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Abstract

This paper provides elementary analyses of the regret and generalization of minimum-
norm interpolating classifiers (MNIC). The MNIC is the function of smallest Reproducing
Kernel Hilbert Space norm that perfectly interpolates a label pattern on a finite data set.
We derive a mistake bound for MNIC and a regularized variant that holds for all data sets.
This bound follows from elementary properties of matrix inverses. Under the assumption
that the data is independently and identically distributed, the mistake bound implies that
MNIC generalizes at a rate proportional to the norm of the interpolating solution and
inversely proportional to the number of data points. This rate matches similar rates derived
for margin classifiers and perceptrons. We derive several plausible generative models where
the norm of the interpolating classifier is bounded or grows at a rate sublinear in n. We also
show that as long as the population class conditional distributions are sufficiently separable
in total variation, then MNIC generalizes with a fast rate.

Keywords: Generalization, Regret, Mistake Bound, Interpolation, Least-squares classi-
fication.

1. Introduction

Using a squared loss for classification problems remains a controversial topic in machine
learning. Though popular for regression, the squared loss makes little intuitive or semantic
sense for classification problems. A squared loss appears to penalize models for being “too
correct” when the prediction of a label is much greater than 1. Moreover, the labels in
classification are arbitrary, so the minimum square error doesn’t convey much information
about the latent prediction problem. Similarly, minimum-norm interpolation, the limiting
solution of ridge regression as the regularization parameter tends to zero, appears to be a
curious choice for a classifier. Forcing a function to be equal to an arbitrary label set could
be unnecessarily aggressive if we only aim to have our classifier predict the correct sign on
our data.

Despite these reservations, minimum-norm interpolation classifiers (MNIC) and reg-
ularized least-squares classification (RLSC) work exceptionally well in practice. Recent
investigations by Shankar et al. (2020) demonstrated that there was no advantage to using
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more sophisticated classification techniques on popular contemporary data sets. From a the-
oretical perspective, stochastic gradient descent on a variety of empirical risk minimization
problems will converge to the MNIC solution under mild assumptions. Jacot et al. (2018)
and Heckel and Soltanolkotabi (2020) have derived specific scaling regimes where neural
nets trained with stochastic gradient descent approximate the minimum-norm solutions of
appropriate Reproducing Kernel Hilbert Spaces.

On top of these connections and empirical results, least-squares methods have many
attractive features that argue in their favor. Their solutions can be written out algebraically,
and we can lean on powerful linear algebra tools to compute them at large scale (see Avron
et al. (2017); Ma and Belkin (2017); Rudi et al. (2017); Wang et al. (2019); Shankar et al.
(2021), for example). Many auxiliary quantities such as the leave-one-out error can also
be computed in closed form. If these methods are at all competitive, the machine learning
community should encourage their use.

In this paper we provide an elementary analysis of MNIC, partially helping to explain
the method’s success. We first present a mistake bound for minimum-norm interpolation
classification that holds unconditionally of how the data was generated. The proof follows
immediately from two applications of the matrix inversion lemma. Moreover, we present
two simple geometric and algorithmic proofs that shed further insights into the properties
of MNIC and RLSC and the structure of QR decompositions.

Adding the assumption that the data is generated i.i.d., our mistake bound and an
application of Markov’s inequality implies that MNIC generalizes with a rate of B2 /n where
B,, denotes the expected norm of the MNIC when interpolating n i.i.d. sampled data points.
This compares favorably with the generalization bounds of Vapnik and Chervonenkis for

the perceptron which show the generalization error scales as M21+1n where M, denotes
the expected size of the margin for a sample of n+ 1 data pointanapnik and Chervonenkis
(1974). Since for the maximum margin solution, the margin is the inverse of the norm of
the separating hyperplane, our bound tracks a similar scaling as these classic margin-based
results.

A key feature of MNIC and RLSC is that the expected norm can be estimated for a
variety of probabilistic models of data. By leveraging concentration inequalities and random
matrix tools, we can analyze a variety of plausible data generation schemes and show that
as long as there is certain separation between the distributions of the two classes, then we

can expect the interpolant norm to not grow too quickly.

2. Related Work

Using least-squares loss for classification has a long history in machine learning and statis-
tics. Its modern popularization was by Suykens and Vandewalle (1999) and connections
to general kernel machines were studied by Rifkin et al. (2003). While many authors use
least-squares classification as their default tool (for example, Rudi et al. (2017); Shankar
et al. (2020)), it is still not common practice to use a squared loss for classification. Theory
bounds for regression with bounded labels do apply to least-squares classification, and such
results exist. For example, Lee et al. (1998) showed agnostic learning is possible with a
squared loss. The results in this work focus on a particular class of interpolators that are
amenable to a simpler analysis.
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While we focus on interpolating classifiers, our inspiration comes from work on maximum
margin classifiers. Novikoff (1962) famously derived a mistake bound for the perceptron,
and Vapnik and Chervonenkis (1974) used this bound and a leave-one-out argument to turn
the perceptron mistake bound into a generalization bound. Vapnik and Chapelle (2000)
prove a similar generalization bound for the maximum-margin classifier using a similar argu-
ment, though their proof requires a strong assumption about support vectors not changing
when data is resampled. A more general theory of generalization for margin classifiers us-
ing Rademacher complexity was developed by Koltchinskii and Panchenko (2002). These
bounds yielded suboptimal rates in the case when the data was separable, and Srebro et al.
(2010) provided an argument to yield fast rates. All margin bounds require the size of the
margin to not shrink too quickly as the number of data points increases.

A lesser known body of work, initiated by Bernstein, attempted to understand the
complexity of estimating a planted linear model using online algorithms. Bernstein (1992),
using an online algorithm identical to the one presented in Section 5, showed that the online
error could be bounded by the norm of the planted solution times the maximum norm of
the data points. This bound has a similar flavor to our bound, though necessarily assumes
a planted solution that is observed via noiseless linear measurements. Later, Klasner and
Simon (1995) showed how to extend Bernstein’s work to the noisy case by running an online
version of ridge regression. Our work differs from this earlier work in several ways. We make
no assumptions about the existence of a planted model. Rather, to bound the error with n
data points, we merely assume that the interpolation problem is solvable for any data set
of size at most n. That is, our labels y’s are completely arbitrary, and need not be realized
by any finite dimensional linear model. Though our work focuses on interpolation, we show
how to immediately extend it to ridge regression in Section 5, yielding improved extensions
of Klasner and Simon’s bounds to kernel regression with arbitrary labels.

Many recent papers have used generative models to understand how such margins scale
(see, for example, Deng et al. (2019); Montanari et al. (2019); Liang and Sur (2022); Chat-
terji and Long (2020)). In this work, we study scaling on the norm of the interpolating
function using similar ideas. Leveraging recent developments in non-linear random matri-
ces, Liang and Rakhlin (2020) and later in Liang et al. (2020) studied the generalization
of kernel ridgeless regression. Bartlett et al. (2020) studied the generalization of minimum-
norm interpolants in the context of infinite-dimensional Gaussian process regression. Hastie
et al. (2019) applied precise asymptotic tools to analyze random non-linear feature regres-
sion. Though our generalization results can be extended to the case of regression, we focus
here on generative models of classification, and show these generalize with mild separation
assumptions on the data generating process.

Connections between the Perceptron for SVM and MNIC are recently investigated in
Muthukumar et al. (2020) using a distinctive approach compared to ours. They construct
generative models such that with sufficient overparametrization, all data points are support
vectors. This means the SVM returns the same solution as MNIC under such models.
However, our work directly works with MNIC and does not require a solution coincident
with an SVM solution. Moreover, our generalization bounds involve a norm rather than a
margin, and we demonstrate that these norms are often simple to calculate or bound for
complex models in both theory and practice.
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3. A Mistake Bound for MNIC

Let H be a Reproducing Kernel Hilbert Space (RKHS) with embedding functions ¢, so
that k(x,2) = (@z, p2) k. Suppose that we are given a data sequence {(z;,y;)}jen, with
features = € R? and labels y € {=1,+1}. Consider the MNIC optimization problem on the
data set S; := {(:Ej,yj)};:l

minimizescy, || f||x (1)
subject to flx;) =y, 7=1,...,1,

When it exists, let ]/C:gL denote the optimal solution of this optimization problem.
The key to our analysis will be controlling the error of fg, on the next data point in the
sequence, z;11. To do so, we use a simple identity that follows from linear algebra. Let

s; 1= dist (span(goxl, e Pai 1) goxi) ,

where the distance measures the RKHS norm of the projected embedding function ¢, to
the closure of the span of {¢4,,..., ¢z, ,}. Then we have the following

Lemma 1 Foranyi € Ny, and any data sequence {(x;,;)}jen, , suppose that the solutions
fs,_, and fs, in Problem (1) exist. Then they satisfy

(yi — Fso o (@) = (1 fs,ll% — 11 s %) -

We hold off on proving this Lemma until the next section where we give several proofs
that highlight multiple aspects of minimum norm interpolation. With the Lemma in hand,
however, we can now state and prove our two immediate results. Given n data points,
define in addition

SSn\i := dist (Span((pmp R Qomi_p@x“_la s 79033»”)7 SOJ:Z) .

Our first result is a deterministic mistake bound that makes no assumptions about the data,
as long as MNIC is well defined.

Theorem 2 Let R2 = maxlgignﬂcpxi”%( and r: = minj<j<y, sgn\i. Then we have the
following regret bound

N fsall% < Z — Fs @) < B2 (| fsull% (2)

In the binary classification setting with Y = {£1}, we further have

n

Z ﬂ{yz‘ﬁsyfl(ﬁ?z‘) <0} <RZ. I fs. 1% - (3)

i=1

Proof Using the bounds r% < 822 < R% for all 1 <7 <n and Lemma 1, we have
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Adding these inequalities together for 1 < i < n proves the inequalities in Equation (2).
Equation (3) follows because the square loss upper bounds the zero-one loss. |

Note that R2 is uniformly bounded over n as long as sup,cy K (7, 2) < oo, since R2 =
max; K (x,x;). This theorem thus quantifies the difficulty of prediction with a single data-
adaptive quantity: ||fs,||%. In later sections, we study precisely how such a norm could
grow with the sequence length n.

Again, we emphasize that this main result holds for arbitrary data sequences as long as
the MNIC is well-defined. This is true, for example, when the empirical kernel matrix has
full rank. Such a rank condition holds for any universal kernel, such as the Gaussian kernel.

The above theorem immediately yields the following corollary, a generalization bound
for MNIC in the case where the {(z;,v;)}!, are sampled i.i.d. from some distribution.

Theorem 3 Suppose that S, consists of i.i.d. samples from D and that y denotes a class
label in {—1,1}. Let (x,y) denote a new random draw from the same D. Let R,, be defined
as in Theorem 2 and let By, = || fs, || k-

1. We have N
n - Ply fs,(x) <0]

i 1.
iisn E[RZBI]

2. If either E[(1 — y]?si (x))?] or IP’[y]?Si (x) < 0] is a non-increasing sequence indexed by
i, we have

Ply fs, (x) < 0] < E[Ri%_

3. If we denote the Polyak average of f:qz by

then we have 2 »
7 ElR; 41811
< 0] < Al ntll
Remark 4 Item 1 can be strengthened and re-stated as

~ R? B2
liminf Plyfs,(x) < 0] < lim M,
n—o00 n—00 n

if the right-hand side has a proper limit. Therefore, the classic test error is dominated by

the posterior estimate R2 B2 /n, in the limit inferior sense.

Proof Taking expected values in Equation (2), we can drop the subscripts on (z;,y;) as
they are identically distributed to (x,y) ~ D and is independent of S;_;. This yields the
bound

ZE[(l ~ s ()] = ZE[(l —yifs, . (2)’] <E[R.B;]. (4)
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Inequality (4) immediately proves

i i E[R; B2
ouin E[(1 - yfs,(x))?] < =

Markov’s inequality implies that
Ply fs.(x) < 0] < E[(1 -y fs,(x))*]

It is clear that min;<;<y P[yfgi (x) < 0] < minj<i<n—1 P[yfgi (x) < 0]. Observe the right-
hand side stays the same when the indices change to 0 < i <n—1from 1 <i<n-—1,
as ﬁ% = 0. Therefore the first part of the theorem is proved. Similarly, assuming the
sequence is non-increasing means that the minimum summand of (4) is E[(1 —y f,(x))?] (or
respectively P[yfgi (x) < 0]). This proves the second part of the theorem. The third part
of the theorem follows by applying Jensen’s inequality to lower bound the left-hand-side of
inequality (4) (with n + 1 substituting n), applying Markov’s inequality, and then rescaling
by and then rescaling by ”T‘H |

Finally, note that we could have derived a result similar to Theorem 3 for regression,
replacing probability of error with expected squared loss. For example, the same argument

would show [ ) 2]
) -~ E|R:B
_ . 2| « n—nl
jmin, B[t - Fa?] < 25

However, we note that the norm bound B, may grow rapidly for such regression prob-
lems. Whereas we will see several examples in the sequel where the norm bound B,, grows
slowly with n for classification, we leave study of conditions under which these norms grow
sublinearly in n for regression to future work.

4. Proofs of Lemma 1: Algorithmic and Geometric Perspectives

Lemma 1 is the heart of our analysis and has several simple proofs. We present these
varied views as they provide many useful algebraic, geometric, and algorithmic insights into
least-squares classification and interpolation.

Algebraic proof. We first present a direct linear algebraic proof that applies formulae
for inverses of partitioned matrices. This algebraic proof highlights some of the closed form
expressions available to evaluate leave-one-out errors and related estimates in ordinary least
squares. Let K denote the kernel matrix for 5;. Partition K as

Ky KIQ]
K =
|:K21 Koo

where K71 is (1 — 1) x (i — 1) and Ko is a scalar equal to K (z;,z;). Note that under this
partitioning,
fsi (@) = KanKi'ynia

where y1.;_1 slices all but the last element of y.
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First, note that
5?7 = Koy — KnK;'K12.

Next, using the formula for inverting partitioned matrices, we have that

(K11 — K19Ko5y Ko1) ™' 572K Kig
sfz(Kﬁle)T 577

3 (2

K=

By the Woodbury formula we have
_ _ _ _ _1\ T _
(K — K12K221K21) b= Klll + s 2 (K21K111) (K21K111) :
Hence,
~ _ _ ~ ~ —
”fS@H%( = Z/TK 19 =3 Z(yz‘ = 2yifs_, (zi) + fsi,l(xi)) + yIi—lKlllylzi—l .
Rearranging the terms proves the lemma.

Geometric Proof. We can sketch a geometric proof of Lemma 1 which gives more light
into the sequential nature of our regret bound. This proof naturally gives rise to an online
algorithm for solving MNIC, demonstrating that at each step we only need to increment
our function in a direction orthogonal to all of the previously seen examples.

~ Yi — <¢T‘7ﬂi71>
: P I ¢
% (T @ |12 1P,

Figure 1: Illustration of the geometric proof.

Recall that fgl (z) is a linear function in ¢,

fs; (@) = (pz; Bi) i (5)
where BZ lies in the span(gg,, ..., ¢y, ). Let us compare EZ and @_1. Let II;_1 denote the
orthogonal projection onto span(¢g,, ..., ¢z, ;). Observe that one must have

;18 = Bi-1 - (6)

This is because the function g;(x) := (g, HHBZ-)K has to interpolate the data set S;_1 as

g1(z;) = fs, ()

for 1 < j < /2‘\— 1. On the span of II;,_q, there is a unique inteEpolating solution to
Si—1, namely S;_1, thus proving the observation. Therefore, since S; lies in the span of

{909017 ct SD-T'L—I} U {()O.CB,L}7

B\i = B\i—l + HiL—lgi (7)
= Bi—l +c- H?il(p-l’i (8)
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with some constant ¢. To compute the value of ¢, let us apply the function to the data
pOint (l‘i) yl)

Yi = fSi (wl) = <()0:L"m§l>K = <()05Ez‘7§i*1>K tc- <90$i7H7i180$i>K (9)
= J?Si,l(fvi) +c-s? . (10)

Thus, we have proven

Bi = Bi—1+ 1—21(1) 100, - (11)

%

Evaluating the norm on both sides of the equation will conclude the proof, as

= - (yi — fs,_1 (x:))?
[ Fsllf = I s llfe + === . (12)

i

An Online Interpolation Algorithm. The geometric proof of Lemma 1 implies an
algorithm for computing the MNIC (Algorithm 1).

Algorithm 1: Online Minimum-Norm Interpolation Algorithm.

Data: A sequence of data {z;}7 ;. A feature embedding ¢ : R?% — RP that
corresponds to an RKHS.
Result: A min-norm interpolation function 1?52.71 : X — Y on S;_; for each
1=1,...,n.
Initialization: Set BO =0¢€ RP and fgo =0,and i =0
while i < n do
Set i =i+ 1 and receive a new data z; = (24, v;) ;

Make prediction based on the previous interpolator fSFl and record the error
€& =Yi — fs,_,(zi). Update the vector j;

~ ~ € n
6‘ :5‘—1‘1‘7‘11;180 i
e T

and the corresponding min-norm interpolation function fgz (z) = (s, Z?;} :
end

Note that the function update can be written equivalently in the kernel form: define
gi(x)

gi(z) = K(z,2;) — K(2, X;—1)[K(Xi—1, X;-1)] T K (X1, 27) (13)
with X;_1 concatenating {z1,...,2;_1}, then
~ ~ €;
s, (x) = Jfs;_, () + i(x) . 14
Fala) = Fois (@) + a0 (14)

Theorem 2 can be interpreted as deriving a regret bound for this online algorithm.
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Connections to the QR decomposition. The online algorithm defined by Algorithm 1
turns out to be equivalent to solving MNIC with a QR factorization. Recall that the QR
factorization of a matrix A writes A = QR where () has orthonormal columns and R is upper
triangular. If A is a data matrix with each column a data point, then ) is an orthonormal
basis for the span of the data, and hence we can compute the projection matrices II directly
from Q. We formalize this observation in the following Proposition.

Proposition 5 Suppose ¢ maps into a p dimensional space and K(x,x') = (pz, ) with
the inner product in RP. Define the p x n dimensional matriz © to have ith column equal
to wy,. Let ® = QR be a QR decomposition of ® and denote the ith column of Q) by q;. Let

z2=R"Ty. Then Bk = Zle qi%i.

We defer the proof of this proposition to Appendix A. Proposition 5 also allows us to
compute the average of §; from the QR decomposition. Let D denote the diagonal matrix
with kth diagonal entry 1 — % Then Proposition 5 immediately implies that

1 o~ 3
n;@;:QDR Ty. (15)

This implies that computing the average of B\ merely requires only n floating point operations
more than solving for the least-norm solution of ® '3 = y.

We can also kernelize the computation of the average. With slight abuse of notation, we
can still let ® denote the semi-infinite dimensional data matrix consisting of concatenation
of ¢,,. This ® will have a QR decomposition. The kernel matrix K = ®Td will have
Cholesky decomposition R' R where R is the same matrix as in the QR decomposition of
®. Our goal is to write Bk; as y i, Cipg,. Let Py, denote the diagonal matrix that projects

onto the first k£ standard coordinates in R™. Then we have Bk = QP,z and
Ke=®"QP,z=R'Pz.

Hence, B, = ®c with ¢ = R™1P,R~ Ty and LS, B = ®¢ with ¢ = R"'DR~Ty.

5. Generalization to Ridge Regression

By replacing the matrix K with K + Al in Lemma 1, all of the results derived so far
immediately generalize to kernel ridge regression and RLSC. Recall that ridge regression
solves the optimization problem

n

> (fl@i) —yi)® + A% -

i=1

The optimal solution of the problem is

n
J?Sn,)\ = ZaiK(a:i,a:) , where o = (K + \I) "1y
i=1
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Thus, the only thing distinguishing the solution of the minimum norm interpolation prob-
lem (1) is the addition of AI. Hence, Lemma 1 holds, with slightly different complexity
measures. We need to replace the norm of fg, » with the complexity measure

BiA = yT(K + )Yy

This complexity measure upper bounds the norm of the ridge regression solution. To see
this, observe y? (K + \)~ 'y > yT(K +A)TIK(K + M)~y = aTKa = ||fs, all% . We
additionally need to replace s? with s? '\ 1= Milecpi-t |pz: — ZJ 1 CjPa; HK + Allefl3 + X
With these substitutions, analogs of Theorems 2 and Theorem 3 follow without modification
of the proofs.

6. Some Plausible Scenarios for Slow Norm Growth

We now turn to understanding the magnitude of the norm || ]?5" [|% under different generative
models in a high-dimensional, over-parametrized setting. Provided there is some separation
between the probability distributions of the two classes, we expect the norm to grow slowly
as a function of the sample size. As we shall see, we need not assume that the data
realizations are well separated or that there is no noise on the labels. Rather, we will only
need that p(z|y = 1) and p(z|y = —1) are sufficiently distinct at the population level.

We begin with a simple over-parametrized Gaussian mixture model in Section 6.1. In
this case, the interpolant’s norm stays bounded almost surely, implying an O(1) regret
with probability one. This example is further extended to more general mixture models in
Section 6.2. This concerns a much broader range of scenarios where a o(n) regret (sublinear)
is possible. In Section 7, we study general non-linear kernels with considerably weaker
distributional assumptions. There, we relate the magnitude of the interpolant’s norm to
the Total Variation distance between the class conditional distributions. We defer all proofs
to the Appendix.

6.1 Over-parametrized GGaussian Mixture Model

The first case we consider is a linear kernel with ¢, = z € R? and K(x,2') = (z,2').
Assume

i =Yi p- U+ € (16)

where p parametrizes the strength of the signal, 9, the direction with ||J.|]2 = 1, and
€; ~N(0,1/d- I;) the noise (independent of y;). We consider the over-parametrized regime
with d(n)/n =19 > 1.

Lemma 6 Fori.i.d. data generated from the model defined by (16), R2 < (u+1)? a.s. and

limsup || fs, % < (qb—wl)/ﬂ’ a.s. (17)

n—oo

This Lemma and Theorem 2 immediately imply that for the Gaussian mixture model (16),

Y

WD a.s. (18)

hmsupZ]l{yzfgl () < 0} (1 +1)?
=1

n—0o0

10
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In other words, we make at most a constant number of errors with probability one in the
infinite sequence of problems.

We can also establish a lower bound of order 1/n on the quantity 72 that appears in
the lower bound of Theorem 2. This model thus shows that our upper bound in Theorem 2
cannot be significantly improved beyond a linear factor in n.

Lemma 7 The following bound holds under the same setting as in Lemma 6

1
2> (WP4+1)——m— .S. 19
TTL—(/’L + )1+CH’¢TI7 a.s ( )

where C, 4, > 0 is a constant that does not depend on n.

6.2 Generalizations of the Mixture Model

We now turn to a more general mixture model where we allow for more general covariance
structures. In doing so, we will find a variety of data generating processes that exhibit slow
norm growth, but also show that there may be cases where this is not the case. Consider
0z, € RP and K(z,2") = (pg, p2)k with the inner product in RP. Suppose the following
generative structure holds with a positive-definite covariance matrix ¥ € RP*P

Pr; = Yi - - Q9* + 21/261' ; (20)

where p > 0 is the signal strength and ¥, is a unit vector in RP. Let A;(X),...,A,(X) >0
denote the non-increasing sequence of eigenvalues of .

Assumption 8 (Weak Moment Conditions) ¢;;,1 < i < n,1 < j < p(n) are i.i.d.
entries from a distribution with, zero first-moment, unit second-moment and uniformly-
bounded m-th moment, with m > 8.

The zero first-moment and unit second-moment conditions can be assumed without loss of
generality. The more significant assumptions made here are the requirement of bounded
mth-moments and the i.i.d. entries in ¢;. We leave as future work relaxing this assumption
with a small-ball analysis or some other more sophisticated random matrix theory.

Assumption 9 (Over-parametrization) For sufficiently large C' > 0, we have >

C-n.

p
logp

This assumption ensures that the feature map is sufficiently over-parametrized such that
the empirical kernel matrix is of full rank n.
With the above, the following non-asymptotic bound holds

Theorem 10 Under the Assumptions 8 and 9, the following bound holds almost surely,

19219*71
)T(E) (HCQ W) p> 1

T
o EppRly

*Z Rt < sl < ) 4o,

(21)

)0‘51

where v, = p%Jr%(logp and cj,1 < j < 3 are universal constants.

11
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Corollary 11 Under the same qassumptions and notations as in Theorem 10, now consider
the ridge reqularized predictor fs, n, in Section 5, with an explicit regularization A\, > 0.
The following bound holds almost surely,
-1
1 & ~ > y [K+NI] Ty
- (Wi — Fsoa (@) < R: [ ]

=1

n
/P2 (5) P (1 T A /PFAp (X)) P) 1

WIS n n
L+ Xpmam »

<c- ()\* + 12 + tr(X) + 'yp)

(22)

A =1 Ya€ (0,1/2)

z 2 y=e+l

Figure 2: Illustration diagram on when slow norm growth is possible. z-axis corresponds to

log(1%)/log(n), and y-axis corresponds to log(p)/log(n). Red region shows when
the upper bound in Theorem 10 is o(1), the extended Yellow region demonstrates
that with a properly chosen A, the upper bound in Corollary 11 is o(1).

Let’s unpack the bound in Theorem 10 by exploring some examples, highlighting the
impact of the signal strength p, over-parametrization p, and error covariance ¥ on the
regret. Consider a range of problem instances with sub-Gaussian €;; where

1. Xi(2) =i%,1 <14 < p with some a € (0,1/2),
2. p? =n® for z € (0, 00),

3. p=nY for y € (1,00).

12
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For any fixed a@ € (0,1/2), Figure 2 illustrates the region on the z,y domain when the
upper bounds in Theorem 10 and Corollary 11 are o(1), asserting the plausible scenarios
for slow norm growth. We emphasize that the colored regions only correspond to sufficient
conditions for slow norm growth. The precise norm growth outside the colored regions
potentially requires a sharper analysis (rather than only an upper bound), beyond the
current scope. The boundaries marked by the blue dashed lines correspond to detailed
upper bound calculations carried out in Appendix D, quantifying the rate of each term in
Theorem 10 and Corollary 11. Conceptually, sufficient conditions for slow norm growth
include certain signal separation in the mixture model and a well-conditioned empirical
kernel matrix, illustrated by the blue lines. When eigenvalues decay fast, the empirical
kernel matrix will become ill-conditioned, suggesting that the interpolant’s norm may grow
rapidly. The region where such ill-conditioning is ruled out is colored red in Figure 2.
Explicit regularization can mitigate the rapid norm growth, as shown in the yellow region.

7. Separation and Slow Norm Growth

We close by considering binary classification with general non-linear kernels. Let 7, denote
the conditional expectation of y given x:

M(z) =Py =+lx=2) - Ply = -1fx=2) . (23)
In this section, we assume that this function lies in the RKHS and has bounded norm.
lnll7 < BZ .

We choose this particular assumption as a matter of convenience to highlight a particular
analysis of nonlinear classification. We note that there are a variety of other assumptions
about the distribution of (x,y) pairs that could also be analyzed using the tools of this
section.

Lemma 12 Suppose S, consists of i.i.d. data drawn from some distribution D. Denote
X as the concatenated data matriz of {z;}"_,. Conditional on the design X, the following
bound holds,

~ 1 &
E [[Ifs. 1% | X] < lInell% + 2 > (1 —ni(a)) (24)
n =1

Lemma 12 and Theorem 2 together imply

n N 2 n
%Zp[yifSi—l(xi) <0|X]< g 12(1 — i (z:)) +

2
T n
=1 n i=1

R} B}
Q= 25
- (25)
The second term here is a generalization error that tends to zero with n. The first term is
proportional to the Bayes error
1 )
E(X) = —> (1 —ni(xy)

n“
=1

13
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Note that £(X) is nonnegative and measures a form of the accuracy of the regression
function on the sample. £(X) is equal to zero when the regression function makes correct
assignments for all data points and equal to 1 if all of the points are impossible to distinguish
under the generative model. In order for the bound (25) to imply a low prediction error,
we need the Bayes error to be small.

Two natural conditions under which the Bayes error can be further controlled are the
Mammen-Tsybakov and Massart noise conditions. A slightly stronger version of Mammen-
Tsybakov condition! asserts that there exists some a € [0,1] and Cy > 0 such that for all
t€0,1]

PIn.(x)] <t] < Cp-tT-a . (26)
Under this noise condition, we have the following upper bound on the expected Bayes Error

1
E[E(X)] =1 - E[ln() =1 - /0 P(n. ()| > VDt (27)

2(1 — «)

1
<1—/ (1—Cp-t20=a))dt < Cp - (28)
0

Note that when o = 1 (i.e., under the Massart noise condition), the expected Bayes Error
is 0.

We can construct more general conditions under which we expect £(X) to be small. Let
P, denote the conditional distribution of = given y = +1, and correspondingly define P_.
Let dry (P4, P_) denote the total variation distance between these two distributions.

Lemma 13 For any € > 0,
PE(X) < 4] > 1 — Hn(1 —dpy (Py, P)) (29)

Lemma 13 gives a general way to bound the expected Bayes error by lower bounding the
total variation between the class conditional distributions. For example, in the Gaussian
mixture model in Section 6.1, we can choose € = n~! and have with probability at least
1 —n?exp(—du?/2) = 1 — o(1) that the error is O(1/n).

8. Conclusions and Future Work

The linear algebraic structure of MNIC and RLSC led to surprisingly simple generalization
bounds. Moreover, this structure led to tractable analysis of the norms of the solutions of a
variety of classification problems. As we mention in Section 3, our regret and generalization
bounds apply to regression problems, but we do not know which data generating models will
have solutions whose norm grows slowly with the number of data points. For instance, the
standard planted model y; = xlT B+ €;, where x; is isotropic Gaussian and ¢; is independent
noise, results in an interpolating solution whose norm scales linearly with n. It would be
fascinating to understand plausible models for regression where this norm grows sublinearly.

1. Mammen-Tsybakov condition requires (26) to hold for ¢ € [0,%o] with some ¢ty < 1. One can see that
this can easily extend to ¢ € [0, 1] with a larger Coy constant.

14
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Future work should also investigate whether other ERM problems admit simple mis-
take bounds as we now see for the perceptron, the SVM, MNIC, and RLSC. Is there a
general proof that connects these aforementioned algorithms? Is there a general theory
yielding simple 1/n rates for models learned by Stochastic Gradient Descent when there is
an empirical risk minimizer has zero loss?
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Appendix A. Proof of Proposition 5

First note that by construction,
k
Pz, = Z Rikgi -
i=1

Hence, Hé‘,lka = Rypqr. From this same calculation, we have that s = Rp.
Consider the vector z = R~ "y. We have

k,
_ Yk — Zi:f Rirz;
Ry,

Now let us proceed by induction. Certainly, for the base case, we have

Rk

) 1 1
Bi=Y0n =5

= S¢r, = o5 Bug =211
51 R,

Now, suppose the formula holds for ¢ < k& and consider

k k-1 k—1
[ (@k) = (Pays Be-1) = <Z Rijj,ZQeZz> = ZRijj-
j=1 (=1 j=1

Thus,

Yk — fsp_y (Tk)
2 = ———————,
Sk

and we have R

~ ~ Yk — s, (1)

Br+1 — Bk = %Hﬁ—lka = 2k9k >

k

which completes the proof.

Appendix B. Probabilistic Tools for Analyzing Generative Models

We will need two results from the literature. First, the following is Theorem 5.41 in Ver-
shynin (2010).

Proposition 14 Let A be an p X n random matriz whose rows A; are independent isotropic
random vectors in R™. Assume that | A;ll2 < VN almost surely for all i. Then for every
t > 0, one has the following bound on the singular values of A

\/ﬁ - t\/]v < Smin(A) < smax(A) < \/]3 + t\/]v (30)
with probability at least 1 — 2n - exp(—ct?), where ¢ > 0 is an absolute constant.
The next proposition follows from Lemma A.3 in El Karoui (2010).

Proposition 15 Let {z;}}; be i.i.d. random vectors in RP, whose entries are i.i.d., mean
0, wvariance 1 and have bounded m-absolute moments (m > 4). Suppose that {£,} is a
sequence of positive semi-definite matrices whose operator norms are uniformly bounded
and n/p is asymptotically bounded. We have,

max |z Xz — tr(3,)| < p%Jr%(logp)o‘Sl a.s. (31)
1<i<n
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The following propositions are useful calculations needed for our proofs. The following
proposition follows from rotational invariance of Gaussian and standard concentration of
x? random variables.

Proposition 16 Let G € R™ 9 with each entry i.i.d. N(0,1/d), then for any fized vector

veR”
_ dist. d
v [GGT] o ™ o] - (32)
Xd—n+1
In the case with d/n = > 1, with probability at least 1 — 2 exp(—t),
t o] \/ 1t

(1- -2 - < 2 (1-— 2

\/w ) S vea T S )2 J”” "

(33)

Proof Due to rotational invariance, v [GG ]l digt. |lv]|? K11 where Ki; is the top-left
element of the matrix [GG "]~1. It is easy to see that Ki; follows the same distribution as
d/ X?l— (n—1)" The proof completes using the standard concentration of x? random variables

(see for instance, Massart-Laurent). ]

The following proposition controls some matrix quantities needed in our analysis.

Proposition 17 Let E € R"™ P be random matriz with i.i.d. entries, zero-mean and
bounded-m moments. FE;. € RP denotes the i-th row of E, and E.; € R" denotes the
j-th column of E. The following bounds hold almost surely if m > 4

max EiT-EpEi,- — tr(Zp)‘ < péJr%(logp)o'E’l , (34)
1,2
19550 ’ETJEJ - ”‘ < pztin (logp)*®' (35)
M(EX,ET) <\ (2 ) - (VP + /n(logn) + \/p2 (log p) 051(logn))2 < 1.5\ (%)) -p
(36)
M(EZpET) > M\(2p) - (Vo — v/n(logn) — \/p2 (logp) 051(logn))2 > 0.50,(%p) - p -
(37)

Proof This is a direct implication of Proposition 14 and Proposmon 15 with the choice
t = C’(logn)o5 (C > 0 large enough) and N = n —|—p2 (logp)o 51 Notice here that
(logp)O Sl < p for m > 4. [ |
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Proposition 18 Consider the same setting as in Proposition 17. If assumed in addition
that m > 8, then the following bounds hold almost surely for a fived v € RP

n
> (w0, Ei)? = |lofl?] < n®8 o) (38)
=1
n
> (0, Ei)| <% o]l (39)
=1

Proof [of Proposition 18] We start with the second statement. Define i.i.d. random vari-
ables w; := (v, Ej;.), then E[w;] = 0 and

n ] 4 . ) -
P <‘;Wz} > t) < E [(21;1 i) ] < CnE[Wl] +tZ (E[wi]) (40)

& 0.8 ,n?|oll* , 1
P ’Z‘MZN ol | £C 7 Scnlg ; (41)

i=1

with choice t = n%®||v||. Since the tail probability is summable w.r.t. n, Borell-Cantelli
Lemma proved the almost surely statement.

Define w? = (v, E; )2, then E[w?] = |v||> and
4
Ewi]=E | (D> viEi;) | <C(O_vj+> vid) <Clo|* . (42)
J€lp] J J#5!

By Chebyshev’s inequality

n . 7
P <| > wi—Ew]]| > t) < 3 : (43)
i=1
It is easy to see that

£|(3wi - )’

< C (nEl(w} ~ Elwi))'] + n?(Var[w?])?) < C'n?|lo]*,

as Var[w?] < E[w}] and E[(w? — E[w?])4] < C|lv||® if E;; has uniformly bounded m-th

)

moment with m > 8. Now choose t = n%®||v||?, we have
n 2 8
il ;1
P (;(Zz —Elz]) 2 t) <C (n08|v[[2)4 =C nl2 (44)
The proof is again complete using the Borell-Cantelli Lemma. |
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Appendix C. Proofs for Section 6

In this section, we use ®, € R"*P, X,, € R"*% to denote the embedded feature matrix
and the original design matrix respectively. Y,, € R" the response vector, and Y, o X,, =

[y1x17 o 7ynxn]—r S RnXd-
Proof [of Lemma 6] It can be verified that, based on the definition of Hadamard product

1fs M7 = 17 [(Yo 0 X0) (Yo 0 Xa) 171 (45)
Due to the rotational invariance of Gaussian, the distribution of Hfan%( stays unchanged

under the actions of the orthogonal groups on RY. Therefore one can without loss of
generality assume 9, = ej, then

YyoX, =[ul+g, 2], geR"ZecR™ID (46)

where each entry of g, Z is drawn i.i.d. from N(0,1/d).
Now, by the Woodbury formula

(Z2ZT) 7 (pl+ g)(pl +g) " [2Z7] 7!

T1-1 _ T1-1 _
[(VnoX,)(YeoXn) ' =[22"] ol 22T il tg) (47)
thus
2 dzst T T1—1 (1T[ZZT]71(M1 +g))2
IFsulle = T2 o Gz G T g )
12277 (1447(227] 7 g) - (1T 1227) ) (49)
L+ (pl+9)'[ZZT] 71 (pl + g)
Using Proposition 16, we have that with probability at least 1 — 4 exp(—t)
(u1+9)' 227 (p1 + g) (50)
Y
—2 t+ (1 — 2[ 51
> [i*n = 2u\/4 NG T ﬁ+2¢2) (51)
> i (1= O(iw) (52)
Similarly, with probability at least 1 — 5exp(—t),
R R LU [ (53
Ti1-2 %
< o+ O | (54)
and
17(zZ"]7'1 <n( L4 ! ) (55)
voliog /oLt
gnw‘f (14 O(/i7m) (56)
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Putting the above three estimates together, with probability at least 1 —9exp(—t), we have

175, 1% < wf/}w“ +O(/in) . (57)

Take t = 11logn yields

: 2 Y

1 2 . — .S. 58

im sup 1 fsull7 < o (58)
by using the Borell-Cantelli Lemma. |

Proof [of Lemma 7] For the lower bound, let’s first condition on x; = 2 and project Xg, \;
to the normal vector Z = x/||z[|, which denoted as v = Xg, \;Il, € R". We know

zlz— a:TXSTn\i[Xsn\iX;n\i}’lXSn\ix (59)
= ol (1= " [wo" + Xg,\ Tz X§ (') (60)
(0T [Xg iz X, ;] 710)?
= [l2l* { 1= [0 [Xg\illg Xg, )] 1o — = (61)
: ) Sn I+ vT[Xsn\iH%X;\i]‘lv}
1
2

— , 62
HIH 1+07T [XSn\iHa%XsTn\i]_lv ( )

Now we will upper bound v ' [X Sn\iHjXSTn\i]*lv. Define a vector u, which is the projection
of the matrix Xg, \; to the vector space

0 =1, — (V,,7)% € RY (63)

u=Xg ]I - (64)

By construction, 9 L . We can verify that

T [ X XS 7o 0T + 22717 (65)

(v [Z2Z7T]  u)?
1441 [ZZT)

=0 [2Z2"] (66)
where (v,u) is independent of Z and that Z € R™*(?=2) has i.i.d. entries Z;; ~ N'(0,1/d).

Let’s analyze the distribution of each entry of w,v € R™ conditioned on x. Define
r=(z,0)

L o @
vi = pryi + —=g; » g; ~N(0,1) , 67
uryit o0 g (0,1) (67)

1 2 [C) (2)

22



LABEL INTERPOLATION

with g(l), 9(2)7 Z mutually independent. Using the Proposition 16, we have

2T6 ogn
OT (227} )T 1227 ) - 7 (227) e < S o 2EY) (69

and
1
W22 > 2=t — 0(y/ 8™ (70)
P —1 n
Combining with the concentration bound on r? = %(1 +O( lofb")), we finish the proof.
|

Proof [of Theorem 10] The proof proceeds in a similar way as in Lemma 6,
Hﬁ%”%{ = 1T[(Yn 0 ®p)(Yy 0 (I)N>T]_11 :

Define the projection matrix Iy, and IIj := I, —IIy, and E = [¢;;] € R™*P. With this
notation we have

(Yn o (I)n)(yn o (I)n)T = (N]-Q?I + EZl/Q)(Hﬁ* + Hﬁ*)(ulﬂj + EZl/Q)T (71)
=(l+g)(ul+g) +22" (72)

with Z := EXV2IIL € R™*P and g := EXY/29, € R"

cov(gi) = 0] ¥, (73)
cov(Z;) = Iy XIIg, (74)
cov(gi, Z;) = 19121‘[1%* (75)

across 1 < i < n, {g;, Z;} are mutually independent. Recall Equation (47), we know

(1T(2Z7) (il + g))?

IFsulle =212~ G g 2 T 7 g) 7
C1T[zZT) M (1447227 ) - (1T [227) ) o

a L+ (u1 +9)T[Z2Z7] 7 (ul + g)
17(zz") 711 (1+g¢"[2Z7]7g) 9)

L+ (p1+9)"[ZZ7T] 7 (ul + g)

Now we are going to lower bound (u1+¢)"[ZZT]71(u1 +g) and upper bound 1'[ZZT]711
and ¢'[ZZT]71g. We can verify that from Proposition 17

LA (Z)p > Anax(ZZ7) > Anin(ZZ7) > 0.50,(2)p (79)
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almost surely when p/logp > n and m > 4. Therefore, we have

1T[z27 1 < e, 1 (80)
T din(ZZ7) T O NE)p
T T1-1 lgl? AR D
Z7 < < - 1
g [ ] g —= )\min(ZZT) ~C )\p(z) p 9 (8 )
- 1+gl? _ P+ llgl* +2u(1,9)
14 9) T[22l + g) > M- = 82
C/l MQ + ﬁizﬁ* ﬁ (83)
- ME) po
In the above equations, we used the fact that almost surely on ¢
lgll? = n - 9] £0.] < n® - 9] $0,, (84)

[(1,9)| < 0% /9] TV, (85)

by using Proposition 18 with g; = <21/219*,Ei’.).
By Proposition 17, we have

1,2
Ry, < max |yipr, |* < 2(u + tr(8) + p2 ' (logp) ™) (86)

Putting things together, we know

s, 2 s (e 553) 1
1,2 Ap (X Ap (2
R2IEK < oy (42 4 1a() + pa o (log ) 2 P2 (sT)
n (n2+o7s0.), n
Itea =X »

Proof [of Corollary 11] The proof follows exactly the same steps as in Theorem 10, with
\j(X) substituted by A\;j(X) + A./p (with j being either 1 or p), and noting that R2 A S
P R%. Here we also used the fact that

Y, Dl 4+ 0,807, = 1T Mo (YY) 4 (Yo 0 @) (Yoo ®,) 7] 711, (88)

and the Hadamard product of A1, o (YnYnT) = A,. The rest of the proof follows as in
proof of Theorem 10 with ZZ T replaced by A\ I, + ZZ". [ |

Appendix D. Calculations for Figure 2

Consider m = oo, namely, the tail of ¢;; behaves sub-Gaussian. The diagram illustrating
the following cases is in Figure 2.

We use the asymptotic notations a(n) = b(n), a(n) 7 b(n) to denote the usual asymp-
totic ordering. We start with the interpolation case (no explicit regularization).
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e Consider the spectral decay A1(X) = A\,(X) and signal strength p? > tr(X):

n
2_p

- (yl - f5i71(xl)) ;j H = j

S
SIE
3\*—‘
S

This again confirms our O(1) cumulative regret result as in Lemma 6.

e Consider the spectral decay \;(X) =i~ %,i € [p] with a € (0,1/2) and signal strength
p? % p'=* (note that tr(X) = p!=® 2 7, = p2 (log p)*>!):

— if p'=* = n > p®, then
2 _ I _p
LS o) = 4 T L

— if p 2= n = p'~*, then

o e

n
i=1 p

e Consider the spectral decay \;(X) = i€lp
) =

with o € (0,1/2) and signal strength
max{p/n,p*} 3 p* 3 p'~* (note that tr( 3

]
Pl = v = p2 (log p)°3t):

— if n 2 p!'=®, then

o (1+0(1)) 1 p/n
K
— if n = p'=®, then
(r5

All the above scenarios correspond to the Red region in Figure 2.
For the ridge case with explicit regularization A., we first notice that the Red region
certainly correspond to o(1) error with the choice A\, = 0. Below we only consider how to

extend the region with a proper choice A, # 0.

e Consider the spectral decay \;(X) =i~%,7 € [p] with a € (0,1/2) and signal strength
©? 7~ p/n and overparametrization p® =~ n (the upper Yellow region in Figure 2):

— if u? < p, then with the choice of max{n, u%,p' =} 2 A\ 2 pAi(D)
3 (1+0(1))

2
fZ —fsia @) 30

25
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— if 4 7= p, then with the choice of max{n, % pA1(X)} 3 A 2 np?
(1 +0o(1))

—Z — Fsa (@) 3 02

FpY
L+p2ss n ™ onp

32— o(1)

e Consider the spectral decay \;(¥) =i~ %,i € [p] with a € (0,1/2) and signal strength
©? >~ p/n and overparametrization p® - u? (the lower Yellow region in Figure 2): with
the choice of p/u? 2 A\ 3 n, we know that A\, 2= p/u? = p'=® and A\, = p/u? = p?
(due to p* = p? and a < 1/2), and therefore

n n 2
1 = 2 ()" 1 P
- 7 7 N )\* = == = 1
n — (y szfl(x )) ~ 1 +M2% n ~ /4’42)\* O( )
Appendix E. Proofs for Section 7
Proof [of Lemma 12]

E [lfs.I% | Xn] (89)
=E [<YnYnT7 [K(Xn, XN>]71> ’ Xn] (90)
= (1 (Xn)7(Xn) T, [K (X, X)) 1) + {diag{1 = n¥(21), - 1= nd(an) }, [K (X, Xn)] ™)

(91)
/)
<|In + . 92
Il Z K70 — K X ) IK (X0 X, ] T (Ko, 01 o
Here the last line uses the Riesz representation theorem that n.(z) = (1x, )k, and
(1 ( X)) 1 (Xn) T (B (X, X)) ) = 1My, el < el (93)
|
Proof [of Lemma 13] For the first claim, observe that
1< dP, —dP_ o, dP; +dP_
- 1—n2(x)] = [ [1- (== 94
5 2 (- )] J -G 17 (94)
2dPydP-
= | ——— <2 [dP. AdP_ . 95
/dP++dP_—/ + (95)
For the second claim, let’s calculate the probability of each z; falls in the region
dP.
={rex | 3 + 5 @) €le, e} (96)
We have
dPy +dP- e '+1
P[xESE}:/ + <7 / dPy AdP- (97)
€S 2 2 Jzes.
e+l
< 5 (1—dypv(Py, Po)) . (98)
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Therefore, with union bound, we find

. e+l "
Plx; ¢S, V1<i<n|>|1- (1 —drv(Py, Po)) (99)
—1
>1- ¢ é+1n(1——dTV(P+,P,D . (100)

For x; ¢ S, one can verify

1—c¢
1+e€

1—n(z) <1— (—)% <4e . (101)
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