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Abstract—In neuroscience, hierarchical models of brain con-
nectivity, particularly in the prefrontal cortex (PFC), are used to
understand how the brain can process sensory information, make
decisions and perform other high level tasks. Despite extensive
research, understanding the structure of the PFC remains a
crucial challenge. To this end, we propose a data-driven approach
to studying brain signals based on Gaussian processes and
causal strengths. For discovering causations, we propose a metric
referred to as double-averaged differential causal effect. The
differential causal effect has been proposed recently, and it can
be used to quantify causal strengths in a principled way. We
studied real multivariate time series data that represent local
field potentials from the frontal lobe. The interest was in finding
the causal relationship between the medial and lateral PFC areas
of the brain. Our results suggest that the medial PFC causally
influences the lateral PFC.

Index Terms—brain, causal strength, Gaussian processes, med-
ical signal processing, time series

I. INTRODUCTION

Cognitive control is our ability to flexibly adapt behavior
according to goals and context. Cognitive control is considered
hierarchical [5] in the sense that when we plan and perform
actions, we often start with an overarching/abstract goal like
“make coffee,” which can be broken down into more concrete
subgoals, e.g., “grind beans” or “get a cup.” The frontal lobe
of the brain, particularly the prefrontal cortex (PFC), is vital
for cognitive control. The PFC is comprised of 47 areas
[13] differentially contributing to cognitive control, but how
information flows between areas of PFC and its hierarchical
causal network structure overall, is unclear. This question
takes on added importance because perturbed cognitive control
characterizes several neuropsychiatric disorders, including
schizophrenia and depression.

Neuroscientists have studied the PFC extensively to discover
how it is connected and how information flows from one
part to another. However, determining functional connectivity
and the direction of information flow within the large-scale
organization of brain networks, and PFC in particular due
to its dense recurrent bidirectional connectivity, is a critical
challenge in neuroscience. At present, functional connectivity
metrics have only been coarsely applied to PFC. One can
divide current methods of functional connectivity based on
whether they are directed (vs. non-directed) and model-based

(vs. model-free) [3]. Directed models try to identify the cause
and effect, while non-directed models only show statistical
interdependence. Cross-correlation and Granger’s causality are
examples of a directed model where cause precedes the effect
[10], [14]. Model-based approaches assume a relationship
between two signals (Pearson correlation, for example).

In contrast, model-free approaches (such as mutual
information) speak only to signal transmission between
regions but can specify the direction of signal transmission
(i.e., with transfer entropy [17], [23]). The PFC is
astonishingly complex, with innumerable bidirectional
connections with the rest of the brain, leading to difficulty
in creating tractable models. Nonetheless, some large-scale
organizational principles have been proposed with the
assistance of functional connectivity-based models. Koechlin
and colleagues proposed an anterior-to-posterior gradient
wherein higher-order control is imposed by the frontal pole.
Low-level sensory feedback is implemented at more posterior
regions, such as the premotor cortex [16]. The authors of [16]
used a linear model of blood flow patterns to support this
view, which parcellated the prefrontal cortex into relatively
large regions and assumed linear relationships between
activity in these regions. Badre and Nee extrapolated this and
other data into a general model of antero-posterior gradient
organization of PFC, based on studies that largely rely on
similar approaches [2]. A related proposal by Shenhav and
colleagues suggests that the medial parts of the frontal lobe
compute the expected value of control signals needed to
optimize behavior and transmit these signals to the lateral
parts of the frontal lobe for implementation [24]. This model,
however, also depends on studies that only coarsely identify
causal influences in the prefrontal cortex.

Our contributions in this work are that we introduce novel
analyses to study the functional connectivity and dynamics of
the frontal lobe in a data-driven manner. Our proposed method
is based on the concept of causal strength, and it is directed,
non-parametric, and principled. We apply this method to the
analysis of local field potentials (LFP), which are strongly
correlated to local neuronal activity, and thus are closer to
the “ground truth” of brain network function [15]. However,
the proposed method is also applicable to time series data in
general.



II. PROBLEM FORMULATION
A. Hierarchical organization of the frontal lobe

Information about the external world is transmitted from
our sensory organs to the occipital, temporal and parietal
lobes of the brain; and there is a well-studied hierarchical
organization of sensory processing across these lobes. In
contrast, the hierarchical organization of the frontal lobe
is unclear. One major theory suggests that PFC, along its
anterior-posterior dimension, is broadly organized according
to the level of abstraction of behavioral goals. Here, anterior
PFC, at the top of the hierarchy, represents abstract goals/rules,
and more concrete goals/rules are represented in posterior
PFC [1], [16]. Another major theory suggests that PFC, along
its medial-lateral dimension, is broadly organized according
to its role in mediating exploration-exploitation trade-offs
which are central to our daily decision-making. Here, medial
PFC enables exploration of new options, whereas lateral PFC
enables exploitation of the current option [11]. These theories
derive from functional MRI and brain lesion data, and higher
spatiotemporal resolution of intracranial neural recordings and
methods to measure causal influences are required to resolve
PFC organization, in conjunction with cognitive control tasks
that activate PFC.

B. Description of the data

In this investigation, our neural time series data are
multi-channel, local field potentials (LFPs sampled at 2kHz)
derived from intracranial EEG recordings in 10 patients
evaluated for surgical treatment of epilepsy. Recording sites,
based on clinical requirements, include extensive coverage of
the frontal lobe. We filtered data from 4-200Hz, removed
artifacts/ictal activity, and analyzed bipolar derivations of
LFPs (difference between two adjacent channels, to remove
shared noise across channels). An important way to implement
cognitive control is to apply rules which map cues to actions
according to context. During recordings, patients performed
a hierarchical rule task requiring switching and application
of abstract and concrete rules. The abstract rule cue specified
the relevant dimension (shape or orientation) of the subsequent
concrete rule cue, which specified the relevant feature to report
(rectangle/oval/bowtie or N/SW/SE). Preliminary data herein
focus on medial (anterior cingulate cortex, ACC) and lateral
(dorsolateral PFC, DLPFC) frontal lobe during the working
memory period after the abstract rule cue.

III. THE METHODOLOGY
A. Modeling the hierarchy

We propose to learn the structure of the frontal lobe by
analyzing the strength of causation between brain regions as
represented by the LFP signals. To illustrate this process,
consider two time series x; and y;, where we suppose that y,
is ‘downstream’ in the network hierarchy. We use a nonlinear
additive noise model to represent the interaction of x; and v,
ie.

Yt :F(yt_l,...,yt_Q,xt_l,...,mt_Q)—|—wt (1)

where w; represents noise due to unobserved influences
and other background brain activity, and F' is an unknown
nonlinear function. The model order parameter () controls how
much of the signals’ history is used for prediction, and it is
assumed to be fixed, but later we consider the behavior as the
parameter is varied.

While several different time lags of the signal z; are
included in the model, not all of these features contribute
equally to produce the next value of y;. For example, if the
time required to send a signal from the recording site of
to the recording site of y; is 7, then the partial derivative of
F with respect to z;_, should be zero for ¢ < 7. Since the
internal state of the brain varies from moment to moment,
the propagation delay 7 also varies from trial to trial [9]. As
a result, the function F' may change from trial to trial, and
so we will usually estimate the function F' on a trial-by-trial
basis. The primary innovation of this work concerns how to
continue our analyses despite the trial-to-trial variability of the
neural data.

Additionally, we note that the model in (1) considers
only the pairwise relationship of x; and y;. As with other
causal methods such as Granger causality, pairwise analysis
is susceptible to bias due to latent confounding variables
that influence both x; and y; [6], [19]. While this situation
is perhaps unavoidable in neuroscience [20], we note the
influence of latent confounders are more likely to result in a
false-positive connection (due to the presence of information
that is useful for prediction) rather than a false-negative (which
would require that the unobserved influences perfectly cancel
out the influence of z;, which may be a non-generic situation
[4]). In this way, we interpret the pairwise analysis as being
optimistic when we attempt to detect causal influences.! A
general way to improve the approach is to starting with
pairwise analysis, and to consider ternary and higher order
relationships for pairs that passed the pairwise test. For the
current work, we find that pairwise analysis is a useful starting
point, and we approach our results with an awareness of the
need for future work.

B. Gaussian process regression

To learn the function F' in (1), we need a nonlinear
regression tool. To this end, Gaussian process regression
(GPR) is a principled, Bayesian and non-parametric tool that
has been proven useful to model time series in several ways
[81, [12], [18], [26]. Suppose we want to estimate a functional
relationship of the form f : RP — R such that y; ~ f(x;) for
some observed data set D = {(x;,¥;);¢4 =1,..., N}. In GPR,
we specify a Gaussian process (GP) prior for the function f,

'In a full neuroscientific study, such pairwise analyses should be supple-
mented with additional analyses that further scrutinize the detected relation-
ships, by controlling for other observed variables and carefully outlining one’s
assumptions (which are technically required to make the inference problem
identifiable [22]).
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Fig. 1. Demonstration of GPR being used to model a portion of an LFP
signal. For () = 8, we use the GP posterior to predict the evolution of LFP
signal. A GP model of the form (1) was fitted using the first 400 ms of data,
and the learned model was validated on the remaining 100 ms by examining
the prediction quality. We observe that the pairwise model fits confidently
within sample, and can also make reasonable predictions out-of-sample.

denoted as f ~ GP(m, k), which means that

(f(xl)vvf(xN)) NN(m7K) (2)
m; = E(f(x;)) = m(x;) 3)
Kij = COV(f(Xi), f(Xj)) = k‘(XZ‘,Xj). (4)

The functions m(-) and k(-,-) are called the mean and
covariance functions respectively, and are chosen when
training the model. To estimate f(x) at a new point X, we
can obtain a posterior distribution for f(x) by conditioning on
the known data. The resulting posterior distribution happens
to also be a Gaussian process:

f(x)[D ~ GP(my, kp) &)
my(x) = ka(x) (K +0°T) "'y
N
= Z k (Xa Xn) A, (6)
n=1
kp(x,x') = k(x, %) — ko (x) (K 4+ 0°T) 'k (x)  (7)

where the vectors k.(x), o and y are common notation
used to express these formulas [21], and they are defined
(ki(x))i = k(x,xi), @« = K+ )"y and y =
(y17 ey yN)

In Figure 1, we show an example of GPR being used to fit
the model in (1) for an LFP signal.

C. Differential causal effect

We now introduce our measure of causal strength. Consider
two signals x;,y; and a model of the form (1). Given that y,
depends on z; for i =t —1,...,t — ), we wish to quantify
how strongly each x; influences y;. When the function F
is differentiable, the partial derivatives of F' measure the
sensitivity of y; to perturbations in each input. Thus, the
differential causal effect (DCE) of x; on y is defined to be
the partial derivative of F' with respect to z; [7], i.e.

DCEq, sy, (Ye-1,%-1) 2 M,

T
where x,_1 = (24-1, ..., 2i—@) and y;—1 = (Yi—1,---» Y1—Q)-
Since DCE,,_,, is potentially a non-constant function of

®)

(¥t,%¢), we may wish to summarize the DCE in a principled
way. A natural approach is to average the DCE over the
probability distribution of its inputs, p(y;,x:). We then define
the averaged magnitude of the DCE,

(DCE,_,,) 2 / IDCEs,, (ye x0)lp(ye, x2)dysdxi. (9)

To estimate the DCE from data, the GPR approach also
yields an elegant solution. If a function F' is distributed
according to a GP with mean function m and covariance
function k, i.e. F' ~ GP(m,k), then the partial derivatives
of F' are also GP-distributed [25]:

oF
om(yy, x
iy ) = 20 (an
ak ) ) /’ /
ki(ytaxtayéaxf‘,) = W (12)

In particular, this result also applies to the posterior estimate
of the function F' as in (5), and also a posterior estimate of the
partial derivatives. Combining (5) and (10) yields the following

estimator [7]:
D, x, y)

N Ok(y, X, Vs Xn)
=) — i a
n=1

8ﬁ(y, X)

DCE,;, y(y,x) =E < oz,

oz, n, (13
where the coefficients «,, are obtained from (5) and n is
ranging over the set of training vectors x,,, y,, that we produce
from observed signals. Often times, the kernel function &
can be differentiated easily, and there are simple expressions
available for common kernels [7], [25]. The estimator in (13) is
again a function of the test point (y, x), and it can be averaged
over the input space, just as we did for (DCE,, ). Since the
probability distribution p(y¢,x;) is not usually available, we
can resort to a bootstrap estimate by substituting the observed
values of the signal. Thus, we have an estimator for the
averaged magnitude of the DCE,

N N

L Ok(YmsXm, Yn»Xn
(BCE, ) = 3 |y HmZodol, |

(14)

m=1 |n=1
If desired, the posterior uncertainty in (14) can also be derived
from the GP posterior.

D. Double-averaged DCE

As mentioned in Section III-A, the precise input features
x; that strongly influence y; may vary from trial to trial. To
account for this, we require an approach that can average
across time lags, but still retains the ability for us to ascertain
what time lags are important. To this end, we consider several
different values for the model order parameter (). For each
Q=1,...,Qmaz, Where Q4. is specified beforehand, we fit
a model of the form (1) and we estimate (DCE,,_,,) using
the GP posterior. We then define the double-averaged DCE to
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Fig. 2. Comparison of the cross-correlation, pairwise Granger causality [6], and the double-averaged DCE across pairs of channels from the ACC and DLPFC.
cross-correlation and Granger causality analyses are suggestive of a relationship between ACC and DLPFC, but the resulting plots don’t show recognizable
spatial structure across channels. The double-averaged DCE detected causal strength which was more spatially organized than the two linear measures. In all
three plots, the matrices were computed using 212 trials of the hierarchical rule task, where each channel recorded 1,000 samples of data per trial.

be the average of the averaged magnitude of the DCE over
each x; within a model with fixed order @, i.e.
Al sy
((DCEa-,))(Q) = 5 3 (DCEa,y).

i=t—1

15)

The measure <<D/(iim%y)) compensates for the fact that
the propagation delay from cause to effect varies from
trial-to-trial by averaging over the observed lags. By
considering ((DCE,_,,)) as a function of (), one can study
how changes to the time window change the causal strength
measurement, without concern that the resulting measurements
are distributed across several lags in time.

IV. RESULTS

In this section, we perform several analyses of the LFP
data using the double-averaged DCE. Before performing DCE
analysis, we first applied linear cross-correlation analyses to
explore the data set. Peaks in the cross-correlation generally
occurred well within 15ms, and thus Q.. = 30 was selected
after considering the 2kHz sampling rate. To emphasize the
relationship of model order to the time window of the model,
we will often specify the model order in terms of milliseconds.

In Figure 2, we visualize how the causal strength between
ACC and DLPFC varies across sensor locations. In the
proposed method using double-averaged DCE, we observe
patterns in which some groups of adjacent channels detect
more causal strength than other regions. In contrast, we also
computed the corresponding cross-correlations and pairwise
Granger causalities, to observe how other pairwise analyses
fared. The Granger causality method use linear models with
the same model order as the double-averaged DCE approach.

In Figure 3, we consider how varying the model order @)
allows the double-averaged DCE approach to discover the time
delays of interest for the ACC to DLPFC mechanism. We
observe that by varying the model order @, the largest values
of the double-averaged DCE typically corresponded to a time
window of 6-8 ms. The rising causal strength as () increases,
while ) < 6, may correspond to the arrival of increasing
relevant information as the model important time lags are

08 Propagation Delay from ACC to DLPFC

Double-averaged DCE

1 2 3 4 5 6 7 8 9 10
Model order Q, in milliseconds

Fig. 3. Double-averaged DCE vs. the model order. In black, we show the
average across all pairs of channels and trials, with one standard deviation
in the shaded region. The colored curves correspond to the results for fixed
pairs of channels, but we still average over trials to produce each curve. The
most strong influence appears when the model order (interpreted as a window
length) is around 6 to 8 ms.

added to the model. Before the lags, are available, e.g., Q = 2
ms, the causal strength is low but not zero, which is expected
because even if a more delayed copy of the ACC signal was
omitted from the model, the autocorrelation or smoothness
of the signal ensures that nearby lags are still statistically
meaningful. When @) > 8, increasing () appears to decrease
the average causal strength, which may indicate that additional
useful information is not being added to the model when the
time window exceeds the physically meaningful range.

In Figure 4, we examine the trial-to-type variation of the
DCE measures. We see that individual trials vary significantly
in their behavior, and thus to get a generalized assessment
of the strength of causation between the ACC and DLPFC,
one must either aggregate over trials, or find a way to explain
the variability in terms of a measurable variable. Despite the
trial-to-trial variability, the measured causal strength responds
comparably to ; for small @, the causal strength is low,
and for @) exceeding some trial-specific threshold the causal



strength is larger, which agrees with the trends seen in Figure
3.
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Fig. 4. Heatmap illustrating how the double-averaged DCE varies from trial
to trial, for a fixed pair of channels and a subset of the total number of trials.
There is noticeably variability from trial to trial, but in general all trials show
the behavior that the causal strength is small for small @, and the measured
causal strength of the ACC on the DLPFC increases noticeably when () passes
some trial-dependent threshold.

V. DISCUSSION

Our DCE analyses suggest that medial PFC (ACC) causally
influenced lateral PFC (DLPFC) during the cognitive control
task. This influence was maximal at a time lag of around
7ms, indicating the signal transmission time from ACC to
DLPFC. Although the time lag varied from trial-to-trial of
the task, it was consistently between 6-10ms, which is within
the expected physiological range. The medial PFC influence
occurred during processing of the abstract rule cue, which
specifies the subset of subsequent relevant concrete rules
to complete the task. Hence, the medial PFC influence on
lateral PFC is consistent with a shift from exploration to
exploitation of the relevant task rules. This provides support
for the theory of medial-to-lateral PFC interactions mediating
exploration-exploitation trade-offs [11].

VI. CONCLUSION

In this paper, we addressed the problem of learning the
hierarchical organization of the frontal lobe from LFP signal
data. More specifically, the interest was on determining if
the medial PFC causally influenced the lateral PFC. Our
methodology for exploring causations was based on a recently
introduced concept, DCE. In this paper, we introduced the
notion of double-averaged DCE as a way to address for large
trial-to-trial variability while attempting to measure causality
strength from the LFP signals. The current results of the work
show evidence that medial PFC causally influences lateral
PFC.
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