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On Causal Discovery with Convergent Cross Mapping

Kurt Butler, Student Member, IEEE, Guanchao Feng, and Petar M. Djurić, Life Fellow, IEEE
Convergent cross mapping is a principled causal discovery technique for signals, but its efficacy depends on a number of

assumptions about the systems that generated the signals. We present a self-contained introduction to the theory of causality in
state-space models, Takens’ theorem, and cross maps, and we propose conditions to check if a signal is appropriate for cross mapping.
Further, we propose simple analyses based on Gaussian processes to test for these conditions in data. We show that our proposed
techniques detect when convergent cross mapping may conclude erroneous results using several examples from the literature, and
we comment on other considerations that are important when applying methods such as convergent cross mapping.

Index Terms—attractors, causality, convergent cross mapping, nonlinear systems, state space reconstruction

I. INTRODUCTION

The inference of causation from dynamic systems is an
important task for engineers and scientists alike. A major
challenge here is to discover causation using observational
methods, where experimenters need not perturb or intervene
upon the system under study [29]. This is especially relevant
in fields such as ecology, finance, and neuroscience where con-
trolled interventions could be costly, dangerous or infeasible.
One of the first notions of causality for signals was proposed
by Wiener [48], who argued that causation could be inferred
if the history of the cause provides unique information about
the future effect. Wiener’s ideas were later made practical and
popularized by Granger [14]. Granger causality, and related
approaches [38], are especially effective in stochastic systems,
but several authors have noted the challenges of applying
Granger causality to systems with nonlinear or deterministic
dynamics [7], [27], [41], and notably, systems with attractors
[39]. Thus, Granger causality may be inadequate to analyze
signals that arise from many physical systems, and this has
motivated the exploration of alternative approaches.

Sugihara et al. proposed the convergent cross mapping
(CCM) algorithm to study causality in systems with determin-
istic dynamics [41]. CCM uses a technique known as state-
space reconstruction (SSR) to reconstruct the latent states that
generated a signal, and then tests for causality by checking for
the existence of a cross map, a mapping between reconstructed
state-spaces that detects if two signals were generated by the
same system. The CCM technique has been applied in several
fields, including ecology [41], chemical engineering [26],
informatics [25], cardiocartography [11], and neuroscience
[17], [43].

Cross mapping, as a tool to detect synchronization and inter-
dependence, has been known in the chaos theory community
since the 1990s [35], where particular interest has been given
to applications to neuroscience [2], [37], [32]. This work is
comparatively unfamiliar, but relevant, to the signal processing
community. While cross mapping methods like CCM can
detect causation in cases where Granger causality fails, a
number of concerns have been raised about the cross map
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approach [3], [51], [21]. Particularly, cross mapping implicitly
makes a number of assumptions which are potentially violated
during blind use of the method. However, the CCM may
remain a useful tool for observational causal inference when
the user is aware of these issues and carefully checks their
assumptions.

In this work, we make the following contributions:
1) We provide a tutorial on SSR, cross maps and CCM for

the signal processing community.
2) We identify conditions to provide evidence that the ob-

served signals were generated by a deterministic system.
3) We propose Gaussian process-based analyses to test for

these conditions in data.
4) We discuss the caveats of CCM and subtleties of its

application.
5) We validate our proposed methods on several examples

where the ground truth is known.
We organize the rest of the paper as follows. In Section II,

we introduce the mathematical formalism behind cross map
theory. In Section III, we discuss CCM, and the caveats and
assumptions of the approach. We then propose analyses to
check these assumptions in Section IV. Finally, we simulate
several systems and show that the failure to satisfy our
conditions may anticipate certain failures of CCM.

II. BACKGROUND

This section is intended to be a self-contained introduction
to causality, attractors, SSR and cross maps. We also introduce
Gaussian process regression, which will be our tool-of-choice
for learning smooth functions from data.

A. Causality in state-spaces

For us, a state space model of a system consists of a latent
state x ∈ RD, an observation a ∈ R1 that is a function of
the latent state, and equations describing how these quantities
evolve in time. In conventional signal processing and control,
the observation signal can be multivariate, but one dimension
will suffice for this discussion and simplify the notation later.
Given an initial state x0, the system may evolve in discrete
time by iterating a function

xt+1 = Fx(xt), (1)
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where t is a discrete time index or in continuous time
according to a differential equation

ẋ ∆
=

dx
dt

= Fx(x), (2)

where in either case we require Fx to be a smooth function. We
can represent continuous time systems as discrete time systems
by sampling the signals and approximating the evolution of the
differential equation by a function as in (1), and generally this
case will be our focus throughout the paper. The observation
signal a is assumed to be a function of the system state, i.e.,

at = f(xt) + εt, (3)

for some smooth function f . The term εt represents zero-
mean additive noise. We will assume that our systems are
deterministic, meaning that the latent state xt is not a random
quantity after specifying an initial condition x0.

We say that x causes y, or x drives y, if yt+1 depends on
xt in the dynamical equation,

yt+1 = Fy(xt, yt), (4)

where Fy is some function that is not constant in x. If yt+1

only depends on yt, then y is called autonomous.
We introduce the notation x ⇒ y to mean that x causes y.

If both x⇒ y and x⇐ y, then we write x⇔ y. If there is no
causation, we will say that x and y are (causally) independent,
denoted x ⊥ y.

Given two states x and y, we may form a joint state by
concatenating the vectors. We write (x, y) to mean the vector[
x⊤ y⊤

]⊤
. If the state y is driven by an autonomous system

x, then their joint state (x, y) forms another autonomous
system described by[

xt+1

yt+1

]
=

[
Fx(xt)

Fy(xt, yt)

]
= Fxy(xt, yt). (5)

Note that by joining y with its drivers x, the new system (x, y)
is an autonomous system. This fact will lead us to the notion
of a cross map in later sections.

B. Attractors

Attractors are subsets of the state space which both attract
and trap trajectories [40]. Given an autonomous system with
latent state xt, a closed subset A of the state space is called
an attractor if three axioms are satisfied:

1) Attraction: There is an open set U containing A such that
if xt ∈ U then dist(A, xt) tends to 0 as t→∞.

2) Trapping: If x0 ∈ A then xt ∈ A for all t ≥ 0.
3) No proper subset of A also satisfies these conditions.
If xt is inside the attractor A at any point, then the invariance

axiom implies that we may model the future behavior of xt
entirely within the set A, without considering the rest of
the ambient space RD. Since attractors tend to be lower-
dimensional subsets of the state-space [10], the dynamics in
the attractor region may sometimes be much simpler than
what the state-space dimension would suggest. We show some
commonly discussed attractors in Fig. 1.

(A) Limit-cycle attractor (B) Fixed-point attractor

(C) Lorenz attractor (D) Limit-torus attractor

Fig. 1: Some well-known low-dimensional attractors that arise
from systems of ordinary differential equations. In each plot,
we show a trajectory in a state-space that starts at the dot. (A)
A limit cycle is a one-dimensional attractor that corresponds
to an asymptotically periodic behavior [40]. (B) An attracting
fixed point is an example of a zero dimensional attractor. (C)
The Lorenz attractor appears in the well-studied Lorenz system
[24], and is known to have fractional dimension [40]. (D) Limit
tori correspond to a superposition of asymptotically periodic
signals [10], where the dimension of the torus is the number
of fundamental frequencies in the superposition.

C. State-space reconstruction

A smooth function from a higher dimensional space to a
lower dimensional space is never one-to-one, but a function
from a low dimensional space to a higher dimensional one will
usually be one-to-one if the difference in dimensions is big
enough. Takens’ theorem [44] exploits this idea by ‘extending
the dimension’ of an observation signal by considering lagged
copies of the signal as new observations. There are several
versions of Takens’ theorem, and here we state one version
based on [36].

Theorem (Takens’ theorem). Let xt+1 = Fx(xt) be an
autonomous deterministic system with a one-dimensional ob-
servation at = f(xt) and suppose that there is an attractor
A ⊂ RD such that xt ∈ A. Let Q and τ be fixed positive
integers where Q > 2 dim(A). Then the Q-dimensional delay
embedding of a, defined by

ma
t

∆
=
[
at−(Q−1)τ · · · at−τ at

]⊤ ∈ RQ (6)

is a smooth embedding A→ RQ for almost-every Fx and f .

Several remarks are in order. Embedding means that the
attractor and its image under the Q-dimensional delay embed-
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Fig.2:AdemonstrationofSSRandtheeffectoftheembeddingdelayparameterτ.(A)AnattractorintheLorenzsystem
[24].Thecompletesystemstateislatent,butweobserveasignalat=x1,t.(B)Theautocorrelationfunction(ACF)ofthe
signalat.ThevaluesoftheACFat1,10and40are markedbytheorangedots.(C)Shadow manifoldM a producedby
SSRwhenQ =3 andτ=1.SincetheACFatthisτiscloseto1,thecoordinatesofma

t arehighlycorrelatedandM a

iscompressedtoaline.(D)SSRresultwhenQ =3 andτ=10. Weseetheshadow manifoldappearstoreconstructthe
shapeofthelatentattractorin(A).(E)SSRresultwhenQ=3 andτ=40.AlthoughM a embedsthelatentattractor,the
embeddingbecomesmorecomplicatedasτincreases.Theidealvalueofτforreconstructingthelatentattractorliesbetween
theextremesof(C)and(E)[18].However,theshadowmanifoldsin(C-E)areequivalenttotheoriginalattractorin(A)upto
nonlineartransformation.

dingarerelatedbyadiffeomorphism.1 Namely,sinceeach
at = f(xt),thedelay-embeddingin(6)correspondstoa
smoothfunctionΦ,

Φ(xt)=








f(F
(−(Q−1)τ)
x (xt))

...

f(F
(−τ)
x (xt))
f(xt)








=








f(xt−(Q−1)τ)
...

f(xt−τ)
f(xt)








=ma
t

(7)
which Takens’theoremstatestobedifferentiableandin-
vertible(hereF(−k) denotesF−1 composed withitselfk
times).Theimageoftheattractorunderthediffeomorphism
iscalledtheshadowmanifold2andisdenotedM a [41].The
reconstructionoflatentstatesxtfromtheobservationsytis
calledstate-spacereconstruction(SSR)[8].

TheparameterQ iscalledtheembeddingdimensionand
theideaisthatpickingalargeenoughQimpliesthatwehave
embeddedthelatentattractor.Theparameterτiscalledthe
embeddinglag,anditisusedtoimprovethereconstruction
byspacingoutcorrelatedsamplesintime. Wediscussour
preferencesforparameterselectioninSection V,and more
discussiononthemattercanbefoundin[18],[19].InFig.2,
wedemonstratehowSSRisaffectedbytheparameterτ.

Thephrase“almost-every”inthestatementof Takens’
theoremisalsoimportant.Onemayfabricatesystemsthatdo
notsatisfyTakens’theoremwhenthedynamicsareexplicitly
writtendown. AnoteworthyexampleoccursintheLorenz
system,(26), whentheobservationfunctionistakentobe
thex3-coordinateprojection(seethesupplementalmaterialof
[41]);however,thistypeofcounterexampleisnon-genericand
mayberareinnaturalsystems[36],[51].

1AnonlineartransformationΦisadiffeomorphismifΦisinvertible,and
bothΦandΦ−1aresmoothfunctions.AsmoothembeddingΦ:RD → RQ

becomesadiffeomorphismwhenwerestrictthedomainofΦ−1totheimage
ofΦ,sinceΦ(RD)maybealowerdimensionalsubsetofRQ. Wesaythat
twosetsAandB arediffeomorphicifthereisadiffeomorphismΦsuchthat
Φ(A)=B.

2Despitetheterminology,shadow manifoldsarenotusuallytopological
manifolds.

D. Crossmaps

Acrossmapisaspecialfunctionthatmapsbetweenshadow
manifolds.Theexistenceofcrossmapscanbeinterpretedasa
signofcausality,whichisthekeyinsightoftheCCMmethod.
Inshort,ifx⇒ y,thenthereisasmoothmapM a← Mbfor
almost-everypairofsignalsa,bthatarefunctionsofxandy,
respectively[7].Thereasonthatthecrossmaparrowgoesin
theoppositedirectionofthecausalityisexplainedbelow.

Supposeweobserveatfromanautonomouslatentsystem
xtandbtfromalatentsystemytthatisdrivenbyxt.Asnoted
previously,(5)impliesthat(x,y)isanautonomoussystem.If
the(x,y)systemhasanattractorAxy,thenthexsystemalso
hasanattractorAx obtainedbyprojectingAxy ontothex
coordinates.Thereasoningisthatthedynamicsofxdepend
onlyonxitself,soattraction/invariancebehaviorinthejoint
system(x,y)implythatthexsystembehavesthesame.Ifwe
denotethex-coordinateprojectionbyπ,thenthefunctionπ
isasmoothfunctionfromAxytoAx,showninFig.3.

Theexistenceofthesmoothfunctionπisuninterestingon
itsown,butitbecomesmorepowerfulwithTakens’theorem.
Sinceaobservesthestatex,Takens’theoremsaysthatthere
isadiffeomorphismΦa :Ax → Ma.Sincex⇒ y,bis
anobservationofthejointsystem(x,y),andsothereisa
diffeomorphismΦb:Axy→ Mb.Giventhesefunctions,we
deinethecrossmapσtobethefunction

σ:M b−→ Ma,

σ(m)
∆
=Φa(π(Φ−1

b (m))).

Byconstruction,σsatisiesthetime-invarianceproperty,

σ(mb
t)=ma

t, (8)

forallt.Thetime-invariancepropertyencodesthenotion
thatthetwoshadowmanifoldsM aandM baredynamically
synchronized.Inthecaseofnocausality,x⊥y,theshadow
manifold M breconstructstheystatespace,butcontainsno
informationaboutx.Thus,ifbothsystemshaveattractorsAx

andAy,itisunlikelyforacrossmapbetweenAxandAyto
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exist. Hence, the existence of a cross map suggests that x and
y are dynamically coupled by some mechanism.3

E. Gaussian process regression

The previous sections on state-space reconstruction and
cross mapping rely heavily on the notion of a smooth function,
but we haven’t addressed the problem of how one may dis-
cover smooth functions from data. Gaussian processes provide
an interpretable, non-parametric, and Bayesian approach to
learning functions from data [49]. The notation in this section
will differ from the rest of the paper, since we will borrow
notation from [49].

Given a set of input points x1, x2, ..., xN and their corre-
sponding values y1, y2, ..., yN , we require a technique to find
a smooth nonlinear function f that will describe the data, i.e.,

yn ≈ f(xn) n = 1, ..., N. (9)

Suppose that we want to predict some datum y∗ = f(x∗)
for a given point x∗. In Gaussian process regression (GPR), we
model the previously observed data and the interpolant jointly
with a zero-mean normal distribution,

y1
...
yN
y∗

 ∼ N
(
0,

[
K k∗
k⊤
∗ k(x∗, x∗)

])
, (10)

where Kij = k(xi, xj),k∗,i = k(xi, x∗) and k(·, ·) is a
covariance function [49]. Since y1, ..., yN have already been
observed, we generate our predictive density for y∗ by condi-
tioning on y1, ..., yN . For a single one-dimensional prediction,
[49] provides the mean and variance of the predictive density
of an interpolated datum y∗, where

µ∗ = k⊤
∗ (K+ σ2

nI)
−1y = E(y∗|y1, ..., yN ), (11)

σ2
∗ = k(x∗, x∗)− k⊤

∗ (K+ σ2
nI)

−1k∗ = Var(y∗|y1, ..., yN ).
(12)

To describe the GPR predictive density for y∗ as a function
of x∗, we write

y∗|x∗ ∼ N (µ∗, σ
2
∗). (13)

Implicitly, we also conditioned on the training data {(xn, yn)}.
In practice, the covariance function k(·, ·) will depend on

some hyperparameters θ. Training the GPR regression typi-
cally refers to optimizing the value of θ to fit the distribution
in (10), often by maximum likelihood. The mean of the
distribution in (10) may be replaced with a parametric, e.g.
polynomial, function of x, in which case θ and the parameters
of the mean function are optimized jointly.

In large data sets, the basic form of GPR presented here
may suffer from a high computational complexity. Inducing-
point GPs [31] and sparse spectrum GPs [23] are popular
approximations to reduce the computational complexity of the
GPR approach.

3This principle might be considered as a dynamical analogue to Reichen-
bach’s common cause principle [33]. It can theoretically be violated, e.g., by
designing two systems to produce periodic signals with the same frequency,
but such situations are not generic [4].

Fig. 3: Visual explanation of the cross map. We consider a
two dimensional state x ∈ R2 with an attractor Ax. We then
suppose that x causes y ∈ R1, and the joint state (x, y) has
an attractor Axy. The signals at and bt are functions of xt and
yt, respectively. The projection π(x, y) = x maps Axy onto
Ax. The mappings Φ1,Φ2 are diffeomorphisms which exist by
Takens’ theorem. The colors of points on each attractor and
shadow manifold correspond uniquely to points in Ax. Using
the colors to map points inMb to points inMa describes the
cross map σ between the two shadow manifolds. Since Φ2 is
invertible, we see that the cross map is defined by σ(m) =
Φ1(π(Φ

−1
2 (m))).

III. PROBLEM FORMULATION

In this section, we introduce CCM as a causality test, and
we discuss its caveats and our approach to work around them.

A. Convergent cross mapping

Since a cross map typically only exists if the underlying
latent systems are coupled, several authors have proposed to
use cross maps to infer causation [2], [5], [32], [35], [37].
The CCM method proposed by Sugihara et al [41] tests for
causality by detecting if a cross map between shadow mani-
folds exists. Namely, if x⇒ y, then a cross map Ma ←Mb

exists in the opposite direction.
Proving that a cross map exists, using a finite set of data

points, is a delicate procedure. The CCM method aims to
do this by learning the cross map in an online manner.
Sugihara et al. proposed to learn the cross map using the
simplex projection method [41] (which is essentially k-nearest-
neighbor regression), although other regression techniques
may be useful as well [12]. Briefly, simplex projection will
interpolate f(xt) as a weighted sum of data f(xq), where xq

are the Q+ 1 nearest neighbors to xt and the weights wq are
obtained by normalizing w̃q = exp(−||xtq −xt||2). Given two
signals at and bt, the basic CCM test has three steps:

1) Perform SSR by delay embedding the signal bt to produce
SSR vectors mb

t = (bt, · · · , bt−(Q−1)τ ).
2) Estimate at as ât = g(mb

t), where the function g is
learned using simplex projection.

3) Repeat steps 1 and 2 sequentially as new data are re-
ceived. If the “skill” of the cross map, measured by the
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Fig. 4: Given a triplet of signals at, bt, ct, we use CCM to
test a⇒ b and a⇒ c. (A) Observed signals. at, bt, ct are the
x1, x2 and y2 coordinates respectively of the Rössler-Lorenz
system in (30), with zero coupling (C = 0). (B) The signal at
is estimated using mb

t to test a⇒ b. Similarly, we estimate at
from mc

t to test a ⇒ c. (C) For a ⇒ b, the cross map skill,
ρt = corr(a1:t, â1:t), improves over time. Since the cross map
skill converges to something near 1, we conclude that at causes
bt. In contrast, the asymptotic cross map skill for a ⇒ c is
poor, so we conclude that at doesn’t drive ct. As t→∞, the
cross map skill should tend to 0, but it may take some time
for the cross map skill to decay sufficiently.

correlation coefficient between ât and at, converges to a
nonzero number, then we conclude that a causes b.4

CCM approximates the cross map by estimating one of its
coordinates, since at is the first coordinate of ma

t by (6).
The estimator â is expected to improve if and only if the
cross map σ between the shadow manifolds exists. In general,
the estimator can improve or degrade in performance with
additional data depending on the ground truth. However, as
we increase the number of observations we also increase the
number of points that are sampled along the shadow manifold.
If new points on the manifold agree with old points in how
they map between the shadow manifolds, then it indicates that
the cross map is real and not just a statistical anomaly. If there
are nearby points which do not make nearby predictions, then
the cross map does not exist,5 and we will see a degradation
in the cross map performance. We show a case in which CCM
detects the correct causality in Fig. 4.

4To test the reverse causality, a ⇐ b, we apply CCM again with the roles
of a and b reversed.

5This technically means that the cross map does not exist for a particular
pair of shadow manifolds Ma,Mb.

B. Subtleties of CCM

The applicability of cross-map-based tests for causality rests
primarily on whether or not the SSR result contains a shadow
manifold, that is, a reconstructed attractor or invariant set.
If there is not really a shadow manifold, CCM and related
methods cannot be guaranteed to reproduce the ground truth.
Even when the shadow manifold exists, it can be distorted, by
noise, trends and other effects. Furthermore, there are a few
cases where even with long, clean time series, cross mapping
may not be an effective solution. We now discuss some of the
reasons that cross map analysis may struggle in practice.

1) Small observation windows
Convergence is an important consideration in CCM. While

some pairs of signals may converge faster than others, even
randomly generated signals may feign convergence when ob-
served over a short time window. In Fig. 4, we notice that the
a ⇒ c cross map skill is good initially, but this performance
deteriorates as more data is observed. An opposite issue occurs
when the shadow manifold does exist, but the current data
set was insufficient to explore the whole manifold. In the
best case, we should have enough data to resolve the entire
shadow manifold and determine if it is structured enough for
analysis. The number of samples required make a statistically
meaningful conclusion depends upon the sampling rate and
the complexity of the signals.

2) Distortions
Sometimes, the signal of interest might be superimposed

with noise or external influences to the measurement. These
effects could cause trends, seasonalities or noisy residuals
which obscure the observation signal and distort the results
of cross map analysis [51].

3) SSR failure
As noted in Sec. II-D, Takens’ theorem holds for ‘almost-

every’ attractor system. When producing synthetic data, one
should be careful not to pick an observation function with any
special symmetries or properties [4], [36], [51]. SSR failure
could in principle occur due to improper selection of Q or τ .

4) Generalized synchrony
A major issue with all cross map methods is the problem

of generalized synchrony [41]. Synchrony occurs when the
strength of a unidirectional relationship x ⇒ y is so strong
that y does not show independent behavior from x. As a result,
the cross map σ :Mb → Ma is actually reversible, and the
inverse function σ−1 :Ma →Mb is a cross-map that goes in
the anti-causal direction, and one will mistake unidirectional
causation x⇒ y as bidirectional x⇔ y.

When synchrony occurs, the underlying causal structure of
the latent system becomes non-identifiable. Although detecting
a cross map in this case can be useful as a way to rule
out independence, any further deductions would require prior
knowledge about the specific system under investigation. The
detection of synchrony best addressed by other work [16],
[34]. Ye et. al. proposed a partial solution to the problem of
synchrony in the CCM framework in [50] by studying the
time-delay of the causal interactions.
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C. When can we use CCM?

Suppose that we have a pair of signals which we suspect
to arise from nonlinear deterministic systems and the known
distortions have been removed. We want to know if cross
map analysis is applicable. Since cross mapping attempts to
detect if two shadow manifolds are synchronized, a natural
requirement is to check that the SSR actually produces a
shadow manifold, i.e. a reconstructed autonomous system. If
a signal observes an autonomous system, then the shadow
manifold produced by SSR should be useful to predict future
observations [20], which will be our first condition. This kind
of predictability should be possible, since

ma
t+1 = Φ(Fx(Φ

−1(ma
t ))) = F̃ (ma

t ), (14)

at+1 =
[
0 · · · 0 1

]
ma

t+1 (15)

where Φ and Fx are defined as in Takens’ theorem (Section
II-C). If a function F̃ = Φ ◦ Fx ◦ Φ−1 can be well-
approximated, at least on shorter time frames, then we will
say that the signal at is auto-predictable (since it is being
predicted from its own history). Exploiting (14) to use ma

t

as a proxy for the latent state xt, we recognize that an auto-
predictable signal represents an approximately deterministic
system by this construction. This provides evidence that the
observed shadow manifold isn’t just a statistical anomaly, but
a true reconstruction of the states that produced the signal [18].

Our second condition is intended to mitigate the small
observation window problem. The main issue with small
windows is that we cannot be certain that we have explored
the attractor enough to conclude that there is a cross map. As
we receive new data, and hence new points along the shadow
manifold which we use to make cross predictions, we can
either learn that the current model is predictive and it continues
to be useful, or we may find that the additional data proves that
our model is wrong. In the latter case, CCM will eventually
show non-convergence, but it takes time to do so, as seen in
Fig. 4.

One reason for this is that when we have few data, our cross
map model is over-fitted to the sparsely sampled manifold, but
as we receive more data and more dense samples along the
shadow manifold, our cross predictions are forced to reconcile
with more and more data. Similarly, if we attempt to measure
auto-predictability and make self-predictions about how the
state changes on the shadow manifold, we are forced to
reconcile how multiple trajectories had evolved when they
were at a similar point in space. Unless there are other
trajectories nearby, when making a cross prediction, we do not
have any confidence that our cross-prediction is not overfitted
to only the local data. Thus, an important condition is that
after enough time has passed, we return to previously sampled
locations on the shadow manifold, so that we observe more
than one trajectory at each location. This property, called the
recurrence property, provides a condition on the data set that
is important for cross mapping to have statistical significance.

We summarize our two conditions for asserting that a signal,
or specifically the shadow manifold produced by a finite set
of samples from the signal, is appropriate for cross mapping
analysis:

1) Auto-predictability. If at reconstructs a shadow mani-
fold, then the signal at should be auto-predictable, that
is, it can be well-predicted by its own history.

2) Recurrence. At every point in the shadow manifold, there
should be nearby points from another trajectory, i.e. that
are not nearby in time.

While we are primarily concerned about studying the SSR
result, it has also been suggested that additional analysis
should be done to validate the statistical significance of the
CCM result [6], [47]. Methods, such as surrogate analysis [6]
or the comparison of cross and self-predictions [20], have been
proposed to measure the confidence of a cross map result.

IV. PROPOSED SOLUTION

In the previous section we proposed the auto-predictability
and recurrence conditions to provide evidence that the ob-
served signals are appropriate for cross map analysis. We
propose the AF and RF statistics, respectively, to test for these
conditions. We use a procedure based on Gaussian processes
(Section II-E) to estimate these statistics from data.

A. Preprocessing

The first step in any causal analysis should be to isolate
the signal of interest, by denoising, detrending and otherwise
removing any distortions that known or expected. Since attrac-
tors represent stationary behavior, the cleaned signal should
look somewhat stationary for cross map analysis. Furthermore,
the nonlinearity of the resultant signals should also be checked.
If the signals are linear, in the sense that they are well-
described by a linear autoregressive model, then Granger
causality [14], [15] is readily applicable.

B. Testing for auto-predictability

Generally a random signal is be more challenging to predict
that one arising from a deterministic system, because there is
no latent state that can be reconstructed from the history of the
signal. Thus, if we use a regression model to predict the future
of a random signal, we would expect a larger prediction error
than for a non-random one. The prediction error is defined to
be the out-of-sample mean-square-error (MSE) of the estimate
of the function F̃ , in (14), which we estimate using GPR. 6

Suppose that we have constructed a number of SSR vectors
ma

t for times t = 1, ..., T . Let us partition the set of all
such points into a training set T and a validation set V , e.g.
T = {1, ..., t∗} and V = {t∗ + 1, ..., T}. Using GPR, we
may produce a non-parametric estimate of the function F̃ by
training on the points in T . As discussed in Section II-E,
Gaussian processes give us an explicit predictive probability
distribution for each at+τ , t ∈ T :

at+τ |ma
t ∼ N (µ∗(ma

t ), σ
2
∗(m

a
t )) (16)

where µ∗ and σ2
∗ are functions of ma

t given by (11) and (12).
Predictions are then given by the mean,

ât+τ = E(at+τ |ma
t ) = µ∗(ma

t ),

6Technically, we will estimate the τ -th iterate of the function, F̃ (τ).
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(a) The surrogate test with a Lorenz signal. The prediction MSE of
the observed signal is significantly less than any of the surrogates
produced from it, indicating that the observed signal is much more
predictable that a randomly generated signal.
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(b) The surrogate test with a random signal. The prediction MSE
of the observed signal accumulates quickly as the forecast lag is
increased, and it does so as fast as the surrogate signals, so it is
unlikely that the observed signal arose from a deterministic system.

Fig. 5: Two demonstrations of the surrogate predictability test. (A) Observed signal. (B) Surrogate signals produced by randomly
phase shifting the power spectrum of the observed signal. (C) Empirical autocorrelation functions of the observed signal and
its surrogates. (D) Prediction MSE of ât+k as a function of the prediction length k. The red vertical line marks k = τ . In both
cases, the surrogate time series demonstrate high predictability for small k; indeed, an autocorrelated random signal will be
predictable for a short period into the future. However, we observe that the deterministic signal exhibits a noticeably slower
accumulation of error as k is increased.

and the prediction MSE (PMSE) is estimated by

PMSE =
1

|V|
∑
t∈V

(at+τ − ât+τ )
2. (17)

The PMSE measures how predictable the signal at is in
an interpretable way [18]. When the PMSE is very small
compared to the energy of the signal, then auto-predictability
can be concluded. However, when the PMSE is not close to
zero, the statistical significance of the figure is not obvious,
and so we need a way to understand how probable it is. To
this end, we introduce surrogate data analysis.

A surrogate is a random signal which is desired to share
common traits with the original signal, such as the ACF or
power spectral density (PSD), but is otherwise random in
nature [45]. The ACF, or equivalently the PSD, does not
identify the dynamical system that produced it [30]. As a
result, two signals may have the same PSD but only one of
them produces a shadow manifold with dynamical structure.
Surrogate analysis has been used extensively in nonlinear
systems and chaos theory to bootstrap the significance of
our test statistics [1]. To sample surrogate signals, there are
a number of candidate methods. A popular technique is to

convert the observed signal to the frequency domain, and to
apply random phase shifts [1]. This approach preserves the
ACF and spectrum of the signal, but the surrogates are usually
not dynamical in the sense of the AF. The random phases
approach is particular effective when the signal spectrum is
broadband, as is the case in many chaotic systems [10]; for
periodic or quasiperiodic signals, other surrogate methods may
be desirable.

To use surrogates to improve our understanding of the
PMSE measure, we can sample K surrogate signals, repeat
the GPR analysis above, and compare the histogram of the
surrogate PMSE with the observed signal’s PMSE. If the
observed signal is deterministic, then the surrogates should
be less predictable because they are random, and so the
probability that PMSE(surrogate)>PMSE(observed) is high.
We define the auto-predictability fraction (AF) of the signal
at to be

AF =
1

K

K∑
k=1

ϑk (18)
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where

ϑk =

{
1, if PMSE(s(k)t ) ≥ PMSE(at)
0, otherwise

and s
(k)
t is the k-th surrogate signal. AF measures the prob-

ability that a surrogate is less predictable than the observed
signal. If the signal is auto-predictable, then AF ≈ 1. In Fig.
5a and 5b, we demonstrate the surrogate predictability test with
Lorenz and random signals, respectively. The accuracy of the
AF measure depends on K. We note that parallel computing
can be used to compute PMSE(s(k)t ) more efficiently, since
each surrogate can be independently processed.

C. Detecting recurrence

The recurrence condition says that we observe points in the
shadow manifold that are nearby in space but not in time. In
order to detect pairs of nearby points in the shadow manifold,
we automate the interpretation of recurrence plots [9], a widely
known tool in behavioral sciences [42] and dynamics [28].

For every pair of points ma
ti ,ma

tj on the shadow manifold
Ma, we define

Dij = ||ma
ti −ma

tj || (19)

to be the pairwise distances between points in Ma. Given a
parameter r which we call the masking radius, we say that
ma

ti and ma
tj are neighbors if Dij ≤ r. If one thinks of Dij

as the pixels of an image, as in Fig. 6, then the recurrence
matrix is a mask of the image. Points that are nearby in time
will be neighbors, but these are not useful for checking the
recurrence condition. Thus, we define the recurrence matrix
Rij to record when neighbors are more than τ samples apart
in time, i.e.,

Rij =

{
1, Dij ≤ r and |ti − tj | > τ

0, otherwise
. (20)

We define the recurrence fraction (RF) to be the fraction of
points in the shadow manifold that have at least one neighbor
of this form,

RF =
1

T

T∑
i=1

max
j

Rij . (21)

Ideally RF = 1, but it isn’t strictly required for most
data sets. In Fig. 7, we show a simple system where CCM’s
accuracy depends noticeably on RF. In Alg. 1, we summarize
the algorithm.

Algorithm 1 Computation of RF

1: input: Matrix M whose rows are (ma
t )

⊤, parameters r, τ
2: T = number of columns in M
3: Dij = ||ma

ti −ma
tj ||

4: Rij = 1 if Dij ≤ r and |ti − tj | > τ

5: RF = 1
T

∑T
i=1 maxj Rij

6: return RF

The efficacy of the RF measure depends on the choice of
masking radius r. If r exceeds the diameter of Ma, i.e. r >
maxs,t ||ma

s−mb
t ||, then RF = 1. Similarly, RF = 0 whenever

r < mins,t ||ma
s−mb

t ||. There are several ways one may select
a value for r, but we now introduce a method based on the
GP model learned when we computed AF.

To learn a masking radius r in a more interpretable manner,
we can exploit the GP kernel k. Since Kij = k(ma

ti ,ma
tj )

encodes the covariance between ati+τ and atj+τ , the entries
Kij encode a notion of recurrence from the perspective of the
GPR model used to detect auto-predictability. Suppose that
we want to conclude that two points are neighbors when their
correlation exceeds a threshold ρ, i.e.

K̃ij =
Kij√
KiiKjj

≥ ρ. (22)

The resulting parameter selection depends on the kernel in
use. The default kernel choice is often the squared exponential
kernel [49],

k(m,m′) = σ2
f exp

(
−(m−m′)⊤(m−m′)

2ℓ2

)
, (23)

where σf , ℓ are parameters. When using this kernel, (22) may
be expressed as

K̃ij = exp

(
−D2

ij

2ℓ2

)
≥ ρ. (24)

and this is equivalent to

Dij ≤ r∗ =
√
2ℓ2 ln(1/ρ). (25)

The range of values ρ ∈ (0, 1) can define any r∗ > 0,
and so the distance or covariance-based recurrence measures
are equally expressive. However, the kernel-based approach
allows us to use a more intuitive notion of threshold to define
our measure of recurrence, and relates directly back to our
predictability analysis. Additionally, kernel-based analysis is
not costly since the covariance matrix K is already computed
when we fit the GPR model.

V. RESULTS

A. Simulated systems

To verify our approach, we implement several systems and
consider the performance of CCM in comparison to the AF
and RF measures. We briefly outline the generative process
and true causality for each pair of signals, and we show the
resulting CCM, AF and RF results in Table 1.

In each example, we use standard approaches to infer the τ
and Q parameters for SSR. To get the embedding lag τ , we
define τ to be the first value of the autocorrelation function
(ACF) to drop below a threshold [22], which we will take to
be 0.5 for the time being.7 Given τ , we select Q using the
method of false-nearest neighbors [19]. Both approaches are
standard, and we refer to [18] for more discussion. MATLAB
code to reproduce these examples is made available in the
repository for this paper.8

7Some authors prefer using 0 as the threshold [22], which is potentially
more principled but also inflates the value of τ . Since the number of delay
vectors that we can produce from a fixed size data set decreases as τ increases,
we might prefer the smaller τ produced by our heuristic.

8See https://github.com/KurtButler/2023-CCM-paper.
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Fig. 6: Visualization of the matrices D,K, K̃ and R (c.f.
equations (19), (22) and (20)) for a signal obtained from
a Lorenz system. To obtain covariances, we trained a GPR
model to predict ma

t+τ from ma
t , using SE kernel. To obtain

R, we used the kernel-based threshold with ρ = 0.5, as in
(25).

Fig. 7: Demonstration of the recurrence principle with a pair of
sinusoids. (A) Two sine waves at and bt signals are observed
with frequencies fa and fb. The true causality is a ⊥ b. (B)
The CCM convergence coefficient is observed against time.
CCM asymptotically detects the true causality, but for a shorter
time series (e.g. the first 200 samples), we would erroneously
infer that a ⇐ b. The vertical lines mark one period of the
sinusoids in (A). (C) The recurrence fraction RF as new data
is received, for a particular choice of masking radii ra and rb.
We observe that the convergence coefficients begin to decline
shortly after when RF begins to increase.

1) Lorenz system
The Lorenz system [24] consists of a latent state x =

(x1, x2, x3) ∈ R3 and a system of differential equations,

ẋ1,t = a(x2,t − x1,t),

ẋ2,t = x1,t(c− x3,t)− x1,t, (26)
ẋ3,t = x1,txt,2 − bx3,t,

where we use the initial condition x0 = (10, 0, 5).
In scenario L1, we observe the x1,t and x2,t coordinates of

the Lorenz system, i.e., at = x1,t and bt = x2,t, for 500 time
steps. Both at and bt were normalized prior to processing.
Since all variables in the Lorenz system interact, the true
causality is a⇔ b. The sampling period was 0.02. Simulation
of each trajectory was completed using the MATLAB ode45
solver. The SSR parameters were selected to be Q = 5 and
τ = 5 for at and Q = 5 and τ = 6 for bt.

In scenario L2, we observe bt = x2,t, but at is now a
surrogate signal sampled from the PSD of x1,t. The surrogate
has no causal relationship to the original system, so the true
causality is a ⊥ b. The SSR parameters were selected to be
Q = 5 and τ = 6 for both at and bt.

CCM detected the correct causality in scenario L1 but not
L2. In scenario L2, we note that RFa = 0.57 suggests that
almost half of the reconstructed points do not have neighbors,
indicating that a spurious cross map due to non-recurrence
is possible. Since both the Lorenz signal and its surrogates
are generally continuous (see Fig. 5a), their shadow manifolds
are continuous and so the existence of a spurious cross map
is possible. Additionally, AFa indicates that the observed
predictability is within-distribution, and so our signal is likely
a random process with no latent attractor structure.

2) Drift processes
Based on [3], we consider two systems that combine a linear

drift with bounded signals. In scenario B1, we observe signals
at and bt for t = 501, ..., 1000 from the following system:

xt+1 = 3.82xt(1− xt)

yt+1 = 3.74yt(1− yt) (27)
at = 0.015xt + 0.0003t

bt = yt

where xt, yt ∈ [0, 1]. The initial conditions for xt, yt were
sampled from a uniform distribution U(0, 1). The SSR pa-
rameters were selected to be Q = 3 and τ = 33 for at (due
to the large linear trend) and τ = 1 for bt.

The signal at is largely driven by the linear trend in time,
so its shadow manifold is expected to not be recurrent. The
signal bt settles into a periodic cycle with period 2, and so
the shadow manifold Mb is asymptotically a two point set.
However, it sometimes takes time for the states yt to converge
onto their attractors, so we burn the initial 500 samples to
ensure that our trajectories reside on their attractors. The true
causality in scenario B1 is a ⊥ b.
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Scenario B2 is similar to B1, but now the logistic process
xt is substituted for a noise process. In scenario B2, we have

xt
i.i.d.∼ U(0, 1),

yt+1 = 3.4yt(1− yt), (28)

at = 2 +
0.3t

500 + t
+ 0.1xt,

bt = yt.

The SSR parameters were selected to be Q = 4 and τ = 1 for
both signals. The true causality in scenario B2 is again a ⊥ b.

While CCM detected the correct causality for both scenar-
ios, we note that at in scenario B2 is not a signal arising from a
deterministic system, and so the use of CCM would be unjus-
tified if the ground truth was known. In practice, this would
be evidenced by the low auto-predictability (AFa = 0.63).
In scenario B1 the dynamics are deterministic, but the latent
dynamics are uncoupled, and no cross map was detected.

3) Coupled autoregressive processes
In scenarios K1 and K2, we consider the following system

for different values of the coupling parameter C based on [21].

ut, vt ∼ N (0, 1),

xt+1 = 0.5xt + 0.2yt +
√
0.1ut,

yt+1 = Cxt + 0.7yt +
√
0.1vt, (29)

at = xt,

bt = yt,

for t = 1, ..., 500. We randomly sample the initial conditions
as x1, y1 ∼ N (0, 1). In scenario K1, the coupling is unidi-
rectional (C = 0) and so the true causality is a ⇐ b. In
scenario K2, the coupling parameter is C = 0.6, and so the
true causality is a⇔ b. The SSR parameters were selected to
be Q = 4 in all scenarios, and τ = 1. In practice, exploratory
data analysis should reveal that these processes are linear and
stochastic, and hence appropriate for Granger causality. We
analyze this case anyways to better understand what happens
under a model mismatch.

In scenario K1, CCM detected no causality between the
coupled autoregressive (AR) processes. Both AFa and AFb

are suspect in this case, which indicates that the CCM result
may be highly unreliable. Since AR processes are stochastic,
they do not have attractors, and rightfully the GPDM struggles
to find a dynamical rule on the shadow manifolds. In scenario
K2, we also found small AF values, but CCM still detected that
the signals were coupled because the strong coupling between
the latent systems induced a large correlation between the
two signals. Thus, scenario K2 suggests that strong forcing
between systems could permit CCM to detect bidirectional
coupling even in stochastic systems. Although CCM obtained
the correct result in the K2 case, the low predictability
indicates that we cannot trust the CCM result, because it may
have only been obtained by chance.

4) Rössler-Lorenz
For scenarios K3 and K4, we consider a composite system

where a Rössler system x influences a Lorenz system y. The

system from [21] is defined by

ẋ1,t = −6(x2,t + x3,t),

ẋ2,t = 6(x1,t) + 0.2x2,t,

ẋ3,t = 6(0.2 + x3,t(x1,t − 5.7), (30)
ẏ1,t = 10(y2,t − y1,t),

ẏ2,t = 28y1,t − y2,t − y1,ty3,t + Cx2
2,t,

ẏ3,t = y1,tyt,2 − 8y3,t/3,

at = x2,t,

bt = y2,t,

where we observe the system for t = 1, ..., 1000. The sampling
period was 0.025, and the initial conditions were given by
(x1,0, ..., y3,0) = (0, 0, 0.4, 0.3, 0.3, 0.3). Simulation of each
trajectory was completed using the MATLAB ode45 solver.
The SSR parameters were selected to be Q = 4 and τ = 5
for a and Q = 8 and τ = 3 for b. The coupling parameter C
controls the strength of the causal interaction. In scenario K3,
we set C = 0 so the true causality is a ⊥ b. In scenario K4

we set C = 3, so the causality is unidirectional. However, it
is noted in [21] that general synchrony for this system occurs
when C = 3, and so the cross map is invertible. Thus, the
detected causation should be a ⇔ b, even though this does
not reflect the true causality.

In both scenarios K3 and K4, the AF and RF metrics
detected enough structure for the application of cross mapping.
Upon applying CCM, we detected the expected cross maps in
both scenarios.

B. Electricity data

To test our approach on a real data set, we used the
Electricity Load Diagrams 2011-2014 data set from the UCI
Machine Learning Repository [46], which records the elec-
tricity consumption of 370 households in a Portuguese city.
The data show a daily periodic behavior which we expect
to be consistent across the city. To study these data, we
partition all households into two groups, and we average the
electricity trends in each ground for each time. The average
daily electricity usage for each group defines two signals at
and bt. Since both signals observe the same latent process (the
city’s collective electricity usage), we expect that the signals
are synchronized and at ⇔ bt.

To study the synchronization, we observe at, bt for t =
500, ..., 1500 (roughly 100 days), which we call scenario E1

in the table. Prior to processing, each signal was smoothed
by a Savitzky-Golay filter to remove daily noise. The SSR
parameters were selected to be Q = 5 and τ = 6 for both
signals. Our analysis finds that the smoothed signals are both
recurrent and predictable, which agrees with other work that
has found limit cycle behavior in this data set [13]. Performing
CCM on these signals, we deduce that at ⇔ bt, indicating that
their behavior is indeed synchronized.

C. Discussion of the Rössler-Lorenz system

In the previous analyses, we considered the Rössler-Lorenz
system in (30) for somewhat extreme values of C. However,
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Scenario Correct result CCM result AFa RFa AFb RFb Appropriate for Cross-Mapping?

L1 a ⇔ b a ⇔ b 1.00 1.00 1.00 1.00 Yes
L2 a ⊥ b a ⇔ b 0.76 0.57 1.00 1.00 No
B1 a ⊥ b a ⊥ b 1.00 1.00 1.00 1.00 Yes
B2 a ⊥ b a ⊥ b 0.63 1.00 1.00 1.00 No
K1 a ⇐ b a ⊥ b 0.39 1.00 0.72 1.00 No
K2 a ⇔ b a ⇔ b 0.28 1.00 0.77 1.00 No
K3 a ⊥ b a ⊥ b 1.00 1.00 1.00 0.99 Yes
K4 a ⇔ b* a ⇔ b 1.00 1.00 1.00 1.00 Yes
E1 a ⇔ b a ⇔ b 1.00 0.81 1.00 0.87 Yes

TABLE I: A comparison of CCM results and the proposed metrics for a few systems. Incorrect CCM results are highlighted.
The * denotes that due to generalized synchrony, only bidirectional causation can be detected.

any value of C between 0 and 3 also produces a valid
dynamical system with attractors, and as long as C > 0 the
causality x⇒ y is present. Thus, an important question is what
happens for intermediate C, where the coupling is weak but
still non-negligible. The transition between the C = 0 regime
and the C = 3 regime requires a bifurcation of the system’s
attractor, but since this transformation occurs continuously, the
distribution of test statistics for the cross map (e.g., the CCM
convergence coefficient) will also vary continuously.

In Fig. 8, we compare the situations when C = 0, 1
and 3. For each plot, we consider 1,000 possible trajectories
of 2,000 samples, where we discarded the initial transient
(the first 1,000 samples) of each realization, so we have
only the remaining 1,000 samples. The sampling period of
the observation signal was 0.025, and the initial conditions
were distributed according to a Gaussian: (x0, y0) + 0.01n,
where (x0, y0) = (0, 0, 0.4, 0.3, 0.3, 0.3) and (n)i ∼ N (0, 1)
i.i.d. Simulation of each trajectory was completed using the
MATLAB ode45 solver. SSR parameters were estimated for
each realization, and their values varied across realizations,
but the typical values for τ were between 4 and 6. We used
Q = 4 and Q = 8 for the signals a and b, respectively.

We observe that for C = 0 and C = 3, the distributions
agree with what we would expect a cross map causality test
to produce in this situation. However, when C = 1 we see
that the distribution corresponding to a ← b is centered at
0.5. If one uses a threshold of 0.5 to decide if there is or is
not causation, then the probability of making an error (given a
random trajectory) is 50 percent, and thus CCM is completely
unreliable in this situation. Even for a different threshold
value, one may continuously vary C to find a value where the
distribution average is on top of the threshold. In general, any
system defined using a coupling parameter will likely undergo
a bifurcation as the coupling parameter is varied, and so this
behavior could be generally expected for systems with weaker
coupling (i.e., near the bifurcation point).

VI. CONCLUSION

The theory of cross mapping proposes a principled and ap-
pealing approach to causal inference in deterministic systems
with attractors, which is especially attractive given evidence
that Granger-style methods struggle in these settings. The
assumption that we can reconstruct deterministic latent states
from the observation signals is a necessary but often nontrivial
one, and so we proposed to provide evidence for this by

Fig. 8: Histogram of the CCM convergence coefficient across
1,000 trajectories with randomized initial conditions, visual-
ized for different values of C in the Rössler-Lorenz system.

leveraging Gaussian processes to test for auto-predictability
and recurrence. It was found that by performing these ap-
plicability tests, some naı̈ve failure modes of cross mapping
could be detected and avoided. This is especially relevant when
attempting to use cross mapping in settings with an unclear
ground truth.

Cross mapping still has several major challenges to over-
come (e.g., generalized synchrony, the bifurcation problem),
even after verifying that the signals are appropriate. The
amelioration of these situations may require subtle dynamical
and topological considerations; the details of which vary from
case to case. Cross mapping may be a powerful tool when
combined with other evidence and careful analysis, but overall
our results suggest that it should never be applied blindly.
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