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Frustrated spin-systems have traditionally proven challenging to understand, owing to the scarcity of
controlled methods for their analyses. By contrast, under strong magnetic fields, certain aspects of spin
systems admit simpler and universal description in terms of hardcore bosons. The bosonic formalism is
anchored by the phenomenon of Bose-Einstein condensation (BEC), which has helped explain the behaviors
of a wide range of magnetic compounds under applied magnetic fields. Here, we focus on the interplay
between frustration and externally applied magnetic field to identify instances where the BEC paradigm is
no longer applicable. As a representative example, we consider the antiferromagnetic J1 − J2 − J3 model on
the square lattice in the presence of a uniform external magnetic field, and demonstrate that the frustration-
driven suppression of the Néel order leads to a Lifshitz transition for the hardcore bosons. In the vicinity of
the Lifshitz point, the physics becomes unmoored from the BEC paradigm, and the behavior of the system,
both at and below the saturation field, is controlled by a Lifshitz multicritical point. We obtain the resultant
universal scaling behaviors, and provide strong evidence for the existence of a frustration and magnetic-
field driven correlated bosonic liquid state along the entire phase boundary separating the Néel phase from
other magnetically ordered states.

Introduction: Bose-Einstein condensates and superflu-
ids are the most generic ground states of repulsively-
interacting, dense Bose gases above one dimension [1]. For
bosons hopping on a lattice, additional possibilities, such
as Mott insulating phases, become possible at strong repul-
sive interactions [2]. It has been suggested that interact-
ing bosons may exist in a symmetric liquid state – a Bose
metal – in the presence of an extensively degenerate single-
particle dispersion [3, 4]. The extensive-degeneracy not
only constrains the phase space available for scatterings,
but also enhances the low energy density of states. Over
the past decade, the latter property has been utilized for
stabilizing other kinds of Bose liquid states in Rashba spin-
orbit coupled bosons [5], deconfined critical points between
valence bond solids [6], superfluid phases in dipolar Bose-
Hubbard model [7], certain tensor gauge theories [8], and
fractonic superfluids [9]. In these systems, inter-boson in-
teractions play a fundamental role in organizing the low
energy behavior, which is in contrast to conventional Bose
systems where the key mechanism, Bose-Einstein conden-
sation (BEC), arises from quantum statistics. Unlike their
fermionic counterparts, however, pure bosonic systems are
comparatively rare in nature. It is therefore important to
identify new platforms which may support unconventional
phenomenology of bosonic systems.

Due to the connection between localized spins and
bosons, frustrated magnets are promising candidates for re-
alizing unconventional bosonic matter. Frustrated magnetic
systems, however, pose significant challenges to a theorist,
owing to a scarcity of controlled approaches, especially for
low-spin systems [10, 11]. A rare avenue becomes avail-
able in the presence of a uniform magnetic field – since all
spins in any quantum magnetic system will polarize when
exposed to a sufficiently strong magnetic field, quantum
fluctuations are suppressed in the vicinity of the resultant
field-polarized (FP) state. In this region, the system can be
mapped to a dilute gas of interacting bosons, and frustra-
tion manifests itself in the bosonic bandstructure. Indeed,
much of the conventional phenomenology of interacting di-
lute Bose gases has been realized in such magnetic systems,
including BEC, superfluidity, and Mott transition [12, 13].
Since the degree of frustration acts as an additional non-
thermal tuning parameter, it introduces the possibility of re-
alizing unconventional states of bosonic matter. Some such
states, for example multi-Q condensates [14, 15] and multi-
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FIG. 1. Phase diagrams in the absence and presence of an ex-
ternally applied magnetic field (h). (a) Classically, at h = 0, the
Néel antiferromagnet (AFM) phase at weak Jn>1 may continuously
transition to spiral or stripe AFM phases along suitably chosen di-
rections on the J2 − J3 plane. Two multi-critical points exist at the
intersections of critical lines (CLn), marked by the (red) squares, at
(J2, J3) = (

J1
4 , J1

8 ) and ( J1
2 , 0), respectively. (b) All magnetically or-

dered phases develop canting as a magnetic field is introduced, be-
fore transitioning to field-polarized states at sufficient high h> hc .
The brown curve denotes hc/J1 as a function of J2/J1, at a fixed
J3/J1 [dashed line in (a)]. Multicritical points (filled circles) are
obtained at the intersection of hc and the boundaries between the
magnetically ordered phases (vertical lines). The phase bound-
aries in (b) are obtained from a linear spin-wave analysis.

particle Bose condensates [16, 17], bear similarities to those
proposed in spin-orbit coupled bosonic systems [18, 19].
Others, such as Bose metals, remain unexplored. Here,
we focus on the vicinity of multicritical points that arise at
the intersections of frustration-driven and magnetic-field-
driven continuous transition lines. While frustration tends
to stabilize quantum paramagnetic states, a high magnetic
field nearly saturates the system. As we shall show, the com-
bined effect of the two non-thermal agents facilitates a con-
trolled access to Bose liquid states in frustrated magnets un-
der an applied magnetic field.

The zero-temperature transition between an FP and
magnetically ordered state is expected to be continuous,
whereby the spin-rotational symmetry perpendicular to the
field-polarization direction is spontaneously broken. In the
bosonic language, it can be viewed as a density-driven tran-
sition between a trivial insulator with no particles to a su-
perfluid [20]. On the superfluid side of the phase transition,
the bosons usually develop an off-diagonal long range or-
der (ODLRO), thus, undergoing a Bose-Einstein condensa-
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tion (BEC) [1, 21]. The transition itself belongs to the ‘BEC
universality class’, which is characterized by the dynamical
critical exponent z = 2 [22]. Such magnetic-field tuned
transitions are relevant to mainly two classes of spin sys-
tems, antiferromagnets and quantum paramagnets. Exten-
sive experiments on both kinds of systems have established
the importance of BEC-based perspective in understanding
the physics of a wide variety of magnetic compounds under
applied magnetic fields [23–40]. Here, we propose scenar-
ios where this conventional outcome breaks down. In par-
ticular, we establish (i) transitions that go beyond the BEC
universality class, and (ii) explore the possibility of emer-
gent Bose metallic physics in spin systems exposed to strong
magnetic fields.

Model and Phase diagram: We consider a spin- 1
2

Heisenberg model on the square lattice with long range an-
tiferromagnetic interactions,

H0 = J1

∑

〈r r ′〉

S⃗r · S⃗r ′ + J2

∑

〈〈r r ′〉〉

S⃗r · S⃗r ′ + J3

∑

〈〈〈r r ′〉〉〉

S⃗r · S⃗r ′

(1)

where all Jn > 0, and S⃗r represents the three-component
spin-1/2 operator at site r . It is convenient to employ J1
as the overall energy scale, and define dimensionless ratios
X̃ = X/J1 for any quantity X that possesses the dimension
of energy. The classical phase diagram, obtained by analyz-
ing the Luttinger-Tisza (LT) bands [41] is presented in Fig.
1a. For J̃2 + 2J̃3 < 1/2 a Néel antiferromagnet (AFM) is re-
alized. In the complement of this region, classically, various
spiral and stripe ordered phases are expected. Transitions
between the Néel and other antiferromagnetically ordered
phases manifest themselves as Lifshitz transitions of the LT
band, where the nature of the dispersion about the band
minimum changes qualitatively. The corresponding critical
points lie along the line J̃2 + 2J̃3 = 1/2, henceforth labeled
as ‘critical line 1’ (CL1). Because of the enhanced density
of states on CL1, quantum fluctuations may be expected to
suppress magnetic order in its vicinity [42–45]. Indeed, re-
cent numerical simulations indicate the presence of quan-
tum spin liquid and valence bond solid phases in the vicin-
ity of CL1 [46–48]. We note that two other critical lines are
present in the phase diagram: CL2 (CL3) separates the two
spiral-ordered (stripe-ordered and spiral ordered) phases.
Here, we primarily focus on the impact of CL1 on the phase
diagram.

We introduce a uniform magnetic field, B, such that the
system is governed by

H(h) = H0 − h
∑

r

S(z)r , (2)

where h := gµBB is the Zeeman field with g and µB de-
noting the Landé g-factor and Bohr magneton, respectively.
The magnetic field tends to polarize the spins along ẑ direc-
tion, and cants the AFM order. At sufficiently high fields, the
canted AFM phases give way to field polarized (FP) states,
which are classical ground states with all spins polarized
along the magnetic field direction (here, ẑ). A constant-J̃3
slice of the resultant phase diagram is depicted in Fig. 1b.
In this letter, we focus on the neighborhood of the transition
between the canted AFM and FP phases. In particular, we
ask how the transition is affected by the Lifshitz criticality
along CL1. We formulate the scaling theory for the multi-
critical points at the intersection of the saturation-field sur-
face and CL1 (see Fig. 1b), to show the existence of mag-

netic field-tuned transitions of novel, non-BEC niversality
class for all points on CL1. These non-BEC critical points
strongly affect the phase diagram in their vicinity, most re-
markably through the stabilization of a quantum liquid state
at sub-critical fields.

Non-BEC transitions: The critical strength of the mag-
netic field necessary to drive the transition – the satura-
tion field – will henceforth be called hc . In the vicinity of
hc , spin fluctuations may be conveniently modeled by den-
sity and phase fluctuations of hardcore bosons, through the
Matsubara-Matsuda transformation [49, 50],

S(+)r → b†
r ; S(−)r → br ; S(z)r →

1
2
−ρr . (3)

Thus, we rephrase the problem in terms of the hardcore
bosons, br , with ρr being their local density. The Hamil-
tonian acquires the form of a Bose-Hubbard model on the
square lattice

H(h) =

∫

d2K
(2π)2

[E (K)−µ(h)]b(K)† b(K)

+

∫

d2Q
(2π)2

V (Q)ρ(−Q)ρ(Q) + U
∑

r

nr (nr − 1), (4)

where the last term enforces the hardcore condition in the
limit U → ∞ [50]. The “chemical potential”, µ(h) =
∑3

i=1 Ji−h, is tuned by h, and it controls the average density
of bosons. The dispersion, E (K), and the coupling function,
V (Q), are independent of h, but sensitive to the Jn’s. In par-
ticular, E (K) tracks the LT band structure, and reflects the
singularities at the classical phase boundaries: at a fixed J̃3
and as a function of J̃2, the boson band undergoes Lifshitz
transitions as the critical lines are crossed. The existence
of such a transition is directly diagnosed by the low-energy
density of states, which acquires a more singular energy-
scaling at a Lifshitz critical point than the abutting phases.
We note that XXZ anisotropies, if present, can be absorbed
in V (Q).

In the Néel AFM phase the dispersion is minimized at the
M -point of the BZ. Thus, the long wavelength fluctuations
of the bosons, Φ, carry momenta in the vicinity of the M -
point, and the low energy effective theory governing these
fluctuations is given by SM =

∫

dτdr LM [Φ(τ, r )] with

LM [Φ] = Φ
∗[∂τ + ϵ(∇)−µeff]Φ+ g|Φ|4, (5)

where we have expanded the dispersion as E ((π,π)+ k) =
−E0 + ϵ(k) such that ϵ(k) ≥ 0, and defined the effective
parameters µeff = hc − h with hc = (3J1 − J2 − J3), and g :=
V (Q = 0) = 2

∑3
i=1 Ji . The magnetic field driven transition

can be understood as a transition between a state with no
bosons (an FP state; µeff < 0 ≡ h> hc) to a state with a finite
density of bosons (µeff > 0 ≡ h< hc). The transition itself is
described with respect to the critical point at µeff = 0 ≡ h=
hc . If a magnetic long-range order is present for h< hc , it is
manifest as an ODLRO for the bosons with 〈Φ〉 ̸= 0. As CL1
is approached from the Néel AFM side of the phase diagram,
does the field-driven transition continue to be described by
the BEC universality class?

The dispersion about the band minimum in the vicinity of
CL1 takes the form

ϵ(k, mL)
J1

= mL |k|2 + Acosγ(k4
x + k4

y) + 2Asinγk2
x k2

y , (6)
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FIG. 2. Evolution of the fixed-point-interaction-strength at the Lif-
shitz multi-critical point along CL1 [J̃3 = (1/2 − J̃2)/2]. Here, ḡ∗
is measured in units of ε = d − 4 [see Eq. (8)]. (Inset) Schematic
representation of the renormalization group flow for the dimen-
sionless coupling ḡ. A non-trivial interacting fixed point is present
for any d < 4.

where the ‘Lifshitz mass’ mL = (1/2 − J̃2 − 2J̃3), and

the parameters A = 1
24

q

36J̃2
2 + (2J̃2 + 16J̃3 − 1)2 and γ =

tan−1
�

6J̃2/(2J̃2 + 16J̃3 − 1)
	

. In the parameter regime
where mL > 0, the field-driven transition belongs to the
BEC class. As CL1 is approached, mL → 0 and the field
driven transition belongs to a distinct universality class that
is controlled by the Lifshitz multi-criticality point (LMCP)
at h = hc and J̃2 = J̃2,c . At the LMCP, the chemical poten-
tial µ = 0, and, owing to the divergent DoS, strong quan-
tum fluctuations arise in the presence of interactions among
bosons. It is manifest in Veff becoming strongly relevant at
the Gaussian fixed point governed by the first term in Eq.
(5). This strong coupling theory, however, is exactly solv-
able at T = 0, due to the absence of particle-hole excita-
tions [20, 22]. In particular, the positive semi-definiteness
of ϵ(q) leads to a chirality-like constraint on the bosonic-
dynamics, which protects the quadratic terms in the ac-
tion against quantum corrections [51]. This is analogous
to chiral fermionic liquids, where tree-level or classical crit-
ical exponents remain robust against quantum fluctuations,
thanks to the chiral dynamics [52, 53]. Thus, in the present
case, the tree-level critical exponents,

z = 4; νh = 1/4; νJ = 1/2; η= 0, (7)

do not accrue anomalous dimensions through quantum fluc-
tuations. Here, z is the dynamical critical exponent, νh and
νJ control the scaling of the correlation length along h and
J2 axes, respectively, and η is the anomalous dimension of
Φ. Since this is a multi-critical point, the correlation length
with respect to the LMCP is given by ξ = 1/

q

ξ−2
h + ξ

−2
J

with ξh ∼ |h − hc |−νh and ξJ ∼ |J2 − J2,c |−νJ . The criti-
cal exponents imply the magnetic-field driven transition at
J2 = J2c does not belong to the BEC universality class, which
is characterized by ξ∼ |h− hc |−1/2.

In contrast to the particle-hole channel, non-trivial quan-
tum fluctuations are present in the particle-particle channel,
which drives the system towards an interacting fixed point.
To see this, we perform Wilsonian renormalization group
(RG) analysis at d = 4−ε, where d is the number of spatial
dimensions. We obtain the following one-loop RG flow of
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FIG. 3. (a) The multicritical point at the intersection of the
field-polarized, canted-Néel, and canted-spiral phases controls the
finite temperature (or frequency) behavior of the system over a
wide energy window that lies within the (orange) critical cone.
(b) Crossover behavior of ρ0 as a function of temperature, deter-
mined by Eq. (9). The filled-circles represent numerically evalu-
ated values of ρ0 in appropriate units. The solid lines are fits to
the data, whose unequal slopes indicate a crossover behavior as-
sociated with entering the critical-cone at sufficiently high-T . ♣
[Needs more explanation].

the parameters in LM :

∂ℓ ḡ = ε ḡ −
fg(γ) ḡ2

16π2J1A
, ∂ℓµ̄= 4µ̄, ∂ℓm̄L = 2m̄L , (8)

where ℓ is the logarithmic length-scale, ( ḡ, µ̄, m̄L) =
�

Λ−εg,Λ−4µeff,Λ
−2mL

�

, Λ is the ultraviolet (UV) momen-

tum cutoff, and fg(γ) =
∫ 1

0
dt

cosγ[t2+(1−t)2]+2sinγ(1−t)t . Since
the LMCP is a multicritical point, it has two independent
relevant directions, µ̄ and m̄L . By maintaining multicrit-
icality of the LMCP, i.e. setting the bare values m̄ =
0 = µ̄, we obtain a stable fixed point at ( ḡ∗, µ̄∗, m̄L,∗) =
�

16π2J1Af −1
g (γ)ε, 0, 0

�

. Extrapolating the result to ε = 2,

yields a fixed point coupling ḡ∗ = 32π2J1Af −1
g (γ), which is

independent of the UV structure of the interaction vertex,
such as XXZ anisotropies. Because of its dependence on A
and γ, ḡ∗ varies along CL1, as shown in Fig. 2. In particular,
as the critical point at (A,γ) = ( 1

8 , π2 ) ≡ (J̃2, J̃3) = (
1
2 , 0)

is approached along CL1, fg(γ) ∼ ln 1
π/2−γ ≫ 1; conse-

quently, the fixed point is pushed to weaker couplings, and
the one-loop result would appear to become more accurate
as γ→ π/2.

Multicriticality and crossover behaviors: The LMCP
is an example of ‘zero-scale-factor universality’, and the scal-
ing functions for all observables are completely determined
by microscopic or bare parameters [22]. Here, we focus
on finite temperature properties within the multi-critical
cone emanating from from the LMCP, as depicted in Fig. 3a.
The shape of the cone is controlled by the temperature
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(a)

FIG. 4. Crossover in the scaling of [1/2−〈S(z)〉]with∆h := (hc−h)
as a function of increased frustration, obtained from iPEPS sim-
ulations. The data is fitted to the function, [1/2 − 〈S(z)〉] =
α∆h ln hc

∆h + γ
p
∆h. Deep in the Néel phase the transition would

belong to the Bose-Einstein condensation universality class; con-
sequently, α ∼ 1 (inset) and γ ≪ 1. As the system is pushed to-
wards the classical phase boundary, the ratio γ/α increases with
α→ 0. The shaded region indicates the regime over which a quan-
tum spin liquid state has been reported at h= 0 [47]. The dashed
line is an extrapolation of the data towards J̃2c . Here, we have
fixed J̃3 = 1/8.

scale, T∗ =
q

T 2
∗,h + T 2

∗,J with T∗,h ∼ ξ−z
h ∼ |h − hc | and

T∗,J ∼ ξ−z
J ∼ |J2 − J2,c |2. Although the density of bosons

at h = hc(J̃2) vanishes at T = 0, thermal fluctuations at
T > 0 makes it finite. Therefore, we expect the magneti-
zation at T > 0 would be suppressed below that in the FP
state. Using a finite-T scaling analysis [22, 54], we estimate
the average boson density to scale as [41]

ρ0(T )≡ 〈ρ(T )〉= T d/4 fT (T∗/T ), (9)

where the dimensionless function has the limiting behav-
ior, limx≪1 fT (x) = O (1) and limx≫1 fT (x) ∼ 1/

p
x . At the

LMCP in d = 2, only the former limiting behavior is appli-
cable, and a

p
T -scaling is obtained. Away from the LMCP

but along the BEC-transition line, ρ0(T ) displays a crossover
behavior. At low temperatures (T ≪ T∗) the BEC critical
points dictate the scaling and ρ0 ∼ T . At sufficiently high
temperatures (T ≫ T∗), however, the system enters the crit-
ical cone and ρ0 ∼

p
T . This crossover behavior is depicted

in Fig. 3b.
How does the LMCP affect the phase diagram at sub-

critical fields? There are two primary degrees of freedom
that control the behavior of the system at sub-critical fields,
viz. density and phase fluctuations of the bosons. While a
finite mean density reflects the deviation of 〈S(z)〉 from 1/2,
phase fluctuations determine the correlation between S(+)

and S(−). First, we consider the asymptotic behavior of the
mean density in the region 0 < (1 − h/hc)≪ 1, which cor-
responds to 0 < µeff ≪ J1. From one-loop RG analysis, we
obtain the scaling of the mean density with µeff [41],

ρ0(µeff) = µ
d/4
eff fh

�

m2
L/µeff

�

. (10)

The dimensionless scaling function, fh(x), has the following
limiting behavior, limx≪1 fh(x) = O (1) and limx≫1 fh(x) ∼
1/

p
x . Therefore, for a fixed µeff/J1 at d = 2, as the system

is tuned towards the LMCP from the canted Néel phase, the

ΛξL=10

ΛξL=10
2

ΛξL=10
4

102 104 106
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0
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-
Γ

FIG. 5. Indications of a quantum critical point at sub-critical fields.

asymptotic scaling of ρ0 = [1/2 − 〈S(z)〉] crosses over from
ρ0 ∼ (hc −h)→ (hc −h)1/2. We verify this crossover behav-
ior through unbiased iPEPS calculations as demonstrated in
Fig. 4.

Emergent algebraic liquid: In order to understand the
behavior of phase fluctuations at sub-critical fields within
a unified framework, we introduce the hydrodynamic vari-
ables, ϑ and δρ, which represent the long-wavelength
phase and density fluctuations, respectively, of boson field,
Φ, such that

Φ(τ, r ) =
Æ

ρ0 +δρ(τ, r ) eiϑ(τ,r ). (11)

For J̃2 < J̃2,c the FP state transitions into a canted Néel-AFM
as h is lowered below hc . This phenomenon is reflected in an
U(1) symmetry breaking transition for the bosons, whereby
〈Φ〉 ∼ p

ρ0e−
1
2 〈ϑ

2〉 ̸= 0, which implies existence of an off-
diagonal long-range order (ODLRO), hence a BEC [1, 21].
As J̃2 → J̃2c , the condensate fraction ∼ 〈Φ〉 is suppressed
due to increased phase fluctuations. What is the fate of the
system as 〈Φ〉 → 0?

The dynamics of Φ, as dictated by SM , is controlled by two
independent length scales, ρ−1/2

0 and m−1
L . We fix the mean

density ρ0 (for fields h < hc) and consider the influence
of mL (which controls proximity to CL1) on the dynamics.
We obtain an effective action for the phase fluctuations by
submitting Eq. (11) to SM , and integrating out δρ [41],

Sϑ =

∫

dk

�

k2
0

4g
+ρ0ϵ(k, mL)

�

ϑ(−k)ϑ(k). (12)

Here, dk = dk0dk
(2π)3 , and we have dropped sub-dominant

terms that do not affect the scaling behavior at the leading
order, as detailed in the Supplemental Materials [41]. We
note that the propagator of ϑ is non-perturbative in g, and
the phase fluctuations disperse as

p

4gρ0ϵ(k, mL), which is
analogous to the dispersion of magnons in the canted Néel
phase [41]. The long-wavelength behavior of the equal-
time correlation function,

〈S(+)0 S(−)r 〉 ∼ 〈Φ†(0,0)Φ(0, r )〉= ρ0 exp{−Γ (r ,ξL)}, (13)

is determined by the correlation length ξL ∝ m−1/2
L through

Γ (r ,ξL). The function Γ (r ,ξJ ) is most easily computed
along the line 16J̃3 = 4J̃2 + 1, on which ϵ(k, mL) acquires

an C∞-rotational symmetry and ξL =
1
Λ

r

J̃2

6(1/4−J̃2)
with Λ

being the UV cutoff for Sϑ. As shown in Fig. 5, for |r | ≫ ξL ,
〈S(+)0 S(−)r 〉 saturates to a non-universal value (dependent on
ρ0 and ξL), implying the presence of ODLRO in Φ. We
clearly observe a suppression of the condensate fraction as
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CL1 is approached (i.e. ξL → ∞). In the opposite limit,
a universal scaling is obtained, indicating the presence of a
quantum critical point (QCP) as ξL → ∞ (dashed line in
Fig. 5). This putative QCP is characterized by the absence
of an BEC, i.e. 〈Φ〉 = 0. At small but finite-T the canted
Néel phase possess only a quasi-long range order, and goes
through a Berezinskii-Kosterlitz-Thouless (BKT) transition
upon raising T . Since the BKT transition scale, TBKT, is con-
trolled by mL , it is expected to be suppressed as CL1 is ap-
proached. We note that these crossovers are not controlled
by the multicritical cone in Fig. 3a, but the critical fan sup-
ported by the critical point at mL = 0 ≡ J̃2 = J̃2c for h < hc
(see Fig. 1b).

The QCP indicated above realizes a higher-dimensional
analog of the Luttinger liquid, where a condensate can-
not form due to strong infrared fluctuations. All points on
CL1 host such algebraic liquid states, which are parame-
terized by the critical exponent W that controls the long-
wavelength behavior of transverse spin correlations:

〈S(+)0 S(−)r 〉 ∼ ρ0(|r |Λ)−W . (14)

We find the following expression: W = 1
2π

r

g/J1
ρ0a fw(γ,φr)

for this exponent, with fw being a dimensionless func-
tion. Since W ∝ ρ

−1/2
0 , it scales as ∼ (hc − h)−1/4 in

the vicinity of the saturation field. Although fw gener-
ally depends on the orientation, φr , of the position vector,
r = |r |(cosφr , sinφr), this dependence is found to be weak.
While generic points on CL1 possess a C4 rotational symme-
try, an C∞ symmetry emerges at γ = π/4, where CL1 and
CL2 intersect (red square in Fig. 1). The C∞ critical point
would be expected to control the high energy behavior in
its vicinity, including that along CL3 where a different kind

of higher-dimensional Luttinger liquid is expected [4, 55].
Conclusion: Motivated by the ability of frustration to

stabilize unconventional states of matter in quantum spin
systems, here we studied its interplay with an applied mag-
netic field. With the help of the J1 − J2 − J3 antiferromag-
netic Heisenberg model, we demonstrated that frustration
limits the validity of the BEC paradigm in describing the ap-
proach to saturation field. In particular, the phase transition
between magnetically ordered and field-polarized states no
longer belongs to the BEC universality class on the critical
line CL1, where frustration suppresses magnetic order.

At sub-critical fields, it is possible to realize bosonic quan-
tum liquid states which are stabilized by a combination of
frustration and high magnetic fields. These quantum liq-
uids are higher-dimensional analogues of those found in the
spin-1 Haldane chain [22] and 1D valence bond solids [56].
We note that mechanisms similar to that described here may
be responsible for stabilizing the quantum spin liquid phase
in the Kitaev honeycomb compass model in magnetic field
along the [111] direction [57]. A detailed investigation into
such possibilities is left to future works.
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