Process-BERT: A Framework for Representation Learning
on Educational Process Data

Alexander Scarlatos', Christopher Brinton?, and Andrew Lan*
University of Massachusetts Amherst', Purdue University?

ajscarlatos@cs.umass.edu,cgb@purdue.edu,andrewlan@cs.umass.edu

ABSTRACT

Educational process data, i.e., logs of detailed student ac-
tivities in computerized or online learning platforms, has
the potential to offer deep insights into how students learn.
One can use process data for many downstream tasks such
as learning outcome prediction and automatically delivering
personalized intervention. In this paper, we propose a frame-
work for learning representations of educational process data
that is applicable across different learning scenarios. Our
framework consists of a pre-training step that uses BERT-
type objectives to learn representations from sequential pro-
cess data and a fine-tuning step that further adjusts these
representations on downstream prediction tasks. We apply
our framework to the 2019 nation’s report card data mining
competition dataset that consists of student problem-solving
process data and detail the specific models we use in this sce-
nario. We conduct both quantitative and qualitative exper-
iments to show that our framework results in process data
representations that are both predictive and informative.!
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1. INTRODUCTION

Student modeling [14] is a key research area in educational
data mining since it produces estimates of individual fac-
tors that affect learning outcomes, including knowledge fac-
tors and psychosocial factors such as affect and interest, and
informs personalization. There exist a wide range of stu-
dent models, from those that analyze student responses to
questions, such as item response theory [12] and models for
knowledge tracing [3], to those that analyze student activity
within digital learning platforms [1, 15, 16].

Educational process data, i.e., data that logs detailed stu-
dent activity in digitized learning/testing environments, of-
fers us an opportunity to look deeper into the process of
learning for each individual student. One can use this pro-
cess data in many ways: First, standalone process data,
especially data from intelligent tutoring systems, learn-
ing management svstems. or massive open online courses
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(MOOCs), can help us capture student behavioral patterns
and predict future learning outcomes [9] or help prevent
early dropout [6]. Second, process data during assessments,
such as the dataset used in the 2019 nation’s report card
(NAEP) data mining competition [11], can help us recon-
struct the exact process behind how students construct their
response to a question. This reconstructed process can po-
tentially help us improve our estimate of student knowledge
levels more than using only observed response [2].

One key challenge in educational process data analysis is
how to represent process data. Creating good representa-
tions is key to improving performance in downstream tasks,
as evident in recent advances in other fields, such as pre-
trained language models like BERT [4] in natural language
processing. The idea is simple: since we often lack a large
amount of labels on the variable of interest in the predic-
tion task, e.g., student learning outcomes, using these labels
to learn representations of student process data in a super-
vised learning setup is insufficient and can lead to overfit-
ting. Instead, we start with using the rich process data itself
in a pre-training step to learn representations through self-
supervised learning before fine-tuning these representations
in the actual downstream prediction task.

1.1 Contributions

In this paper, we propose a generic framework for repre-
sentation learning from educational process data and apply
it to the NAEP Competition dataset [11]. First, we detail
how to learn process data representations in a pre-training
setup using objectives similar to those used in BERT. We
then detail how to fine-tune these representations and use
them in a downstream supervised learning task, e.g., pre-
dicting learning outcomes. Second, we apply our frame-
work to problem-solving clickstreams as students take an
online NAEP assessment and detail our modeling designs.
Third, we conduct quantitative experiments to show that
our framework is competitive with existing methods in mul-
tiple learning outcome prediction tasks. We also conduct
qualitative experiments to show that our framework is able
to learn meaningful process data representations.

2. METHODOLOGY

In this section we describe our framework, as well as apply it
to several learning outcome prediction tasks using the NAEP
2019 competition dataset [11]. The basic ideas behind our
framework follow from those in natural language processing
(NLP) research but are adapted for student learning process
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Figure 1: The process model is pre-trained by predicting the
properties of each event given surrounding context.

data. There are three main technical components in our
framework: 1) the process model, which takes a student’s
process data as input and produces its latent representation
vectors as output, 2) the pre-training objectives, which are
a series of prediction tasks that we use in a self-supervised
pre-training phase on the process data to learn its represen-
tations via the process model, and 3) the transfer function,
which adapts the output of the process model, i.e., the la-
tent representations of process data, for use in a downstream
learning outcome prediction task.

2.1 Dataset

The dataset contains clickstream logs from students work-
ing on two blocks of online NAEP assessments, referred to
as blocks A and B. Students are given a time limit of 30
minutes per block, in which they can complete questions in
any order. The questions vary in type, including multiple
choice, matching, fill in the blank, and “mixed” types. Each
event in the log represents a single student action, such as
selecting an option in a multiple choice question, typing a
character into an answer field, opening the calculator tool,
etc. Each raw event in the log contains the student ID, ques-
tion ID, question type, event type, timestamp, and possibly
additional event-specific information such as the target of a
click event or the field and character of a key press event. To
apply our framework to the NAEP assessment scenario, we
process each event so that it has the form e; = (a¢, mu, g, ¢t),
where a; is the event type, m; is the number of seconds since
the student started the test, ¢; is an identifier for the current
question, and ¢; is a response status, which is either correct,
incorrect, or incomplete. We additionally define a visit as a
contiguous sequence of events that are part of the same ques-
tion, as students may return to previously visited questions
within a block. The sequences we provide to the process
model each comprise all events of a single student working
on a single question across all visits to that question.

2.2 Process Model and Pre-training

We now detail our process model, as well as the objectives
used to pre-train it before it can be used on downstream
tasks. Our process model is a Bi-LSTM (7], which contains
two LSTM’s that run in parallel; one processes the sequence

in order, and the other processes it in reverse. The hidden

state of the forward LSTM at time step ¢, ﬁt, contextualizes
€o, . ..,et. Similarly, the hidden state of the backward LSTM

at time step t, h, contextualizes ey, ..., er, for sequences
of length T'. As input to the model, we use a vectorized form
of each event, e;, which contains the concatenation of my,
learnable embeddings of a; and ¢, and a one-hot encoding
of Ct.

To pre-train the model, we design separate objectives to
predict the event type, timestamp, and response status of
each event in a student’s process data for a question. By
learning to predict these features of the input using context,
as we will show, the model becomes able to make inferences
about the data, which will be useful for making predictions
in downstream tasks. Note that we don’t include a pre-
training objective for ¢: because it is the same for every
event in a question. The flow of data from input sequence
to prediction is shown in Figure 1.

We predict the properties of event e; at each time step
by leveraging its full context, which includes all preced-
ing and following events, i.e., {e1,...,€—_1,€ty1,...,€7}.
Since Kt_l uses on information from {ei,...,e;—1} and
FtJrl uses on information from {e¢+1,...,er}, we use z; =

(E)z_l, ++1) as the encoded context that will be used for
prediction. We predict a; by passing z: through a linear
prediction head, P,, using the softmax function [5] to get
a probability distribution over possible event types, and use
cross-entropy to calculate the loss. We predict ¢; in the same
way. We design a similar objective for m;, except that we
predict an alternate target, v = ————‘=1 which repre-

t+1 t—1
sents the portion of time between the prior and following
events when m; occurs. This value is bounded by 0 and
1, which allows us to use binary cross-entropy as the loss
function. The advantage to this method over mean-squared
error is that because time lapses between student events can
vary greatly, the loss for each event is treated more equally.
The final pre-training loss for the sequence, £Lpr, is the sum
of the prediction loss for a¢, m:, and ¢; for each event in the
sequence. My minimizing L£Lpr, the process model learns to
reconstruct events based on surrounding context in a self-
supervised setup, thus encoding relevant information in its
latent states as a result.

2.3 Transfer Learning

We now detail a transfer function, @4, that produces a
fixed-size output for a downstream prediction task, given
the latent states of the process model as input. For the pur-
pose of transfer learning, we define the outputs of the pro-
cess model to be z,...,zr = ((hl,zl),...,(hT, T)).
This setup results in each z; containing contextualized in-
formation that is relevant to the input at time step t,
as was ensured by the pre-training process. We combine
these outputs using a learnable attention module [5], which
assigns a weight to each output latent state of the pro-
cess model, and then uses the weights to combine all out-
puts into a single vector. We define the weight vector as
w = softmaz(Pw(z1), ..., dw(zr)), where ¢, is a learnable
linear projection. We then generate a single vector to rep-
resent the entire sequence: b = Zte{l,...,T} Wy * Zt.



We can now use this representative vector in a several ways
to solve downstream tasks. In the simple case, where we
predict the learning outcome at the level of a single ques-
tion, e.g., the correctness of the student’s response to the
question, we can generate the prediction § = ¢4(b), where
¢q is a learnable linear projection. Additionally, we may
want to predict the learning outcome at the level of a stu-
dent, e.g., the student’s score on a future test, which requires
us to combine the representative vectors for each question
in the student’s process data. To achieve this, we define a
feed-forward neural network ¢s, and generate predictions us-
ing the concatenation of the representative vectors for each
question: § = ¢s([b1,...,bg]), where b; corresponds to the
representation of the student’s activity on question j and @
is the total number of questions. In either case, each ¢ in
the transfer function can be trained by using an appropriate
loss function on the predicted label. In the next section, we
show an example of how the transfer function can be used
to enhance a separate prediction task.

2.4 Item Response Theory

A popular framework for making predictions at the ques-
tion level is item response theory (IRT) [8]; we now detail
how to enhance it with behavioral data. The 1PL version
of IRT learns an ability value for each student and a diffi-
culty value for each question, which are used to predict the
probability that a student will answer a question correctly.
We introduce a new behavior term, which will adjust the
model’s prediction based on the student’s process data for
the question. We derive the term using the transfer func-
tion: Bi; = ¢q(b’), where b’ is the representative vector
for student i’s process data on question j, as generated by
the process model and the attention module. The predicted
probability of a student getting a question correct is defined
as P(Y;; = 1) = o(k; — dj + Bij), where Y;; is an indicator
of the correctness of the student’s response, k; is the learned
student ability, d; is the learned question difficulty, and o
is the sigmoid function. By minimizing the binary cross-
entropy loss of the prediction with the actual correctness
label, the model can jointly learn k, d, and Q). Note that
for this task, we must remove all indications of response
status from the data and not perform the response status
pre-training objective, since including them would leak in-
formation that could infer the label directly.

3. EXPERIMENTS

In this section, we present the experimental results of our
framework applied to the NAEP competition data on two
learning outcome prediction tasks. We compare our frame-
work to existing baselines for both the NAEP process data
and other process datasets. We finally investigate the in-
terpretability of the process model’s latent representations
using visualizations and qualitative analysis.

3.1 Baselines

We use two baselines to compare our framework against.
The first is Feature Engineering (FE), for which we used the
method of the 2nd place submission from the NAEP 2019
competition [10]. Their technique calculates a large number
of features for each student activity sequence, uses a genetic
algorithm (GA) to select the best set of features for a tar-
get prediction label, and then trains a model ensemble to

Table 1: We report the AUC of predictions on the score label,
as well as the AUC when response status is removed.

Model Test AUC Test AUC without ¢;
FE 0.828 —

CKT 0.854 £ 0.005 0.797 £0.010
Ours 0.868 + 0.008 0.792 + 0.004

produce a final prediction for the task. We re-ran their GA
and ensemble algorithms to obtain predictions for our per-
student prediction label. The second baseline is Clickstream
Knowledge Tracing (CKT), for which we adapted the tech-
nique developed in [2], which uses student problem solving
process data for the downstream task of knowledge trac-
ing (KT). Their technique uses an autoencoder pre-training
setup where question-level process data is encoded, passed
through a bottleneck vector, and reconstructed. We use the
bottleneck vector as input to downstream prediction tasks.

3.2 Per-Student Label

We first evaluate our method on a per-student label, referred
to as the score label, which is a binary indicator of if a stu-
dent scored above or below average in the second block (B)
of the exam. We predict this label by observing process data
exclusively from the first block (A).

Experimental Setup. For our model and the CKT baseline,
we perform a multi-phase cross-validation experiment. For
each fold, using the questions in the training split, we pre-
train the process model, and then train the transfer function
on the score label. For both of these, we use the validation
split for early stopping. Finally, we evaluate the model on
the test set, which is fixed across folds. We measure area
under the receiver operating characteristic curve (AUC), and
report the average and standard deviation of the AUC on
the test set over all folds. Note that the FE baseline only
returns a single set of predictions for the ensemble.

Results and Discussion. As shown in the second column
of Table 1, both CKT and our model outperformed the FE
baseline. This observation fits our expectation: since se-
quential neural models have direct access to the raw process
data, they are able to pick up on subtleties that may not
be captured by human-engineered features. Our method
slightly outperforms CKT on this label, indicating that our
process model and transfer function are able to capture more
information that is indicative of student performance than
CKT. We also examine the ability of the models to predict
performance strictly using behavioral information, without
any indication of correctness. To do this, we repeat the ex-
periments but remove the response status ¢; from the input
and do not perform the associated pre-training objective.
We see from the third column of Table 1 that the AUC
drops, as expected, but is still considerably high, indicating
that these models can infer student performance from their
behavior.

3.3 Item Response Theory
We now evaluate our model in the IRT setting in order to ex-
amine if our methodology can improve performance predic-



Table 2: We report the AUC of predictions on the IRT task,
as well as the AUC when incomplete questions are not con-
sidered.

Model | All Questions | Completed Questions
Base 0.824 4+ 0.001 0.823 +0.001
CKT | 0.836 +0.000 0.830 + 0.001
Ours 0.836 + 0.002 0.828 + 0.001

tion on questions using additional data on student behavior
within a question.

Experimental Setup. For the IRT experiments, we use all
student activity sequences across blocks A and B. We split
the questions into train/test sets using multi-label stratifi-
cation to ensure all ability and difficulty parameters are suf-
ficiently trained. We then perform a similar cross-validation
experiment to the score label, where for each fold, the pro-
cess model is pre-trained, and then the transfer function and
IRT-specific parameters are trained on the question correct-
ness label. The AUC on the test set is recorded after each
fold, and the average and standard deviation are reported.

Results and Discussion. We see from Table 2 that the
behavioral data leveraged by both our model and CKT re-
sult in a small improvement in test AUC over the base IRT
model. We also observe that questions that were left incom-
plete by students were very easy to predict as incorrect with
process data since certain event types missing in a student
activity sequence clearly indicate incomplete status. To ac-
count for this observation, we also report the AUC after
removing incomplete questions from the test set. We see
that the performance drops for all models, although more
significantly for the behavior-enhanced models, leaving our
method’s performance slightly below CKT. However, the
fact that the behavior-enhanced models still improve over
the base IRT model suggests that student behavior provides
important additional information on student performance
beyond the original student ability and question difficulty
parameters in IRT.

3.4 Qualitative Analysis

We now examine the interpretability of the latent behav-
ioral vectors that our methodology produces. We will ex-
amine student-level latent vectors extracted from a version
of the student-level model, which was modified to capture
task-switching behavior. We also performed an analysis of
question-level latent vectors extracted from the behavior-
enhanced IRT model, where we saw strong behavior-based
clustering patterns. However, because question-level behav-
ior representation is similar to the capabilities of CKT, we
omit this analysis from this paper, and its details can be
found in the long version. For the following figure, we use t-
SNE [13] to visualize the latent vectors in 2D and investigate
characteristic behavioral patterns in the visible clusters.

To investigate if our model can capture high-level task-
switching and test-taking behaviors, we investigate student-
level representations, which combine all question visits of a
student into a single latent vector. We train a model on
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Figure 2: The vectors extracted from the final hidden state of
an RNN that processes all visit-level vectors from a student’s
process data in block A, colored by the score label.

the score label task with the following modifications to our
original setup: 1) we provide the process model with se-
quences of events in a single visit to a question, rather than
across all visits to a question, 2) we add a new pre-training
objective to predict the question ID of each event to encode
task-switching information in the latent representations, and
3) we replace the fully-connected neural network with an
RNN, since the visits are sequential in nature. We use the
final hidden state of the RNN for both label prediction and

representation visualization.

In Figure 2, we visualize the student-level vectors generated
from block A data, colored according to the score label. We
identify 4 distinct clusters, while the rest of the vectors have
no obvious pattern: a) Rapid testing: most students in this
group finished all questions in block A with a significant
amount of time remaining. b) Checked their work: students
in this group made multiple visits to most questions, often
not making changes in the second visit. ¢ and d) Ran out
of time: both of these clusters represent students that took
the whole time but did not answer all the questions.

4. CONCLUSIONS

In this paper, we developed a BERT-style framework for pre-
training and transfer learning on educational process data.
We applied our framework to several downstream learning
outcome prediction tasks on NAEP assessment process data
used in the NAEP 2019 data mining competition. Through
quantitative and qualitative experiments, we demonstrated
that models developed with our framework can 1) leverage
process data to make accurate learning outcome predictions,
and 2) generate meaningful representations of student be-
havior from process data. There are several potential areas
for future research. First, our process model currently only
represents single questions, which results in student-level
representations that are less meaningful than the question-
level representations. Future work should aim to develop
a process model that can simultaneously represent events
across all questions in a student’s process data. Second, fu-
ture work should aim to implement this framework on com-
plementary datasets, such as video clickstreams, to validate
its ability to capture behavioral data across settings.
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