<4Varp, (V;5'0) (s, a) + 4AH P |V — Vo) (s,0) + 4H2%
h 9
(c) - k
<dVarp (Vi) (s,a) + AHPF (Ve — Vi) (s, a) +4H2%,
RSy
where (a) follows from Lemma F.1, (b) follows from Lemma F.2, and (c¢) follows from Lemma C.5
Moreover, we can use /z + y < \/x + VY /Ty < T + y to obtain
* (o k S
Varpk (thilo)(s a)—ﬁ (nz(s, @),9")
nj(s,a)
27
kb B*(nf(s,a),d") 2 B(nfi(s,a),0) kho vk,
S 2\/Varph(Vh+1°)(s,a)nz(s7a) + 6H W + Eph hJ:i)Gthg(S, a).
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Applying Equation (26) and Equation (27) to Equation (25), we have

Gy (s, a)

- * (ke / k /
Sﬁ\/ Var g (V) (s, a)w 4362 Pn(5.0).0) (1 + 3) Pimy Gy (s, a)
) h

ny(s,a n¥(s,a) H
B*(n(s,a),d') 2 B(ni(s,a),d") 6 k,ho k,h
<12 Varp,(Vk’hO)(s,a)—+36H — s Py, WG (s,a)
\/ h\Y h+1 n’fb(s,a) I;L( ,a) H h+1~h+1

k 5/
+ 36H2M + (1 + ]?;) Py EhDGZfi’(s,a)

nk (s, a)
3 1 0 IB g
+ (1 + H) (Hth’fHG’Zfl( @)+ BHQ%%))

ny(s,a) ny (s, a) H

In addition, since G} is upper bounded by H by definition, and 3(nf (s, a),d') > 5*(nk(s,a),d'), we have

*(mk Y / 1
§12\/Varph(thﬁ°)(s,a)ﬁ (nZ(S’ ©.0) + 84H26(nhk(8 LALD + (1 + 3) PhﬂEHGfo(s,a).
h

Gy (s,a)
. *(nf(s,a),d' ;0 13
< min {12\/Varph (thflo)(s7 G)B(Z%((Z,Z))) + 84H2W + (1 + H> Ph”h+1Gh+1< a), H}
0 ﬁ* y ) 76/ 6 r ) a(;/ 13 20
<2y [ari, 0300 (S 1) s (PR 01) (112 st ity

Using (1 + %)H < e!3 and unfolding the above inequality, we have

k,ho ~ksh < k.t k,h B*(njy(s,a),d")
G (s1) <12€*? Z Zdh’ “(s,a)y [ Varp, (V,57°)(s,a) (Z LA 1)
h

h=1 s,a

H
13 772 k,ho ﬁ(nﬁ(s, a),d’)
+ 84e°H E g d,"(s,a) (nﬁ(s, 2 A 1) .

h=1 s,a

Finally, we use Lemma E.5 to transform n} (s, a) to 71} (s, a) and obtain

H * —k /
ﬂ’f’hOGlf’ho(sl) <24¢!3 ZZdi’ho(s,a)\/Varph (V,fjrlo)(s a)(ﬂ (k( n(s )\)/f)>

h=1 s,a N

+336613H222dkh° s,a) (ﬁ(l’%( >)v1)>,
n\s,a

h=1 s,a

which completes the proof. O

C.3. Step Three: Finite Episodes for Step Mixture Policies

In the previous section, we have characterized the UCBs and LCBs for the step-wise optimistic policies (7*"0) and bound
the corresponding estimation errors. In this step, we extend the result for 75" to step mixture policies 7 and prove that the
number of the episodes of which the executed policy 7* is not equal to the optimistic policy 7* (i.e., 7%:9), is finite under
the StepMix algorithm. We refer to this result as the finite non-optimistic policy lemma.

To establish the finite non-optimistic policy lemma, we first extend the result of Lemma C.7 from 7%:70 to step mixture
policies.
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Lemma C.8. For a step mixture policy ™ mixed from two policies %" and 7%"o =1, denoted as ™% = (1 — p)m*o +

prFho=1 for some p € (0, 1), the following inequality holds:

(1=p)m ™ Gy ™ (s1) + pry "0 T G T (1)

f(s.0.0)) O
vt )

B(n
K(s,a) V1

H
<24 H ZZdﬁ(s,a)( T_(l ;(CL( )) 5)> +336e“H2ZZd ( 7_(l

h=1 s,a h=1 s,a

where dﬁ(s, a) is the occupancy measure under policy ™ and Gﬁ’ho is defined in Equation (24).

Proof. Since % = (1 — p)rk-ho 4 prk-ho=1 ig the step mixture policy mixed from two policies that differ at only one step,

by Lemma C.3, the occupancy measure under 7" satisfies

df(s,a) = (1 = p)d""(s,a) + pd*"o~ (s, a).

Using Lemma C.7, we have

(1= p)rb MG (1) + prb 0T GEO o)

*(nk(s,a),d"
<p (24613 Z Z dfb’ho*l(s, a)\/V&TPh (th-;-};Oil)(Sa a) <W)

h=1 s,a n
13 772 ko= By (s, a),8")
+ 336 thlsza:d )(ﬁ( o >> o)
13 2 koo B(ny (s, a),8")
+336e3H };;d (s,a (W))

It is worth noting that

Epe o (R b r e ()
Thus, to prove Equation (28), it suffices to show that
21 > 0 \/Varph(v,f“ﬁ“)(s, o(ZEHe0.2)
v g 0 e avvﬂph(vh’z’?)(s, o (Tl )
S) wp o LA a1
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Due to the Cauchy’s inequality, we have

H
LHS of (31) < Z Z de’hD*l(s, a)Varph(th_;_th*l)(s, a)+ (1— p)dﬁ’h(’ (s, a)Varph(Vf_;_hlo)(s, a)

h=1 s,a

h=1 s,a

(32)

Besides, due to Lemma F.4, we have

H 2
szk hO s a)Varp,L(VhH )(s,a) < E, kng (ZT}L Shyap) kho( 1)) < H?.

h=1 s,a

Similarly, we also have S5, dea di"= (s, a)Varp, (thﬁo )(s,a) < H?. Together with Equation (30), we have

H e /
RHSof 32) < H,|> Zdﬁ(s,a)<w>’

Pt ng(s,a) V1
which completes the proof. O

Equipped with Lemma C.8, we are ready to establish the finite non-optimistic policy lemma, which states that for step
mixture policies, there are only finite episodes in which 7% # 7%:0

Lemma C.9 (Finite non-optimistic policy lemma). Define N' = {k|k € [K],7* # 7«%9}. Then, the cardinality of N is
upper bounded by

1608626 9688613 (/1 .
N < ( 608; 4 2088e S>H3SAlog2(K +1) = 0<(2 + S)HSSA),
K K k2 K
where Kk = Vf’b -
Proof. By the definition of N, we have
Wik 2 3 (vl (V1 1 (1 —p)yl’“’“))) (33)
keN
(2) sho—1 x,ho ke,ho—1 k,ho
S (V™ 4+ (1= p) V") = (oY) + (1= p)V"")
keN
=3 (P = T 4 (= (" - V)
keN
(0)
2 5 (et 1 (1 gyt o
keN

(d) B*(nk(s,a),d")
< 24eH dk ( a2
DN )% sa(mg(sam)

keN \ h=1 s,a

nh s, a

keN h=1 s,a

wwmﬁzzzwm(ﬁwmw>

keEN h=1 s,a
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+336613H2222dk s,a ( é ;E( ))v1))’ (35)

keN h=1 s,a

where (b) follows from Lemma C.2, (¢) is due to Lemma C.6, (d) follows from Lemma C.8, (e) is due to the Cauchy’s
inequality. For inequality (a), by the design of StepMix, when 7% # 7%:0, we must have ka ho—l (1 — p)ylk’h(’ =~yor
pV L (1 — pyyfle = Ylﬂk’H < ~. Both cases indicate that inequality (a) holds.

‘We can also bound the summation as follows:

e () 5y s (70

keEN h=1 s,a h=1 s,a keN
ul d¥ (s, a)
<B*(K, &) ZZ( n (5 )
h=1 s,a keN nhsa\/1
(a) u
< B8 Y Y Alog (IN] +1)
h=1 s,a
< 4HSAB*(K, &) log (IN] + 1), (36)
where inequality (a) follows from Lemma F.6.
Similar to Equation (36), we also have
k( B(nj (s, ) ) /
> ZZd s,a ( A (s ) < 4HSAB(K,8)log (IN] +1). (37)
h

keN h=1 s,a

Hence, putting the bound of summations into Equation (35), we have

Nk < 48e*3\/|IN|/H3SAB*(K, 8" ) log (IN|+ 1) + 1344 ¥ H3SAB(K, ") log (|N] + 1).

Rearranging the terms, we conclude that [\| < (4605 | 268828y 3 g A10%(K 4 1) = O (& + £)H3SA), which
completes the proof. O
C4. Step Four: Putting Everything Together

Finally, with all the results above, we can prove Theorem 4.2.

Theorem C.10 (The complete version of Theorem 4.2). Given § € (0,1), set §' = ﬁ, B = log(SAH/d') +
Slog(8e(K + 1)), and * = log(SAH/¥') + log(8e(K + 1)). Then, with probability at least 1 — 6, StepMix satisfies
constraint in (2) and achieves a regret upper bounded as

Reg(K) <O (m 4 H3S?A 4 H3SAA, (12 L 5)) ,
K K

where Ay = V¥ — Vfrb and kK = Vl’rb —

Proof. We use the same notations specified in Appendix B. Then, under the previously defined good events (which occur
with probability at least 1 — §), we have

K
Reg(K) = Z(Vf -V)
k=1
WS WO v L S v+ S (v

kgN keN keN
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< W V) £ NAg + 3 (e G 4 (1= el o)
k¢N keN
K

(pr} o TG 4 (L= et PG 4 Ao

A
INe

>
Il
—

d
<

—
=

M=

13 k(s,a nZ(S a),d’)
(24 " sz I& om,

k=1

+336e P H Y Y " d(s,a) (W)) + [NV Ao, (38)

s nk )V

where (a) is due to that 70 = 7* and 7% = 70 when k ¢ N; (b) follows from the fact that V;"" is the LCB of V;*** and
Equation (33) to Equation (34) in the proof of Lemma C.9; (c) is due to Vl*’O — Ylk’o < ﬂ]f’OG’f’O as shown in Lemma C.6,
and (d) is from Lemma C.8.

Using Equations (36) and (37) from the proof of Lemma C.9, we obtain

K _ H _
E : 1 2 :2 : *(nk(s,a),6) 1 22 :E : B(nk:,(sva)a(sl)
246 3H dk S, a (W) + 3366 3H dZ(S,a) <]€’<7)\/1>

k=1 h=1 s,a h=1 s,a TS, a

< 48e'3\/H3SAKB*(K, 0" ) log (K + 1) + 1344e 3 H3SAB(K, ") log (K + 1). (39)

Plugging (39) and the result of Lemma C.9 into Equation (38), we further have:

Reg(K) < 48¢"3\/H3SAK3*(K,8')log (K + 1) + 13443 H*SAB(K, 8') log (K + 1)
(4608626 2688¢!3S
+ +

K2 K

) H3SAlog(K +1)A,

=0 (\/H3SAK + H?S?A+ H*SAN (12 + S)) :
R R

Finally, we prove that StepMix satisfies the constraint episodically. Specifically, for any online policy 7%, we have

Vi = gV 4 (1= )V > pyEe T 4 (1 - gy

Ile'k— k,H bk

= 7%, % must satisfy the constraint, because 7°

is assumed to be safe. Otherwise, if hy = 0, that means 7% =

VI (s1)
~kh0( = tho T
guarantees that v = pV;"" ™1 4 (1 — p) V™. Since pV""0 7! + (1 — p)VPlo < pvFto=t (1 — pyvle = Vl ,
is also safe. D

’“)andeO > v, so 7% must be safe; if hg # 0, Wehavevkh0 >fyandeh0 ' <+, sothat p =

We remark that when v = 0 the additive term O (H 3SAA (% S )) in Theorem 4.2 can be dropped, as formally stated
in the following corollary.

Corollary C.11 (Vanishing additive term). When v = 0, with all the parameters specified in Theorem 4.2, StepMix satisfies
constraint (2) and achieves a regret upper bounded as

Reg(K) <O (\/H3SAK + H352A) ,
where Ay = V" — Vfrb, K= Vfrb —
Proof. If v = 0, based on the definition of Qk ho in Equation (14), we have le,ho > 0 = ~ for any k, hy and h.
Thus, under StepMix, the executed policy 7% must be the optimistic policy 7*. Recall that the definition of A is

N = {k|k € [K],7* # 7*}. Therefore, we have N = () and |N| = 0.
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With |A] = 0 and Equation (38), we have

M=

87
Reg(K) < —
(s, @) Pty

>
Il
—

\ h=1 s,a

+ N4

I
M=

ny(s,a) V1 P

>
Il
—

h=1 s,a

(a)
< 48¢'3\/H3SAK*(K, 8" ) log (K + 1) + 1344 H3S AB(K, 8') log (K + 1)
=0 (\/H3SAK + HSSQA) ,

where (a) is due to Equations (36) and (37).

D. Algorithm Design and Analysis of EpsMix Algorithm

In this section, we present the detailed design and analysis of the EpsMix algorithm.

D.1. Algorithm Design
The EpsMix algorithm is presented in Algorithm 4. The update rule of Qf , Qf is given below, where §' = §/4.

~ ~ * (kK kY
0% (s,a) £ min (H ru(s,a) + 3\/\/&1“13}15(‘/,{:_1)(57@)% + 14128 ;

1~ ~ oy~
P - V) 0) + P (s.0)).

QZ(S, a) £ max (0, T‘h(S, a) — 3\/\7341'15}1c (th_‘_l)(& a) ﬂ*(nﬁ(s’ a)v 5/) _ 22H2 B(n’,f(s, a)’ 5/)

2

prlf(vhkﬂ - y}erl)(Sa a) + pflthkﬂ(& G))-

Similarly, the update rule of Qib and Qﬁb is defined as

- A . (7 * kl ’ ’5/ ’ 75/
m%mﬂM@mw“ﬁwme“ﬁgggM“W%%%)

1

Sk Trksb kb Ak kb
PO Vi) + AT s.0)).

kb kb
Q" (s,a) £ max (O,Th(s, a) — 3\/Varﬁ,},f(Vh+1)(s,a)

Sk kb kb Ak kb
fﬁuaﬂ—yzﬂxaw+fﬁm#gaw)

SN

D.2. Theoretical Analysis

The performance of the EpsMix Algorithm is characterized in the following theorem.

H * ﬁk a / H ﬁk s.a !
243 H ZdeL(s,a) (5 (7 \)/7;5)) +336613H222dﬁ(3,a) <ﬁ(lﬁh( ’ )76))

(s,a) V1

H . , H _
24613 1 ZdeL(s,a) <5 (:i(s,a),d)) +336613H222d2(5,a) <ﬂ(”£(5aa)75)

")

nk(s,a) V1

(40)

(41)

Theorem D.1 (Regret of EpsMix). Given § € (0,1), set &' = &, 3 = log(SAH/&') + Slog(8e(K + 1)), and 5* =
log(SAH/&') 4 log(8e(K + 1)). Then, with probability at least 1 — 8§, EpsMix (Algorithm 4) simultaneously (i) satisfies
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Algorithm 4 The EpsMix Algorithm

Input: 7Tb5 ’Y, /87 ﬁ*7 DO - @
for k=1to K do
Update the model estimate

nk(s,a,s")/nk(s,a), ifnk(s a)>0,

PF(s'|s,a) =
w(s'ls.a) {1/57 if nf(s,a) = 0.
# Optimistic policy identification
QIICJ+1 = Q];IH =0.
for h=H to1do

Update Q7 (s,a), Qf (s, a),¥(s,a) € S x A according to Equation (40).

7 (s) < argmax, QF (s, a), VF(s) < Qf (s, @i (s)), ViF(s) < QF (s, 7 (s)),Vs € S.
end for
# Evaluate the baseline policy
kb kb

H+1 — QH+1 =0.
for h=H to1do

Update QZ’b(s, a), G ﬁ’b(s, a),¥(s,a) € S x A according to Equation (41).

= ko,b ~k,b kb kb

Vi (s) = @37 (5,m5(5)), Vi () <= Q7 (s, m (s)), Vs € S.
end for
# Safe exploration policy selection
if V}* > ~ then

7wk =7k,
else if yl’“ b < v then
7Tk = 7Tb.
else
Y1k’b(sl)—’}’

P= TG -v
7F = prF @ (1 — p)7.
end if
Execute 7% and collect { (s}, af, sy, ).
Dy, <= Dp—1 U {(Sz,ai, 5§+1)}th1'
end for

the conservative constraint in (2), and (ii) achieves a total regret that is upper bounded by
~ - 1
0 <\/H3SAK + H?S?A+ H?SAN <2 + S)) :
K K

where Ag = Vi — Vfrb is the suboptimality gap of the baseline policy, and k = Vl’rb — 7y is the tolerable value loss from the
baseline policy.

Before we proceed to prove Theorem D.1, we sketch the proof as follows: First, we establish the UCBs and LCBs of the
value functions for the baseline policy 7° and the optimal policy 7* in each episode, following similar approaches as in the
proof of Theorem 4.2. We then show that the total number of episodes where the algorithm executes 7 or the episodic
mixture policy is bounded, which ensures that the performance degradation compared with BPI-UCBVI (Ménard et al.,
2021) is bounded. Finally, the established LCBs ensure that the conservative constraint is satisfied in each episode.

Lemma D.2. With probability at least 1 — 6, the following good events occur simultaneously:
EF'),E™(S), EX(V*,8), (V™ 8),
where §' = §/4.

Proof. This result can be obtained by noting that each of those events hold with probability at least 1 —4 /4 under Theorem F.7,
Theorem F.8 and Theorem F.9, and then taking the union bound. O
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In the following proof of EpsMix, we set ¢’ = §/4. We note that Equation (40) and Equation (41) are defined in a similar
form as Equation (8). As a result, Lemmas C.5 to C.7 can be directly extended for EpsMix, as stated below. We note that
Q" "0 need to be bounded for every hy € [H] U {0} in StepMix, while in EpsMix, we only need to bound Q* and Q**.

Lemma D.3 (UCB and LCB for EpsMix). The relationship between Qi Qﬁ f/,f Y,f and the corresponding true value
Sfunctions Qﬁ, V,f, Q7. Vi< are specified in the following inequalities:

Qh( S, ) < Qh(s a’) < Qh(S,CL) § QE(S,G),
Vii(s) < ViF(s) < Vii(s) < Vi (s

In addition, the relationships between Q ho QI;L b th b th b and the true value functions Q [ Vh are specified in the
following inequalities:

Lemma D.4. Define G and Gi*" as

. ¥ ﬁ*(nk(87a)75/) ,B(nk(s,a) 5/) 3
G¥(s,a) = min <H, 6\/Var15§(V}f+1)(s,a)n%(s7a) + 36H2W +(1+ H)PF?WZHGZH(S, a)
(42)
kb . = kb B*(ny(s,a),d') zﬁ(nlﬁ(sva)»&) 3\ Ak kb kb
! - H o (VE2 (5, 0) 2005 @) 0y g2 P15, @) ) P
G (s, a) mm( ,6\/Varph (Viil)(s,a) nﬁ(s,a) + 36 nﬁ(s,a) +(1+ ) 1 Gyl (8, @) |
43)

Then, the estimation error between Q}, V;* and Qﬁ, th can be bounded as
Q;(L(s7 a’) - Qﬁ(sﬂ a) < GZ(S, a)v
Vii(s) = Vir(s) < <ﬁk('|8),G7L(s, )
Moreover, the estimation error between ng, V}f (s) and Q h b can be bounded as

Q7 (s,0) = Q' (5,0) < G}(s,0),
7Tb N N
Vi (s) = Vit (s) < (mh(-]s), Gy (s, ).
Lemma D.5 (Bounding wf Gk and 7}” ka b) Recall the functions of G* and G** in Equations (42) and (43). We have

- *(7k (s, a),d
Gh(s1) <24¢ ) Zd’g(s,a)\/Varph(vhk+1)(s,a) (W)

h=1 s,a 'y

H !
i S S ().

h=1 s,a n

and

5/
Gkbsl <2461322db sa\/ arp, Vh+1 S,a < _k )>

h=1 s,a

H
+336eH*Y " " dj(s,a) ( (A ;(CL( )) ?)

h=1 s,a n

where de and dZ;L are the occupancy measures under policy 7% and 7°, respectively.
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The proofs of the above three lemmas follow the same approaches as those for StepMix, and thus are omitted.

Besides, although the construction of the mixture policy under EpsMix is different from that under StepMix, the linearlity of
the occupancy measure and the corresponding value function is preserved under EpsMix.

Lemma D.6. Let 7 = pr' @ (1 — p)72, and dj (s, a) and d3 (s, a) be the occupancy measures under ' and 72, respectively.
Then, the following equality holds:

df (s,a) = pd}(s,a) + (1 — p)&3(s,a).

Recall that the occupancy measure under a policy 7 is defined as d (s, a) = Ex[1{s, = s,an = a}].

Proof. Let B, be an independent Bernoulli random variable with mean p, and let 7 be 7! if B, = 1 and be 7% otherwise.
Then,

dr (s,a) =E,[1{s, = s,ap = a}]
=E.[1{sy = s,ar, = a}|B, = 1]P[B, = 1] + E;[1{s) = s,a, = a}|B, = 0|P[B, = 0]
=E 1 [1{sp, = s,ap = a}] - p+ E2[1{sp = s,ap = a}](1 — p)
=pdy(s,a) + (1 = p)dj, (s, a).

Proposition D.7. Under the same condition as in Lemma D.6, the following equality holds:
T 7'I'1 71'2
V=V + (L= )V

Based on the linearity shown in Lemma D.6, we obtain a result similar to that in Lemma C.8 for episodic mixture policies.

Lemma D.8. For an episodic mixture policy ©* mixed from two policies 7 and 7°, defined as ™ = (1 — p)w° @ p7¥, the
following bound holds:

(1= p)mi Gy (s1) + pi GY (51)

o[ en (D) e (S

h=1 s,a h=1 s,a

where dfb(s, a) is the occupancy measure under policy .

Lemma D.8 can be proved following a similar approach as in the proof of Lemma C.8.

Now we establish the EpsMix version of the finite non-optimistic policy lemma.
Lemma D.9. Define N' = {k|k € [K], 7" # ©*}. Then, the cardinality of N in the EpsMix algorithm can be bounded as

460826 2688¢!39
NV |<< ot )

H3SAlog*(K +1) =0 ((1 - S) H3SA) ,
K

12
Tl'b
where k = V[T — .

Proof. If 7% # 7, we must have Vi < = Vi — . There are two possible cases for V;"". Case 1: V" <y = Vi — k.

. . . b .
For this case, the algorithm will choose 7k = 7% Thus, Ve — I/f’b > k. Case 2: 1/1’“’& > ~. For this case, the

algorithm will choose 7% = p7* @ (1 — p)7w®. The design of p ensures that pV}® + (1 — p)ylk’b = ~. Therefore,
Vfrb —(pVF + (1= p)V"") = k. We note that 7F = 7° can also be viewed as 1 - 7° &0 - 7. Thus, for any k € A/, we have

Vfrb — (pVi" + (1 - P)ylk’b) > K.

Furthermore, due to the optimality of 7*, we have Vl’fb <pVF+(1- p)Vfrb. Thus,

Wl < 3 (v = (o + (1= V)

keN
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<3 (v + =)V = (Vi + (1= )

keN

=3 (pvr =V + (1= ) =)
keN

23 (prbch + (1 - pmict?).
keN

where inequality (a) is based on Lemma D.4.

Then, leveraging Lemma D.§, we have

6*(ﬁk( ) 5) 6(7k(57a’)’6l)
K 613 ke S, a —} 613 2 » S a Ehm o/
Wk < 24eH $§ > dh(7)( RE(s,a) v )—|—336 H> S E > di( (n’;(s,a)w)

keN h=1 s,a keEN h=1 s,a

kEN h=1 s,a keN h=1 s,a

H k(s ny(s,a),d
(224613HWJ Z szﬁ(&a) (W) + 3363 H? Z szk s, a <W>,

where inequality (b) follows from the Cauchy’s inequality and 6’ = §/4.

Similar to Equation (36) and Equation (37) in Lemma C.9, we have

3 Z S dk (s, (”(h(s )“3 f)) < AHSAB*(K, &) log (IN| + 1), (45)
kEN h=1 s,a LOACH
and
H —k !
DD di(s,a) (W) <4HSAB(K,§')log (IN] +1). (46)
keN h=1 s,a (s, a) V1

Therefore, we have

Nk < 48e13\/|N|\/H3SAB*(K, 6" ) log (IN|+ 1) 4 13443 H3SAB(K, ") log (|N] + 1).

By rearranging terms, we conclude that |\/| < (46(282826 + 26885135)H3SA log®(K +1) = O((% + £)H?SA). O
Finally, we are ready to prove the regret upper bound of EpsMix.

Proof of Theorem D. 1. First, we have

S ()= (v X (v v - X ()

keN keN

~
Il
-
x~
R
z

<Y -V Y (p’“(Vf VA (- MO - yf“’)) V1A,

k¢N keN

_ (p’%vr _VR) + (1= oy — W)) T INA
=1

(0) &
LY (atGh+ - Prtat ) + N1
k=1
where inequality (a) follows from Lemma D.4.
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Then, we use Lemma D.8 and the result of Lemma D.9 to bound the regret as follows:

z(

= 1 Bﬁkl Saav(s, 1 2 i . Bik’ s,a,é’
; 24e 3H\IZZCZ )(ékl(i,a))\/l)) + 336¢"*H szﬁ(s’a)(r(zﬁé,a))\u)))

h=1 s,a h

(4608626 26883

> >H3SA log(K 4 1)Ag

K K

k
k=1 h=1 s,a h k=1 h=1 s,a

+
H _
: B(nk(s,0),8") - B(i(s,a), &)
<24e st\IZZZdz(S7a)(ﬁ’(L)>+336e SH Zzzdhsa <ﬁ?s)\/1>
_|_

4608¢%6  2688¢!3S
K2 K

)H3SA log(K + 1)Ao,

where the last inequality is due to the Cauchy’s inequality. Then we use the bound of summation in Lemma D.9 and plug
Equations (45) and (46) into the above inequality, to conclude that

K

Reg(K) = Z (Vl* — V1”k>

k=1
< 48¢'3\/H3SAKB*(K, ") log (K + 1) + 13443 H3SAB(K, §") log (K + 1)
(4608e26 26886135)

+ +

= H2SAlog?(K +1)Ag

=0 (\/HSSAK + H?S?A+ H*SAN (12 + S)) :
R R

E. From Baseline Policy to Offline Dataset

E.1. Offline Algorithm
The offline VI-LCB algorithm is detailed in Algorithm 5.

Algorithm 5 Offline VI-LCB (Algorithm 3 in Xie et al. (2021))

Require: Dataset D = {(s A ,aﬁl), r,(L), 5, +1)h 1}, collected using an unknown baseline policy
Randomly divide D into H sets { Dy, }L | such that |Dy,| = n/H.
Estimation Py, (s'|s, a) and by, (s, a) using Dj,.
Set Vi1 (s,a) = 0,Vs, a.
for h=Hto1ldo
Qn(s,a) = max(0,7,(s,a) + PyViy1(s,a) — by(s,a)),Vs, a.
Let 75, (s) = arg max, Qn(s,a),Vs.
Vi(s) = Qn(s, Tn(s)), Vs.
end for
Return 7.

E.2. Theoretical Analysis
In Algorithm 5, Py, (s'|s, a) and by, (s, a) are defined as:

nn(s,a,s’) H?,

DS &G5) Y N
1Vnp(s,a)’ wls,a) =c np(s,a) V1’

ph(sl|87 a) =
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where ¢ = log(HSA/¢), np(s,a) =
step h, and np(s,a,s’) = Zsh,ah sns1€Dn
step h while having state s’ as the next state. Both counts are only for samples in dataset Dy,.

sn.aneDy H{sn = s,ap = a}is the.count of visitati.or'ls' of state—act?on pair (s,a) at
1{sp = s,an = a, sp11 = s’} is the count of visiting state-action pair (s, a) at

Following the approach in Xie et al. (2021), we first define the good events as follows.

Lemma E.1 (Lemma B.1 in Xie et al. (2021)). With probability at least 1 — 0, there exists a finite constant ¢ such that the
following good events hold:

.. 2
Vh € [H], (s,a) € S x A, |(Pn,— Pp)Vihyi(s,a)| <c¢ nI({sLa) = by(s,a), L Ll
h\9,

<
np(s,a) — cndl‘(s,a)’
where . = log(HSA/0) and d* (s, a) is the occupancy measure under the behavior policy .

Under the good events, Qh(s, a) can be proved to be the lower confidence bound of Q7 (s, a) as shown in the following
lemma.

Lemma E.2 (Lemma B.2 in Xie et al. (2021)). Let Qh(s, a) = max(0,r(s,a) + Pth+1(s, a) — bp(s,a)). Then, under
the good events defined in Lemma E. I, we have

Qn(s,a) < Qf(s,a).

The above two lemmas are the same as Xie et al. (2021), and thus we omit the proofs.

We first bound the value difference V}* — Vi with the offline estimation bonus b% (s, a) in the following lemma.

Lemma E.3. Suppose there are n trajectories collected under the behavior policy pi. Then, under the good events defined in
Lemma E. 1, the extracted policy 7 satisfies

H
VI -V < 22 Z di(s,a)bp(s,a),

h=1(s,a)eSxA

where by, (s, a) = C\/%’

Proof. We directly calculate the suboptimality gap as follows
VI (s) = Vi (5) =Vi“(s) — max Qf (5, 0)
By (15[ Q} (5, 0) — Qi (s, a)]
<Eompy(-15)[0n(s,a) + PuV}  (s,a) — PyViyi(s,a)]
=B (1) [0r(5,0) + PV, = Vig1)(s,a) + (P — Pu)Viga (s, a)]
<2Eqmpun (1) (01 (8, @)] + By (15),5~P(1ss0) Vi1 (8) = Virea ()]

Recursively unfolding the above inequality from h = 1, we have:

H
VI -V < 22 Z dl(s,a)bp(s,a).

h=1(s,a)eSxA

The following theorem establishes an upper bound for the gap between the learned policy 7 and the behavior policy .

Theorem E.4 (Adapted from Theorem 1 in Xie et al. (2021)). Suppose n trajectories are collected in the offline dataset
collected under policy p. Then, with probability at least 1 — 6, the output policy 7 of the offline Algorithm VI-LCB satisfies

. H3SA
VI =V < 2cq ,
n
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Proof. Under the good events defined in Lemma E.1, we have

(@ X
Vlll - Vvl7T < 22 Z d/;;(&a)bh(sva)
h=1(s,a)eSxA

H
. H2
2 2 eV

h=1(s,a)eSxA

®) 4l Hu
< 26VH2LZ Z di(s,a)

17
h=1(s,a)ESx.A ndj (s, )

< ZCL\/TXH: Z \/dh(s,a)

h=1(s,a)eSxA

H

22@\/? Z Z 1 Z Z d(s,a)

h=1 (s,a)eSx.A h=1 (s,a)eSx.A
H5SA

)

=2c
n

where (a) is from Lemma E.3, (b) follows from the definition of good events in Lemma E.1, and (c) is based on the Cauchy’s

inequality. O

Based on the above theorem, we have the following corollary regarding the sample complexity.

Corollary E.5. With probability at least 1 — /2, if n > % and V' > ~, the output 7 of offline VI-LCB satisfies
N 1
Vi* > (V] +v)/2, where /' = log(2HSA/S).

Proof. To ensure Vi* > (V' 4 v)/2, we need to establish V' — Vi¥ < (V}* — ~)/2. We note that if

H5SA
n

2ct < (V" —=7)/2, 47)

then VI — Vi¥ < (V' — 7)/2. Rearranging the terms in Equation (47) leads to

16¢%/2H5S A
(V1H —7)? ’

which completes the proof. O

n >

Combining Corollary E.5 and Theorem 4.2, we can prove the following theorem.
Theorem E.6. Assume that there are at least n > W# offline trajectories collected under a safe behavior policy .
1

If we let Algorithm 5 run on the offline dataset and pass the output 7 to Algorithm 1 as the baseline ©°, then, with probability
at least 1 — 6, StepMix does not violates the constraint in Equation (2) and achieves a regret that scales in

o} ( H3SAK + H*S?A + H3SAA, (_12 + ?)) )
K R
where k = (Vl'u — ’y)/? > Oandﬁo = Vl* — Vlﬂ + K.

Proof. Corollary E.5 states that with n > % offline trajectories, P[V/* > (V' +v)/2] > 1 — §/2. Denote A the
1

event that 7 satisfies V* > (V/* ++)/2. Then, we have P[A] > 1 — §/2.
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Theorem 4.2 states that if V* > (V}* ++)/2 > ~, with probability 1 — §/2, StepMix does not violate the constraint and
achieves a regret at most

48¢'*\/H3SAK (K, 0') log (K + 1) + 1344e'* H* SAB(K, 8") log (K + 1)
(4608626 | 2688¢'5S
K

) H3SAlog?(K +1)Ag

K

(\/H3SAK + H3S%2A + H3SAA, ( 1 ‘?)) ,
>

where §' = VI —y>k=(V'—7)/2,and Ay = V}* =V} + k.

6(H+1)’

Since we use 7 as baseline, by letting B denote the event that StepMix achieves the regret in Theorem E.6 and does not
violate the constraint, we have P[B|A] > 1 — 4/2. Because P[B] = P[B|A]P[A] = (1 —§/2)(1 — §/2) > 1 — 6, we have
that, with overall probability at least 1 — &, when StepMix uses the output of offline UCB-VI as the baseline policy, it
achieves a regret that is at most

~ . . - 1
0 (\/H3SAK + H?S?A+ H?SAA (2 + S))
K K
without violating the constraint. O

We can also combine Corollary E.5 and Theorem D.1 to prove the following theorem for EpsMix, which is similar to
Theorem E.6 for StepMix.

Theorem E.7. Assume that there are at least n > w trajectories collected under a safe behavior policy . If we

let Algorithm 5 run on the offline dataset and pass the output 7 to Algorithm 4 as the baseline 7°, then, with probability at
least 1 — 0, EpsMix does not violate the constraint in Equation (2) and achieves a regret that scales in

O (\/HSSAK + H3S?A + H3SAA, (12 + S)) ,
K K

where k = (V' —7)/2 > 0and Ay = V" — V' + &.

The proof is similar to that of Theorem E.6 and is thus omitted.

F. Technical Lemmas

In this section, we list several technical lemmas that are used in the main proof.

Lemma F.1 (Lemma 11 in Ménard et al. (2021)). Let p and q be two probability distributions supported by the state set S,
and f be a functionon S. If KL(p,q) < o, 0 < f(s) < b, Vs € S, we have

Var, (f) < 2Var,(f) + 4b%a,

Var,(f) < 2Var,(f) + 4b%a.

Lemma F.2 (Lemma 12 in Ménard et al. (2021)). Let p and q be two probability distributions supported by the state set S,
and f, g be functions on S. If 0 < g(s), f(s) < b,Vs € S, we have

Var,(f) < 2Var,(g) + 20E,[|f — gl],

Var,(f) < Var,(f) + 36% [p — qll, -

Lemma F.3 (Lemma 10 in Ménard et al. (2021)). Let p and q be two probability distributions supported by the state set S,
and f be a functionon S. If KL(p,q) < aand 0 < f < b, we have

IE,[f] — Eglf]] < /2Vary(f)a + %ba.
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Lemma F.4 (Lemma 6 in Huang et al. (2022)). Given transition kernel Py, policy © and reward rp, : S x A — [0, 1], we
have:

2
H
szh (s,a)Varp, (Vi 1)(s,a) (Z Th(Sh, an) Vfr(sl)) < H,
h=1 s,a h=1

where d7, is the occupancy measure under policy ™ and V)" is the value function.

Lemma F.5. Under event £ and using the same notations defined in Appendix B, we have
(Bobe0) ) 4<ﬁ<-£<s,a>,5'>>
k —k :
ny (s, a) ng(s,a) V1

Similarly, for 5*, the following inequality holds:

Proof. Event £™ means that

If gm(8') < inf(s,a), we directly have the result nf(s,a) > +nf(s,a), which proves (% A 1) <

4 (%) On the other hand, if 8°"(¢') > 1nf(s,a), based on the fact that B(nf (s, a),8’) > B™(8') > 1,
we have that (w A 1) <1<4 (%’;)ﬁ)) The same arguments can also be applied to the inequality with
S ’I’Lh S,a

B*. O

Lemma F.6. For any state-action pair (s, a), step h and a subset of episodes N' C [K]|, we have

B (s,0)
Z m < 4log(IV]+1),
keN

where dy,(s, a) is the occupancy measure, i (s, a) is the expected visitation count.

Proof. We have

d¥(s,a) B d¥(s,a)
Z nk(s,a) V1 o Z ( ;‘:_11 dk(

keN kEN s,a)) V1
< df (s, a)
B kEN (ZteN,Kk df(s,a)) YA
< 4d§(5 a)
nen 2 DoteN i<k df(s,a) +2
<4 dj (s, a)
Cen Sienaek di(s,a) +dj(s,a) +1
k
<4 dy (s, a)

kEN ZteN,tgk df(s,a) +1°

Then, by noting f(k) = 3=, 1< d¥(s,a) and k' = max,;{t € N'U {0}|t < k}, we have

dr(s,a) Fk) = FK)
4keNZteNr<kd (s;a)+1 7~ keZN f(k)+1
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f(k)
<4 [t
fenrJe=suny T 41
[N |+1 1
< 4/ —dx

r=1 x

= 4log(|N] +1).

O

Theorem F.7 (Proposition 1 in Jonsson et al. (2020)). For a categorical distribution with probability distribution p € ¥,
denoting P, as a frequency estimation of p, we have

IP’(EIn e N*, nKL(P,,p) > log(1/8) + (m — 1) log(e(1 + n/(m — 1))) <.

Theorem F.8 (Lemma F.4 in Dann et al. (2017)). Ler {F;}}_ be a filtration, { X} be a series of Bernoulli random
variables with P[X; = 1|F;_1] = ps, where p; is F;_1-measurable. Then

Vo > 0,P <E|n : iXt < ipt/Q log(1/5)> <.

t=1 t=1

Theorem F.9 (Theorem 5 in Ménard et al. (2021), Lemma 3 in (Domingues et al., 2021b)). Suppose (Y;)ten and (w;)ten
are two sequences from filtration (F)ten, subject to wy € [0, 1], |Yz| < b and E[Y:|F;] = 0. Define

t t
S =) wYs, V=) wlE[Y?|F,
s=1 s=1

then, for any 6 € (0, 1), we have

b|St|
V; + b2

P (Elt >1,(V/b* + 1)h ( ) > log(1/6) + log(4e(2t + 1))) <6,

where h(z) = (x + 1) log(x + 1) — .

This result can be equivalently stated as: with probability at least 1 — 6, the following inequality holds:

1Se] < \/2V; log4e(2t + 1)/6 + 3blog(4e(2t +1)/5).

37



