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Abstract— As the Internet of Things (IoT) becomes more 

prevalent, the need for intrusion detection systems (IDS) to 

protect against cyberattacks increases. However, the limited 

computing capabilities of IoT devices often require sending data 

to a centralized cloud for analysis, which can cause energy 

consumption, privacy issues, and data leakage. To address these 

problems, we propose a Federated Learning-based IDS that 

distributes learning to local devices without sending data to a 

centralized cloud. We also create lightweight local learners to 

accommodate IoT device limitations and locally adapted models 

to handle non-independent intrusion data distribution. We 

evaluate our method using NBaIoT and CICIDS-2017 datasets, 

and our results demonstrate comparable performance to 

centralized learning on metrics including accuracy, precision, 

and recall, while addressing privacy and data leakage concerns. 

Keywords—Internet of Things (IoT), Intrusion Detection 

Systems (IDS), federated learning, deep learning, cybersecurity 

 

 

I. INTRODUCTION 

The pervasiveness of the Internet of Things (IoT) has 
witnessed a rapid rise in recent years, with its applications 
encompassing diverse domains ranging from smart homes, 
healthcare, and transportation systems. As the popularity of 
IoT increases, it becomes a breeding ground for intrusions that 
can compromise the security and privacy of IoT devices and 
networks. A notable example of intrusion is Distributed Denial 
of Service (DDoS) attacks, which involves flooding the IoT 
network with traffic from multiple sources to overwhelm and 
shut down the network. Malicious software programs are also 
prevalent in IoT systems, and they can be introduced through 
infected devices or software updates. In addition, unauthorized 
devices can connect to the IoT network and pose security 
threats, while hackers may intercept communication between 
two devices and manipulate the data being transmitted. The 
exponential growth of IoT has thus spurred an augmented 
demand for intrusion detection systems (IDS) that can protect 
against sophisticated cyberattacks, ensuring the security and 
privacy of IoT devices and networks. 

Deep learning has shown great promise in IDS due to its 

ability to learn complex patterns and identify abnormal 
behavior. However, the limited computing capabilities of IoT 
devices have made it difficult to implement deep learning-
based IDS on these devices. One common approach to 
addressing this challenge is to use centralized IDS 
methodologies that require sending live data from IoT devices 
to distant data centers for analysis. However, this approach 
poses several problems. First, sending data to a centralized 
cloud requires significant energy consumption, which is not 
ideal for IoT devices that often operate on battery power. 
Second, data sharing over the internet poses privacy issues, and 
data leakage can occur during transmission. Third, because IoT 
devices generate data with varying statistical distributions 
(non-IID), a single IDS may not be the best solution for this 
problem. Moreover, the limited processing capabilities of IoT 
devices must be taken into account while designing an IDS. 

To overcome these challenges, we propose a Federated 
Learning-based IDS approach that enables the distribution of 
learning to local devices without sending data to a centralized 
cloud. In federated learning, multiple devices collaborate in 
training a model while preserving data privacy by keeping the 
data local. Each local device, or client, has an IDS model that 
can be trained using its own data. The local model is trained 
for a specified number of epochs and then communicates the 
model parameters to a master model for aggregation. The 
shared parameters are aggregated using techniques such as 
FedAvg [1], and the modified parameters are delivered back to 
the local clients. 

Federated learning protects data privacy while also 
assisting clients with limited data production in achieving their 
desired goals. However, the statistical heterogeneity of the 
data produced by different devices makes it challenging to 
develop a generic IDS system that can be applied to all 
devices. To address this issue, we propose a Locally Adapted 
model of federated learning (LAFL) for IoT Intrusion 
Detection. This approach tailors detection models for specific 
IoT devices and IoT traffic, improving accuracy and 
efficiency while maintaining data privacy. LAFL captures the 
unique properties of IoT devices and traffic, resulting in 
enhanced accuracy and efficiency. The shared parameters are 
exchanged for aggregation, while the parameters of the locally 
adapted architecture are not shared. The locally adapted 
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models are beneficial for IoT devices with varying data 
distributions or security constraints. They can adapt to 
changes in data distribution or device activity, resulting in 
more accurate and up-to-date intrusion detection. 

The rest of the paper is organized as follows: Section 2 
provides an overview of related work in the field of IDS for 
IoT. Section 3 describes the proposed methodology in detail. 
Section 4 presents the experimental setup and results. Finally, 
we conclude the paper in Section 5 and provide directions for 
future work. 

II. RELATED WORK 

IDS solutions for IoT networks can be classified into three 
approaches: signature-based, anomaly-based, and hybrid. 
Signature-based approach (e.g., [2]) is effective for known 
attacks, but it requires continuous human interventions and 
knowledge expertise to extract attack patterns and signatures to 
update the IDS model, which makes it inefficient and 
ineffective for IoT due to the heterogeneity, dynamicity, and 
complex nature of the network [3]. On the other hand, 
anomaly-based IDS detection (e.g., [4]) is effective for 
unknown attacks and requires fewer human interventions, 
making it advantageous for IoT [5]. The hybrid approach (e.g., 
[6]) combines both signature-based and anomaly-based 
approaches, but the reliance on pre-defined attack patterns 
makes it impractical for intrusion detection in IoT networks [7-
9]. Therefore, anomaly-based intrusion detection systems are 
crucial for detecting intrusions in IoT environments. 

Over the past few years, a number of anomaly-based IDSs 
using deep learning have been developed for IoT networks[10] 
[11] [12]. These systems aim to identify abnormal traffic 
patterns in the network. Some examples of these systems 
include the artificial neural network-based IDS proposed by 
Adam et al. [7], and the traffic classification system developed 
by Dias et al. [8]. Recent research has shown that deep 
learning-based models, such as Convolutional Neural 
Networks (CNN) [9], [13], variational autoencoders [14], and 
Recurrent Neural Networks (RNN) [11], and advanced Long 
Short-Term Memory (LSTM)  [15] are more effective than 
traditional machine learning techniques, such as Decision 
Trees and Support Vector Machines.  

For example, CNN system [16], [17] can automatically 
detect and learn key IoT intrusion features without requiring 
manual intervention. With their dense network architecture, 
CNNs are capable of both identification and prediction. 
However, the vast number of parameters in CNNs can make 
them computationally expensive and inefficient, particularly in 
the context of IoT devices. To address this, researchers have 
explored combining CNNs with techniques such as 
Autoencoders (AEs) to reduce the dimensionality of high-
dimensional IoT data [18].  

Compared to traditional machine learning architectures, 
federated learning employs a decentralized approach to train 
models and update them incrementally. Federated learning has 
been applied to cybersecurity and intrusion detection in IoT 
environments. Nguyen et al. [19] proposed a self-learning 
anomaly detection system based on LSTM and Gated 
Recurrent Units (GRU) to identify hacked IoT devices on the 

network. The system achieved 98.2% accuracy with a very low 
false alarm rate of 95.6%. In another study, Zhao et al. [20] 
utilized LSTM to develop an Intelligent Intrusion Detection 
system that achieved 99.21% accuracy and an F1 score of 
99.21. Liu et al. [21] proposed using federated learning with 
CNN-LSTM models to analyze time series data collected from 
distributed edge devices in Industrial IoT settings. The 
proposed model aims to extract relevant information from the 
time series data. These systems that utilized LSTM techniques 
excel in processing and predicting time series data over 
extended periods. LSTM models possess a unique memory 
capability that can retain information from previous time steps, 
facilitating the learning process. Additionally, they are capable 
of handling noisy and continuous data representations. 
However, LSTMs are prone to overfitting, making it 
challenging to apply the dropout algorithm to mitigate this 
issue. 

Two main types of personalized federated learning are 
model regularization and model interpolation. Mansour et al. 
[22] proposed a clustering approach to group clients with 
similar characteristics and train a distinct model for each 
cluster. In other studies, such as Bui et al. [23], federated 
learning is employed to train a set of local parameters based on 
each client and a set of global parameters, with user-
representation suggested to achieve this objective. In contrast, 
Arivazhagan et al. [24] describe FedPer as a personalization 
approach consisting of base and personalization layers. The 
basic layers are trained using a standard federated learning 
technique and the FedAvg algorithm, while the personalized 
layers gather data from each IoT device. Thus, the FedPer 
algorithm accounts for the fact that the federated learning 
method produces statistically different results. Similarly, Liang 
et al. [25] suggest storing some neural network layers in the 
client and training the remaining model using Federated 
Learning. Chan et al. [26] proposed a different approach where 
they initially train a global model using traditional federated 
learning and then customize it with data from each device. 

III. METHODOLOGY 

The proposed LAFL model consists of a global model and 
multiple local models. The global model is responsible for 
training and updating the model parameters based on the 
information received from the local models. Each local model 
is created by the IoT devices that are responsible for collecting 
and processing data in their respective regions. The local 
models perform training on the data collected from IoT devices 
and send the updated model parameters to the global model for 
further optimization. 

A. Global Model 

The global model is a hybrid combination of a stacked 
autoencoder and a feedforward neural network (FNN). The 
bottleneck of the autoencoder is connected to the feed forward 
neural network for classification purpose. The stacked 
autoencoder is used for feature learning technique. A feature 
learning technique helps to understand the underlying features 
or patterns from the detection dataset. Feature learning reduces 
the number of features (dimensions) needed for learning, 
removes noisy and irrelevant features, and improves the 
detection rate of the system. There are two types of feature 



learning techniques: supervised and unsupervised feature 
learning. The former learns on a labeled dataset and can be 
evaluated using the training and testing data, while the latter 
tries to make sense of unlabeled data by extracting features and 
patterns on its own. Therefore, we employ a stacked 
autoencoder, an unsupervised feature learning, as it does not 
need to provide labels for sample data. Using label data can 
introduce false positives as labelling of data requires huge 
expertise in the domain of cyber-security.  

Secondly, the stacked autoencoder's feature learning 
technique helps to compress and reduce the feature space of the 
network traffic by removing multicollinearity that is observed 
in IoT traffic data. Multicollinearity is a state where multiple 
features in a dataset are highly correlated and contain similar 
information. Multicollinearity undermines the statistical 
significance of an independent variable and introduces noise in 
the data. To identify multicollinearity, we calculate the 
Variance Inflation Factor (VIF) corresponding to every 
independent variable in the dataset. 

The stacked autoencoder is constructed using multiple 
sparse autoencoders consisting of one input layer, one hidden 
layer, and one output layer. The number of neurons in the 
output layer should be the same as that in the input layer. The 
hidden layers are connected in succession. A stacked 
autoencoder has an encoder and a decoder. The encoder is 
responsible for reducing the number of features by 
compressing them in each layer. Each hidden layer has an 
activation function that helps the neural network adjust its 
weights so that the desired output can be obtained. Our stacked 
autoencoder uses the tangent hyperbola function and the 
rectified linear unit respectively. 

B. Local Model 

The local models are created at the fog layer of the IoT 
network by first partitioning the data into multiple subsets 
based on the physical location of the IoT devices. Each subset 
is then used to train a separate neural network model. The 
neural network model for each subset is created with a base 
layers and local layer. The local models use the last two layers 
of the global model, as their base layers followed by a 
personalized layer and an output layer. Each local model has 
the same number of base layers and the same number of 
neurons in each of the base layers.  

On the other hand, the local layers are unique to each 
model and are trained using only the data available in that 
particular model. These local layers are responsible for 
capturing the unique features and patterns present in the local 
data that may not be present in the global data. The use of local 
layers allows each model to adapt to the specific characteristics 
of the local data while still benefiting from the shared 
knowledge of the base layers. This approach helps in achieving 
better performance in IoT intrusion detection by combining the 
strengths of global and local models. Overall, the locally 
adapted layers in the proposed model allow for a fine-grained 
approach to feature extraction and pattern recognition that can 
improve the accuracy and robustness of the intrusion detection 
system in the IoT environment. 

To ensure that the model stays up-to-date with the latest 
data, periodic model updates and re-federated learning are 
performed. In this process, local models send the parameters of 
their base layers to the global model. The global model 
aggregates these parameters to update itself and sends the 
updated parameters back to the local models, allowing them to 
update their own base layers accordingly. However, since 
different local models may have varying amounts of network 
traffic, their impact on the global model may differ. To address 
this, we assign weights to each local model based on its data 
volume. This ensures that local models with larger volumes of 
data have a greater influence on the global model. This weight 
is incorporated into the aggregation function, allowing for 
personalized updates to the global model based on the 
characteristics of each local model. 

In the volume-driven aggregation function we used Volume 
Factor 𝛼𝑖  to determine the impact of respective neural networks 
which is calculated based on the number of samples the neural 
network uses to train itself and the total number of samples 
present for all the models. We utilized the below equations to 
obtain the Volume Factor ai for each model during the 
aggregation process.  

𝛼𝑖 =  
𝑑𝑖

∑ 𝑑𝑖
𝐾
𝑖=1

                                    (1) 

Eq. 1 is used to determine the Volume Factor denoted by 𝛼𝑖 
which is required during the aggregation method in the 
federated learning process. The i  in 𝛼𝑖  denotes the cluster 

number, 𝑑𝑖 represents the number of data points in the 𝑖𝑡ℎ 
cluster. After determining the volume factor for each neural 
network, we multiply this value to the parameters of the 
respective neural network during the aggregation step. The 
volume-based aggregation function is expressed in Eq 2.  

𝐹𝑒𝑑𝐴𝑣𝑔𝑉𝑜𝑙 =    
∑ 𝛼𝑖𝑃𝑖

𝐾
𝑖=1

𝐾
   , 𝑃𝑖 = (𝑊𝑙𝑗 , 𝑏𝑗) (2) 

Eq. 2 calculates the updated parameters for the base-layers in 
each neural network when parameters are exchanged after 
certain number of training epochs. The 𝑊𝑙𝑗 is considered as the 

weight of the 𝑖𝑡ℎ neural network for lth neuron in the 𝑗𝑡ℎ layer 
among all the base layers. Similarly, 𝑏𝑗  denotes the bias for the 

same layer. 

Furthermore, each model in the cluster is equipped with 3 
hidden layers and 1 output layer, with 2 of the hidden layers 
being base layers and the remaining one being a personalized 
layer. The number of neurons in each layer is kept small to 
ensure that the models can be deployed on resource-
constrained IoT devices without requiring significant 
computational resources. 

The procedure of our proposed technique is described in 
Algorithm 1.  

 

 

 

 

 



Algorithm 1: Locally Adapted Federated Learning (LAFL) 
/* Assume that the global model has already been trained and now LAFL is being 

used for federated learning */ 

 

// Step 1: Initialize base-layers and local layers 

Initialize the base-layers of n clients using Federated Transfer Learning (FTL) 

from the global model. 

Initialize the parameters of local layers from the distribution of target domain 

 

// Step 2: Exchange parameters for a fixed number of times 

For exchange (e) = 1 to M 

       // Step 3: Train local models using data points from each cluster 

       For epoch (i) = 1 to N 

             Train n_k model using data points from kth cluster 

     // Step 4: Calculate updated parameter for base-layers 

     Calculate the updated parameters for base-layers using Eq 2 

/*Step 5: Stop training if no improvement in efficiency for a fixed number of 

exchanges */ 

Stop training if there is no improvement in efficiency for q number of exchanges 

End For 

/* In Step 4, the weights for each local model are determined by the volume-driven 

aggregation mechanism, which takes into account the data volume of each cluster. 

*/ 

 

IV. EVALUATION 

We conducted an evaluation of our technique by measuring 
various metrics, including Accuracy, F1-Score, Precision, and 
Recall. We used two publicly available datasets, namely 
CICIDS2017 [27] and NBaIoT [28]. 

A. Evaluations of CICIDS2017 Dataset 

ICIDS2017 is a publicly available IDS dataset that 
comprises benign network flows as well as various types of 
attack flows that mimic real-world intrusion scenarios. This 
dataset is frequently used in recent cybersecurity studies for 
practical intrusion detection. CICIDS2017 [27] consists of 
network traffic analysis statistics obtained from 
CICFlowMeter, where each record contains 79 attributes, with 
78 of them being related to network traffic and the last one 
indicating whether it is normal or a specific type of intrusion. 
The dataset includes samples from 14 distinct intrusion classes, 
which are classified under a single anomaly class. We 
preprocessed the data by removing records with missing values 
and applying Z-score normalization, as shown in Eq. 3.  

𝑍 =  
𝑋𝑖− 𝑥

𝑆𝑥
    (3) 

Here, Xi represents the value of an individual feature in a 
sample, 𝑥 represents the mean value of the feature, and 𝑆𝑥 
represents the standard deviation. This preprocessing method is 
beneficial in handling extreme outliers while preserving the 
informational content of the samples. 

Our experiments were conducted on a dataset of 36,000 
samples. To train the initial global model, we randomly 
selected 500 samples. For the experimental models, we 
employed grid search techniques to determine the optimal 
number of hidden layers, neurons in each hidden layer, and 
activation functions. The test accuracy of the initial model is 
presented in Table I. 

Table I: Performance of Initial Global Model for ICIDS2017 Data 

Model Name Precision Recall Accuracy 

Initial Model 0.83 0.82 0.84 

 

After training the initial model, we proceeded with 
Agglomerative Clustering on the sampled data to group similar 
network traffic patterns. The resulting dendrogram in Figure 1 
helped us determine the optimal number of clusters. We chose 
4 clusters for our experiments. Each local model is trained 
using data points from a specific cluster. 

 
Fig. 1: Agglomerative Clustering of CICIDS2017 Dataset 

 

We conducted a comparative analysis between our locally 
adapted model and a unified model without a personalized 
layer to evaluate the effectiveness of our approach. The unified 
model used the same base layers for all local models consisting 
of three identical layers. The results are presented in Fig. 2, 
where the x-axis represents the clusters used for training the 
local models and the y-axis represents the evaluation metrics, 
including accuracy, precision, and recall. The notation Ui 
represents the unified model trained using cluster i's data, while 
Pi denotes the personalized model using cluster i's data. As 
evident from Fig. 2, the locally adapted model outperformed 
the unified model, highlighting the significance of 
incorporating personalized layers to improve model 
performance. The personalized layers enable the local models 
to adapt to different traffic patterns, thereby enhancing their 
ability to accurately classify network traffic and detect 
anomalies. This finding underscores the importance of 
personalization in federated learning and underscores the 
potential advantages of incorporating locally adapted layers. 

 

Fig. 2: Comparison of Performance between Personalized (P) and Non-

Personalized (U) Models in Federated Learning. 

 

We investigated the performance of our novel data-volume 
driven aggregation function, 𝐹𝑒𝑑𝐴𝑣𝑔𝑉𝑜𝑙  and compared it with 
the state-of-the-art FedAvg function. Again, the experiments 
were performed on four different clients. The results are 
presented in Fig. 3, As can be observed from Fig. 3, our 
proposed 𝐹𝑒𝑑𝐴𝑣𝑔𝑉𝑜𝑙  outperformed FedAvg function in most 
cases. This demonstrates the effectiveness of our data-volume 
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driven aggregation function in detecting anomalies in IoT 
networks in a Federated Learning setting. Our algorithm takes 
into consideration the data volume of each client during the 
aggregation process, which helps to mitigate the effect of 
clients with varying data volumes and improve the overall 
performance of the model. The results of this experiment 
provide evidence that our proposed approach can enhance the 
performance of Federated Learning in IoT networks and 
potentially other domains where clients have varying data 
volumes. By considering the data volume during the 
aggregation process, we can effectively leverage the data from 
all clients and improve the accuracy of the model without 
compromising privacy. 

 

 

Fig. 3: Comparison of Performance between Average-based (A) and Volume-
based (V) aggregation function in Federated Learning. 

 

B. Evaluations of NBaIoT Dataset 

We conducted an additional evaluation of our proposed 
method using the N-BaIoT dataset [28], a well-known dataset 
for network-based detection of IoT botnet attacks. The feature 
set of this dataset includes only the packet size of outbound 
packets, which is an aggregation of source IP, source MAC-IP, 
channel, and socket. The statistics provided for the packet size 
feature are mean and variance. In addition, the dataset includes 
other features such as packet count, packet jitter, and packet 
size of both inbound and outbound traffic. All of the statistics 
for these features were collected over five different time 
windows, including 100ms and 500ms. This evaluation allows 
us to assess the generalizability of our proposed method to 
different datasets and use cases beyond our initial experiments. 

To develop an initial global model for the NBaIoT dataset, 
we conducted several experiments, similar to those performed 
on the CICIDS2017 dataset. The dataset contains a total of 115 
features, but to reduce the complexity of the neural network 
models and make them suitable for IoT devices, we only used 
the Packet Size feature for both inbound and outbound traffic. 
We trained and tested the model to identify the best initial 
model. Initially, we used a time window of 100ms, and then we 
aggregated the packet size feature of 100ms and 500ms time 
windows, and so on, to determine the optimal time window for 
the model. 

Table II shows that aggregating the 100ms and 500ms time 
windows significantly improved the efficiency of the initial 
model. However, further increasing the time windows did not 
result in a significant increase in efficiency. Thus, we chose to 
use only the inbound and outbound packet size features for 
100ms and 500ms time windows in all of our experiments to 

strike a balance between accuracy and computational 
complexity. Additionally, we used a small number of samples 
(500) to train the initial model. Unlike the CICIDS2017 
dataset, we did not use clustering techniques for the N-BaIoT 
dataset, as all data in the dataset belonged to the same IoT 
cameras category. Table III presents the performance of the 
initial model on three evaluation metrics: Precision, Recall, and 
Accuracy. 

 

Table II. Efficiency Comparison of Different Time Window Aggregations 
for NBaIoT Dataset. 

Time Window Accuracy (%) 

100ms 69 

100ms + 500ms 82 

100ms + 500ms + 1.5sec 84 

100ms + 500ms + 1.5sec + 10sec  84.6 

100ms + 500ms + 1.5sec + 10sec + 1min 85 

 
 

Table III. Performance of Initial Global Model for NBaIoT Data 

Model Name Precision Recall Accuracy 

Initial Model 0.83 0.82 0.84 

 

After training the initial model, we utilized the LAFL 
Federated Learning approach to train personalized models for 
each device in the NBaIoT dataset. As we did with the 
CICIDS2017 dataset, we compared the performance of the 
personalized models with that of the unified models. The 
evaluation metrics, including precision, recall, and accuracy, 
are presented in Figures 4, 5, and 6, respectively. The results 
indicate that the personalized models consistently outperform 
the unified models in all of the aforementioned metrics. This 
finding emphasizes the importance of personalized models in 
enhancing the performance of Federated Learning models. It 
also highlights the potential benefits of tailoring the models to 
the specific characteristics of each device's data to accurately 
identify anomalies in IoT networks. 

 

 

Fig. 4: Comparison of Precision between Personalized and Unified (Non-

Personalized) Models in Federated Learning. 
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Fig. 5: Comparison of Recall between Personalized and Unified (Non-
Personalized) Models in Federated Learning. 

 

 
 

 
Fig. 6: Comparison of Accuracy between Personalized and Unified (Non-

Personalized) Models in Federated Learning. 
 

 

We conducted experiments on the NBaIoT dataset to 
evaluate the performance of 𝐹𝑒𝑑𝐴𝑣𝑔𝑉𝑜𝑙and compared it with 
the FedAvg function. The results of these experiments, in terms 
of accuracy, precision, and recall, are presented in Fig. 7-9. 
Our proposed function outperformed the FedAvg function in 
most cases, demonstrating its effectiveness in detecting 
anomalies in the NBaIoT dataset. 

 

 

Fig. 7: Comparison of Precision between Average-based (A) and Volume-

based (V) aggregation function in Federated Learning. 

 

 

Fig. 8: Comparison of Recall between Average-based (A) and Volume-based 
(V) aggregation function in Federated Learning. 

 

 

 

Fig. 9: Comparison of Accuracy between Average-based (A) and Volume-
based (V) aggregation function in Federated Learning. 

 

In conclusion, the experiments conducted on the 
CICIDS2017 and NBaIoT datasets demonstrate the 
effectiveness of personalized models and data-volume driven 
aggregation functions in improving the performance of 
federated learning models for anomaly detection in IoT 
networks. The personalized models were able to outperform 
the unified models, highlighting the importance of 
personalization in federated learning. Furthermore, the data-
volume driven aggregation function, was shown to outperform 
the state-of-the-art FedAvg function in most cases, indicating 
its potential for improving the efficiency and accuracy of 
federated learning models. These findings provide valuable 
insights for developing more robust and efficient federated 
learning models for anomaly detection in IoT networks. 

V. CONCLUSIONS 

In conclusion, the proposed a Locally Adapted model of 
federated learning (LAFL) -based IDS method provides a 
promising solution to the challenges of intrusion detection in 
IoT networks. The experiments conducted on the NBaIoT and 
CICIDS-2017 datasets demonstrate the effectiveness of our 
approach in achieving comparable performance to centralized 
learning while addressing privacy and data leakage concerns. 
The personalized layer and data-volume driven aggregation 
function further enhance the performance of the method. 
Future work could involve exploring the use of more complex 
datasets and optimizing the proposed approach to further 
improve its performance. Additionally, investigation into the 
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impact of different hyperparameters on the method's 
performance could also be an area of future research. 
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