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Abstract

Motivated by robust dynamic resource allocation in operations research, we study the Online Learn-
ing to Transport (OLT) problem where the decision variable is a probability measure, an infinite-
dimensional object. We draw connections between online learning, optimal transport, and partial
differential equations through an insight called the minimal selection principle, originally studied
in the Wasserstein gradient flow setting by Ambrosio et al. (2005). This allows us to extend the
standard online learning framework to the infinite-dimensional setting seamlessly. Based on our
framework, we derive a novel method called the minimal selection or exploration (MSoE) algo-
rithm to solve OLT problems using mean-field approximation and discretization techniques. In the
displacement convex setting, the main theoretical message underpinning our approach is that min-
imizing transport cost over time (via the minimal selection principle) ensures optimal cumulative
regret upper bounds. On the algorithmic side, our MSoE algorithm applies beyond the displace-
ment convex setting, making the mathematical theory of optimal transport practically relevant to
non-convex settings common in dynamic resource allocation.

Keywords: Infinite-dimensional optimization, online learning, optimal transport.

1. Introduction

Online learning and online convex optimization offer an elegant framework for regret minimiza-
tion under worst-case sequences (Gordon, 1999; Zinkevich, 2003; Shalev-Shwartz, 2012; Orabona,
2021). Principles for these methods have been discovered independently in decision theory, game
theory, learning theory, and convex optimization (Cesa-Bianchi and Lugosi, 2006). For problems
with a finite-dimensional decision variable, extensive studies have been conducted to understand
online algorithms that achieve small regret, either in Euclidean or non-Euclidean settings. Such al-
gorithms usually rely on some notion of (sub-)gradients to iteratively improve the finite-dimensional
decision variable. In the simplest Euclidean setting, let ¢;: R? — R be a smooth convex function
and z; € R? be a finite-dimensional decision variable, both indexed by time ¢ € N. Online gradient
descent with stepsize 7 satisfies, for any z € R?,

regret term telescoping term transport cost gradient in Euclidean norm

A

2(Le(ze) — e(2)) = (loe — 21 = |wesa — 2)17) < e — 2P < (InVa(@)* . (D
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In a simple non-Euclidean setting, let p; € A, be a probability distribution on a d-discrete decision
and ¢, € R? be a sequence of cost vectors where each element /; [k] denotes the cost associated with
the k-th action and ¢4 (p;) := E‘,izl L[k]pe[k] thus V£, (-) = ¢;. Online mirror descent (specifically,
exponentiated gradient) satisfies for any ¢ € Ay

regret term telescoping term transport cost gradient in local norm
A ,—/T
n(Le(pe) — €e(q)) — (dxr(qllpe) — dxi(allpi1) ) < dxe(pellpesn) < InVElE, . (@)
where the local norm is defined as [|¢;|3, := ZZZI(Et[k])th[k:]. It is immediate to spot the re-

semblance between (1) and (2). The telescoping term marks the progress towards the competing
decision (z or ¢), and the first right-hand side of the expression describes some notion of “transport
cost” induced by different geometries.

It is natural to wonder how the theoretical and algorithmic principles behind these finite-dimensional
cases extend to the infinite-dimensional case, specifically when the decision variable is a probabil-
ity distribution over a generic metric space. Such a question is of practical importance. Several
dynamic resource allocation problems in operations research involve these infinite-dimensional ob-
jects, e.g., routing a network of drones over airspace or allocating drivers across a city topology
in ridesharing. Theoretically, the infinite-dimensional object can be viewed as a generalization of
both (1) (x from finite to infinite-dimensional) and (2) (p from discrete to continuous measure). As
hinted in the previous paragraph where small “transport cost” terms guarantee small regret, optimal
transport theory (Villani, 2003; Ambrosio et al., 2005) plays a pivotal role in extending online learn-
ing to the infinite-dimensional case. This paper draws connections between online learning, optimal
transport, and partial differential equations (PDEs) using an insight called the minimal selection
principle. Eventually, we derive new algorithms based on this insight.

Optimal transport (OT) studies how to move in the space of probability measures to minimize
a cost metric. This cost metric, credited to Monge in 1781, is associated with the optimal way
to move mass between two probability measures. This paper investigates online learning using a
toolbox set out by Breiner, who brought perspectives from PDEs, geometry, and functional analysis
to the study of OT around 1987 (Brenier, 1987, 1989). Let us first introduce our infinite-dimensional
online optimization problem in the language of OT and then lay out the connection between OT and
online learning. Consider the following Online Learning to Transport (OLT) problem: let P(R%)
be the space of probability measures on R? where, in each round, t =1, ..., T,

« an adversary chooses an energy functional & : P(RY) — R without revealing it;

« the player commits a probability measure ji; € P(R?) as the decision variable;

* the adversary reveals the energy functional, and the player suffers the loss ().

The player needs to decide the next ;11 based on y; and all historical information and aims to
minimize cumulative regret from facing the adversary. The main conceptual message we discover
in OLT is that optimally transporting the probability measures p1; — po — ... — pp with respect
to an appropriate cost enables small cumulative regret.

To provide a glimpse of the angle that inspired us to connect online learning and OT, we follow
a viewpoint taken in Benamou and Brenier (1999) and Otto (2001). All concepts introduced in this
paragraph have rigorous definitions in Section 2, so we proceed at a high level here. Mimicking
the finite-dimensional case, OT theory provides a way to calculate a type of (sub-)gradient of &
over P(R?) when equipped with a certain metric. This (sub-)gradient is used to update z; —
we+1. To enrich this analogy, we consider a continuous/infinitesimal time analog. In the finite-
dimensional cases (1) and (2), the first right-hand side in a continuous time analog would quantify
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movement according to the ODE % = —V/(z;) where | %HQ = ||Vl (x¢)||. In the infinite-
dimensional case, the density p; (of p; w.r.t. the Lebesgue measure) evolves according to the PDE
e — V- (ps€,) with a vector field &,: R? — R from the “Fréchet subdifferential” 9, (ui¢). The
infinitesimal transport cost is'

1% = it | [l anto) - g€ ot} @
This motivates the minimal selection principle of Ambrosio et al. (2005): among all the possible
vector fields that belong to the Fréchet subdifferential, we aim to select one whose kinetic energy
(captured by the integral [ [|€(z)||? dp(z)) is lowest. Assuming a notion of convexity of & along
Riemannian geodesics, we formally show that minimizing the transport cost over time using the
minimal selection principle yields the smallest cumulative regret upper bounds in the OLT problem.

Equipped with the minimal selection principle, we propose a novel algorithm in Section 3 that
we call minimal selection or exploration (MSoE) to solve the variational optimization problem in
(3) and, in turn, solve OLT using only zeroth-order partial feedback similar to the bandit setting.
To make this algorithm numerically tractable, we use a discrete analog of the minimal selection
principle using mean-field approximations. It is noteworthy that our MSoE algorithm works beyond
the convex setting, which shows how elegant theory from OT is practically relevant to certain non-
convex settings common in robust dynamic resource allocation. Simple toy examples demonstrating
the algorithm’s empirical performance are discussed in Appendix C.

A key feature of this paper is the natural simplicity of its arguments and algorithmic principles
that become apparent once the framework connecting online learning and OT is established. Several
directions for extending our framework are discussed at the end of the paper.

Related work Our paper is at the intersection of two active research fields: online learning and
optimal transport. For the former, due to space limits, we cannot do fair justice to credit all contribu-
tions properly; see Orabona (2021) for a comprehensive survey. Here, we give a selective overview.
Several improvements of online gradient descent (1) using an adaptive stepsize have been proposed
(Streeter and McMahan, 2010; McMahan and Streeter, 2010) with a further modification via scale-
freeness (Orabona and Pal, 2015; Orabona and Pél, 2018). Expression (2) can be derived using
different principles such as exponentiated gradient (Kivinen and Warmuth, 1997), online mirror de-
scent (OMD), follow-the-regularized-leader (FTRL) (Shalev-Shwartz and Singer, 2007; Abernethy
et al., 2008). Modifications of FTRL via adaptive regularization have been introduced (van Er-
ven et al., 2011; De Rooij et al., 2014; Orabona and Pal, 2015). General first-order Riemannian
optimization methods have been investigated in Zhang and Sra (2016). Using martingale tools, a
theoretical framework for sequential prediction has been studied in Rakhlin and Sridharan (2014).
The typical regret bound for online learning with K -discrete actions scales as /7 log K in the full
information setting, and as /T K log K in the bandit/partial feedback setting. Therefore, naive gen-
eralizations of these bounds to the infinite-dimensional case (K — o0) result in diverging bounds.
It is thus unclear whether /T -regret is achievable in the infinite-dimensional case. We employ tools
from optimal transport to resolve this issue and obtain optimal bounds.

Beyond well-established analytic results of OT, computational (Cuturi, 2013; Genevay et al.,
2016; Altschuler et al., 2017) and statistical (Weed and Bach, 2019; Liang, 2021; Weed and Berthet,

1. The curious reader may identify the above resemblance to the local norm in (2): here the local Riemannian geometry
quantifies the transport cost.
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2019; Liang, 2019; Hiitter and Rigollet, 2021) aspects have been emerging research areas at the
intersection of OT, probability distribution estimation, and numerical sampling. At the same time,
OT has been a versatile tool for various applied tasks such as image retrieval (Rubner et al., 2000),
computational linguistics (Kusner et al., 2015), and domain adaptation (Courty et al., 2017). One
of the successful applications of OT is generative sampling, such as GANs (Goodfellow et al.,
2014). OT has improved generative sampling in several ways: by modifying GANs using OT-based
probability metrics (Arjovsky et al., 2017; Genevay et al., 2018) or by utilizing dual formulations of
OT (Seguy et al., 2018; Makkuva et al., 2020). More recently, further improvements (Bunne et al.,
2019; Hur et al., 2021) have been made by considering the Gromov-Wasserstein (Mémoli, 2011), a
generalization of OT ideas for identifying isomorphism in metric measure spaces.

Notation Let P(R?) denote the set of all Borel probability measures on RY. Let P"(R?) denote
the subset of P(IR%) of Borel probability measures that are absolutely continuous with respect to the
Lebesgue measure £¢ on R?. For 1 € P"(R%), we write 1 = p - L% to signify that p is a density
function of 11 with respect to £%. Let IT(x, ) denote the collection of all couplings of y, v € P(R?),
that is, v € II(p, v) is a Borel probability measure on R? x R¢ such that y(A x R?) = ;(A) and
¥(R% x B) = v(B) for all Borel subsets A, B C R? For a measurable map t: RY — RP and
p € P(RY), we define the pushforward measure (txu)(B) = p{z € R? : t(x) € B} for any
Borel subset B C RP; hence t4u € P(RP). We let &, denote the Dirac measure for z € R¢ and

i: R? — R? the identity map i(z) = z for all z € R?. Lastly, || - || denotes the standard Euclidean
norm on R%, [z], = max(z,0) for z € R, and let [n] denote the unordered set {1,...,n} for
n € N.

2. Optimal Transport, Minimal Selection Principle, and Regret Bound

In this section, we present our main theoretical results for OLT. As noted earlier, the key to our anal-
ysis is a connection with optimal transport theory. We start by introducing the notion of Wasserstein
space to structure the decision space of OLT. Recall from (1) and (2) that a notion of difference
(transport cost) between two consecutive decisions plays a role in deriving a regret bound. To apply
this idea to OLT, we utilize the Wasserstein distance between probability measures (decisions in
OLT). Next, we discuss differential calculus over Wasserstein space, which serves as a key building
block for deriving a regret bound for OLT. In Wasserstein space, we first define a subdifferential
and then select an element associated with the smallest size, measured by the local Riemannian
geometry of the Wasserstein space. Such an element, which we call a minimal selection, is defined
by a variational problem and serves as a functional gradient. Based on this, we make transparent a
strategy to obtain /7 -regret that generalizes seamlessly to the infinite-dimensional setting. Lastly,
we mention a connection between OLT and Wasserstein gradient flow.

2.1. Wasserstein Space

One of the most important consequences of optimal transport theory is that we can define a distance
between y, v € P(R?) by finding a coupling that gives the smallest transport cost. Concretely, we
define the Wasserstein distance W on P(R%) as W2 (i1, v) = infer(u) Jpayga 12—yl dy(z,y).
The Wasserstein distance 15 is indeed a distance over Py(R?), where P2(R?) = {1 € P(R?) :
Jga lz]|* dp(z) < co}. From this, we obtain a metric space (P2(R?), W») of probability measures
called the Wasserstein space.
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One important property of Wy is that we can find a unique optimal coupling under certain
regularity conditions. Here, an optimal coupling is any coupling v € II(u, v) associated with the
smallest transport cost, that is, W3 (1, 1) = [ga,ga [z — y[|*> dy(x,y). Proposition 2.1 of Villani
(2003) tells that II,(u,v), the set of all optimal couplings, is always nonempty. The following
result states that IT,(y, v) is a singleton if y is absolutely continuous with respect to the Lebesgue
measure; moreover, such an optimal coupling is concentrated on the graph of some unique map.

Lemma 1 Let P} (RY) = Po(R%) N P"(RY). Given ji € P5(RY) and v € P2(R?), there exists
a unique optimal coupling v € I(u,v), namely I1,(u,v) = {7}. Also, there exists a unique map
t,: R? — R? such that v is concentrated on the graph of t,,, that is,

({(z,y) eRI xRy =t (x)}) = 1.
This implies (t!) up = v and W3 (p,v) = [pa [l =t/ (z)]|* du(z).

Remark 2 This is a part of Brenier’s theorem (Brenier, 1991), which contains further properties of
t}, such as monotonicity. See Theorem 2.12 of Villani (2003) for details.

2.2. Displacement Convexity and Subdifferential Calculus

Having defined the decision space for OLT, we explore how to minimize a loss function over
this space. As noted earlier, the key is finding an object analogous to the gradient in the finite-
dimensional setting. Ambrosio et al. (2005) achieves this by rigorously defining notions of con-
vexity and differential calculus on Wasserstein space. We reproduce a few relevant results from
Ambrosio et al. (2005). Throughout, we consider a functional £: Py(R%) — (—o0,00] with a
nonempty domain D(E) := {u € Py(RY) : £(u) < oo} # B; for a concise summary, we restrict
the domain to P (R%), see Section 10.1 of Ambrosio et al. (2005) for more details. First, we dis-
cuss convexity of £. To import convexity into P (R9), we need a concept that replaces the concept
of ‘line segment’ in a vector space. McCann (1997) introduces the displacement interpolation for
connecting two elements of Py(R?) and defines the convexity based on it.

Definition 3 (Displacement interpolation and Convexity) We define the displacement interpola-
tion between i, v € Py (RY) as a curve (7}~ ), c(0,1] in Py (RY) such that

W#HV = (1 =n)i+nt))pu.

We say & is displacement convex if E(mh ") < (1 — n)E(w) + nE W) for all p,v € D(E) and
n € [0,1].

Remark 4 To see that the displacement interpolation () Hy)ne[o’l] serves as a segment connecting
w and v one can verify that 7h " = p, ©'7" = v, and 7)y”" € P5(RY) for all n € (0,1). See

Chapter 7 of Ambrosio et al. (2005) for details.

Next, we introduce the Fréchet subdifferential, which delineates the differentiable structure on
the Wasserstein space. Recall that derivatives or subgradients of functionals defined on a Hilbert
space are linear functionals over that space. To mimic their features, we define the subdifferential
at 1 € P5(R?) by means of a Hilbert space L2(y; R?) as follows.
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Definition 5 (Fréchet Subdifferential) For ;1 € Po(R?), let L?(1; R?) be the collection of vec-

tor fields &: RY — R? satisfying HéH%Q(M,Rd) = Jpa [l€(@)|* du(z) < oo. For a lower semi-

continuous functional £ and . € D(E), we say that & € L?(u; R?) belongs to the Fréchet subdif-
ferential OE (1) if

g £~ €0~ Joal€(@).th(@) — 2} dnte)

4
mir Wl ) , @)

where liminf, _,, is based on the convergence under W5.

Definition 5 is a local definition as one can see from (4). For a displacement convex func-
tional, however, Fréchet subdifferentials admit a global characterization. Moreover, as the next
result shows, we can find a unique member of the Fréchet subdifferential with the smallest norm;
see Section 10.1 of Ambrosio et al. (2005).

Lemma 6 (Minimal Selection Principle) Ler £ be a lower semi-continuous and displacement
convex functional, then a vector field € belongs to the Fréchet subdifferential OE () if and only

if
E(v) — £(n) > / (€(2), t(x) — 2y du(z) Vv € PHRY).

R4
In this case, OE(u) has a unique element 0°E (1) called the minimal selection with the smallest
norm in the following sense:

0°€ (n) = argmin{||€]|72(,pa) - & € IE(W)} -

As we shall see in Theorem 8, the minimal selection 0°E (1) plays a role analogous to a gradient
in providing a regret bound for OLT comparable to (1) and (2). We conclude this subsection with
two canonical examples of the minimal selection principle.

Example 1 (Potential Functional) Given a lower semi-continuous function V: R? — (—o0, oq],
we call V: Pa(RY) — (—00, 0] a potential functional associated with V' if

Vi) = [ Vi) duta)

and 0°V(u) = VV if V is convex and satisfies some regularity conditions; see Section 10.4 of
Ambrosio et al. (2005).

Example 2 (Interaction Functional) Given a lower semi-continuous function W : R% — [0, o0),
we call W: Pa(R?) — [0, 00] an interaction functional associated with W if

W(n) = /Rd » Wz —y) du(z) du(y)

and 0°W () = VW  p, where ju = p- L%, if W is convex and satisfies some regularity conditions;
see Section 10.4 of Ambrosio et al. (2005). Here, x denotes a convolution of vector field VW and
density p.
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2.3. Regret Bound for OLT

We are ready to derive a regret bound for the OLT problem. The following result, often referred to
as Evolution Variational Inequality (EVI) in the PDE literature, clarifies why the minimal selection
principle is key to obtaining a regret bound.

Lemma 7 (EVI) Let £ be a lower semi-continuous and displacement convex functional. Let p €
D(E) and & € OE(p). Fix n > 0 and define p,) = (i — n€) 4. Then, for any v € Py (RY),

201 1) — W2
(o - £(v) < PRI L0 o) P apto) ©

Proof Recall from Lemma 1 that W3 (p,v) = [ga |lz — tZ(:::)H2 du(z). Let (i —né,t}) be the
map from R? to R*? that maps z — (x — n&(x), t%,(x)), then (i — n&, t/,) 4p € (1, v) and thus

W) = _inf [ le=alPdse) < [l =€) = @) duta)

yE(py,v) JR

Hence,

WQ(ny) _WQ(H ’V) 1 v v
2] 2 2etnt) > (o= @) ~ e = n(e) = (@) duta)

= x),x—tY(x x _n z)||? T
| e@.a—t@nane) 3 [ 16@IE duta)
> E(u) — E) / |E@)|? dp(z) (. Lemma6) |
[ |

From (5), it is now obvious that the minimal selection & = 9°E(u) gives the smallest upper bound.
Also, notice the similarity of (1), (2), and (5); the last term on the right-hand side of (5) corresponds
to the norm of a gradient in (1) and (2). The minimal selection enables us to import bounding
techniques in (1) and (2) into the OLT problem. Based on this connection, we propose a strategy to
tackle the OLT: for each time ¢, the player finds the minimal selection &, = 9°&; () and updates
pe+1 = (1 —n&;) 4. Using (5), we obtain the following regret bound.

Theorem 8 (Regret Bound: Discrete-Time) Assume E; of the OLT is displacement convex for all
t € [T] and T € N. The player selects &, = 0°E(t) and updates 1 = (i — n&;)pu for each
round t, where 1 > 0 is a fixed stepsize. Then, for any v € Pj (R9),

T
Z 5t(ut
t=1

Remark 9 Under mild conditions such as u; and v are supported on a bounded domain and &,
are uniformly bounded, we have Wa(uy,v) < D and (&, || 12(,,. Rd < L for all t for some constants

D,L>0. Then the right-hand side of (6) is upper bounded by 2 > 4 77L T \which becomes DL\/T
forn = L\/T and yields \/T-regret.

HM’%

) W )
/’Ll ) 277 2 IU’T+1 TIZ/ ‘st H dﬂt( ) ) (6)
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Remark 10 We clarify that the EVI is an existing technique in the PDE literature and has already
been used for different purposes, for instance, see Dieuleveut et al. (2017) and Salim et al. (2020).
We emphasize, however, that Theorem 8 utilizes such a technique for the first time in the context of
the online learning given a sequence of adversarial functionals (St)g;l, and an arbitrary reference
measure v.

2.4. Connections to Wasserstein Gradient Flow

We conclude this section with a connection between online learning and Wasserstein gradient flow
through a lens of continuous-time OLT, further highlighting why it is natural to employ insights
from PDEs. In the infinitesimal limit as 7 — 0, the algorithm solving OLT amounts to a Wasserstein
gradient flow. To see this, consider the steepest descent on Wasserstein space according to the energy
functional & at time ¢, 4y 1= argmin,,cp, ey Et(p) + %W;(u, t¢). In the infinitesimal limit,
the steepest descent defines continuous-time evolution of probability measures (411)yc[o,7], naturally
described by PDEs. The following continuity equation is the natural counterpart of discrete update
of the steepest descent: letting iy = p; - £¢, solve

dp

87; =V - (p&;) where & € 0& () - (N
Therefore, it is clear that our online OLT is a discrete analogue of the online Wasserstein gradient
flow, with a time-varying energy functional &. A solution (Mt)te[o,T} enjoys the following regret

bound; see Appendix B.1 for the proof.

Theorem 11 (Regret Bound: Continuous-Time) Assume & is displacement convex for all t €
[0, T'|. Under mild regularity assumptions, a solution (ji),c(o,1) to (7) satisfies

T T 2 w2
/ f;t(m)dt—/ gi(v)at < 2o v) 2W2 Wr:v) v, ¢ prrdy . ®)
0 0

Remark 12 If & is time-invariant, say & = & for all t € [0,T), then (7) amounts to finding a
solution to the standard Wasserstein gradient flow given £ (Chapter 11 of Ambrosio et al. (2005));
minimizing the regret is exactly minimizing a functional £ by solving a Wasserstein gradient flow.
Note that the RHS is time-independent, namely, we have bounded total regret and fast rate as 1/T.

3. Minimal Selection Algorithm with Zeroth-Order Information

In this section, we propose a more practical framework for OLT and methods to solve it based on
only zeroth-order, partial feedback. First, let us briefly explain our motivation for studying this
practical framework. Recall that the strategy we studied in the previous section to solve OLT was
to find the minimal selection §; = 0°&;(y1;) and update ji; to (i — n€; )4 for all t. The EVI gave
us a regret bound as in Theorem 8. However, such a strategy is difficult to implement in practice.
Finding 0°&; () requires the player to access the Fréchet subdifferential 0&; (1) for each ¢. Such
information is not directly available as nature typically only reveals the loss £ () and not the entire
collection of vector fields in 9°&;(y). For instance, suppose &; is a potential functional associated
with V;: R? — R, then VV; = 0°&(u1¢) due to Example 1. It is not obvious how the player can
determine the vector field VV; based only on the zeroth-order information V;.
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As aresult, we need a more reasonable setting to implement a strategy based on the minimal se-
lection principle. We achieve this goal by querying only through zeroth-order information, drawing
a parallel to the bandit/partial feedback setting with finite arms. To make our discussion concrete,
we focus on the case where & = V) (potential functional) that occurs frequently in applications;
the loss functional is a potential functional associated with some V;: R? — R forall t € N. An
extension to the interaction functional, another common setting in applications, will be discussed
later in this section. Under this framework, nature reveals V;(u;) by telling the values of V; only on
the support of u; and some fixed set of grid points. As we will see shortly, such a setting enables
the player to execute a strategy based on the minimal selection principle, thereby obtaining a regret
bound based on the EVI. In other words, instead of observing the gradient VV; (minimal selection),
the player approximates it using only zeroth-order information. As such, our formulation bridges
the gap between the sophisticated theory in the previous section and its practical realization.

3.1. OLT with Zeroth-Order Information and Minimal Selection Algorithm

We formally define our online learning problem. Fix a domain Q C R? and a set Z C  of grid
points or hubs, say Z = {21, ..., 2z, }, known to the player.> Atround t € N,

* the player chooses a discrete measure pi; := % ETzl (5:63_, where we call z¥,... 2t € Q
decision points,

* nature reveals a lower semi-continuous function V;: R? — R only on {x§ }iefm) Y Z, namely
the zeroth-order information on the player’s decision points and the fixed grid points, and the
player suffers a loss given as the potential functional associated with V;, that is, Vi(us) =
= YT Vi(ah) (Example 1).

Here, we view the grid points as the canonical locations of the domain ). Meanwhile, decision
points x§ are any elements of €2, not necessarily the grid points. By using the zeroth-information
Vi(z;), the player competes against the grid points, meaning that she aims to choose her decision
points that would incur smaller losses than the grid points would do. Accordingly, we consider a
regret 7 Vi(ue) — SO, Vi(v) for any v € Py(R%) supported on Z.

Inspired by the minimal selection principle (Lemma 6), we propose an algorithm for this learn-
ing problem.

Definition 13 (Minimal Selection Algorithm) After roundt € N, the player solves

min 23 P ©)
£1,ném€RT M = !
subject to V}(xﬁ) —Vi(zi) < <§j,x§- —z;) Y(i,7) € [n] x [m] . (10)
After obtaining a minimizer (£%,... €L, the player updates J,’;-—H = x§ — 77§§, where n > 0 is a
suitable stepsize.
Remark 14 Note that this is a convex program. Also, there exists a unique minimizer (&4, ... &)

provided the constraint (10) is feasible.

2. For instance, z;’s could be hub points (in ridesharing applications), be stochastically sampled based on some reference
measure, or be grid points for discretization.
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Not surprisingly, this algorithm amounts to the minimal section principle in a discrete setting.
Recall that ”EH%Q(Ht;Rd) =1 >y HE(ac;)HQ for any & € L?(ps;RY), hence the objective function
(9) corresponds to the norm of an element of the Fréchet subdifferential 0V, (u;). Meanwhile,
constraint (10) amounts to finding a certified subgradient of V; at mz Recall from Example 1 that
9°Vi(e) = VV;. Essentially, this algorithm aims to find a minimizer £ = VVi(z}). Also, the
update rule xéfH = 1:; — nﬁ} corresponds to fu;+1 = (1—n&;) 4 in Theorem 8, where Et(a:z») = §§.

Now, we can utilize the EVI to obtain a regret bound. By adapting the proof of Lemma 7, we

obtain the following result similar to Theorem 8; see Appendix A.1 for the proof.

Theorem 15 Assume Q = R®. Let jiy and {; be the output of the minimal selection algorithm. If
V; is convex for all t € N, then for any measure v € Po(R?) supported on Z and any n > 0,

T T T m
W3 (w1, v) = W (pry1,v) | 0 1 £12
— < — . . 11
tE 1 Vi (pt) tE 1 Vi(v) < o + 5 tgl ;:1 H@H (11)

Remark 16 Remark that the RHS of the above equation is precisely the minimal objective value in
(9). Additionally, if @ C R?, the update rule ZCE-—H = x§ — 77§§ may cause xé“ ¢ Q. We can prevent
this via a projection step. See Subsection 3.3 for details.

Remark 17 We emphasize that the key of the aforementioned zeroth-order framework is that the
decision points can take any values in ), allowing the support of u; to change continuously on €.
On the contrary, if we had restricted the support of i, to be contained in Z, the decision points
would have moved discontinuously over Z. In applications such as real-time dynamic resource
allocation, such a discontinuous movement is impractical as one needs to allocate the decision
points (resources such as drones or drivers) within a short period of time. In conclusion, our
framework is more suitable in practice due to the continuously varying support of ;. At the same
time, our framework preserves the infinite-dimensional nature.

3.2. Beyond Convex Case: Exploration and Regret Bound

If V; is non-convex, constraint set (10) might be infeasible. We propose a simple modification of
the algorithm using exploration and provide a regret bound that extends beyond the convex case.

Note that we may consider the previous learning problem at each decision point separately. The
minimal selection algorithm amounts to solving, for each j € [m],

éfféiﬁ}d 1€;]1*  subjectto Vi(z5) — Vi(zi) < (&, 25 — zi) Vi € [n] . (12)
j

If the above problem is not feasible, we sample a stochastic, isotropic Gaussian vector with a suitable
scaling and update 9”; along this exploration direction.

Definition 18 (Minimal Selection or Exploration (MSoE) Algorithm) After roundt € N, let S*
be a subset of [m] such that j € St if there is &; € RY satisfying Vi(z;) — Vi(z) < (§;, ah — z;)
foralli € [n). Forj € S, the player solves (12) and updates a;;'H = xz — 77§§ using the unique

solution §§ to (12). For j ¢ S', the player samples a Gaussian vector gji ~ N(0, 1;) and updates

e \/nmaxie[nnvxx;)—vz(znht
J J

10
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We assume all the Gaussian vectors are independent of each other.

In short, we modify the minimal selection algorithm to let the feasible decision points move
along minimal selection directions as before, while infeasible decision points fully explore in a
random direction. The fact that the discretization stepsize scales with /7 is motivated by Euler dis-
cretization of Langevin dynamics. The adaptive stepsize factor max;e [V (2%) — Vi(2:)] follows
the relative potential difference between infeasible decision points and grid points. For the MSoE
algorithm, an expected regret bound can be derived that depends on the fraction of infeasible points;
see Appendix A.2 for the proof.

Theorem 19 Assume Q@ = R%. Let 1, ; and g§- be the output of the MSoE algorithm in Defini-
tion 18. For any V; and any measure v € Po(R?) supported on Z,

T T W2 (1, v N T 1
E ZVt(Mt) - ZVt(V) < A 2 : 5 Z m Z Hf;”z
t=1 t=1 t=1 jest (13)
T
3
t3 ZE %%[Vi(mé) = Vi(zi)]+
=1 | jgst

t
From (13), we can expect a moderate regret bound provided that the proportion ”m;r\LS L of
infeasible decision points is small. We prove that this is indeed the case under some assumptions on
the sequence of functions V;. To see this, we first define a feasible region.

Definition 20 Fort € N, let
R':= {2z € Q: 3¢ such that Vy(z) — Vi(z) < (&, 2 — 2) Vi€ [n]}
and for each v € R define

&, = argmin ||€||>  subject to Vi(x) — Vi(z) < (&,2 — z) Vi€ [n].
{eR?

Lastly, forn > 0 let R} := {x —n&; : x € R'}.

The set R contains the points for which the minimal selection algorithm is feasible, hence

j € Stif and only if :x; € R!. Also, &, is well-defined for z € R! as discussed in Remark 14.
Lastly, Rfl denotes the region obtained by updating points in R! according to the minimal selection
algorithm. Now, we introduce an assumption to control the proportion of infeasible decision points.

Assumption 1 (Non-expansion condition) There exists ) > 0 so that R}, C R'*! for all t € N.

In other words, this assumption guarantees that any feasible point at some round is still feasible
after the update; j € S* implies j € S'*!. Hence, the proportion [m\S] ]\ I of infeasible points does
not grow. We impose a further assumption that guarantees this proportlon decreases.

Assumption 2 (Shrinking condition) There existn > 0 and vy € (0,1) such that for all t € N,

inf . max; e[, [Vt )=Vi(z)]+ ERtH) >~ 14
zeQ\R? ng 0,14) ( \/ / =7 ( )

11
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In short, each infeasible point can be updated to a feasible point by a random direction with prob-
ability at least v.> Combining this assumption with Assumption 1, we can show that the proportion
%\St‘ of infeasible decision points shrinks by a factor 1 —  in each iteration. This observation
yields the following regret bound. For simplicity, we assume each V; is uniformly bounded; see
Appendix A.3 for the proof.

Theorem 21 (Shrinking fraction of infeasible decision points) Assume Q = R<. Let i, &%, and
g§- be the output of the MSoE algorithm. If Assumptions 1 and 2 are satisfied with parameters
0,7 > 0, then for any measure v € Pa(R?) supported on Z,

. W2 (0.) 1 Lo - Ly |m\SY
E E Vi) — E Viv)| < t3 E - E 1617 +3By e (15)
t=1 t=1 t=1 jeS?

where B = max;c () SUp,eq |Vi(7)|-

3.3. Further Extensions

We briefly discuss a few extensions of our learning problem and the minimal selection algorithm.

Relaxed minimal selection algorithm We introduce another modification of the minimal selec-
tion algorithm using slack variables. After round ¢ € N, for each j € [m], the player solves

. 2y
min fs 16
oomn 16117 + =5, (16)
subjectto  — s; + Vt(xg) —Vi(zi) < (&,25 — ) Vie[n]. 17)
After finding minimizers (& b ]) the player updates xtH = x — n&t, where > 0 is a suitable

stepsize. Now that variables are {; and s;, the constramt (17) is always feasible. The resulting
optimization problem is still convex and admits a unique solution (5;, 52) Also, for j € S?, that is,
for a decision point for which the minimal selection algorithm is feasible, one can easily verify that
the relaxed minimal selection algorithm boils down to the minimal selection algorithm. Moreover,
we can obtain regret bounds similar to (11) or (13); see (25) and (27) in Appendix B.3.

Interaction functional We consider an extension of our problem to a different class of loss func-
tional. Suppose we replace the potential functional with the interaction functional. Nature reveals a
lower semi-continuous function W*: R? — [0, 0o) only on {2%} jepm) U Z, that is, the player knows
W*(zh — 2) for all (i, j) € [n] x [m]. The player suffers a loss given as the interaction functional
associated with TW* (Example 2):

m

W) = /Rd y W (x —y) dpue () dpe (y) = % > Wik —af) . (18)

m= .
7,k=1

3. Assumptions 1 and 2 are about relations between two adjacent functions V; and V;41. We present a simple example
of V; satistying these assumptions in Appendix B.2.

12
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In this case, we define the minimal selection algorithm as follows: after finishing round ¢ € N, the
player solves

€1y €mERY

. 1 &
min o — 3] (19)
j=1

1 m
subjectto — Wzt — 2) — min W(z; — < (&, zt —z) V(i,j) € X . (20
] m; (x5 — ) min (2i = 2x) < (&jr x5 — 2i) V(i,5) € [n] x [m] . (20)
Again, we have a convex program that admits a unique solution (¢!, ... ! ) provided the constraint

(20) is feasible. Using the EVI, we can derive a regret bound similar to (11); see Theorem 24 in
Appendix B.3.

Projection We briefly mention a projection step to ensure 2. € €2. The idea is to change the

j
update rule from 1:2“ =% —ntto x?“ = Pa(z} — né}), where P R? —  is defined as

Pq(x) = argmin ||z — w|| .
weld
Recall that the projection Py, is well-defined provided {2 is closed and convex. Using this projection
step, we can always ensure decision points are contained in €2. Moreover, this modification does not
affect the regret bound (11); see Theorem 25 in Appendix B.3.

4. Discussion

In this paper, we have introduced and studied an infinite-dimensional online learning problem called
the Online Learning to Transport (OLT) problem, where the decision variable is a probability mea-
sure on a fully nonparametric space, the Wasserstein space. Leveraging tools from optimal transport
theory, we have established several theoretical results regarding the OLT problem; equipping the de-
cision space with the Wasserstein distance, we have utilized the evolution variational inequality and
the minimal selection principle to derive v/T-regret bound for the OLT problem. Also, we have
studied a practical framework for the OLT problem using zeroth-order information, where we de-
velop a concrete algorithm called the Minimal Selection or Exploration (MSoE) that is numerically
tractable and works beyond the convex setting.

Lastly, we mention a few directions for future research. First, theoretical results in Section 2.3
may be improved with a stronger notion of convexity. For instance, one might study if log(7")-regret
is achievable based on \-convexity (Definition 9.1.1 of Ambrosio et al. (2005)) of &;. Another im-
portant direction is to modify the minimal selection strategy with adaptive stepsize ;. In our work,
V/T-regret is achievable for a fixed stepsize depending on some universal constants as mentioned
Remark 9. Hence, to remedy this limitation, we might need to design an adaptive stepsize 17, possi-
bly in terms of &4, . .., &,_; (or their norms). Meanwhile, on the practical side, it would be interest-
ing to see how the zeroth-order information framework and the MSoE algorithm work in real-life
examples; for instance, we may compare our method with existing methods for real driver allocation
datasets, which will shed light on developing even more practical framework and algorithms.
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Appendix A. Proofs of the Regret Bounds in Section 3
A.1. Proof of Theorem 15

By convexity of V;, the constraint set (10) is always feasible, hence §§ is well-defined. Let v =
Zi a;0,, for some ay,...,a, > 0 such that Z;;l a; = 1. We can find an optimal coupling

between p1; and v, which takes the following form: 7" | >0, Tjid(at ,)> Where SP T =
and ZTZI mji = a;. Note that Y " | Z;n:1 Wji‘;(zj.“,zi) is a coupling between v and ;11 as well.

Hence,

NE
Ms

W22(:ut+1ay) - W22(/'Lt’ ) S

Hle ZZ||27TJZ ZZHQE -z Tji

=1 j=1

(77 ngHz <£§a l‘; - Zl>) Tji

@
Il

—
.
Il

i

I
NE
Ms

@
I

—
<.
I

—

[vj:
Ms

(PIIEEI? = 2n(Vi(ah) — Vi(z:))) 7

@
I

—
Il

—_

S\H

j
( ZHf 12 =20 (Ve(pe) = Vi(v)) -

1

Therefore, we have

W2 (e, v) — W2 , 1 &
Vt(Mt)—Vt(V) S Q(Mt ) 277 Z(Mt-f-l g EZHé-;HZ’ (21)

and (11) follows by summing (21) iteratively.

A.2. Proof of Theorem 19
We first prove the following:
E [W3 (ue, v) — W3 (e, v) | Fi]
2n
77
F L ST+ S S mandVilad) — Vil

icst ¢ ¢ 1€l

EVi(e) = Vi(v) | ) <

(22)

where F; denotes the o-field generated by {g; : Vs < ¢ and Vj € S°} fort > 1 and F; is the

trivial o-field. We write :Eﬁ“ mz vj, where

if j ¢ S

: maxic) [Vi(2) = Vi(z)]+
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and v = nft otherwise. As in the proof of Theorem 15, let )" , Z 1 T5i0 (at,24) be an optimal
couphng between yi; and v = ) . a;0,,. Again, it is a coupling between v and Mt+1’ hence

n

W3 (pesr,v) = W3 (e, v) < ZZ |25 — 2 *mjs — ZZ 25 — 23l
=1 j=1 =1 j=1
n m
= (I051* = 2(0h, s — 24))
=1 j=1

3

1 n m
- Y =233k~
J : :

=1

Now, taking the conditional expectation E[- | F¢]|, we have

E[Wg(NtJrlaV)—Wg(Mth)U:t]_*Z i) | 7] —QZZE [(v], 2 = zi)mj | Fi] -

Jj= =1 j=1
Now, we upper bound the last two terms. For j € S*, we have E[|[v}[* | ] = 77 ?[1€511? because

v = {t is measurable with respect to F;. Meanwhile, for j ¢ S*, since E || 9; L2 =

E [[ljll* | 2] = ?752%[‘4(%) — Vizi)]+

7

Hence,

fZE [ty | 7] =L ZH@HZ ”Zmaxw —Vi(z)]s - 23)

M iest jgst
Next, for j € St, recall that
(V5 2f — zi) > n(Vi(ah) — Vi(z)) -
For j ¢ S', since E g} = 0,
E [(v], 2} — 2i) | Fe] = 0> n(Va(a}) — Vi(z)) — nmax[Vy(a) — Vi(2i)]+

i€[n]
Hence,
-2 Z ZE [(v§,x§ — 2y | Fi]
i=1 jfl
2772 > (Vilah) = Vi(zi))mji
i=1 jeSt
— 2172 Z (Ve(ah) — V(i) mji + 2172 Z max([Vi(z5) — Vi(zi)] 475
=St i=1 g <"
= —27722 (Vi(ah) = Vi(zi)) i + Z max{Vi(af) - Vi(zi)l+
i=1 j=1 '%St
2
= =20 (W) = Vi) 0 > maxlVila) = Vi)
oy i€[n
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Combining this result with (23) and using E [Vi(ut) — Vi(v) | Ft] = Ve(ue) — Vi(v), we obtain
(22). Now, taking the expectation to the both sides of (22) and sum iteratively to obtain (13).

A.3. Proof of Theorem 21

First, using uniform boundedness of V;, we have

> E {max[‘/t(x;) - Vt(zi)]+] <2BY ljgs .

i€[n]

jgst J=1
Combining this with (22) and taking the expectation, we have
E W2(Ntv’/) - WQ(,Ut—i-l? 77
e R L FD MG R e P
jESt

Summing this over ¢ € [T'], we have

T T W2 (1, v o T 1 5 38 < &
3o~ Yve] < MU 05 e | 5 g4 2SS e
t=1 t=1 t=1

jest t=1 j=1

24)
Now, we upper bound the last term on the right-hand side. Since j ¢ S implies j ¢ S'~!, we have

E [1¢st | Fi-1]
=E [Ljgst—1 ana jgst | Fi1]
=E |:].m§¢Rt ‘ ft_l} 1 ;‘1€Q\R’f*1

_ t—1 max;e(n][Vi— 1(x) Vie1(2)]
B gNJ\}?EO I <xj \/ - g¢ R 133;-7169\1?&—1

<(1- 7)1$;716Q\Rt*1

— (1= ) ljgge

where the inequality is due to Assumption 2. Therefore, taking the conditional expectation recur-
sively according to the filtration, we have E[1¢g:] < (1 — )"~ '1 j¢s1- Hence,

ZZE jes] SA+ A=) -+ (1= Liggr <v7'[m)\SY .

j=1t=1 j=1
Combining this with (24), we obtain (15).

Appendix B. Supplementary Explanations

B.1. Proof of Theorem 11

The proof uses differentiability of Wasserstein distance (Theorem 8.13 of Villani (2003)). If &,(x)
is a C'!' function of z and ¢ that is globally bounded, for any . € P2(R%), one can calculate that

dWQQ(//M :U’t)

i =2 [ (&~ 6, 2).,(0)) di() < 208.0) — Exln)].

t=s
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The inequality is due to the characterization of Fréchet subdifferential in Lemma 6. Integrating over
s € 0,77, we obtain the regret bound.

B.2. Assumptions 1 and 2

First, we illustrate the notions of feasible and infeasible regions for some loss functions in one
dimension. In Figurel, we plot a w-shape loss function V. For simplicity, we set two global
minimizers 21, z2 as grid points, and x1, 29 as player’s decision points. One can see that x; is
feasible where the minimal selection subdifferential &; is the slope of the blue line [;, passing
through (z1,V (x1)), (21, V(21)). The decision point x2, lying in the barrier between two global
minimizers, is infeasible: for any line passing through (x2, V' (z2)), it is impossible to have smaller
values than the loss function at both grid points 21, z5. The red lines in the figure are two attempts.
With this intuition, one can verify that the feasible region is (—00, z1] U [22, +00), whereas the
infeasible region is (z1, 22).

Iy 174

X
T1 21 Ty 22 \

Figure 1: An illustration of a w-shape non-convex loss V: R — R. Two global minimizers 21, 22
serve as grid points. z1, xy are player’s decision points.

Next, we showcase a series of w-shape non-convex functions that satisfy Assumptions 1, 2.

Lemma 22 Consider loss functions

_Jal(z+1)?%, ifz <0,
Vi) = {at(m —1)2, ifz>0,

and grid points —1 = 21 < 2o < --- < z, = 1 for some arbitrary n. If there exists ¢ > 0 such that
at > ¢, atn < % or all t, then Assumptions 1, 2 hold.

Proof The feasible region is R! = (—o0o, —1] U [1,00) for all . We first verify Assumption 1.
Without loss of generality, we consider positive feasible points z' = 1 + §* € R! for some 6¢ > 0.
The minimal selection of subdifferential returns &, = 2a’§'. Therefore /™! = 2! — 2nals? =
1+ (1 — 2a'n)d. Under the condition a'n < %, we have i1 > 1, ie., Rf] C RHL

Now, we verify Assumption 2. For any infeasible z¢ € [0, 1), update by random exploration

' =z — /nVi(at)g
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where g ~ N (0, 1). Then,

P! € R”l)zIP( \/nvz<xt>g>1>

where the last inequality is due to the condition a® > e. Note that the lower bound above holds
for any € [0,1). By a symmetric argument, we conclude that Assumption 2 is satisfied with

v ="P(g < -1/ \/en). L

B.3. Results in Subsection 3.3

Here, we provide detailed explanations on the results presented in Subsection 3.3. First, using
a similar EVI technique, we derive the following regret bound for the relaxed minimal selection
algorithm.

Theorem 23 Assume ) = R Let e &5 and 53- be the output of the relaxed minimal selection
algorithm. For any V; and any measure v E P2 (Rd) supported on Z,

d 211, v) — Wi (prs1,v) | 0 1 2, 255
> Vi) - th ’ 7 +§ZE €51 +T . (25)
t=1

27] t=1 7j=1

Proof As in the proof of Theorem 15, let 7', 377", ﬂjié(zz_,zi) be an optimal coupling between
pe and v =Y. a;0,. Again, it is a coupling between v and ju¢11, hence

W3 (per1,v) = W3 (e, v) < ZZ th—H - Z1H27r]2 ZZ Hx ZiHQWji

i=1 j=1 =1 j=1
n m

=Y (Pl — 20, — 23)) i
i1 j—l

<ZZ (PIIE512 + 2nst — 2n(Vi(at) — Vi(z:)) 75

2

77 Z ("5]“2 + 77> —2n (Vt(,ut) Vt(y)) :

m

J=1
Hence,
WQQ(:Uta v) — W22(:ut+17 77 1 & 2 t
_ < B _J
Vi(pe) = Ve(v) < o 2 m]§1 ||f I + 17 (26)
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(25) follows by summing (26) iteratively. |

In fact, we can further upper bound (26). Note that §; = 0 and s; = max;epy) [Vi(2}) — Vi(2)]+

satisfy the constraint (17), hence the minimizer ( ;, ]) satisfies

255 _ 2maxieq [Vi(eh) — Vi(zi)le

€511 +
Using this upper bound for j ¢ S, we have
W3 (pae, v) — WQQ(MH, v)

gmzw o o max[Vi(eh) = Vi)l

jESt jést

Vilpe) = Vi(v) <
(27)

Notice that this upper bound is comparable to (22). Therefore, the relaxed minimal selection algo-
rithm and the minimal selection or exploration algorithm admit essentially the same upper bound.

Next, we present a regret bound for the case where the loss is given according to the interaction
functional.

Theorem 24 Assume 2 = R? and consider the game with the loss (18) discussed in Subsection
3.3. Let uy and fjt» be the output of the minimal selection algorithm with the constraint (20). If W

is convex, for any measure v € P2(R?) supported on Z,

T
Z Wt(ut
t=1

Proof As in the proof of Theorem 15, let 7 3" | 7jid(,¢ ., be an optimal coupling between
J 1~

IIM%

T m

W3 (p1,v) = W3 (pry, v 77 1

> M ED SIC I P
t=1 j=1

pe and v =) a;0,,. Again, itis a coupling between v and ju¢11, hence

n m
W22<Nt+17 v) — WQ Mty V ZZHle_ZZHQWM ZZHx _2ZH Tji

=1 j=1 =1 j=1
n m
= (PIENP = 2n(gh, o — z0)) i
=1 j=1
Using (20),
n m n m 1 m
Z Z —277<f§, x; — zj)mj; < Z Z —2n (m Z Wt(xz — k) — inin W(z — zk)> Tji
i=1 j=1 i=1 j=1 k=1 €ln]
m n
= -2 Zth—:ck Z ;relﬁW( — 2k)
7,k=1 i=1
m
< -2 Z (zf — a}) ZalzakW i = 2k)
7.k= =1 =

= =20 We(e) = Wi(v)) .
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Therefore, we have

m

W3 (g, v) — W3 N7 1
W) — W) < L2 )2772(‘““ )+Z-m2\£§\l2, (29)
j=1

and (28) follows by summing (29) iteratively. |

Lastly, we prove that the projection step does not affect the regret bound.

Theorem 25 Assume 2 is closed and convex. Let iy and 5; be the output of the minimal selection
algorithm with a modified update rule mij = Py (:c§ — 77551). If V, is convex, for any measure
v € Pao(RY) supported on Z,

Htvq*i

T
Z Vt(Mt
t=1 2n

T m
F(u1,v) — Wi (urgr,v) L0 1 £112
fijéj n1;g;”§ﬂ

Proof As in the proof of Theorem 15, let > , Z;"Zl 7I‘ji(s($§_7 ~;) be an optimal coupling between
pe and v =) a;0,. Again, it is a coupling between v and ju;11, hence

n m
W3 (pes1,v) = Wi (e, v) < ZZ 25— zilPmg = Y0 Y lleh — zil P

i=1 j=1 i=1 j=1

One property of the projection P, is that th“ wl|| < [Jaf —ngk — wl| forall w € Q. Thus,

W3 (41, v) = W3 (e, v <ZZH96”1—ZZHQM ZZH?E — zilPmys

=1 j5=1 =1 j5=1
n m n m
<D b = ngh = zilPm = YD Nl — 2l P
i=1 j=1 i=1 j=1
n m
=3 (I — 2n(g, 2 — z))
i=1 j=1

%Z IEEP | = 20 (Vi) = V()
j=1

where the last inequality directly follows as in the proof of Theorem 15. Therefore, the regret
bounds in Theorem 15 still hold. |

Remark 26 We can apply this projection step to the MSoE algorithm and the relaxed minimal
selection algorithm as well; we modify their update rules by combining them with Pq. Then, the
regret bounds in Theorems 19 and 23 still hold.
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Appendix C. Simulations

In this section, we examine the empirical performance of the minimal selection and the MSoE
algorithms. Here, we consider a toy example where ) = {z € R? : ||z|| < 1}, m = 10, and
Z consists of uniform grid points of 2 with n = 797, obtained by forming uniform grid points of
[—1, 1]% and choose a subset of included in 2. Code for reproducing all the results below is provided
in the supplementary material.

Convex case First, we consider a simple quadratic function Vy(x) = ||z — w|?, where u; =
(—%, —\%) and u¢ = uy + (0.15¢,0.15¢). For better understanding, we may imagine a situation,
where we deploy m drones to track a moving target u; using the signals V; (distances to the target)
captured at Z (fixed stations with sensors) and {m§ }jem] (drones with mobile sensors). Figure 2
shows how the minimal selection algorithm moves the decision points. Att = 1 (Figure 2(a)), the
decision points, which are randomly initialized, start moving towards the darker region based on
§§’s from the minimal selection algorithm. In this simple toy example, we can see that the decision

points quickly gather around the minimum of V; (the target) and follow it.

@t=1 b)t=3 (c)t=5 @t="17

Figure 2: Minimal selection algorithm for convex V; with stepsize n = 0.2. The gray dots and
the red circles denote Z and {x§ } je[m)» respectively. The black solid arrows show §§»’s.
The contour regions represent the level of V; (darker = smaller as shown in the horizontal
colorbars).

Non-convex case As a simple non-convex example, consider V;(x) = min{ ||z —w||?, ||z —v¢||*},
where u; = v; = (—%, —%), uy = uy + (0.165¢,0.11¢), and v; = vy + (0.11¢,0.165¢). As in
the convex case, we may interpret u; and v; as moving targets, while the signal is the distance to
a closer target. Figure 3 shows how the MSoE algorithm works. As opposed to the convex case,
we can check that there are infeasible decision points (j ¢ S as in Definition 18) after t = 3.
The MSoE algorithm let such points move along random directions, thereby continuing the tracking
situation; the plain minimal selection would have ended up stopping all the decision points, losing
the targets. Although infeasible points might get far away from the targets as in Figure 3(e) and
Figure 3(f), once they get into a feasible region, they start moving again towards the darker area
based on §§’s from the minimal selection. Figure 3(g) and Figure 3(h) show that all the decision
points somehow get closer to the darker area after repeating the minimal selection and exploration.
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()t=9 () t=12 (@) t=18

(hyt =19

Figure 3: MSoE algorithm for non-convex case with stepsize = 0.05. The red circles denote the

feasible decision points (j € S*) and the white squares denote the infeasible decision
points (j ¢ S?).
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