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Abstract

Attractive colloidal gels exhibit solid-like behavior at vanishingly small fractions of solids, ow-
ing to ramified space-spanning networks that form due to particle-particle interactions. These
networks give the gel its rigidity, and as the attraction between the particles grows, so does
the elasticity of the colloidal network formed. The emergence of this rigidity can be described
through a mean field approach; nonetheless, fundamental understanding of how rigidity varies
in gels of different attraction strengths is lacking. Moreover, recovering an accurate gelation
phase diagram based on the system’s variables have been an extremely challenging task. Under-
standing the nature of these fractal clusters, and how rigidity emerges from their connections is
key to controlling and designing gels with desirable properties. Here, we employ well-established
concepts of network science to interrogate and characterize the network of colloidal gels. We
construct a particle-level network, having all the spatial coordinates of colloids with different
attraction levels, and also identify polydisperse rigid fractal clusters using a Gaussian Mixture
Model, to form a coarse-grained cluster network that distinctly shows main physical features
of the colloidal gels. A simple mass-spring model then is used to recover quantitatively the

elasticity of colloidal gels from these cluster networks. Interrogating the resilience of these gel
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networks show that the elasticity of a gel (a dynamic property) is directly correlated to its
cluster network’s resilience (a static measure). Finally, we use the resilience investigations to
devise [and experimentally validate] a fully resolved phase diagram for colloidal gelation, with
a clear solid-liquid phase boundary using a single volume fraction of particles well beyond this

phase boundary.

Main

Structure formation through self-aggregation of particles is ubiquitous in natural and industrial
settings alike, with numerous examples from biological systems and living systems, to food
processing and consumer products. In case of passive attractive colloids, this self-assembly
at low and intermediate volume fractions of solid, results in space-spanning out-of-equilibrium
structures [1], that are commonly referred to as “gels” exhibiting a wide range of mechanical
and rheological properties [2-4]. Particle-particle bonds formed due to attractive surface forces
above a certain threshold of solid particles eventually construct particulate networks that in
turn govern the mechanical and rheological properties of colloidal gels. Of particular interest
has been emergence of rigidity in relatively small solid fraction, and a phase transition from
liquid- or even gas-like to solid-like behavior [5-9]. What is clear is that the elasticity in these
arrested and disordered amorphous solids emerge from the growth of fractal clusters of particles
that eventually percolate into a single network spanning the entire sample [10,11]. Some of the
gel mechanics and their dependence of state variables can be determined through mean field ap-
proximations [12,13]. However, large variations in mechanical and rheological properties of gels
with different attractive interactions can not be described nor explained by local microstruc-
tural measures of the system such as coordination number of particles [14,15]. Linear elasticity
models have been developed based upon contact between clusters that are locally and inter-
nally glassy in nature, recovering experimentally measured shear moduli of different gels [16-18].
Nonetheless, in both experiments, and in simulations, it is virtually impossible to identify clus-
ters of particles with confidence, and perform a consequent study to confirm these mean field
approximations. One would argue that the key to constructing robust microstructure-property
relationships in these systems is identifying particle clusters and their emergent networks, as
opposed to a local description of the system at individual particle-level.

Network science aims at understanding the emergent phenomena often observed in complex
systems by focusing on the patterns of connections between the constituent parts of a system
instead of focusing on the individual parts [19,20]. This overall look at the collective behavior has

enabled thorough analyses of the structural and dynamical characteristics of complex systems



despite the sparsity of data due to spatiotemporal limitations of observing complex systems
[21,22]. Thus network science has been providing pivotal tools for understanding the relationship
between structure and function of complex systems in various disciplines ranging from biology,
medicine, and neuroscience to epidemiology, ecology, and social sciences [23—29]. One of the
cornerstones of network science is the classification of groups of nodes with varying size into
clustered elements that are similar to each other with respect to common attributes. The
calculation of modularity and detection of clustered structures (community detection) can be
done in various ways, unveiling hidden characteristics in many social and biological networks
[30-32].

In this work, we leverage advances in network science to accurately identify colloidal clus-
ters within a single giant network of particles, and recover the elastic response of the emergent
gels from a coarse-grained cluster network. By doing so, we provide a systematic pathway to
recovering mechanics of a complex network, from a single snapshot of a system at quiescent
conditions. Our results clearly show a one-to-one correspondence between “elasticity in partic-
ulate systems” and “resilience in complex networks”. Furthermore, the analysis of the resulting
networks and their corresponding elastic moduli help us identify phase maps from simulations
of a single volume fraction of colloidal particles, far beyond the phase boundaries that make

experimental and computational studies of the phase diagram challenging.

Coarse-graining the particulate network into clusters, and elasticity measure-

ments

The overarching scheme of the network analysis in colloidal gels of interest in this work is shown
in Fig. 1. Accurate large scale Dissipative Particle Dynamics (DPD) simulations are used to
model attractive colloidal gels at an intermediate volume fraction. DPD method has been em-
ployed previously in order to study the structural features of colloidal gels during the gelation,
as well as their rheological characteristics in the linear and non-linear flow regimes [15,33-35].
The depletion interaction between the colloidal particles leads to formation of thermo-reversible
bonds, and eventually into a space-spanning network of particles (Fig. 1la). We construct
colloidal networks from DPD simulations, where nodes represent particles and each particle-
particle bond is represented by an edge (Fig. 1b). Two particles are bonded if their interparticle
distance (r;;) is small enough for their attraction strength to exceed 5kgT.

In the next step, we infer the spatial location of nodes only from the network structure,
ignoring the actual spatial coordinates of particles to let the definition of particle-particle bond

drive the analysis. To allow for a natural selection of the size, shape, and number of particle
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Figure 1: Schematic view of the clustering and coarse-graining of the colloidal net-
work. (a) A magnified snapshot of the colloidal particles after gelation, (b) Network of inter-
particle bonds, (c) Clustered particles after GMM algorithm with coloring as visual aid, (d)
Coarse grained network, and (e) Spring network model of the coarse grained network. Snap-
shots of particles after gelation for (f) Uy = 6k T, (g) Up = 12kgT, and (h) Uy = 21kg T}
Insets show a portion of the interparticle networks. (i) Coordination number distribution, and
(j) Harmonic centrality distribution at different attraction levels.

clusters as opposed to imposing biased constraints, we identified clusters of particles using
Gaussian Mizture Model (GMM), a spatial clustering method that considers each cluster as
a different Gaussian distribution (Fig. 1c). This is done through an unsupervised exhaustive
algorithm, in which the number of clusters in the system as well as each cluster’s individual
colloids are rigorously identified based on a Bayesian Information Criterion (BIC). By doing
so, we ensure that no adjustable parameters are included in the cluster identification (a.k.a.
community detection) algorithm used. Next, we shift focus from particles to clusters by building
a cluster network, enabling us to characterize the interactions between clusters of particles (Fig
1d). Finally, we translate the cluster network into a mass-spring model to calculate the elastic
moduli of the colloidal gels (Fig. le). Detailed description of all algorithms developed and used

throughout this study can be found in the methods section.

Particle-level analysis

We simulate gels with different attraction levels from Uy = 6 — 30kg 7T, with a range of 0.1a
(a being the particle radius) at the volume fraction of (¢ = 20%), consistent with reported
experiments [6]. In a series of reports, using the same state variables, roughly an order of mag-
nitude increase is reported for the elastic moduli of the gels as the attraction increases [6,16,36].
Nonetheless, this significant rise of elastic modulus cannot be described through particle-level

descriptors of the system such as coordination number and/or fabric tensor [33,37]. Visual



inspection of the gels as represented in Fig. 1f-h for three different strengths of attraction
(6,12,21kpT) also does not indicate distinguishable differences in the domain size or porosity
of the resulting particulate networks. In Fig. 1f,g and h particles are color coded based on their
coordination number (the number of a particle’s contacting neighbors). To further quantify the
microstructural features of each gel, the distribution of contacts per particle (i.e. coordination
number) at different attraction levels are shown in Fig. 1i, indicating a rather insignificant dif-
ference in the particle-level structure. Note that coordination number of a particle is equivalent
to the degree of a node in network analogy.

Another quality of a network is its level of inter-connectedness and how closely nodes within
a network are connected to one another. This feature can be quantified by calculating the
harmonic centrality of nodes in the network defined as he; = 3 ., 1/d(i, j), where parameter
d(i,7) is the minimum distance between nodes ¢ and j belonging to the same network [38]. This
is calculated by finding the shortest path, the minimum number of walks along the network,
that has to be taken from node i to reach node j. Hence, higher harmonic centralities account
for higher accessibility of nodes to each other in the network. The distributions of harmonic
centrality do not show any systematic differences for gels formed under varying attraction levels
(Fig. 1j). These findings indicate that the characteristics of particle networks alone do not reflect
the variations observed in the rigidity of the overall gels. Indeed, this is not surprising since
many studies focused on the coordination number of particles and their spatial characteristics
also failed to recover the mechanics of colloidal gels. Following the work of Whitaker et al. [16]
where the authors found that minimally connected gel clusters correlate with the elasticity of
the entire gel, we hypothesize that the appropriate scale describing the mechanics of gels is the
mesoscale cluster length scale. As such, we shift our focus from the characteristics of individual

particles to identifying and understanding clusters of particles instead.

Cluster-level analysis

Considering the inadequacy of the particle-level information, as described in the previous
section, one will critically need to identify particle clusters in gel networks. Previous work
of Whitaker et al. [16] used a [-balanced graph theory, to identify clusters of a fixed length
scale (from experimental measurement of a correlation length). Nonetheless, experimental re-
ports suggest that reaction-limited aggregation of colloids lead to large polydispersity in cluster
size [5]. Mass-polydispersity of clusters was also observed via confocal microscopy [39]. Topo-
logical clustering of computationally simulated gels also result in clusters of varying sizes [40].

Theoretically, seminal work of Shih and Shih [41] had established that there exists an average



cluster size, that can be used to recover the yield stress or limit of linearity scalings of colloidal
gels through a mean field approximation. Indeed, the work of Whitaker and coworkers [16] used
this single length scale for clusters in conjunction with a mean-field description (Cauchy-Born
theorem) to recover the elasticity of colloidal gels; however, this does not mean that all clusters
within the gel structure are mono-sized. These gels are disordered arrested structures with

fractal-like topologies that naturally bring about the polydispersity of the clusters.

On the other hand, results in Fig. 1i suggest that it is safe to assume a Gaussian distribution
for the degrees of nodes (coordination numbers) in the network of particles. As these systems
represent self-similar structures that hold at smaller scales, it is plausible to assume that each
cluster will involve a Gaussian degree distribution within itself. The goal thus is to rigorously and
without any adjustable parameters, identify clusters of particles in which a Gaussian distribution
is present for the number of particle contacts. In this work, we employ GMM to identify clusters
as individual contributions to a total mixture of Gaussian distributions with varying shapes and

size.

In this approach, the optimal number of clusters is identified by minimizing a Bayesian
Information Criterion (BIC) function that is recursively calculated for all possible cluster com-
binations [from one cluster representing the network, down to each cluster having only one
particle in its structure]. The BIC values for different cluster numbers are presented in Fig.
S3, marking the optimum number of clusters for each attraction strength between the particles.
Additionally, the actual spatial configuration of nodes were not considered in identification of
clusters. Instead, the spatial configuration of nodes were converted into vectors, allowing for a
series of embedded 3-dimensional coordinates using the Uniform Manifold Approzimation and
Projection (UMAP) method. Such dimension reduction and graph learning through Node2Vec
are commonly used to learn lower-dimensional embedding of the nodes. A schematic view of

the process for cluster identification in this analysis is illustrated in Fig S1.

We use two different definitions for the cluster diameter to ensure that identified clusters are
indeed rigid assemblages of colloids. From the physical stand point, we define physical diameter
of a cluster as the diameter of the sphere that contains all individual particles in that cluster,
denoted by Dpp,.. From a network perspective diameter of the cluster can be expressed as the
length of the longest shortest path connecting two nodes (the minimum number of walks along
edges needed to connect any two nodes within a cluster) in that cluster, Dy;.. For the clusters
to remain rigid, as the physical diameter grows, so must the network diameter at the same
rate. Up to the network distance of eight (8) the physical-distance and network-distance are

almost identical (Fig. S2). This is rather consistent with the correlation length found in [16]



for the cluster size and set the largest length scale for the individual clusters identified here.
Since clusters with Dy > 8 are assumed to no longer be rigid in nature, we apply GMM
recursively to partition those clusters into sub-groups of particles with Dy.:. < 8. Lastly, upon
clustering process, a limited number of clusters of size one and two are also identified (referred
to as orphan nodes), which are consequently removed from the remaining analysis. This is to
ensure that a collection of cohesively connected particles are included in the study. Note that

these nodes account for < 0.7% of the particle population for different attraction strengths.

Snapshots of forty randomly selected clusters annotated by our approach for two different
attraction strengths are shown in Fig. 2a and b. Nodes belonging to the same cluster are
colored similarly to aid visual inspection of clusters. We observe more compact clusters for the
weak gel (Uy = 6kpT'), compared to the strong gel (Uy = 30kpT) which shows relatively more
elongated clusters in the final gel. This is in agreement with previous descriptions of structural
heterogeneity in clusters of more attractive colloids [42]. Considering the monodispersity of
colloidal particles in diameter, we define cluster mass as the number of particles in a cluster.
The comparison of the physical cluster mass with the network-based cluster diameter (D yet)
across all attraction levels also confirms the existence of more elongated clusters in gels formed
by higher attraction strengths (Fig. 2c). For instance, given a fixed cluster mass, cluster
diameter of the gel formed at Uy = 30kp T is larger than the ones observed in the weaker gels.
On the other hand, the distribution of cluster mass (denoted by Mcyyster) and network-based
cluster diameter in Fig. 2d,e show attraction-independent behavior, indicating that the higher
internal cluster interconnectivity in the network of weaker gels does not originate from the mass

and diameter differences of clusters.

From a physical perspective, stronger gels yield smaller internal volume fractions, from
¢g = 0.18 for Uy = 6kpT to ¢, = 0.14 for Uy = 30kpT. However, clusters of stronger
gels are larger in diameter (the smallest sphere that embodies all the particles in the cluster),
and the total volume of the clusters grow significantly as the attraction strength increases,
reaching fractions of ¢cyster > 0.9 (Fig. 2f). Note that since clusters are polydisperse in
nature, the fraction of these clusters can easily surpass values measured for glassy regime in
monodisperse clusters as proposed by Whitaker et al. [16]. Clusters represent fractal structures
made from individual particles; hence, their internal microstructure can be quantified through
a fractal dimension. Here, we define two different measures of the fractal dimension, based on
physical measures, and network measures (Fig. 2g) of the annotated clusters. Mathematically,

Phys. log(Ry)

the physical fractal dimension, d?hy‘, can be defined as df og(Morare)? R, being the

radius of gyration of the cluster, and the network fractal dimension, d}v - can be written as
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Figure 2: Analysis of the coarse grained cluster network. Snapshots of 40 clusters at (a)
Uy = 6kg T, and (b) Up = 30k T. (c) Cluster mass versus cluster diameter. Distribution of
(d) cluster mass, and (e) cluster diameter (dyet.) versus attraction level. (f) Internal (black)
and external (red) cluster volume fractions versus attraction strength. (g) Fractal dimension of
clusters calculated in physical (black), and network (red) dimensions. (h) Cluster coordination
number (Z), and (i) Normalized harmonic centrality versus attraction strength.

dNet. — log(Dnet.)
f 1Og(‘]\4clustﬁ7‘) ’

With the annotated clusters of particles, we construct a cluster network of the gel, in which
nodes are clusters connected by an edge if there exist a boundary edge or orphan particle be-
tween them. These edges are weighted by the number of boundary edges and orphan particles
connecting two clusters given the structure of the particle network. While the particle-level
characterization of the gel network does not indicate attraction-dependent properties (Fig. 1i
and j), the cluster network at different attraction levels show distinct features and character-
istics. For instance, the degree (i.e., cluster coordination number) and harmonic centrality
distributions of clusters in the cluster network show a clear shift towards larger values as the
attraction strength increases (Fig. 2h and i). That indicates higher inter-connectivity in the
cluster network as the attraction strength increases between individual particles. That can be
further interrogated through harmonic centrality of the clusters in the cluster network shown
in Fig. 2i. While the harmonic centrality measurement for the network of individual colloids in
Fig. 1j showed no visible differences between different values of attraction strength, the same

measure shows a clear and systematic increase of inter-connectivity in the network of clusters.

Elastic modulus and resilience of a gel network

The mechanics of the constructed cluster networks can be further investigated using a simple



spring network model (See SI Methods section). Each cluster (regardless of the diameter) is
represented by a mass, and edges are replicated through a spring whose constant reflects the
length of the shortest path connecting the cluster pair. In these calculations, we assume that
the cluster networks are in mechanical equilibrium, then their elasticity is measured in response
to an infinitesimal affine strain deformation using the Born-Huang formulation [43]. Note that
more complex models, reflecting on the size, shape, and volume fraction of cluster are possible;
however, the goal is to assess the ability of a crude cluster network without specific particle-level
information to describe the rigidity of colloidal gels.

An important feature of the mass-spring model calculations presented here is the spring
constants used to describe the cluster-cluster connections. For approximation of the stiffness
of inter-cluster bonds, we use the polymer chain stiffness theorem in which the stiffness of a
chain is approximated as a function of both the single particle-particle stiffness, and the size of
the backbone of the chain. In particular, stiffness of a cluster-cluster connection of length d;;
is estimated as Ks(U/kpT,d;j) = —Ks(U/kpT,1) x log(ﬁ))/log(l/Q), where Ks(U/kpT, 1)
is the stiffness of a single particle-level bond and d;; is the lengths of the longest shortest path
within the cluster (this is the equivalent of the size of the cluster backbone). The bond stiffness
values obtained from this approximation are compared to the experimentally measured results
of Dinsmore et al. [39] in Fig. S4, showing an excellent tracking of the bond stiffness values
from experiments.

Fig. 3a shows the elastic shear moduli of the gels at different attraction levels compared
to the experimental measurements of the depletion gels at similar system variables (solid frac-
tion, and attraction range/strength) [6]. Our coarse-grained spring network model recovers the
elasticity of the gels quantitatively, strongly suggesting that: (i) our network-based approach
identifies particle clusters correctly, and (ii) the cluster-level information is indeed necessary
and sufficient for the recovery of rigidity in colloidal gels. Having established that the mesoscale
cluster network is reflective of the gel mechanics at the macroscopic level, one can interrogate
the cluster network’s characteristics and their correlations with the physical properties of col-
loidal gels. In particular, here we study the resilience of cluster networks and their correlation

to the elasticity of colloidal gels.

Resilience

Used routinely as a key characteristic of many complex systems, resilience is generally defined
as a complex system’s ability to retain its basic functionality upon exposure to defaults [44-48].

Defined mathematically based on changes in a particular function over time, as an environmen-
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Figure 3: Elastic modulus and network resilience against edge removal. (a) Elastic
modulus, G’, of different colloidal gels versus attraction strength. (b) Number of connected
components versus number of removed edges, inset shows number of connected components
versus percentage of removed edges. (c¢) The largest connected component (LCC) versus number
of removed edges, inset shows LCC versus percentage of removed edges. (d) Elastic modulus,
G’, versus number of removed edges for different attraction strengths, calculated from three
scenarios of edge removal: betweenness-ascending (dashed line), betweenness-descending (solid
line) and random (dotted line). (e) Elastic modulus loss (AG’ = G’ — G},) normalized by the
initial value of the elastic modulus before edge removal (G{)) versus bond index. (f) Shear
modulus versus the percentage of removed edges in a betweenness-descending manner, inset
shows shear modulus versus percentage of removed edges.

tal change is posed, resilience is commonly referred to the point at which non-linear changes in a
system’s performance is observed. Here, we studied the resilience of colloidal networks as their
ability to maintain functional properties upon loss of edges. Hence, the order by which edges
are removed from a network can significantly impact its resilience. One approach to appropri-
ately assess resilience in a network is edge removal based on betweenness centrality as it targets
the most central edges in providing shortest connections in that network. It should be noted
that edge betweenness centrality is primarily introduced in the Girvan-Newman algorithm, a
community detection technique for partitioning a network into clusters of cohesively connected
nodes [30]. In this algorithm, edges with the highest betweenness centrality are progressively
removed until no edges remain (See Methods). The number of connected components in each
system against the number of edges removed, for the studied attraction strengths are shown
in Fig. 3b. Note that the algorithm is applied on the cluster network, and thus the total

number of nodes identify the number of clusters in the system. For a fixed number of removed
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edges, cluster networks at higher attraction strengths consistently have a smaller number of
connected components, i.e. are more resilient to the removal of central edges. That remains
valid even when the number of connected components and removed edges are normalized by
the total number of nodes and edges, respectively, in each cluster network (inset of Fig. 3b).
This further suggests that even for the same number of clusters, and the same number of edges
between clusters, networks formed at higher attraction strengths are more resilient to loss of

cluster-cluster connections.

While the number of connected components is a measure of how a network reacts to the
loss of an edge, it is the largest connected component (LCC) within the system that remains
responsible for the elasticity of a gel. Fig. 3c shows the size of LCCs in cluster networks
normalized by the network size, against the number of removed edges. We observe that removal
of the first %5 of connections among the clusters does not change the size of LCCs. Afterwards,
LCCs in cluster networks with higher attractions tend to generally be larger than the ones for
the lower attractions at any given number of removed edges, i.e. exhibit more resilient behavior.
The trends in the inset of 3c, the size of LCCs against the percentage of total removed edges,
further suggests that the resilience of the stronger gels does not solely originate from their higher

number of connections.

The dynamic gel property of interest during the resilience study is chosen to be its elasticity.
While the higher resilience of gels with higher attraction strength between the particles is
qualitatively demonstrated through results in 3b/c, as mentioned before the order of bond loss
(which bond is cut from the network first) is a consequential decision to make. To further test
this hypothesis, physical resilience of the cluster networks are studied upon removal of edges in
a series of separate simulations. One would expect that loss of different edges will have different
effects on the mechanics of the cluster network. To show these significantly different effects on
the elasticity of the network, we also performed an exhaustive series of simulations where one
single edge is removed from the initial cluster network in each simulation. The loss of elasticity
upon each edge removal trial is sorted in an ascending order and presented in Fig. 3e. These
clearly show that loss of elasticity upon elimination of a single connection between clusters can
vary over seven orders of magnitude, suggesting that loss of some edges have minimal effect on
the networks modulus while other edges’ removal can result in detriment of bulk elasticity up to
%8 of its initial value. Further analyzing the edges for which the highest levels of elasticity losses
are measured revealed that the betweenness centrality of an edge is significantly correlated with
the elasticity loss (Fig. S5). As the betweenness centrality of an edge reflects its relative role in

the transmission of stress across a system, edges of higher betweenness centrality will be more
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likely to localize stresses and play a crucial role in material failure. In other words, edges with
higher betweenness centrality contribute more to the rigidity of a gel network.

This can be directly examined by a series of resilience studies, in which edges are removed
based on different scenarios and the remaining structure’s elasticity is measured by the mass-
spring model. Fig. 3d shows the elastic moduli of the networks against the number of removed
springs from the system using three edge removal approaches: (1) random, (2) ascending order
of betweenness centrality, and (3) descending order of betweenness centrality. These results
further confirm that edges with higher values of betweenness centrality are more essential to
gels’ rigidity as their removal results in a more rapid loss of elasticity. This strongly suggests
that the edge betweenness centrality can be used as an indicator of the failure points in the
structure of colloidal gels.

Once the appropriate mode of edge removal is established (in descending edge betweenness
centrality order), a thorough investigation of the elasticity-resilience correlation can be per-
formed on the cluster networks. In Fig. 3f, the moduli of the gels were measured for cluster
networks as they lost edges within their structure until no elastic response could be recovered
for the system. These results once again confirm that gels formed at higher attraction strengths
are more resilient to loss of a cluster-cluster spring, as higher elastic moduli are measured for
those with the same number of removed edges. This is valid even when normalizing the number

of removed springs to the total number of springs in the system (inset to Fig. 3f).

Gelation phase boundary.

In results presented in Fig. 3, for each edge removal instance, the rigidity is determined by its
largest connected component. With the resilience measurement and the elastic moduli calcu-
lated from the spring network model, one can find a threshold at which the rigidity emerges in
a cluster network. To do so, the actual volume fraction of the largest connected component re-
maining in the system is measured upon removal of the edges. However, a singular definition to
be applied to a gel and identify whether it can be considered “rigid” does not exist. Thus, here,
and to remain consistent with experimental measurements in [6,7,16], we chose G =0.1Pa as
the criterion for identifying a network as rigid.

In Fig. 4.a, we plot the gelation phase boundary, measured from the resilience analysis,
where the volume fraction, ¢critical, is the fraction of colloids in the largest connected compo-
nent. The lower and upper boundaries of solid fraction are the required volume fractions to
satisfy the rigidity condition, G =0.1Pa. This phase diagram is reminiscent of what has been

suggested by experiments and theory [1,7], clearly showing a gelation at lower solid fractions
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Figure 4: Gelation phase boundary. (a) The minimum and maximum solid fractions re-
quired for the emergence of elasticity. Data points are determined from resilience analysis, and
the phase boundaries (black dashed lines) show the minimum and maximum volume fractions
where @ > 0.1Pa. Fluid states are shown by a cross symbol and rigid states are shown by
filled circles. The red dashed line represents the percolation line where the average coordina-
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Red symbols indicate the experimental results for the fluid (cross) and gel (filled circles) states.
Snapshots of the particulate structures are shown for the lower bound of solid fractions that
satisfy rigidity at (b) 30ks 7, (c) 15kg7 and (b) 6k, and also the higher bounds at (e) 30kg T,
(f) 15kgr and (g) 6k, compared to experimentally observed structures from the confocal mi-
croscopy of PMMA depletion gels at the same system variables. The scale bar in the confocal
images is 10um.

for higher attraction strengths. Our results suggest that for strong gels (U/kgT > 15) the
minimum volume fraction of ¢ = 0.05 is required for a rigid gel to emerge, and as soon as a
percolated network is formed. On the other hand, for weak gels of (U/kpT < 15), percolation
(the dashed red line) simply does not result in rigidity, and significantly larger fractions of col-
loids are required for an elastic gel to form. To further validate the predicted gelation phase
diagram and the phase boundaries in Fig. 4.a, we experimentally study the gelation behavior
of sterically stabilized, charge screened poly(methyl methacrylate) (PMMA) colloids suspended
in a solvent containing polystyrene as a short-range depletant. The experimental phase space
spans nearly the entire range of U/kT and ¢ values shown in Fig. 4. Representative confo-
cal microscopy images of the PMMA colloidal gels at three different attraction strengths and
different volume fractions are shown in Fig. 4.b-g, compared to the snapshots from the simula-
tions, showing visually that the network resilience-based reconstruction of the phase diagram is
accurate in predicting the gel-fluid states. A side-by-side comparative view of the structure at

long times, from the simulations and the confocal imaging is provided in Supplemental Video
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S1. To further proof the state of particulate structure beyond a visual inspection, micrody-
namical and microstructural data were obtained from the confocal microscopy images, and are
presented in Fig. S7. We also performed a series of simulations at the same volume fractions
as experimentally investigated to ensure that the microstructural and microdynamical evolu-
tions of the system are indeed appropriately captured in our simulation scheme. The results in
Fig. S7.a~-d show comparison of van Hove self correlations for three different volume fractions
and two different attraction strengths measured experimentally and computationally, showing
a close agreement between the two. These self-correlation graphs as well as the experimentally
measured ensemble-averaged diffusion of particles show clear differences between ungelled and
gelled samples. Specifically, colloidal gels demonstrate kinetic arrest through a significantly
reduced mean squared displacement that is independent of lag time, while ungelled particulates
and “clusters of fluids” states exhibit mostly diffusive motion even at very long times. These are
shown clearly in Fig. S7.e, where the mean squared displacement of particles are plotted against
the lag time for a number of different systems. Similarly, the van Hove self-correlations of the
particle displacement, obtained from experimental measurements and simulations, both demar-
cate the gel states from fluid clusters and freely dispersed particles. Videos from the confocal
microscopy showing the different structures of the colloidal systems in gelled, clusters of fluid,
and diffusive states are provided in Supplemental Videos S2-4 respectively, clearly indicating

that the structures observed are indeed stable at long times.

Conclusions

We have shown through a series of detailed particle-level simulations, network analyses and
spring-network modeling benchmarked and validated against experimental measurements that
the general mechanics of colloidal gels as space-spanning networks of attractive colloids can
be studied with respect to their network characteristics. We adapted a Gaussian Mixture
Model (GMM) methodology to annotate rigid clusters formed at the mesoscale, and showed
that cluster-level networks exhibit distinct features not detectable at particle-level networks.
Namely, particle clusters show an increased number of cluster-cluster connections and harmonic
centralities as the strength of attraction between individual particles increases. These poly-
dispersed fractal clusters can occupy up to 90% of the entire sample volume, with decreasing
internal volume fraction at higher strengths of attraction. The physical- and network-based
fractal dimensions of annotated clusters are also consistent with the theoretical mean field pre-
dictions. We then showed that a simple mass-spring model of the cluster networks can recover

elastic moduli of the gels quantitatively, compared with the experimental measurements.
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To measure elasticity of a system, one needs to study dynamic response of that system
to an applied deformation. We showed that elasticity of a gel network is correlated with its
resilience. This is significant, as resilience of a network can be interrogated from snapshots of
a system, without a need for dynamical information. Hence, one can use resilience of a gel
network as a proxy to its elasticity. More importantly, these resilience analyses enabled us to
construct a fully resolved phase diagram for colloidal gelation, from a series of simulations at a
single colloidal volume fraction well beyond the solid-liquid phase boundary. Further validation
of the network-predicted phase diagram through experiments shows that the phase boundary
and the gel/fluid states recovered from the network and resilience analysis are indeed observed
experimentally. This is further demonstrated using detailed calculations of the mean squared
displacement of particles at different volume fractions and attraction strengths, as well as van
Hove self correlations of the examined attractive colloidal systems. In practice, this means that
with a very few selected experiments/simulations resolved at the particle level, and employing
these network investigations one can construct detailed state diagrams without exploring the
entire phase space. Even though our results are based on short-range attractive colloids, we
believe our methodology is applicable to a wide range of particulate systems well beyond colloidal

gels.

Methods

Dissipative Particle Dynamics, DPD, simulations

Dissipative Particle Dynamics (DPD) is a discrete model, formulated to simulate the motion
of a fluid through explicit pairwise interactions.

The equation of motion for the DPD method is as follows:

N,
dv;, £
m; dt’:} (F§ +F) +FE+FI+FY) (1)
i, 7]

The background solvent particles interact through the first three terms on the right hand

¢ gD

side of eq.1, where F: , Fi/ , Fg- represent the pairwise conservative, dissipative and random

forces respectively and are calculated as follows.

FY = oy04(ijy) 0501 ey )
F[ = yywi; (1) (Vijey)ey ¥
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F{ = aywii(ry)e; (4)

wij = (1 = ry/re) (5)

The canonical ensemble is formed through the random and dissipative forces where the
fluctuation-dissipation requirements is satisfied in connection with those. The random force
eq.2 introduces thermal fluctuations via a random function, ©;. Those fluctuations are then
dissipated by the dissipative force eq.3 that acts against the relative motion of particles v;; =
v;i— V4. The strength of dissipaton is determined via 7;; which is coupled with the thermal noise,
0. The dimensionless temperature is then determined from the random and dissipative terms
kgl = a?j/ 2. Atis the simulation time step and e;; is the unit vector for interparticle distance.
Finally, the chemical identity of a particle based on its chemical potential/solubility in the
system is determined through conservative force eq.4, where a;; is the conservative parameter.
The random, dissipative and conservative forces are explicit functions of interparticle distance

through a weight function (eq.5).

The solvent particles and colloidal particles also interact through the same three forces.
Furthermore, for the colloid-colloid interactions, the conservative forces are excluded and two
other terms are introduced instead. First, a hydrodynamic force F¥ is solved for the particles

of the solid phase and is formulated as follows:
FZ" = uf}’(vzj - ej)eq, (6)

FH represents a short-ranged lubrication force and depends on the drag term where hi; rep-
resents the surface-surface distance between two colloidal particles. p;; = 3mnoa;aj/2a;; is the
pair drag ter where a; and ag are the radii of the interacting colloids. In addition to the
hydrodynamic force, the interparticle attraction between colloidal particles is modeled via A
short-ranged attractive potential [50]. Specifically, Morse potential is used to induce attraction

and is calculated as follows:
Uniorse = U0(2€_Hhij - 6_2Hhij)v (7)

where Uy determines the depth of attraction well and x~! is the range of attraction.

16



Node representation in latent space

To represent colloidal particles in a lower dimensional space, 3D in our study, we initially
applied the node2vec model to obtain a representation matrix for particles and then reduced
their dimensions to three by a non-parametric manifold learning technique called UMAP. Both
models are addressed in details in the following subsections.

node2vec. node2vec is a semi-supervised algorithm that utilizes a random walk-based and
stochastic gradient descent approaches to learn feature representation of nodes in a network.
To do so, it defines a network neighborhood set for every node in the network through a fixed-
length second order random walk sampling strategy guided by two parameters p and g. These
parameters control how fast a walk explores the neighborhood of the starting node (In this
study, p and ¢ are set to their default values, i.e., one). Assume we attempt to define a network
neighborhood for node ¢ in an unweighted graph. If node v is visited in an initial random walk
from ¢, transition probability from v is set by the following rule which incorporates the distance
of t to the neighbors of v. Traversed nodes after limited number of iterations (controlled by

walks per node parameter) are labeled as network neighborhoods of ¢.

5 ifdie =0

apg(t,2) = {1 if dyy = 1

g ifdy =2
After choosing a network neighborhood set for every nodes in the network, node2vec tries
to maximize the log probability of observing a neighbor for a node conditioned on its feature
vector. To do so, it implements stochastic gradient descent in the following objective function,

where f are feature representation vectors, V' is the set of nodes in the network, Ng(u) is a

network neighbor set for node u, and Z, = > oy exp(f(u) - f(v)).

m?X Z(—ZOQZu+ Z f(”)f(“))

ueV vENg(u)

Uniform Manifold Approximation and Projection (UMAP)

UMAP is a new manifold learning technique for dimensionality reduction that works in two
steps. In the first step, it constructs a fuzzy simplicial complex with the Riemannian geometry

theoretical framework. The outcome is a weighted graph describing the manifold structure of
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data which is then passed to a forced-directed graph layout algorithm to generate a layout in
a lower-dimensional space. It starts by defining an open set for every data point and assigning
a weighted edge between two overlapping open sets. Open sets are n-dimensional spheres with
a radius of one concerning a local distance function tuned to included k nearest neighbors of a
point. As a result, the edge weight between two data points x; and x; is a + b — a x b, where
a is a geodesic distance of x; on the Riemannian manifold of z;, and b is a geodesic distance of
x; on the Riemannian manifold of ;.

In the next step, UMAP applies a set of attractive (function 8) and repulsive forces (function
9) to a sample of nodes and edges iteratively to optimize the edgewise cross-entropy between
the weighted graph in the first step and an equivalent weighted graph constructed from points
embedded in the dimension of interest (denoted by Y'). Y is initialized by the eigenvector of

the normalized Laplacian matrix of the fuzzy graph constructed in the first step.

—2ab|ly; — y; |24V
1y — g2 o) 7
2b

1= wiy o) (Wi — y; 9
(e T )L+ ol — ) e 07 Y

Gaussian Mixture Models (GMM)

Gaussian mixture model or GMM is the most widely used mixture model that assumes each
base distribution is a multivariate Gaussian with unknown parameters (mean and covariance).
In case of having k different distributions with mixing coefficient of m; (parameters m;, Vi €
{1, ..., k} indicate contribution of every model to the overall distribution satisfying 0 < m; < 1
and Zle m; = 1), the marginal distribution of point z, is a Gaussian distribution of the

following form.

k

p(en) =Y milN (@i, ;) (10)

i=1
With equation (10), conditional probability (can also be seen as responsibility) of cluster i
for explaining data point xz,, is computed by the following equation.
p(zi = Vp(xalzi = 1) milN (@1, 3-;)

Zni) = = 11
) Y1 p(z = Dplanlzi =1) S5 mN (@aluy, 32)) -

Given equation (11), we use expectation-maximization algorithm to fit a mixture of k£ Gaus-
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sians to representations of N colloidal nodes in a lower dimensional space. This can be achieved

by maximizing L(p, >, 7) = SN In( Zle N (2|1, y;)) taking the following steps.

i : choose initial values for u;, Y ., m Vi € {1,...,k}, and evaluate the initial value of the

79

objective function L(u, >, )

ii : re-estimate parameters with the following equations obtained from setting derivatives
of the objective function to zero. Note that m; = 27]:/:1 ~¥(2zni) estimating the number of

points assigned to cluster .

N
- M = miz Zn:l ’Y(an)
Y= e A ) (o — ) (o — i)

=

iii : re-evaluate the objective function. If the convergence criterion is not met, return to step
(ii)

To choose the optimal number of clusters, we run GMM across a wide range of values for k
and select the one that minimizes the Bayesian Information Criterion (BIC) function given in
equation (12). L*(u, Y., 7) is the maximum log-likelihood of the estimated Gaussian mixture

model for the corresponding k.

BIC(k, 11,3, 1) = kln(N) — 2 x L*(u1, 3", 70) (12)

Girvan-Newman algorithm

Edge betweenness centrality of an edge is the sum of the fraction of all shortest paths
between two nodes in the network passing through that edge as addressed in equation (13).
This centrality was initially proposed in [30] to identify cohesive communities by dropping most
central edges in the network. Their method is known as Girvan-Newman algorithm and consists

of the following four steps:

(i) Compute edge betweenness centrality for all edges in the network
(ii

(iii

Remove an edge with the highest betweenness centrality

)
)
) Recompute edge betweenness centrality for remaining edges in the network
(iv) Repeat steps (ii) and (iii) until no edges remain
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BO@ = Y a(s,tle) (13)

s,teV 0(8’ t)

Calculating the mechanical response of a 3D Mass-Spring network

We consider the system as a 3D spring network under periodic boundary conditions and

introduce the potential energy functional for our networks [51,52].

K¢ 02 K/ 0 2
E=) TS(Lij L)+ ) %(Qijk = 0ij1)" (14)
<i,7> <i,7,k>

where K and K zj * denote the bond-stretching and bond-bending stiffnesses, respectively. L;;
represents the edge shared by node ¢ and j. 0;;; is the angle formed by the edge pair L;; and
L. L% is the rest length and H?jk is the rest angle obtained from the initial configuration,
therefore the springs are all in their rest length and the systems are in mechanical equilibrium.

At the system level, we characterize its mechanical response by computing the linear response

elastic modulus G to an infinitesimal affine strain  via the Born-Huang approximation [43]

1 [0%E 1 =

G= Gaﬂine - Gnon—afﬁne - V 87’}/2 - EiuMz‘ujy‘:jV 0 . (15)
’y:

In Eq. (15), E;, is the derivative of the force on node i with respect to strain given by

- _ 0’E
oy,

—
—

(16)

—

where 75, is the position of node ¢ and j1 = x,y is the Cartesian index. V' is the total volume
of the system. M is the Hessian matrix given by the second derivative of the energy F with
respect to position vectors of nodes ¢ and j

O*E

My = ————.
1 87“7;#81”]‘,,

(17)
In our calculations, the bending elasticity K} is not independent of K. It’s taken as the al-
gebraic mean of K of the two neighboring edges szk =r\ K i ng, where k is the ratio to
manipulate the relative strength between bond-stretching and bending elasticity. The stretch-
ing elasticity K is calculated based on the number of particle-level connections between the

cluster pair. Inspired by the stress transmission coefficient of a polymeric chain, stretching

coeffcient of a cluster-cluster connection is calculated as K (U/kpT,d;;) = —Ks(U/kpT,1) x
log(dijlﬂ))/log(l/Q), where K (U/kpT,1) and d;; are the bond-stretching stiffness of a single
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particle-level bond and the length of connection, respectively.

Synthesis of PMMA colloidal gels

All chemicals were purchased from Sigma-Aldrich unless otherwise specified. The particles
used in this experimental study were poly12-hydroxystearic acid (PHSA) stabilized polymethyl-
methacrylate (PMMA) colloids prepared using free radical polymerization based on the proce-
dure described by Pradeep et al. [53]. The particles were dyed with fluorescent Nile Red (peak
emission wavelength \.,, = 635 nm, peak excitation wavelength \., = 559 nm) for confocal
microscopy imaging. The particles were cleaned with pure hexane six times by centrifugation at
10,000 rpm for 15 minutes and stored as dry particles until further use. The particle diameter
is 2a = 837 nm + 5% based on the images collected using scanning electron microscopy. The
particles were dispersed in a 66:34 volume % mixture of cyclohexyl bromide (CHB) and decalin
containing 1 pM tetrabutyl ammonium chloride (TBAC) to ensure charge screening as well as
density and refractive index-matching. To introduce attractive interactions between colloids, we
suspended polystyrene (molecular weight M,, = 900,000 g/mol, overlap concentration ¢* = 10.8
mg/mL, radius of gyration R, = 32 &+ 2 nm) in the CHB/decalin mixture as a non-adsorbing
depletant [16]. Using this method, we prepared colloidal gels with a range of volume fractions
(0.03 < ¢ < 0.20) and depletant concentrations (¢/c¢* = 0.79, 1.75, and 3.35). To estimate the
pairwise net potential U between the colloids in the gel network, we summed the attractive
contribution, computed using the Asakura-Oosawa relation [54], and the repulsive contribution
computed using the Yukawa potential [55]. The colloidal gel interactions corresponded to U =

6, 15, and 30 kg T.

Confocal imaging and image processing

Colloidal gels were imaged using an inverted confocal laser scanning microscope (Leica TCS
SP8) equipped with a 63x oil immersion objective. The excitation wavelength of the laser was
set to 552 nm. The freshly prepared colloidal gels were placed into a glass vial and loaded onto
the microscope (waiting time ¢ = 0). To match the diffusion time steps used in the simulations
(t = 5007p), we collected 2D time-series images of the gels at ¢ = 6 mins using a resonant
scanner (lag time At = 0.047 s for a total duration of 18.6 s). The total image resolution was
512x512 with a pixel size of 50.01x50.01 nm?. To avoid wall effects, we imaged the gels at
a minimum of 15um above the coverslip. Microdynamics of the colloidal gels were analyzed
using a brightness-weighted centroid detection and trajectory linking algorithm [56,57]. The

method involves the identification of particle centers based on the brightest pixel followed by
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subpixel refinement based on the maximum of the local intensity spectra, and linking of particles
between each frame in the time series. The particle trajectories were then used to obtain the
mean squared displacement (MSD) and histogram of displacements as a function of At. In
order to limit statistical error in the dynamical parameters to less than 3%, the MSD analysis

was limited to lag times for which the number of observations is O(103).

Data Availability

Source Data are provided with this paper and additional data that support the findings of this

study are available from the corresponding authors upon reasonable request.

Code Availability

Simulations are performed using HOOMD-blue, the open source molecular dynamics simulation
toolkit, which is publicly available at the developers’ website:

http://glotzerlab.engin.umich.edu/hoomd-blue/
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