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Abstract— As the Internet of Things (IoT) becomes more
prevalent, the need for intrusion detection systems (IDS) to
protect against cyberattacks increases. However, the limited
computing capabilities of IoT devices often require sending data
to a centralized cloud for analysis, which can cause energy
consumption, privacy issues, and data leakage. To address these
problems, we propose a Federated Learning-based IDS that
distributes learning to local devices without sending data to a
centralized cloud. We also create lightweight local learners to
accommodate IoT device limitations and locally adapted models
to handle non-independent intrusion data distribution. We
evaluate our method using NBaloT and CICIDS-2017 datasets,
and our results demonstrate comparable performance to
centralized learning on metrics including accuracy, precision,
and recall, while addressing privacy and data leakage concerns.

Keywords—Internet of Things (loT), Intrusion Detection
Systems (IDS), federated learning, deep learning, cybersecurity

I. INTRODUCTION

The pervasiveness of the Internet of Things (IoT) has
witnessed a rapid rise in recent years, with its applications
encompassing diverse domains ranging from smart homes,
healthcare, and transportation systems. As the popularity of
IoT increases, it becomes a breeding ground for intrusions that
can compromise the security and privacy of IoT devices and
networks. A notable example of intrusion is Distributed Denial
of Service (DDoS) attacks, which involves flooding the IoT
network with traffic from multiple sources to overwhelm and
shut down the network. Malicious software programs are also
prevalent in [oT systems, and they can be introduced through
infected devices or software updates. In addition, unauthorized
devices can connect to the IoT network and pose security
threats, while hackers may intercept communication between
two devices and manipulate the data being transmitted. The
exponential growth of IoT has thus spurred an augmented
demand for intrusion detection systems (IDS) that can protect
against sophisticated cyberattacks, ensuring the security and
privacy of IoT devices and networks.

Deep learning has shown great promise in IDS due to its
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ability to learn complex patterns and identify abnormal
behavior. However, the limited computing capabilities of loT
devices have made it difficult to implement deep learning-
based IDS on these devices. One common approach to
addressing this challenge is to use centralized IDS
methodologies that require sending live data from IoT devices
to distant data centers for analysis. However, this approach
poses several problems. First, sending data to a centralized
cloud requires significant energy consumption, which is not
ideal for IoT devices that often operate on battery power.
Second, data sharing over the internet poses privacy issues, and
data leakage can occur during transmission. Third, because IoT
devices generate data with varying statistical distributions
(non-IID), a single IDS may not be the best solution for this
problem. Moreover, the limited processing capabilities of IoT
devices must be taken into account while designing an IDS.

To overcome these challenges, we propose a Federated
Learning-based IDS approach that enables the distribution of
learning to local devices without sending data to a centralized
cloud. In federated learning, multiple devices collaborate in
training a model while preserving data privacy by keeping the
data local. Each local device, or client, has an IDS model that
can be trained using its own data. The local model is trained
for a specified number of epochs and then communicates the
model parameters to a master model for aggregation. The
shared parameters are aggregated using techniques such as
FedAvg [1], and the modified parameters are delivered back to
the local clients.

Federated learning protects data privacy while also
assisting clients with limited data production in achieving their
desired goals. However, the statistical heterogeneity of the
data produced by different devices makes it challenging to
develop a generic IDS system that can be applied to all
devices. To address this issue, we propose a Locally Adapted
model of federated learning (LAFL) for IoT Intrusion
Detection. This approach tailors detection models for specific
IoT devices and IoT traffic, improving accuracy and
efficiency while maintaining data privacy. LAFL captures the
unique properties of IoT devices and traffic, resulting in
enhanced accuracy and efficiency. The shared parameters are
exchanged for aggregation, while the parameters of the locally
adapted architecture are not shared. The locally adapted
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models are beneficial for IoT devices with varying data
distributions or security constraints. They can adapt to
changes in data distribution or device activity, resulting in
more accurate and up-to-date intrusion detection.

The rest of the paper is organized as follows: Section 2
provides an overview of related work in the field of IDS for
IoT. Section 3 describes the proposed methodology in detail.
Section 4 presents the experimental setup and results. Finally,
we conclude the paper in Section 5 and provide directions for
future work.

II. RELATED WORK

IDS solutions for IoT networks can be classified into three
approaches: signature-based, anomaly-based, and hybrid.
Signature-based approach (e.g., [2]) is effective for known
attacks, but it requires continuous human interventions and
knowledge expertise to extract attack patterns and signatures to
update the IDS model, which makes it inefficient and
ineffective for IoT due to the heterogeneity, dynamicity, and
complex nature of the network [3]. On the other hand,
anomaly-based IDS detection (e.g., [4]) is effective for
unknown attacks and requires fewer human interventions,
making it advantageous for IoT [5]. The hybrid approach (e.g.,
[6]) combines both signature-based and anomaly-based
approaches, but the reliance on pre-defined attack patterns
makes it impractical for intrusion detection in loT networks [7-
9]. Therefore, anomaly-based intrusion detection systems are
crucial for detecting intrusions in IoT environments.

Over the past few years, a number of anomaly-based IDSs
using deep learning have been developed for IoT networks[10]
[11] [12]. These systems aim to identify abnormal traffic
patterns in the network. Some examples of these systems
include the artificial neural network-based IDS proposed by
Adam et al. [7], and the traffic classification system developed
by Dias et al. [8]. Recent research has shown that deep
learning-based models, such as Convolutional Neural
Networks (CNN) [9], [13], variational autoencoders [14], and
Recurrent Neural Networks (RNN) [11], and advanced Long
Short-Term Memory (LSTM) [15] are more effective than
traditional machine learning techniques, such as Decision
Trees and Support Vector Machines.

For example, CNN system [16], [17] can automatically
detect and learn key IoT intrusion features without requiring
manual intervention. With their dense network architecture,
CNNs are capable of both identification and prediction.
However, the vast number of parameters in CNNs can make
them computationally expensive and inefficient, particularly in
the context of IoT devices. To address this, researchers have
explored combining CNNs with techniques such as
Autoencoders (AEs) to reduce the dimensionality of high-
dimensional IoT data [18].

Compared to traditional machine learning architectures,
federated learning employs a decentralized approach to train
models and update them incrementally. Federated learning has
been applied to cybersecurity and intrusion detection in IoT
environments. Nguyen et al. [19] proposed a self-learning
anomaly detection system based on LSTM and Gated
Recurrent Units (GRU) to identify hacked IoT devices on the

network. The system achieved 98.2% accuracy with a very low
false alarm rate of 95.6%. In another study, Zhao et al. [20]
utilized LSTM to develop an Intelligent Intrusion Detection
system that achieved 99.21% accuracy and an F1 score of
99.21. Liu et al. [21] proposed using federated learning with
CNN-LSTM models to analyze time series data collected from
distributed edge devices in Industrial IoT settings. The
proposed model aims to extract relevant information from the
time series data. These systems that utilized LSTM techniques
excel in processing and predicting time series data over
extended periods. LSTM models possess a unique memory
capability that can retain information from previous time steps,
facilitating the learning process. Additionally, they are capable
of handling noisy and continuous data representations.
However, LSTMs are prone to overfitting, making it
challenging to apply the dropout algorithm to mitigate this
issue.

Two main types of personalized federated learning are
model regularization and model interpolation. Mansour et al.
[22] proposed a clustering approach to group clients with
similar characteristics and train a distinct model for each
cluster. In other studies, such as Bui et al. [23], federated
learning is employed to train a set of local parameters based on
ecach client and a set of global parameters, with user-
representation suggested to achieve this objective. In contrast,
Arivazhagan et al. [24] describe FedPer as a personalization
approach consisting of base and personalization layers. The
basic layers are trained using a standard federated learning
technique and the FedAvg algorithm, while the personalized
layers gather data from each IoT device. Thus, the FedPer
algorithm accounts for the fact that the federated learning
method produces statistically different results. Similarly, Liang
et al. [25] suggest storing some neural network layers in the
client and training the remaining model using Federated
Learning. Chan et al. [26] proposed a different approach where
they initially train a global model using traditional federated
learning and then customize it with data from each device.

III. METHODOLOGY

The proposed LAFL model consists of a global model and
multiple local models. The global model is responsible for
training and updating the model parameters based on the
information received from the local models. Each local model
is created by the IoT devices that are responsible for collecting
and processing data in their respective regions. The local
models perform training on the data collected from IoT devices
and send the updated model parameters to the global model for
further optimization.

A. Global Model

The global model is a hybrid combination of a stacked
autoencoder and a feedforward neural network (FNN). The
bottleneck of the autoencoder is connected to the feed forward
neural network for classification purpose. The stacked
autoencoder is used for feature learning technique. A feature
learning technique helps to understand the underlying features
or patterns from the detection dataset. Feature learning reduces
the number of features (dimensions) needed for learning,
removes noisy and irrelevant features, and improves the
detection rate of the system. There are two types of feature



learning techniques: supervised and unsupervised feature
learning. The former learns on a labeled dataset and can be
evaluated using the training and testing data, while the latter
tries to make sense of unlabeled data by extracting features and
patterns on its own. Therefore, we employ a stacked
autoencoder, an unsupervised feature learning, as it does not
need to provide labels for sample data. Using label data can
introduce false positives as labelling of data requires huge
expertise in the domain of cyber-security.

Secondly, the stacked autoencoder's feature learning
technique helps to compress and reduce the feature space of the
network traffic by removing multicollinearity that is observed
in [oT traffic data. Multicollinearity is a state where multiple
features in a dataset are highly correlated and contain similar
information. Multicollinearity undermines the statistical
significance of an independent variable and introduces noise in
the data. To identify multicollinearity, we calculate the
Variance Inflation Factor (VIF) corresponding to every
independent variable in the dataset.

The stacked autoencoder is constructed using multiple
sparse autoencoders consisting of one input layer, one hidden
layer, and one output layer. The number of neurons in the
output layer should be the same as that in the input layer. The
hidden layers are connected in succession. A stacked
autoencoder has an encoder and a decoder. The encoder is
responsible for reducing the number of features by
compressing them in each layer. Each hidden layer has an
activation function that helps the neural network adjust its
weights so that the desired output can be obtained. Our stacked
autoencoder uses the tangent hyperbola function and the
rectified linear unit respectively.

B. Local Model

The local models are created at the fog layer of the IoT
network by first partitioning the data into multiple subsets
based on the physical location of the IoT devices. Each subset
is then used to train a separate neural network model. The
neural network model for each subset is created with a base
layers and local layer. The local models use the last two layers
of the global model, as their base layers followed by a
personalized layer and an output layer. Each local model has
the same number of base layers and the same number of
neurons in each of the base layers.

On the other hand, the local layers are unique to each
model and are trained using only the data available in that
particular model. These local layers are responsible for
capturing the unique features and patterns present in the local
data that may not be present in the global data. The use of local
layers allows each model to adapt to the specific characteristics
of the local data while still benefiting from the shared
knowledge of the base layers. This approach helps in achieving
better performance in loT intrusion detection by combining the
strengths of global and local models. Overall, the locally
adapted layers in the proposed model allow for a fine-grained
approach to feature extraction and pattern recognition that can
improve the accuracy and robustness of the intrusion detection
system in the [oT environment.

To ensure that the model stays up-to-date with the latest
data, periodic model updates and re-federated learning are
performed. In this process, local models send the parameters of
their base layers to the global model. The global model
aggregates these parameters to update itself and sends the
updated parameters back to the local models, allowing them to
update their own base layers accordingly. However, since
different local models may have varying amounts of network
traffic, their impact on the global model may differ. To address
this, we assign weights to each local model based on its data
volume. This ensures that local models with larger volumes of
data have a greater influence on the global model. This weight
is incorporated into the aggregation function, allowing for
personalized updates to the global model based on the
characteristics of each local model.

In the volume-driven aggregation function we used Volume
Factor «; to determine the impact of respective neural networks
which is calculated based on the number of samples the neural
network uses to train itself and the total number of samples
present for all the models. We utilized the below equations to
obtain the Volume Factor ai for each model during the
aggregation process.
— _ 4
T

a; (1)

Eq. I is used to determine the Volume Factor denoted by «;
which is required during the aggregation method in the
federated learning process. The i in @; denotes the cluster
number, d; represents the number of data points in the i**
cluster. After determining the volume factor for each neural
network, we multiply this value to the parameters of the
respective neural network during the aggregation step. The
volume-based aggregation function is expressed in Eq 2.

K
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Eq. 2 calculates the updated parameters for the base-layers in
each neural network when parameters are exchanged after
certain number of training epochs. The W; is considered as the
weight of the it" neural network for /” neuron in the j* layer
among all the base layers. Similarly, b; denotes the bias for the
same layer.

FedAvgy, =

Furthermore, each model in the cluster is equipped with 3
hidden layers and 1 output layer, with 2 of the hidden layers
being base layers and the remaining one being a personalized
layer. The number of neurons in each layer is kept small to
ensure that the models can be deployed on resource-
constrained IoT devices without requiring significant
computational resources.

The procedure of our proposed technique is described in
Algorithm 1.



Algorithm 1: Locally Adapted Federated Learning (LAFL)

/* Assume that the global model has already been trained and now LAFL is being
used for federated learning */

// Step 1: Initialize base-layers and local layers

Initialize the base-layers of n clients using Federated Transfer Learning (FTL)
from the global model.

Initialize the parameters of local layers from the distribution of target domain

// Step 2: Exchange parameters for a fixed number of times
For exchange (e) = 1to M
// Step 3: Train local models using data points from each cluster
For epoch (i) =1to N
Train n_k model using data points from k™ cluster
// Step 4: Calculate updated parameter for base-layers
Calculate the updated parameters for base-layers using Eq 2
/*Step 5: Stop training if no improvement in efficiency for a fixed number of
exchanges */
Stop training if there is no improvement in efficiency for q number of exchanges
End For
/* In Step 4, the weights for each local model are determined by the volume-driven
aggregation mechanism, which takes into account the data volume of each cluster.
*/

IV. EVALUATION

We conducted an evaluation of our technique by measuring
various metrics, including Accuracy, F1-Score, Precision, and
Recall. We used two publicly available datasets, namely
CICIDS2017 [27] and NBaloT [28].

A. Evaluations of CICIDS2017 Dataset

ICIDS2017 is a publicly available IDS dataset that
comprises benign network flows as well as various types of
attack flows that mimic real-world intrusion scenarios. This
dataset is frequently used in recent cybersecurity studies for
practical intrusion detection. CICIDS2017 [27] consists of
network  traffic  analysis  statistics  obtained from
CICFlowMeter, where each record contains 79 attributes, with
78 of them being related to network traffic and the last one
indicating whether it is normal or a specific type of intrusion.
The dataset includes samples from 14 distinct intrusion classes,
which are classified under a single anomaly class. We
preprocessed the data by removing records with missing values
and applying Z-score normalization, as shown in Eq. 3.

z="2 3)
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Here, X represents the value of an individual feature in a
sample, X represents the mean value of the feature, and S,
represents the standard deviation. This preprocessing method is
beneficial in handling extreme outliers while preserving the
informational content of the samples.

Our experiments were conducted on a dataset of 36,000
samples. To train the initial global model, we randomly
selected 500 samples. For the experimental models, we
employed grid search techniques to determine the optimal
number of hidden layers, neurons in each hidden layer, and
activation functions. The test accuracy of the initial model is
presented in Table I.

Table I: Performance of Initial Global Model for ICIDS2017 Data

Model Name Precision Recall Accuracy
Initial Model 0.83 0.82 0.84

After training the initial model, we proceeded with
Agglomerative Clustering on the sampled data to group similar
network traffic patterns. The resulting dendrogram in Figure 1
helped us determine the optimal number of clusters. We chose
4 clusters for our experiments. Each local model is trained
using data points from a specific cluster.
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Fig. 1: Agglomerative Clustering of CICIDS2017 Dataset

We conducted a comparative analysis between our locally
adapted model and a unified model without a personalized
layer to evaluate the effectiveness of our approach. The unified
model used the same base layers for all local models consisting
of three identical layers. The results are presented in Fig. 2,
where the x-axis represents the clusters used for training the
local models and the y-axis represents the evaluation metrics,
including accuracy, precision, and recall. The notation Ui
represents the unified model trained using cluster i's data, while
Pi denotes the personalized model using cluster i's data. As
evident from Fig. 2, the locally adapted model outperformed
the unified model, highlighting the significance of
incorporating personalized layers to improve model
performance. The personalized layers enable the local models
to adapt to different traffic patterns, thereby enhancing their
ability to accurately classify network traffic and detect
anomalies. This finding underscores the importance of
personalization in federated learning and underscores the
potential advantages of incorporating locally adapted layers.
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Fig. 2: Comparison of Performance between Personalized (P) and Non-
Personalized (U) Models in Federated Learning.

We investigated the performance of our novel data-volume
driven aggregation function, FedAvgy,; and compared it with
the state-of-the-art FedAvg function. Again, the experiments
were performed on four different clients. The results are
presented in Fig. 3, As can be observed from Fig. 3, our
proposed FedAvgy,; outperformed FedAvg function in most
cases. This demonstrates the effectiveness of our data-volume



driven aggregation function in detecting anomalies in IoT
networks in a Federated Learning setting. Our algorithm takes
into consideration the data volume of each client during the
aggregation process, which helps to mitigate the effect of
clients with varying data volumes and improve the overall
performance of the model. The results of this experiment
provide evidence that our proposed approach can enhance the
performance of Federated Learning in IoT networks and
potentially other domains where clients have varying data
volumes. By considering the data volume during the
aggregation process, we can effectively leverage the data from
all clients and improve the accuracy of the model without
compromising privacy.
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Fig. 3: Comparison of Performance between Average-based (A) and Volume-
based (V) aggregation function in Federated Learning.

B. Evaluations of NBaloT Dataset

We conducted an additional evaluation of our proposed
method using the N-BaloT dataset [28], a well-known dataset
for network-based detection of IoT botnet attacks. The feature
set of this dataset includes only the packet size of outbound
packets, which is an aggregation of source IP, source MAC-IP,
channel, and socket. The statistics provided for the packet size
feature are mean and variance. In addition, the dataset includes
other features such as packet count, packet jitter, and packet
size of both inbound and outbound traffic. All of the statistics
for these features were collected over five different time
windows, including 100ms and 500ms. This evaluation allows
us to assess the generalizability of our proposed method to
different datasets and use cases beyond our initial experiments.

To develop an initial global model for the NBaloT dataset,
we conducted several experiments, similar to those performed
on the CICIDS2017 dataset. The dataset contains a total of 115
features, but to reduce the complexity of the neural network
models and make them suitable for IoT devices, we only used
the Packet Size feature for both inbound and outbound traffic.
We trained and tested the model to identify the best initial
model. Initially, we used a time window of 100ms, and then we
aggregated the packet size feature of 100ms and 500ms time
windows, and so on, to determine the optimal time window for
the model.

Table II shows that aggregating the 100ms and 500ms time
windows significantly improved the efficiency of the initial
model. However, further increasing the time windows did not
result in a significant increase in efficiency. Thus, we chose to
use only the inbound and outbound packet size features for
100ms and 500ms time windows in all of our experiments to

strike a balance between accuracy and computational
complexity. Additionally, we used a small number of samples
(500) to train the initial model. Unlike the CICIDS2017
dataset, we did not use clustering techniques for the N-BaloT
dataset, as all data in the dataset belonged to the same IoT
cameras category. Table III presents the performance of the
initial model on three evaluation metrics: Precision, Recall, and
Accuracy.

Table II. Efficiency Comparison of Different Time Window Aggregations

for NBaloT Dataset.
Time Window Accuracy (%)
100ms 69
100ms + 500ms 82
100ms + 500ms + 1.5sec 84
100ms + 500ms + 1.5sec + 10sec 84.6
100ms + 500ms + 1.5sec + 10sec + 1min 85

Table III. Performance of Initial Global Model for NBaloT Data

Model Name Precision Recall Accuracy

Initial Model 0.83 0.82 0.84

After training the initial model, we utilized the LAFL
Federated Learning approach to train personalized models for
each device in the NBaloT dataset. As we did with the
CICIDS2017 dataset, we compared the performance of the
personalized models with that of the unified models. The
evaluation metrics, including precision, recall, and accuracy,
are presented in Figures 4, 5, and 6, respectively. The results
indicate that the personalized models consistently outperform
the unified models in all of the aforementioned metrics. This
finding emphasizes the importance of personalized models in
enhancing the performance of Federated Learning models. It
also highlights the potential benefits of tailoring the models to
the specific characteristics of each device's data to accurately
identify anomalies in IoT networks.
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Fig. 4: Comparison of Precision between Personalized and Unified (Non-
Personalized) Models in Federated Learning.
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Fig. 5: Comparison of Recall between Personalized and Unified (Non-
Personalized) Models in Federated Learning.
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Fig. 6: Comparison of Accuracy between Personalized and Unified (Non-
Personalized) Models in Federated Learning.

We conducted experiments on the NBaloT dataset to
evaluate the performance of FedAvgy,,and compared it with
the FedAvg function. The results of these experiments, in terms
of accuracy, precision, and recall, are presented in Fig. 7-9.
Our proposed function outperformed the FedAvg function in
most cases, demonstrating its effectiveness in detecting
anomalies in the NBaloT dataset.
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Fig. 7: Comparison of Precision between Average-based (A) and Volume-
based (V) aggregation function in Federated Learning.
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Fig. 8: Comparison of Recall between Average-based (A) and Volume-based
(V) aggregation function in Federated Learning.
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Fig. 9: Comparison of Accuracy between Average-based (A) and Volume-
based (V) aggregation function in Federated Learning.

In conclusion, the experiments conducted on the
CICIDS2017 and NBaloT datasets demonstrate the
effectiveness of personalized models and data-volume driven
aggregation functions in improving the performance of
federated learning models for anomaly detection in IoT
networks. The personalized models were able to outperform
the unified models, highlighting the importance of
personalization in federated learning. Furthermore, the data-
volume driven aggregation function, was shown to outperform
the state-of-the-art FedAvg function in most cases, indicating
its potential for improving the efficiency and accuracy of
federated learning models. These findings provide valuable
insights for developing more robust and efficient federated
learning models for anomaly detection in IoT networks.

V. CONCLUSIONS

In conclusion, the proposed a Locally Adapted model of
federated learning (LAFL) -based IDS method provides a
promising solution to the challenges of intrusion detection in
IoT networks. The experiments conducted on the NBaloT and
CICIDS-2017 datasets demonstrate the effectiveness of our
approach in achieving comparable performance to centralized
learning while addressing privacy and data leakage concerns.
The personalized layer and data-volume driven aggregation
function further enhance the performance of the method.
Future work could involve exploring the use of more complex
datasets and optimizing the proposed approach to further
improve its performance. Additionally, investigation into the



impact

of different hyperparameters on the method's

performance could also be an area of future research.
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