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Abstract— Mobile manipulation tasks such as opening a
door, pulling open a drawer, or lifting a toilet lid require
constrained motion of the end-effector under environmental
and task constraints. This, coupled with partial information in
novel environments, makes it challenging to employ classical
motion planning approaches at test time. Our key insight is
to cast it as a learning problem to leverage past experience of
solving similar planning problems to directly predict motion
plans for mobile manipulation tasks in novel situations at
test time. To enable this, we develop a simulator, ArtObjSim,
that simulates articulated objects placed in real scenes. We
then introduce SeqIK+6,, a fast and flexible representation for
motion plans. Finally, we learn models that use SeqIK+6, to
quickly predict motion plans for articulating novel objects at
test time. Experimental evaluation shows improved speed and
accuracy at generating motion plans than pure search-based
methods and pure learning methods.

I. INTRODUCTION

As humans, when faced with everyday articulated objects
as shown in Figure 1, we draw upon our vast past experience
to successfully articulate them. We know to stand on the side
as we pull open a oven, and where to lean on a door to push
it open. Very rarely do we pull open a door onto our feet, or
bump into the toilet while lifting a toilet seat. In this paper,
we develop techniques that enable robots to similarly use
past experience to mine and quickly predict strategies for
articulating everyday objects in cluttered real environments.

Current work on articulating objects casts it as a motion
planning problem: given a full scan of the environment,
find a robot joint trajectory that leads the end-effector to
track the trajectory that the grasp-point on the object should
follow. This suffers from both a high-sensing cost and a high-
planning cost. Building a full articulable 3D reconstruction
of the environment for collision checking and planning is
expensive and time consuming. At the same time, finding
paths that conform to tight constraints on the end-effector
trajectory while not colliding with self or surrounding ob-
stacles or the articulating object is computationally hard.
States that adhere to the given constraint form a measure
zero set among the set of all states. This creates issues for
sampling-based motion planners which can fail to sample
states that satisfy the constraint, or must incur computation
cost to project states to the constraint manifold [4], [20].

Rather than re-solving, from scratch, how to open a door
every time we encounter one, our proposal is to build a reper-
toire of strategies based on past experience. This replaces the
search in the high-dimensional motion plan space with the
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Fig. 1: Household robots need to articulate everyday objects (e.g. pull open
drawers, swing open cupboards, lift toilet seats). Such articulation involves
applying forces onto the environment while maintaining relevant contact,
such as with the drawer handle as we pull it open. This requires reasoning
about the feasibility of the entire trajectory (i.e. points along the trajectory
should not just be reachable, but it must be possible to continuously go
from one point to the next). This paper develops datasets and techniques for
learning models that can predict motion plans for such constrained motion
planning problems with low sensing and planning costs.

much simpler problem of selecting from a small family of
good strategies, leading to gains in efficiency. Furthermore,
this simpler search can be driven by whatever observation
is readily available from on-board sensors through the use
of machine learning. Our experiments demonstrate the effec-
tiveness of casting this as a learning problem. Given a single
RGB-D observation of an articulated object in cluttered real
world scenes and associated end-effector pose trajectory to
track, we can output motion plans that track the end-effector
trajectory to within 0.01m and 0.01rad error with just a
few inverse kinematic calls. This, by far, outperforms the
constrained motion planning implementation for the pro-
jected state space method from the OMPL library [20], [44]
which fails to find any motion plans with less than 0.01 m
and 0.01rad tracking error even when given 15 minutes of
planning time. Our impressive performance is enabled by the
following three innovations.

First, we construct, ArtObjSim, a lightweight kinematic
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simulator for everyday articulated objects placed in real
scenes. Crucially, this simulator is derived from scans of real-
world environments (from HM3D dataset [37]). This retains
the appearance and the cluttered environmental context of
the articulated objects. The simulator not only provides the
experience to build the repertoire of strategies, but also serves
as the first of its kind benchmark for evaluating motion plans
for articulating objects in real environments. ArtObjSim con-
sists of 3758 articulated object instances across 4 articulation
types (prismatic e.g. drawers, vertical hinge e.g. cabinets,
horizontal up-hinge e.g. toilet lids, horizontal down-hinge
e.g. dishwashers) across 10 object categories in 97 scenes.

Second, rather than predicting a motion plans, that must
conform to tight task constraints and are hence hard to
directly predict, we instead predict a strategy that can be
efficiently decoded into a motion plan using the articulation
geometry. Our decoding process consists of synchronously
solving inverse kinematics (IK) problems for end-effector
waypoints sampled along the given end-effector trajectory.
This synchronization is done by warm starting IK for the
" time-step using solution from the (¢ — 1) time-step. We
call this decoding process Sequential Inverse Kinematics or
SeqlK. By directly optimizing to reduce end-effector pose
error, SeqlK leads to low tracking errors. The initialization
for the first time step, g, serves as the strategy. Changing 6
changes the strategy and generates a different motion plan.
We find that this representation, SeqIK+6,, is fast (motion
plans can be quickly decoded) and flexible (with the right 6,
it can produce high-quality motion plans for diverse objects
in diverse situations).

Not all initializations would work well for all situations.
Some might not be able to track the end-effector accurately
enough, some may lead to collisions, and others yet might vi-
olate the task constraint when joint angles are interpolated for
smooth execution. Thus, we need to find good initializations
for SeqlK+6, at test time. Our third innovation, the use of a
convolutional neural network to predict good initializations
for SeqlK+6, (or equivalently, good strategies) from RGB
image observations, speeds up test time inference. We train
this model on a dataset of object images labeled with good
initializations, as generated using our proposed ArtObjSim
simulator. We are able to find good solutions with only a few
IK calls. This is much faster than sampling-based planning at
test time which would make tens of thousands of IK calls to
project sampled states to the constraint set. We also show that
our method can work with predicted end-effector waypoints.
Collected dataset, ArtObjSim, and code are available on the
project website: https://arjung128.github.io/mpao/.

II. RELATED WORK

Motion planning under constraints [4], [20] has been used
to tackle object articulation problems, e.g. [5], [6], [8], [29],
[36], [38], [46] among numerous other works. Researchers
have tackled many aspects: design of task-space regions for
expressing constraints on end-effectors [5], planning for base
and arm motion separately [29], considering whole-body
manipulation [6], reasoning about good locations to position

the base through inverse reachability maps [46], and even
casting it instead as a trajectory optimization or optimal
control problem [10], [30], [35], [42]. All these approaches
solve a new object articulation problem, from scratch, every
time they encounter one. Consequently, they incur a high
sensing and planning costs. Different from these works, our
interest is in techniques to leverage experience with similar
articulation problems in the past to quickly predict motion
plans with low sensing and planning cost. Online system
identification approaches [17], [19], [33], [34] that adapt
plans using feedback have also been studied.

Perception of articulated objects. A body of work [1]-
(3], [18], [22], [27], [31], [32], [39], [47]-[49], [52] has
tackled the perception of articulation geometry for articu-
lated objects. Given raw sensory input (RGB images, RGB-
D images, depth images, point clouds, or meshes) the goal is
to predict articulation parameters: e.g. articulation type (pris-
matic vs. hinge), segmentation of parts that independently
articulate, axis of rotation / translation, points of interac-
tion. Researchers have a) investigated the use of different
input modalities [18], [27], [31], [40], b) built datasets for
training models [32], ¢) designed unified output parame-
terizations [18], and d) designed novel neural architectures
and representation [27], [52]. Researchers have also studied
directly predicting sites for interaction [31] and trajectories
that the robot end-effector should follow [49] to articulate
the object. Our work is complementary, and focuses on
converting articulation geometry, possibly predicted from any
of these past models, into motion plans.

Simulators for studying object articulation have been
challenging to build. Most past efforts use manually created
synthetic scenes: AI2-THOR [23], Sapeins [51], Manipu-
1aTHOR [9], ThreeDWorld [11]. Habitat 2.0 [45] and iGib-
son [41] improve realism by manually aligning 3D models
to real scenes, but are small in size (92 objects in 1 home
and 500 objects in 15 homes respectively). Our proposed Ar-
tObjSim simulator is unique in its focus, studying prediction
of motion plans for everyday articulated objects, and scale,
having 3758 articulated objects spread across 97 unique real
world scenes. To our knowledge, ArtObjSim is the largest
dataset, to date, for the study of motion planning performance
for articulating everyday objects in everyday scenes.
End-to-end RL approaches can also be used to leverage
prior experience for fast execution under partial information
at test time [14], [26], [50]. However, the large sample com-
plexity of learning policies through RL and the small number
of environments available for training has prevented past
works to show generalization results in novel environments.
By leveraging classical components and scaling up learning,
we are able to learn models that generalize to novel objects.
Learning for motion planning has been used to reduce
the runtime of motion planning algorithms: [15], [16], [43].
Strudel et al. [43] learn obstacles representations for motion
planning, while Ichter et al. [15], [16] use learning to bias
sampling of states for motion planners. Our use of learning is
similarly motivated, but we learn to predict low-dimensional
strategies (that can be decoded into full motion plans) for
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face and handle.

a RGB Image with annotation for cupboard  b) 3D scan associated with the RGB image, with
annotation for articulations overlaid.

c) Lightweight kinematic simulator with real
world object placement, clutter & appearance.

Fig. 2: ArtObjSim development. (a) We annotate RGB images inside 3D scans with 2D articulation geometry. (b) This is lifted to 3D using the underlying
3D geometry. (c) As a result we get simulators that can simulate articulated objects in realistic scenes. See Section III for more details.

TABLE I: Statistics for objects and scenes in ArtObjSim, our proposed
simulator for everyday articulated objects in real scenes.

Train  Val Test Total
# Scenes 65 17 15 97
# Unique Object Instances 2538 590 630 3758
# Prismatic (e.g. Drawer) 865 191 211 1267
# Vertical Hinge (e.g. Cabinet) 1325 335 332 1992
# Horizontal Down-hinge (e.g. Oven) 146 40 40 226

# Horizontal Up-hinge (e.g. Toilet lid) 202 24 47 273

constrained motion planning problems from visual input.

III. ARTOBJSIM: A SIMULATOR FOR EVERYDAY
ARTICULATED OBJECTS IN REAL SCENES

We introduce ArtObjSim, a lightweight kinematic simula-
tor for articulated objects placed in real scenes. ArtObjSim
is built upon the HM3D dataset [37]. HM3D consists of 3D
scans of real world environments. It offers both, realistic im-
age renderings from real scenes, and access to the underlying
3D scene geometry. ArtObjSim is made possible through 2D
annotations of articulation geometry on images, which are
then lifted to 3D to allow for a kinematic simulation of the
articulated objects. To our knowledge, ArtObjSim is the first
simulator that enables a systematic large-scale study of artic-
ulation of everyday objects in real world environments. We
describe the steps involved in the construction of ArtObjSim.
Annotating Articulation Geometry on Images. The first
step is to annotate 2D articulation geometry on images.
2D articulation geometry includes marking the extent, axis
of articulation, articulation type, and interaction locations
(handles). We collect annotations in two phases.

In the first phase, we manually walk through the HM3D
scenes to find kitchens and bathrooms, and identify locations
that show articulated objects. We render out images from
different viewpoints from these locations for labeling.

In the second phase, we use an annotation service to
obtain the necessary 2D labels. We obtain annotations for
the segmentation mask for the front face, handle locations,
and articulation type (prismatic vs. left hinge vs. right hinge
fop hinge vs. bottom hinge). See Figure 2 (a) for an example
annotation. For most rectangular objects (e.g. drawers, cup-
boards, refrigerators) these three together with the underlying

3D information from the mesh are sufficient to deduce the
axis of articulation. This doesn’t work for toilets and we
get additional labels for the axis of rotations (location where
the lid is attached). Toilet lids also don’t have handles, we
annotate and use the lid tip as the interaction point.

We manually verify the annotation quality after each phase

and fix or reject bad annotations. The annotation procedure
is fast and cost effective (average $0.5 per object instance).
Extracting 3D Articulation Geometry from 2D Anno-
tations. We use the collected 2D annotations, combined
with the 3D scene geometry, to obtain a 3D simulation
for each articulated object. For each object, we fit a plane
to the points within the segmentation mask on the depth
image corresponding to the RGB image. This gives us a 3D
representation (a 3D rectangle) for the object face that will
undergo articulation. We project the 2D handle location onto
this 3D plane to obtain the 3D handle location. Articulation
parameters are obtained from this 3D representation. We
assume that the prismatic objects pull out perpendicular to
the face, and the hinged objects rotate about the correspond-
ing edge (top, bottom, left or right) of the 3D rectangle.
As noted, toilet lids can’t be approximated as rectangles.
We project the annotated 2D axis to the 3D plane. All
annotations are converted into the mesh coordinate frame
using the transformations for the camera used to render out
the image. This defines all that we need to simulate the
articulating object in 3D, see Figure 2 (c).
ArtObjSim Simulator. As a result of the above two steps,
we obtain kinematic simulations for thousands of unique
object instances placed in real 3D scenes. Not only can we
can simulate the object (i.e. how the collision geometry will
change as the object articulates or how will the end-effector
need to move), we also have a sense of the surrounding 3D
geometry of the scene (i.e. the counter below the cabinet),
and can render out the RGB appearance of the object from
multiple different views.

Table I shows dataset statistics. The dataset is diverse with
3758 object instances from across 97 scenes across 10 object
categories and 4 articulation types. The dataset also includes
a large geometric variety e.g. cabinets high up above the
counter and oven drawers very close to the ground. This
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Fig. 3: Overview of MPAO (Motion Plans to Articulate Objects). Given an RGB-D image of the object to be articulated (denoted with a red marker),
we use a CNN to predicts good initializations for Sequential Inverse Kinematics (SeqlK). SeqlK uses end-effector trajectories to generate motion plans
corresponding to each returned high-scoring initializations. Generated plans are tested for deviations from the intended trajectory, and collisions using the
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Fig. 4: Sequential Inverse Kinematics (SeqIK). Given an initial joint
configuration (6p), and a sequence of end-effector pose waypoints, SeqIlK
uses inverse kinematics (IK) to generate configurations that achieve the
given end-effector waypoints. IK for subsequent steps is warm-started with
IK solutions from the previous time step.

diversity, along with the fact that these objects are immersed
in real scenes makes up problem instances which have not
been tackled extensively in the literature.

In Section IV, we will use ArtObjSim to design, train, and
evaluate models for predicting motion plans for articulating
everyday objects. However, we anticipate ArtObjSim will be
useful for many other tasks. For example, predicting articula-
tion parameters or end-effector waypoints from RGB images,
or for mining statistics about placement of articulated objects
in kitchens to build generative models for scene layout, or
for building policies for mobile manipulation.

IV. REPRESENTING AND PREDICTING MOTION PLANS

Given a single RGB-D image pair [I, D] of an articulated
object, and a sequence of end-effector poses necessary to
articulate the object [...,wy,...], our next goal is to predict
a motion plan, ie. sequence of joint angles [...,60;,...]
that bring the end-effector in the necessary pose to conduct
the desired articulation. Rather than re-solving each new
problem instance from scratch using motion planning under
partial information, we pursue a machine learning approach
that leverages past experience to directly predict motion
plans. A straight-forward application of machine learning
doesn’t work as the predicted plans need to satisfy tight task
constraints. Instead, we use machine learning to predict a
strategy which is decoded into a complete motion plan that
adheres to the task constraints at hand. We first describe what
strategies are and how they are decoded in Section IV-A and
then describe how we use them to predict motion plans from
RGB images in Section IV-B.

A. Representing and Decoding Motion Plans

We represent motion plans as the initialization of a deter-
ministic gradient-based solver that optimizes joint angles to
get the end-effector in the desired pose.

Our motion plan representation builds upon numerical in-
verse kinematics methods [28]. Inverse kinematics (IK) is the
process of obtaining joint angles that get the end-effector to
a given desired pose. Starting from some initial joint angles,
a numerical IK solver iteratively updates the joint angles
using the Jacobian of the forward kinematics till a solution
is found. As we are interested in not one but a sequence of
joint angles that track the given end-effector trajectory, we
sequentially solve a sequence of inverse kinematic problems
by initializing the inverse kinematic solver for the " time-
step with the solution from the (* — 1) time-step. We call
this process, Sequential Inverse Kinematics or SeqlK, and
show a block diagram in Figure 4.

Thus, SeqIK can be viewed as a deterministic process that
converts a sequence of end-effector waypoints and an initial
joint configuration 6y into a sequence of joint angles that
realize the end-effector poses. 6y can be thought of as knob
that controls the motion plans that SeqlK generates. Varying
Oy varies the motion plan generated. We use (SeqlK, 6p)
as our representation for strategies that generate motion
plans. Our experiments demonstrate that it is a flexible
and efficient way to generate motion plans for articulating
everyday objects, and outperforms both unconstrained and
constrained motion planning approaches.

Note that SeqIK+6y, shorthand for (SeqlIK, 6y), may not
generate feasible motion plans for all inputs 6. Initializing
from some 6y may not get the end-effector to where we want
it to be, others might cause the end-effector to deviate too
much from the desired trajectory when interpolating between
waypoints, yet others might cause collisions with self or with
the environment. We address this issue by predicting good
fps from the RGB image showing the articulated object as
we describe in Section I'V-B.

B. Predicting Motion Plans from Images

Our next step is to predict good initializations 6ps for
SeqlK+8, from RGB images. As there can be more than
one good 6y for each image, we adopt a classification



TABLE II: Motion planning for articulating objects under full information. We measure the success rate and quality of successful plans generated
by the different motion planning methods we considered. We note that SeqIK+6 is able to successfully generate plans quickly. Motion planning, both
unconstrained and constrained, obtained a 0% success rate, and hence are omitted from the table, see Section V-A for more details.

Articulation Type Performance Speed
Success Translational Rotational Median number of Time
Rate (%) Deviation (m) Deviation (rad) initializations (s)

Prismatic (e.g. Drawers) 99.1 0.0005 0.0006 38 9.80

Vertical Hinge (e.g. Cabinets) 63.3 0.0013 0.0026 1118 434.12

Horizontal Down-Hinge (e.g. Dishwasher) 71.8 0.0029 0.0024 896 517.03

Horizontal Up-Hinge (e.g. Toilet lid) 44.7 0.0025 0.0028 1221 13154.12
approach. We work with a set of initializations ©. We train Success vs Threshold
a function f(I,6p) that classifies whether or not the use 100
of Oy serves as a good initialization for SeqlK to achieve ~
end-effector waypoints [..., w;,...] without collisions. We & 807
provide details about the initialization set O, function f, 9
training data, and loss function to train f. &B 60-

Initialization set © comes from the Cartesian product of 40- ~
a set of robot base positions in R® and a set of 10 arm — Prismatic.
configurations. We use 704 base positions (sampled in a S 20- Vert,'cal Hinge )

. . ... n —— Horizontal Down-Hinge
uniform 1m X 1.5m 2D grid of base positions at a 10 cm —— Horizontal Up-Hinge
resolution at 4 different heights) and 10 arm configurations, 0+ : .
resulting in © having 7040 elements. The 10 arm configu- 0.00 0.01 0.02 0.03

rations are selected in a data-driven manner, we sample 20
random configurations that satisfy the joint limits, and then
select the 10 which when used with SeqlK give us the most
successes across the training set.

Function f is realized through a CNN with an ImageNet pre-
trained ResNet-34 backbone [13]. We add 2 fully connected
layers on the conv5 output to produce a 7040 dimensional
representation. This is reshaped into an 80-dimensional spa-
tial output of size 11 x 16. This is processed through another
3 convolutional layers to produce a (10-4) x 11 x 16 logits
tensor containing 11 x 16 spatial output for each of the 10
arm configurations at each of the 4 heights.

Training labels are generated by decoding each candidate
Ao into motion plans using SeqlIK, and testing them for end-
effector pose deviation, self-collision, collision with the static
environment, and collision with the articulating object in
our simulator from Section III. Note that while testing the
decoded motion plans, we interpolate between consecutive
states to simulate how the plan will be executed in practice.
This process generates a binary success label for each of the
7040 candidates in ©. This is used to supervise the logits
predicted by f via a binary cross-entropy loss.

Training details. Each articulated object instance in ArtO-
bjSim comes with waypoints and ground truth labels as de-
scribed above. We render multiple views for each articulated
object to generate 40K images to train the function f.

Our full method, Motion Plans to Articulate Objects
(MPAO), uses the learned function f to rank candidate
initialization in ©. We go down the ranked list, decode them
into motion plans using SeqlK, and return the first feasible
plan (feasible meaning: accurately tracks the given waypoints
and also doesn’t collide with self or with the geometry visible
in the depth image). See Figure 3 for an overview.

Deviation Threshold

Fig. 5: Success rate as a function of deviation for motion plans
generated by our proposed SeqIK. X-axis shows maximum translational
and rotational deviation (in m and rad respectively), Y-axis shows the
success rate for motion plans generated by SeqIK. SeqIK generates motion
plans with low deviation from desired end-effector trajectories.

V. EXPERIMENTS

Our experiments evaluate two aspects: a) the flexibility and
decoding efficiency of our proposed motion plan representa-
tion from Section IV, and b) how effectively can we leverage
RGB images to quickly convert end-effector poses to motion
plans. For the former, we make comparisons to motion
planning, and for the latter we compare against variations
that don’t use the RGB image. We also evaluate how our
method works with predicted end-effector waypoints.
Experimental Setup. We leverage the geometry and appear-
ance of articulated objects in real scenes in our proposed
ArtObjSim simulator for evaluation. We adopt the train, val,
and test splits as noted in Table I. All instances from the same
scene are in the same set. This allows us to measure how
well our models perform on novel held-out object instances.
We work with the 7DOF Franka Emika Panda robot. We
assume that it can take one of 4 discrete heights (0.25m,
0.5m, 1.0m and 1.5m). While we reason about where the
base should be to conduct the motion, we assume that the
base remains fixed during execution. Leveraging base motion
to better articulate objects is left to future work.

A. Motion Plan Representation

We evaluate the flexibility and decoding efficiency of our
proposed motion planning representation. More specifically,
given a 10 time-step end-effector trajectory and complete
collision geometry of the situation, this evaluation measures
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Fig. 6: Motion plan prediction success rate and speed. We show success rate as a function of number of tries for the different articulation types. Our
method MPAO, achieves a higher success rate and generates solutions faster than pure search or pure learning methods. We use 0.01 m translational and
0.01rad rotational tolerance on the end-effector pose to determine success.

the quality of the joint angle trajectory produced by our
method. We search for a good initialization 6y € © for SeqIK
and spits out the first solution that doesn’t have collisions (to
self, surrounding environment, or the articulating object) and
conforms to the given tolerance in end-effector pose.
Metric. A predicted trajectory is considered successful if: a)
it conveys the end-effector to the goal pose within 0.01 m
and 0.01rad, b) the resulting end-effector trajectory violates
the task constraint by less than 0.01m in translation and
0.01 rad in rotation for each time step, and c) it doesn’t cause
collisions with self, the static environment, or the object
as it articulates. Before measuring deviations and collision-
checking, we linearly interpolate the joint angle trajectories
to bring all joint angle changes to < 0.01rad.

Results. We report the success rate and time taken by our
method for different articulation types in Table II. Prismatic
drawers are easy: we can find solutions for 99.1% of the
instances to within 0.0005m and 0.0006 rad deviation, in
as little as 10s of compute while only needing to try a
median of 38 initializations. Vertical hinged and horizontal
down-hinged objects are harder: we are only able to solve
63.3% and 71.8% instances respectively while also needing
to sample many more initializations, taking around 500s.
Toilets are by far the hardest because of the tight space
in bathrooms, and also because of the increased collision
checking cost due to the non-cuboidal toilet lid geometry.
Figure 5 plots the success rate as a function of the deviation
(max translational or rotational deviation in m or rad). While
we reported success rate at deviation threshold of 0.01in
Table II, Figure 5 shows that most plans returned by SeqIK
are much more accurate.

Comparison with other methods. We also compared
SeqlK+6y to two other class of methods: unconstrained
and constrained motion planning, neither of which were
able to find any successful solutions in a tractable amount
of time. For unconstrained motion planning, we used
RRT-connect [24] to find a path between a start and end
joint configuration obtained using inverse kinematics. While
this always found a path, without any constraint on the
intervening end-effector poses, the path would always violate
the 1-DOF constraint imposed by articulated object. This
is not surprising as the two poses are quite far from one
another. To our surprise, even when these poses are brought

close to one another, by sampling 10 way-points along the
trajectory, unconstrained motion planning would still only
return solutions that would wildly swing the end-effector
around. For constrained motion planning, we used the pro-
jected state space method from the OMPL library [20], [21],
[44]. Tt would find motion plans that conformed to the task
constraint to some extent. However, the minimum translation
deviation was 0.02m, much more than the tolerance level
needed in our tasks, resulting again in a 0% success rate.
We experimented with many hyper-parameter settings. Some
worked better than others, but none were able to return any
plans with less than 0.02m translation deviation.

In summary, SeqlK+6, is effective at producing joint an-
gles that conform to a given end-effector trajectory. Finding a
solution is still computationally expensive as it requires test-
ing many initializations. We address this using the prediction
network f. We evaluate it next.

B. Motion Plan Prediction with Known Waypoints

Our next evaluation seeks to measure how quickly and ac-
curately, we can predict motion plans for articulated objects
places in novel contexts as observed through RGB-D images.
More specifically, given an RGB-D image along with an end-
effector trajectory, we measure the success rate of predicting
motion plans as a function of planning time. As in Section V-
A, we call a predicted motion plan successful if it reaches the
goal while violating the task constraint by less than 0.01 m,
0.01 rad and not colliding with self, the environment, and the
articulating object. While the metric is the same, the focus
of this evaluation is to assess how well methods can cope
with partial information from RGB-D observations and their
speed of generating solutions.

Comparisons. We compare against other search schemes for
finding good 6y for SeqIK. These baseline schemes employ
the same overall structure as our method (SeqlK decoding
followed by filtering based on feasibility), but don’t use any
past experience (learned model) to rank initializations. We
consider two baselines, Random Order and IK initialization,
and a variant of our method, MPAO (No neural network). We
also compare to a pure machine learning approach (Imitation
Learning) that uses imitation learning to directly predict
motion plans. We describe these in more detail below:

* Random Order tests whether our learned function f has
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Fig. 7: (a) One of the ten arm joint configurations from © used for initialization. (b) Example of an object from the dataset (indicated by the green
marker), along with predictions for the configuration shown in (a) overlaid onto the image (warmer colors mean higher score). (¢, d, ) Visualizations of

a successful execution from one of the high-scoring locations.

learned anything meaningful about which initializations are
good, and which initializations are bad. Rather than using
our learned function f to sort the set of initializations © for
each object, we try them in a random order.

* IK initialization uses IK to find not only the joint angles
but also the base location for the first waypoint. This way,
the base location is not restricted to our discrete grid of
base positions. After this point, SeqlK is used to obtain a
trajectory with a fixed base position, just as for our method.
* MPAO (No neural network) (Ours) is a simplification of
MPAO that doesn’t use the neural network f, but instead
ranks initializations in © by their success rate on the training
set. Though this doesn’t use the neural network, it is still
data-driven in that it leverages experience with past con-
strained motion planning problems to output plans.

o Imitation Learning. We also experiment with a pure imita-
tion learning approach that directly predicts the entire motion
plan. The model takes in as input an RGB image (with a dot
specifying which articulated object to interact with), as well
as 3D waypoints in the camera coordinate frame. As there
may be multiple correct ground truth trajectories associated
with a given input, the model outputs 100 trajectories, where
each trajectory is represented by ten joint configurations (one
for each of the waypoints). We use the Hungarian Matching
algorithm [25] to assign each predicted trajectory the closest
unique ground truth trajectory from the set of ground truth
trajectories (as also used for object detector training [7]). We
use an Lo loss on the inferred pairings to train the model.
We also jointly train a loss prediction network in order to
sort the predictions. At inference time, we employ the same
internal check (as used for all other methods) on the ranked
predictions before outputting a solution.

Results. Figure 6 presents the success rate for different

methods as a function of total number of solutions tried for
novel object instances in the test set. Across all articulation
types, our method dominates pure search baselines in success
rate and speed. For all categories, we are able to match
baseline performance with 10x fewer tries, and obtain more
than 25% absolute improvement in success rate for vertical
and horizontal down hinges. Even just ranking initializations
based on their performance on the training set, i.e. MPAO
(No neural network), works quite well. This suggests the
utility of leveraging past experience for this problem. Our
full method, MPAO, boosts performance further and is able
to effectively leverage the RGB observation to improve the
ranking among solutions.

Imitation learning struggles for this task and yields a
0% success rate on our benchmark. We investigated this
further. While imitation learning produced the correct general
motion, the motion wasn’t precise enough. When evaluated
under looser criterion (max deviation of 0.10 m and 0.10 rad
vs. 0.01 m and 0.01 rad used in our benchmark), the imitation
learning baseline obtains a non-trivial success rate (73.5%,
2.9%, 15.6% and 13.3% respectively for the 4 categories).
MPAO comfortably outperforms this even when evaluated
under the tighter 0.01m 0.01rad criterion (success rates
of 78.6%, 47.4%, 61.0% and 14.8% respectively as seen in
Figure 6). We also experimented with using the depth image
in addition to the RGB image for the imitation learning
model, but this did not increase performance.

These experiments together establish the effectiveness of
our method at predicting good motion plans. Figure 7 shows
an example visualization of motion plans output by MPAO.

C. Motion Plan Prediction with Unknown Waypoints

As a proof-of-concept, we have also integrated MPAO into
an overall pipeline that doesn’t require known waypoints. We



experimented with drawers. We adapt Mask RCNN [12] to
detect and predict drawer faces (segmentation mask) and han-
dle locations (keypoints) using annotations from ArtObjSim.
We convert them into end-effector waypoints using the depth
image. This by itself gave a median error of 1.6 cmm. When
using MPAO to track these predicted waypoints, we are able
to predict plans that solve 39% drawers to within 0.01 m
translation error and 70% to within 0.05 m translation error.

VI. CONCLUSION

We pursued a learning approach that uses past experience
to quickly predict motion plans for articulating objects. We
collected a large dataset to build ArtObjSim, a simulator that
enables a kinematic simulation of everyday objects placed in
real scenes. We designed SeqlK+6, a fast and flexible way
to represent motion plans under end-effector constraints, and
trained neural network models that leverage SeqlK+6, to
quickly predict plans for articulating novel objects.
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