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ABSTRACT

In science and engineering, we often deal with signals that are ac-
quired from time-varying systems represented by dynamic graphs.
We observe these signals, and the interest is in finding the time-
varying topology of the graphs. We propose two Bayesian meth-
ods for estimating these topologies without assuming any specific
functional relationships among the signals on the graphs. The two
methods exploit Gaussian processes, where the first method uses the
length scale of the kernel and relies on variational inference for opti-
mization, and the second method is based on derivatives of the func-
tions and Monte Carlo sampling. Both methods estimate the time-
varying topologies of the graphs sequentially. We provide numerical
tests that show the performance of the methods in two settings.

Index Terms— time-varying graphs, estimation of topology,
variational inference, sequential estimation, Monte Carlo sampling

1. INTRODUCTION

In practical data science problems, unveiling the underlying structure
of observed data is essential since they provide information about
the system that generated the data. Systems are often described by
graphs and signals on the graphs. Studying varying patterns of graph
signals over time and the dependencies among the signals on the
graphs allows for inferring the variability of the graphs over time
and, thereby, the evolution of the respective systems that the graphs
model. Given the significance of the problem, plenty of research has
been conducted in different fields of science and engineering, includ-
ing biology [1], finance [2], and network science [3]. For example,
in neuroscience, the interest could be recovering brain activity while
a subject is working on particular tasks. In finance, it is important
to reveal interconnections of entities from financial market data over
time. In social studies, often the goal is to construct a social network
of individuals and groups from data collected from social media plat-
forms.

Much work in estimating graph topologies has been done on
static graphs. The work in this space can be grouped into two cat-
egories, and they are based on the type of topology of the stud-
ied graphs. One is focused on undirected graphs, and the other
on directed graphs. Undirected graph inference produces estimates
of symmetric adjacency matrices and is somewhat less challeng-
ing, but it sacrifices the representation of single-way dependencies
on the graphs [4], [S]. To overcome the limitations of undirected
graphs, methods like Granger causality [6], vector autoregressive
(VAR) models [7], and structural equation models (SEMs) [8] have
been introduced to infer the directed dependencies on the graphs.
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Further, extensions of these methods to nonlinear directed graphs
have been proposed in [9]. On the other hand, research on dynamic
graphs has been much more sparse, even though real systems mod-
eled by dynamic graphs are very common. Work reported in this
area relies on graphical Lasso-based methods that can be applied
to both continuous and sudden network changes, but only for undi-
rected graphs, [9]. In [10, 11, 12], the authors extended the SEMs to
topology inference in dynamic settings.

In this paper, we propose two novel methods for estimating time-
varying topologies of graphs from time-series data observed at the
nodes of the graphs. The objective is to infer the causation and vari-
ation of the graph in time. We make very mild assumptions about
the functional relationships among the signals on the graph, and they
also need to be learned. Specifically, we propose to exploit random
feature-based Gaussian processes (RFGPs) to model the unknown
mapping functions. Compared with exact GPs used in [13], RFGPs
reduce the complexity in computation from cubic to the quadratic
of the size of observed data. Unlike inducing point-based meth-
ods, which are also popular in the GPs literature, the random fea-
ture framework does not require any matrix decomposition. Instead,
it only needs matrix products, which significantly boosts the speed
of computations. We also propose to use variational inference (VI)
and sequential Monte Carlo (SMC) to learn the desired functions.
Specifically, with VI-RFGPs, we learn the hyperparameters of the
pre-defined kernels, which in turn reflect the topology of the graph
in an online manner. With SMC-RFGPs, we estimate the weights of
the random Fourier features used by the RFGPs by computing the
derivatives with respect to the various inputs. Thereby, we can dif-
ferentiate the time-varying positive and negative relationships on the
directed graph.

The paper is organized as follows. In Section II, we provide a
brief overview of the background, and in Section III, we explain the
addressed model. We present our proposed solutions in Section IV.
In Section V, we illustrate the performance of the proposed meth-
ods, and in the last section, we conclude the paper with some final
remarks.

2. BACKGROUND

2.1. Graphs and Graph Signals

Consider a graph denoted by G(V,E, W) where V is a set of N
nodes, £ is a set of edges, and W is the graph’s weighted adjacency
matrix. One way to describe the topology of a graph G is through the
adjacency matrix W, which can be symmetric or asymmetric and,
thus, implying if the graph is undirected or directed, respectively.
The (n, m)th entry of W is Wy, € [0, 1]. For an undirected graph,
Wnm = Wmn, and if its value is non-zero, there is an edge between



node m and node n. Similarly, for a directed graph, if wym, is non-
zero, there is an edge pointing from node m to node n. The entries
wn,m € R represent the strength of the coupling of the mth and nth
nodes.

On a given graph, its signals are defined as follows. Consider
an unordered set of data S = {sa,, .., Say - Which are associated
with G. We assume each datum in S is assigned to a single specific
node in G. Then the data S are ordered by the nodes in G and are
given by an N-tuple s = {s1,...8n, ..., Sy }. We can think of s as a
graph signal over G [14]. The nth element s,, in s is indexed by the
node n of G.

2.2. Gaussian Processes

GPs are a class of stochastic processes that are used in machine
learning for modeling functions [15]. More specifically, let (x, y¢),

t=1,2,...,T,be T input-output values, where y = [y1 ¥2 ...y7] ',

and y = f(X), with f € R”*! and X € R”*% being a matrix
whose rows represent the inputs to the function £, that is,

x| f(x1)
X5 f(x2)
X7 f(xr)

The idea behind GPs is that function samples are jointly drawn
from a Gaussian distribution. Mathematically, we have f ~
GP (m(X), Kg (X)), where m(X) is the mean function, Kg(X)
is the covariance (kernel) function of the process, and 6, is a vector
of hyperparameters of the GP, i.e.,

[Ko(X)];; = E[(f(xi) — m(xi))(f(x)) —m(x3))]. ()

In practice, without loss of generality, we let the mean function to be
set to 0. By definition, the kernel has to be positive definite [15].

2.3. Random Feature-Based Gaussian Processes

The computation complexity of GPs explodes with the increase of
the data size T" because of the need to invert a 7' X T" matrix. Several
approximation methods have been proposed to address this prob-
lem. One widely used approximation is RFGPs, which construct the
GPs with features that come from a feature space. One possibility is
to use Fourier features, which are obtained from the power spectral
density of the adopted kernel. We can express them by

1
v (x) = —=[sin(x ' v'),cos(x v'),...,sin(x v’), cos(x v’

Vi
3

where J is the number of frequencies sampled from the power spec-
tral density of the kernel, v(**/) = {v7}/_, =: V [16]. If the kernel
is shift-invariant, then the GPs can be approximated as follows:

f=ov(x)w, @

where w is a vector of unknown linear coefficients.

3. MODEL DESCRIPTION

Let y(t) € RYV*! represent a vector of graph signals collected from
the graph G from all its nodes at time ¢, where y,(¢) denotes the
graph signal of node n at time ¢. Further, we assume that the graph
signal y,(t) is a function of the previous data of all the nodes (or
some of the nodes). Specifically, consider the data model

y() = [f1e(YM (@), .o e (YY) T +e(t), (9

where YM (¢) = [y(t = M)T,...,y(t—m)",...,y(t—1)T] €
RYMN M is a discrete delay time, and y(t — m) are the graph
signals over all the nodes at time ¢ — m. The model noise is €(t) ~
N(0,02T), and f,; is the function of node n that maps all the inputs
of that node to its observed output (the actual observation at that
node, yn(t)). We also assume an independent relationship between
the functions of the nodes. Thus, for the nth entry of y(¢) we can
write

Yn(t) = fur(YM (1)) + en(t). (6)

Further, we assume the function f,; is a GP with time-varying hy-
perparameters, i.e., fn¢(-) ~ GP(my(-), kn(,-|0¢)). The work in
[13] assumes that the function is time-invariant, but in the present
work, the function f,: is time-variant. This means that the relation-
ships among the nodes vary over time, reflecting a changing topol-
ogy of the graph. For tracking the changes in the topology on the
graph, we propose to exploit REGPs. In the sequel, we only con-
sider the function of node n and, thus, ignore the subscript n for
simplification in notation. Then the model shown in (6) can be ap-
proximated by

LYY (@) = oo (YM ()W (1) %)

It is important to note that in (7), the coefficients of the model w ()
vary with time.

4. PROPOSED SOLUTIONS

In this paper, we propose two different online Bayesian approaches
to measure the importance of the edges of the graphs. One method
uses the length scale of the kernel and exploits VI while the other
method relies on derivatives of the functions computed by SMC.

4.1. Length Scales with Variational Inference

From [13], the length scales of the ARD RBF kernel can act as im-
portant indicators of whether the edges are important or not, where
the ARD RBF kernel has the form

(.’L’ i~ :L'/>2

da ;
k(x,x") = 05 exp —% Z 7 ’ ) ()
j=1 J

where | = {l; }?;1 are length scales and represent hyperparameters.
A larger length scale means that the learned GP varies less in that
dimension, and hence less importance is given to that dimension.
Although there is no explicit expression of the length scale [ in (4),
the random features are, in fact, sampled from the power spectral
density of the kernel. We note that the hyperparameters of the kernel
are optimized simultaneously.

The VI aims at finding variational distributions ¢(w) and ¢('V)
that approximate the true posterior distributions p(w|X,Y) and
p(V|X,Y), respectively. Defining the marginalized log-likelihood



L = 30 logp(yalx) and L' = 377 Ey(w) log p(yn|x, w),
we obtain

L > L' = KL[g(w)|lp(w)] = KLg [¢(V)[[p(V)], 9

where KL stands for Kullback-Leibler divergence, p(w) is the prior
distribution of the hidden variables w, and p('V) is the power spec-
tral density of the kernel that is related to the hyperparameters of
the chosen kernel. Note that the KL divergence regularizes w and
V automatically, which avoids overfitting when ||w|| or ||V]| are
too large. In practice, the real marginalized log-likelihood L is usu-
ally intractable. Therefore, we utilize the right side of the inequal-
ity, named evidence lower bound (ELBO), which is an approxima-
tion to L and tractable to handle. Finally, we can follow the gra-
dient descent-based algorithm to find the optimal hyperparameters,
including the length scales. The property of the gradient descent-
based algorithm naturally leads to online learning of the parameters
and consequently adapts to the time-varying graphs.

4.2. Derivatives with Monte Carlo Sampling

There are two major disadvantages to using length scales. First, the
length scale can only provide relative importance for other edges.
Second, the length scale must be positive, and then we cannot judge
whether the edge has a positive or negative contribution. To handle
these two limitations, we propose using the function’s derivatives
to measure the importance of edges. The derivatives of the random
feature-based function

f=¢x)w=w'lcos(V'x),sin(V'x)]/VJ (10
with respect to X is

' =w'[diag (— sin(VTx)) ,diag (cos(VTx))]VT/\ﬁ.
an
We observe that the derivatives reflect how sensitive the output vari-
ables are to input variables [17]. The higher the absolute value of
the sensitivity to a particular input variable is, the more critical that
variable is to the output variable.

The VI can obtain the derivatives when the local parameteriza-
tion trick is not applied. However, this would lead to a dramatic
decline in the accuracy of the VI. To obtain steady and precise esti-
mates of the derivatives, we propose to use the approach from [16].

We first apply the VI to a small set of data to gain a proper ini-
tialization of the distribution of V, i.e., the posterior of the power
density of the kernel. Then we work with an ensemble of different
sets of V, which are randomly sampled from the posterior. If we de-
note with w; = p(s|y1:¢, X1:+) the posterior weight of the sth feature
at time ¢, it can be updated by the Bayes’ formula

wi o< wi_1p(Ye|S, Y1:t—1, X1:0—1)- (12)

The estimate of f; is obtained from the ensemble of GPs, i.e.,
s
Fo=>"wif;. (13)
s=1
Therefore, the estimated derivatives are naturally
s
Flo=> wif’,. (14)
s=1

Both the estimated functions and their derivatives are time-varying,
and they adjust to the time-varying graphs.

5. NUMERICAL RESULTS

5.1. Length Scale with Large Scale Data

To test the ability of the proposed method on a relatively large net-
work, we applied it on a 100 dimensional VAR model with a sudden
change, i.e., y(t) = W,y (t—1),s = 1, 2. The weighted adjacency
matrices W are ER random graphs with edge probability equal to
0.05, and W and W are independently drawn. We drew the ini-
tial values of the data and the noise from a multivariate Gaussian,
ie., y(0) ~ NV(0,1),and 02 = 0.5.

We randomly chose node 66 as the target node, and nodes 1 to
100, including node 66 itself, as the input nodes. The first graph
topology (T1) lasts from 0 to 50,00 time units, while the second
graph topology (T2) is from 5,000 to 10,000 time units. The impor-
tant nodes and their weights are listed below for both topologies:

Tl: nodes: [30, 46, 67, 69, 81, 85]

weights:[0.37, 0.17, 0.33, 0.48, 0.13, 0.01]
T2: nodes: [29, 67, 85, 93]
weights:[0.14, 0.09, 0.25, 0.46]
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Fig. 1. The estimated squared length scales vary with time for all
100 dimensions.

The estimated squared length scales for every input node are
shown in Fig. 1. The red lines represent the important nodes with
non-zero weights, while the grey lines are the unimportant nodes
with zero weights. For the duration of the first topology, the im-
portant nodes are grouped into three levels. Node 85 has a non-
significant weight of 0.01 near zero, nodes 46 and 81 have weak
significant weights of around 0.1, and nodes 30, 67, and 69 have
significant weights of around 0.4. Recall that larger length scales
refer to smaller node importance. From the figure, our method can
recognize the important nodes quickly and also the levels of impor-
tance in terms of the values of squared length scales. Node 85, with
non-significant weight, cannot be recognized with other unimportant
nodes because of its low weight. However, nodes 46 and 81 can be
recognized even with weak significant weights. Nodes 30, 67, and
69 have much less value of length scales compared with other nodes
since they have a strong contribution to the target node. After the



change point at 5,000, the newly important nodes 29 and 93 have
their estimated length scales decrease quickly, and the newly unim-
portant nodes 30, 46, 69, and 81 behave conversely. Note that node
85 had insignificant weight in T1 (0.01) and a significant value in T2
(0.25).

5.2. Derivatives with Smoothly Varying Graph

This example illustrates that the proposed method based on deriva-
tives can recover the network topology with smooth changes. We
apply this method on a ten dimensional VAR model, with the entries
of the adjacency matrix changing with time according to

wi 3(t) = —0.00005t, t < 10000, 15)
wi 3(t) = —0.5, ¢ > 10000,
1.5(t) = —0.25 4+ 0.00005 * ¢, ¢ < 10000, a6
15(t) = 0.25, ¢ > 10000,
wi,7(t) = 0.5, t < 5000,
wi7(t) = —() 00005 «t + 0.75, 5000 <t < 15000, (17)
w1 7(t) = t 2 15000.

Except for node one, the evolutions of the other nodes only depend
on themselves (they have self-loops). The initial value of the data
and the noise are randomly drawn from a multivariate Gaussian, i.e.,
y(0) ~ N (0, 0.I), with 02 = 0.5.
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Fig. 2. The estimated derivatives vary with time for all three impor-
tant nodes.

The estimated derivatives for the important nodes 3, 5, and 7
are shown in Fig. 2, and the remaining unimportant nodes are pre-
sented in Fig. 3. The solid lines represent the derivatives of impor-
tant nodes, while the dashed lines are the true weights used in the
data generating process. Specifically, the green, blue, and orange
lines are for nodes 3, 5, and 7, respectively. From the figure, the esti-
mated derivatives capture the varying weights correctly in the signs,
values, and patterns.
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Fig. 3. The estimated derivatives vary with time for all the unimpor-
tant nodes.

6. CONCLUSION

In this paper, we proposed two Bayesian methods for estimating
time-varying graphs from graph signals. The methods are based
on Gaussian processes, where the first method exploits RBF ker-
nels and the automated relevance determination principle, and the
second method uses derivatives of the functions modeled by the GPs
to determine the importance of the edges in the graph. We imple-
mented the optimizations in the first method by variational inference,
whereas in the second method, we worked with derivatives and se-
quential Monte Carlo sampling. We presented two examples that
show the accuracy of the proposed methods. The results suggest
that both methods are capable of tracking the changes in the graph
topologies.
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