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Abstract—In the classical survivable network design prob-
lem (SNDP), we are given an undirected graph G “ pV, Eq
with costs on edges and a connectivity requirement kps, tq
for each pair of vertices. The goal is to find a minimum-cost
subgraph H Ď G such that every pair ps, tq are connected
by kps, tq edge or (openly) vertex disjoint paths, abbreviated
as EC-SNDP and VC-SNDP, respectively. The seminal result
of Jain [FOCS’98, Combinatorica’01] gives a 2-approximation
algorithm for EC-SNDP, and a decade later, an Opk3 log nq-
approximation algorithm for VC-SNDP, where k is the largest
connectivity requirement, was discovered by Chuzhoy and
Khanna [FOCS’09, Theory Comput.’12]. While there is a rich
literature on point-to-point settings of SNDP, the viable case
of connectivity between subsets is still relatively poorly
understood.

This paper concerns the generalization of SNDP into
the subset-to-subset setting, namely Group EC-SNDP. We
develop the framework, which yields the first non-trivial
(true) approximation algorithm for Group EC-SNDP. Previ-
ously, only a bicriteria approximation algorithm is known for
Group EC-SNDP [Chalermsook, Grandoni, and Laekhanukit,
SODA’15], and a true approximation algorithm is known only
for the single-source variant with connectivity requirement
kpS, Tq P t0, 1, 2u [Gupta, Krishnaswamy, and Ravi, SODA’10;
Khandekar, Kortsarz, and Nutov, FSTTCS’09 and Theor.
Comput. Sci.’12].

Index Terms—network design, approximation algorithms

I. INTRODUCTION

In the survivable network design problem (SNDP), we
are given a graph G “ pV, Eq with non-negative edge-
costs c : E Ñ Rě0 and a connectivity requirement
between each pair of vertices k : V ˆ V Ñ Zě0. A
pair of vertices ps, tq with kps, tq ą 0 is called a demand-
pair, and a vertex s that has a positive demand toward
some vertex is called a terminal. The goal in SNDP is
to find a minimum-cost subgraph H Ď G that has
kps, tq edge (or vertex) disjoint paths connecting every
demand-pair ps, tq. As SNDP captures the design of
communication networks that can operate under failure
conditions, this problem has been a focus of attention
for many decades since its initial study in the late

’60s [1]. There have been many variants of SNDP, e.g.,
edge-connectivity SNDP (EC-SNDP), vertex-connectivity
SNDP (VC-SNDP), where the goal is to connect demand-
pairs by edge-disjoint paths and (openly) vertex disjoint
paths, respectively. A number of studies have been de-
voted to SNDP, culminating in the discovery of a 2-
approximation algorithm for EC-SNDP by Jain [2], and
an Opk3 log nq-approximation algorithm for VC-SNDP
by Chuzhoy and Khanna [3], where k is the maximum
connectivity requirement.

While EC-SNDP and VC-SNDP are decent models that
capture many difficulties in designing a highly reliable
network, these models do not address network design
beyond point-to-point. Specifically, the classical setting
of SNDP concerns only the survivability of communi-
cation between pairs of nodes in a network. However,
in many applications, e.g., multicasting over an overlay
network, distributed data center, and global routing in
VLSI design, communications are generally taken place
between two groups of nodes rather than point-to-
point. These relatively modern applications require the
generalization of SNDP where survivability is required
in the communication between two communities or,
in other words, in the group-to-group setting. We call
the later model the group-connectivity survivable network
design problem or Group-SNDP (resp., Group EC-SNDP
for edge-connectivity).

Similar to the point-to-point network design, where
the models are derived from the Steiner tree problem.
The basic building block of community-to-community
network design lays on the classical group Steiner tree
problem (GST), where we are given subsets of vertices,
called groups, and the goal is to find a minimum-cost
tree that spans all the groups, i.e., the tree must connect
to at least one vertex from each group. The general-
ization of GST into the fault-tolerant settings, namely
the fault-tolerant GST or k-edge-connected GST (k-EC-GST),
have been studied in [4]–[6], and the generalization
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into pairwise group-connectivity, namely Group-SNDP
(a.k.a., survivable set-connectivity) has been studied in
[6]. These studies culminated in a polylogarithmic ap-
proximation algorithm for k-EC-GST when k “ 2 [5],
and a bicriteria approximation algorithm for the general
edge-connectivity demands of Group SNDP (Group EC-
SNDP) [6]. Nevertheless, to the best of our knowledge,
there was no known “true” (non-trivial) approximation
algorithm for neither Group EC-SNDP nor k-EC-GST
for k ě 3. On the negative side, Group EC-SNDP or
even k-EC-GST is known to admits no kσ-approximation
algorithm, for some fixed constant 0 ă σ ă 1 unless
P “ NP [6], and when k is very large the problem
admits no Opq{ log qq-approximation algorithm unless
NP “ ZPP [7].

This paper revisits the generalization of survivable
network design problem in the group-connectivity set-
ting, namely Group EC-SNDP. To be formal, in the
Group EC-SNDP we are given an undirected graph
G “ pV, Eq with non-negative edge-costs, a collection of
pairs of subsets of vertices pS1, T1q, . . . , pSq, Tqq Ď V ˆ V
with prescribed connectivity requirements ki P Zě0
for i “ 1, 2, . . . , q. The goal is to find a minimum-cost
subgraph H Ď G that has ki edge-disjoint paths between
every pair of subsets pSi, Tiq.

We present the first non-trivial (true) approximation
algorithm for Group EC-SNDP, thus solving a long-
standing open problem in the area of network de-
sign. The approximation guarantee of our algorithm
is Opk2 log6 npk log n ` log qqqq, where k is the largest
connectivity requirement. In particular, it is Opk3 log7 nq
when q “ nOpkq, which resemblances the best known
approximation ratio of Opk3 log nq for VC-SNDP upto
the polylogarithmic term. Notice that the number of
demand-pairs q can be super-polynomial in n, and in
this case, when q ě nωpkq, the approximation ratio of
our algorithm becomes Opk2 log6 n log qq.

A. Related Work

The study of survivable network design problems was
initiated in the late ’60s [1]. Since then many variants
and generalizations have been modeled to capture a
wide range of situations, e.g., edge-connectivity (EC-
SNDP), vertex-connectivity (VC-SNDP), and element-
connectivity (Elem-SNDP), subset-to-subset connectiv-
ity (Group-SNDP) and connectivity in directed graphs
(Directed-SNDP). Please see [8] and [9] for references
therein.

EC-SNDP is the most well-studied among the prob-
lems in the class of survivable network design. It has
been extensively studied in the ’90s (see, e.g., [2], [10],
[11]), culminating in the discovery of a 2-approximation
algorithm via iterative rounding method in the break-
through result of Jain [2]. The same technique gen-
eralizes to Elem-SNDP in the work of Fleischer, Jain,

and Williamson [12], thus giving a factor-two approx-
imation algorithm for this variant as well. In contrast
to EC-SNDP and Elem-SNDP, researchers have been
struggling in developing approximation algorithms for
VC-SNDP. To the best of our knowledge, there is only
one known non-trivial approximation algorithm for VC-
SNDP, which was discovered decades later in the work
of Chuzhoy and Khanna [3], giving an Opk3 log nq-
approximation algorithm to the problem, where k is
the largest connectivity requirement. One reason for
the difficulty of VC-SNDP is due to the hardness de-
rived from the Label-Cover problem. Assuming NP Ę
DTIMEpnpolylogpnqq, almost all reasonable approximation
ratios (i.e., 2log1´ε n, for ε ą 0) have been ruled out by the
work of Kortsarz, Krauthgamer, and Lee [13], and the
approximation ratios independent of k are ruled out by
the work of Chuzhoy, Khanna, and Chakraborty [14]. A
more refined hardness of approximation was later shown
in [15]. Nevertheless, a special case of VC-SNDP called k-
connected (spanning) subgraph problem admits constant
factor approximation ratios for almost every parameter
[16]–[18] except in the large connectivity regime, which
still have polylogarithmic factor [19], [20]. Please see the
recent comprehensive survey on VC-SNDP by Nutov [9].

On directed graphs, both EC-SNDP and VC-SNDP
are equivalent as there are polynomial-time reductions
from one to the other. Thus, we denote them simply by
Directed-SNDP. The problem seems to be much more
difficult as it admits almost no approximation ratios in
n due to the work of Dodis and Khanna [21], which gives
a reduction from the notorious Label-Cover problem to
Directed-SNDP. In fact, the hardness result holds even
when all the connectivity requirements are t0, 1u. The
bounds have been improved in the subsequent works
to nop1q under Gap-ETH in the work of Dinur [22] and
has also been refined in [7], [15], [23]–[25]. To date, we
know that even in the special case of single-source k-
connectivity, the problem is at least as hard as the Label-
Cover problem [23], and in the very recent work, Liao,
Chen, Laekhanukit and Zhang showed that Directed-
SNDP admits no non-trivial approximation algorithms
unless NP “ ZPP. To be more precise, Directed-SNDP
admits neither opq{ log qq nor op2k{2{kq approximation
algorithms unless NP “ ZPP, where q is the num-
ber of (positive) demand-pairs. Assuming the Strongish
Planted Clique Hypothesis [26], even opqq-approximation
algorithm has been ruled out [7]. Despite the difficulties,
some special cases of Directed-SNDP admits a polylog-
arithmic approximation factor [27], [28].

The Group SNDP is far less understood than other
models for both edge and vertex connectivity variants.
The study of the classical group Steiner tree problem
is shown in [29] and the generalization to the special
case of single-source two-edge-connectivity was stud-
ied in [4], [5], resulting in polylogarithmic approxima-
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tion algorithms for these two cases. A polylogarithmic
approximation algorithm for general demands is also
known in a restricted setting of low treewidth graphs
[30]. However, prior to our paper, only a bi-criteria
approximation algorithm is known for Group EC-SNDP
on general graphs [6]. Similar to Directed-SNDP, when
the connectivity requirements are very large, Group EC-
SNDP admits no non-trivial approximation. That is, no
opq{ log qq-approximation algorithm exists unless NP “
ZPP, and no opqq-approximation algorithm exists unless
the Strongish Planted Clique Hypothesis is false [7].
When focusing on the hardness ratio in terms of k, it is
shown in [6] (combined with [15] and the improvement
in [25]) that the approximation hardness is k1{5´ε, for
ε ą 0, assuming NP “ ZPP.

B. Result and Contribution
As mentioned earlier, the main result in this paper is

the first non-trivial (true) approximation algorithm for
Group EC-SNDP.

Theorem 1 (Main Result). The group edge-connectivity
survivable network design problem admits a polynomial-time
(randomized) Opk2 log6 npk log n ` log qqq-approximation al-
gorithm, where k is the largest pairwise connectivity re-
quirement. In particular, the approximation ratio becomes
Opk3 log7 nq when q ď nOpkq.

The key ingredient is a capacity-based probabilis-
tic tree-embedding by Räcke [31], which is also used
in the previous work by Chalermsook, Grandoni and
Laekhanukit [6]. However, Chalermsook et al. were not
able to derive a true approximation algorithm from the
capacity-based tree-embedding because such a mapping
is “lossy”. More precisely, their algorithm is a random-
ized LP-rounding algorithm that runs on a tree distri-
bution, which is an embedding of a fractional solution.
However, due to the distortion, although there is an
pSi, Tiq-flow of value ki in the tree distribution, when we
map it back to the original graph, we can guarantee only
a flow of value at least Ωpk{βq, where β “ Oplog nq is
the capacity-distortion of Räcke’s tree-embedding. Con-
sequently, the algorithm in [6] is only guaranteed to
output a solution with connectivity at least Ωpk{ log nq.

To circumvent the issue of lossy embedding, we are
required to invoke two techniques. First, we apply a
weight-updating technique. Every time we add new
edges to the partial solution, we update the weights (ca-
pacities) of the bought edges by scaling their capacities
down so that the distortion on these edges has only mild
effects toward distortion. However, the weight-update is
still insufficient for us to reach the desired connectivity.
This is because a cut consisting of bought edges alone
may have its capacities scaled down too much so that the
desired connectivity in the tree cannot be guaranteed.
Thus, the connectivity issue remains and we need an
additional ingredient. To this end, we observe that all

the cuts in the graph are present in the embedded trees
in the form of leaves-to-leaves paths. Hence, to reach the
desired connectivity, we can simply connect all of them
simultaneously whenever they are connectivity deficient.
It is easier said than to be done as the number of tree-
demand-pairs that we need to cover (that is, adding paths
to satisfy the connectivity requirement) is, in general,
exponential on the number of vertices. Thus, even if
we have a logarithmic approximation algorithm for the
underlying network design problem on trees (which is
called subset-connectivity in [6]), it can only give a poly-
nomial approximation ratio. Nevertheless, we are able to
show that the number of tree-demand-pairs needed to
be covered is at most q ¨ n2k ¨ 2polypkqβ, which is qnpolypkq
when β “ Oplog nq. As a consequence, a polylogarith-
mic approximation algorithm for the subset-connectivity
problem on trees in [6] implies a polypkqpolylogpnq
approximation algorithm for Group EC-SNDP.

The techniques that we developed yield a framework
that turns a “lossy” probabilistic capacity mapping into
a “lossless” network design algorithm. Hence, it can
be applied to a more general setting whenever a lossy
capacity-based probabilistic tree-embedding exists, pro-
vided that the distortion is β ă n1{3. The general form
of our result is as follows.

Theorem 2 (Network Design via Lossy-Embedding).
Suppose there exists a probabilistic capacity mapping that
maps a capacitated directed or undirected n-vertex graph G
into a distribution of tree such that

‚ The congestion in expectation is β;
‚ The height of all tree is OplogpnCqq, where C is the ratio

of the largest to smallest capacity.
Then there exists a randomized Opβ2k2 log4 npk log n ` kβ `
log qqq approximation algorithm, where k is the largest pair-
wise connectivity requirement and q is the number of demand-
pairs.

In particular, if β “ Op1q, then the ratio becomes
Opk2 log4 npk log n ` log qqq. If β “ Oplog nq, then the
ratio becomes Opk2 log6 npk log n ` log qqq. If β “ Opncq
where c ă 1{3, then the ratio becomes Opβ2k2 log4 npkβ `
log qqq.

Theorem 2 allows us to derive a slightly better approx-
imation ratio on special classes of graphs, e.g., graphs
with bounded pathwidth, bandwidth or cutwidth [32]
and k-outer planar graphs [33]. Note that here we exploit
the equivalence between distance and capacity-based
probabilistic tree-embedding observed by Andersen and
Feige [34].

Theorem 3. Consider the Group EC-SNDP. There exist
polynomial-time (randomized) approximation algorithms with
approximation ratios:

‚ Opb4 ¨ k2 log4 npk log n ` log qqq for Group EC-SNDP
on graphs with b-bounded pathwidth (resp., bandwidth
and cutwidth), where b is a constant.
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‚ Opc2k ¨ k2 log4 npk log n ` kck ` log qqq for Group EC-
SNDP on k-outer planar graphs, where c is a universal
constant.

Lastly, we remark that a capacity-based probabilistic
tree-embedding on α-balanced directed graphs exists as
shown in the work of Ene, Miller, Pachocki and Sidford
[35]. However, their work is pertained to the single-
source congestion minimization problem, which is not
clear whether the technique fits in our framework. If
it is applicable, perhaps with some modification, then
our framework will imply a non-trivial approximation
algorithm for the singe-source directed k-edge-connectivity
problem (also called the k-edge-connected directed Steiner
tree problem in [36]), for all values of k, on α-balanced
graphs.

II. TECHNIQUE: OVERVIEW AND INTUITION

We first discuss the idea used in the work of
Chalermsook, Grandoni, and Laekhanukit [6]. The au-
thors derived a bi-criteria approximation algorithm for
Group EC-SNDP by first solving the standard LP-
relaxation and then embedding the fractional solution
into a probabilistic distribution of trees. They then it-
eratively round the fractional solution using the Garg-
Konjevod-Ravi rounding algorithm for the group Steiner
tree problem on trees [29].

Due to the congestion (i.e., capacity-distortion) β “
Oplog nq of the Räcke’s capacity-based probabilistic tree-
embedding, the solution could only be guaranteed to
reach a connectivity at least Ωpk{ log nq. It is quite in-
teresting that the problematic edges are those that have
large LP-values, say xe ě 1{β. This is because the effect
of distortion on the capacities of these edges are large.
Surprisingly, the good case where we can reach the target
connectivity is when all the edges in the optimal LP-
solutions have small LP-values, i.e., xe ă 1{β.

It is very counterintuitive that we wish for an LP-
solution with no large LP-values because these edges are
supposed to be “good-to-have” as we can trivially round
xe to one and simply pay a factor Oplog nq in the approx-
imation ratio. This suggests the mix of tree-rounding and
trivial-rounding. However, a straightforward approach
would inevitably fail because the connectivity has al-
ready been lost in the tree distribution. To be specific, let
us consider a cut pX, VzXq with capacity exactly k, i.e., a
tight cut that separates a demand-pair pSi, Tiq. Suppose
there are k{β edges with capacity 1 that have congestion
β crossing pX, VzXq. Then this cut will appear to have
a flow of values k in the tree distribution. However,
even if we buy all the pSi, Tiq-paths in the support of
the distribution, it would form only Opk{βq edge-disjoint
paths in the original graph.

To circumvent this issue, we study the effect of distor-
tion of large-capacity edges and analyze in detail which
cut will be capacity-deficit when we embed it to the tree

distribution. To simplify the discussion, fix an edge-set
F of � ď k ´ 1 edges in the graph. If a demand-pair
pSi, Tiq is not yet k-edge-connected in the current partial
solution, then removing F from the solution subgraph
will disconnect them. That is, F is a certificate that the
graph has not yet reached the desired connectivity. The
same applies to the tree-embedding. If we remove edges
in the embedded-tree corresponding to F (i.e., an edge
that maps to a path containing an edge in F) and the pair
Si and Ti are disconnected, then Si and Ti are not k-edge-
connected in the original graph even if we buy all the
pSi, Tiq-paths in the tree distribution. Now, observe that
any edge with capacity (which is its LP-value) less than
1{4�β will have no effect in separating Si from Ti because
even if it has capacity-distortion β, and we remove k of
them, it cannot possibly separate Si from Ti in the tree-
embedding. Hence, we may assume the edges in the
graph have capacities at most 1{4�β by simply scaling
down the capacities of edges with large LP-values, or
more precisely, we cap the capacity of any edge to be at
most 1{4�β.

Next, we observe the embedded tree after removing
edges corresponding to the set F of � edges. One can see
that a cut that has a lot of edges with small LP-values
will not be disconnected by removing F. More precisely,
if the total capacities of edges with small LP-values is at
least 1, then it will have a capacity of at least 1{2 after
removing F, and such a condition holds in every feasible
LP-solution. As such, the cuts that are “shattered” in
the tree-embedding are those that are already �-edge-
connected in the solution subgraph.

This observation is quite interesting for us as because it
means that we can view a pair of shattered components
as super nodes and ask only for edge-disjoint paths
connecting these components. Towards this goal, we
define new tree-demand-pairs based on the cuts and
the embedding tree that are shattered-free. Then it is not
hard to see that joining these subset pairs through edge-
disjoint paths will imply the connectivity in the original
graph. The last obstacle lies on the fact that the number
of tree-demand-pairs can be as large as 2n in general. The
critical point in our argument is in bounding the number
of “shattered-free” tree-demand-pairs and showing that
every tree-demand-pair has enough flow for the round-
ing algorithm. Once these are all settled, our algorithm is
guaranteed to connect all the tree-demand-pairs within
the claimed bound.

III. PRELIMINARY

Group Edge-Connectivity Survivable Network Design.:
The group edge-connected survivable network design
problem (Group EC-SNDP) is defined as follows: Given
an undirected graph G “ pV, Eq with non-negative edge
costs c : E Ñ Rě0, and a collection of q demand-pairs
pS1, T1q, . . . , pSq, Tqq with a connectivity requirement ki P
Zě0 for each demand-pair pSi, Tiq, the goal is to find a
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minimum-cost subgraph H Ď G such that H has ki-edge-
disjoint paths from Si to Ti for every i P rqs.

One may assume w.l.o.g. that the connectivity require-
ments are uniform. To see this, let k “ maxiPrqs ki. We
add k auxiliary edges with zero-cost to the graph, say
pa1, b1q, pa2, b2q, . . . , pak, bkq. Then, for each demand-pair
pSi, Tiq with requirement ki ă k, we add aj to Sj and bj
to Tj for j “ 1, 2, . . . , k ´ ki. This adds k ´ ki independent
edges joining Si and Ti and only increases the size of
the instance by k even when q is superpolynomial in
n. It is not hard to see that any feasible solution to the
modified graph with uniform requirement k induces a
feasible solution to the original graph with the same cost
and vice versa. As such, our discussion will focus on the
uniform case.

Sometimes we consider more than one graph and, to
clarify the notations, we use Vp¨q or Ep¨q to mean the
vertex and edge set of a graph, respectively. For a set X Ď
V of vertices, we denote by δGpXq the edge set between X
and VzX. The standard cut-based LP-relaxation of Group
EC-SNDP is as follows. For notational convenience, let
xpFq “ ř

ePF xe for a set of edges F Ď E.

min
ÿ

ePEpGq
cexe

s.t.
ÿ

ePδGpXq
xe ě k @i P rqs, @X : Ti Ď X Ď VzSi

0 ď xe ď 1 @e P EpGq

(1)

A. Räcke’s Probabilistic Tree-Embedding

Our algorithm uses a tree-embedding with congestion
β as a black box. The main result is proved by the fact
that Räcke’s probabilistic tree-embedding has congestion
β “ Oplog nq in expectation. In this section, we give
the formal definition of Räcke’s probabilistic tree embed-
ding. Let G “ pV, Eq with capacity rx : E Ñ Rě0. Denote a
tree embedding of pG, rxq by pT ,M, yq, where T is a tree,
M is a mapping from VpT q Ť

EpT q to VpGq Ť
2EpGq, and

y is the corresponding capacity function on the edges of
T . For each node v of T , Mpvq is some vertex in G.
Particularly, M induces a one-to-one mapping between
the leaves of T and the vertices of G. For each edge
f “ pu, vq in T , its capacity is yp f q “ ř

ePδGpXq rxe, where
pX, VzXq is a partition induced by the leaves of T ´ f .
In addition, M maps f to a path in G between Mpuq
and Mpvq.

We will use following notations in our analysis repeat-
edly. For each vertex v of G, M-1pvq is the corresponding
leaf of T . Let M-1pXq “ Ť

vPX M-1pvq for X Ď VpGq. For
each edge e in G, let M-1peq “ t f P EpT q : e P Mp f qu and
let M-1pFq “ Ť

ePF M-1peq for F Ď EpGq.
a) Congestion.: For each edge e P EpGq, the load of

e on a tree T P D is defined as the sum of the capacities
of edges M-1peq, i.e., loadpeq “ ř

f PM-1peq yp f q. Let the

relative load be rloadpeq “ loadpeq{rxe. For a tree embed-
ding pT ,M, yq, the congestion of G is maxePEpGqtrloadpequ.
Finally, we define β to be the expected congestion:

β :“ max
ePEpGq

ET „Drrloadpeqs,

where D is the probability distribution on trees given by
Räcke’s tree-embedding.

Theorem 4 ( [31]). There exists a probabilistic embedding
of an n-vertex graph G with edge capacities into a tree with
expected congestion at most β “ Oplog nq.

The embedding also guarantees some properties about
flows. Let flowrx

GpA, Bq denote the maximum flow from
A Ď VpGq to B Ď VpGq in G under capacity rx. For
any pair of disjoint subsets A, B Ď VpGq, the value
of the maximum flow between A and B in T P D is
at least that of the maximum flow between A and B
in G, i.e., flowrx

GpA, Bq ď flow
y
T pA, Bq. Since each edge

has congestion at most β in expectation, any flow that
can be routed on the tree distribution can be routed
in the original graph with a loss of a factor of β, i.e.,
flowrx

GpA, Bq ě 1
β ¨ ET „Drflowy

T pA, Bqs.
It was also known that the height of the tree in

Räcke’s tree distribution can be bounded by the largest
to smallest ratio of the capacity, and the number of trees
in the support of the Racke’s tree distribution is at most
on Oppolypnqq.

Lemma 5 ( [31]). All the trees T in the support of the Räcke’s
tree distribution have height OplogpnCqq, where C is the ratio
of the largest to smallest capacity in rx.

IV. ALGORITHM

We solve the LP in (1) and obtain the optimal LP
solution txeuePEpGq. Let � “ k ´ 1. The algorithm will
construct a p� ` 1q-connected subgraph H�`1.

Let β be the congestion parameter of the tree-
embedding. We define two subsets of edges based on
β and �:

LARGE “
"

e P EpGq : xe ě 1
4�β

*
,

SMALL “
"

e P EpGq : xe ă 1
4�β

*
.

Our algorithm buys edges in two different rounds. In
the first step, we directly buy all edges in LARGE into
the solution subgraph H�`1. This incurs a factor Op�βq “
Opk log nq in the approximation ratio.

After that, if H�`1 is already p� ` 1q-connected, i.e.,
there are � ` 1 edge-disjoint paths from every Si to Ti,
then we are done. If not, we continue to run a dependent
rounding algorithm on the tree-embedding. We build the
Räcke’s tree (a distribution of trees) with the capacity
defined as follows. We will cap the capacity of the edges
in LARGE to be exactly 1

4�β , while keeping the same value
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for edges e with xe ă 1
4�β . We also omit the fractional

solutions that are smaller than 1
2n2 ¨ 1

4�β , to control the
height of the trees. Formally, we set the capacity of each
edge e P EpGq as

rxe “
$’&’%

1
4�β if e is in LARGE,
0 xe ă 1

2n2 ¨ 1
4�β ,

xe otherwise.
(2)

By the setup of rx, the height of tree is bounded by
Oplog nq.

Lemma 6. Let D be the Räcke’s tree distribution for pG, rxq,
the height of each T „ D is at most Oplog nq.

Proof. It directly follows from Lemma 5 since the largest
to smallest ratio w.r.t. rx is C ď 2n2.

Now we are ready to state our algorithm. (See Algo-
rithm 1.) The algorithm first computes an LP solution
and set up a basic solution subgraph H�`1 “ pV, E�`1q
by setting E�`1 “ LARGE. Then it tries to add edges to
E�`1 to make H�`1 p� ` 1q-connected in τ1 rounds. In
each round, it samples a tree from Räcke’s tree distribu-
tion. Then it keeps sampling (in τ2 rounds) certain edges
in the tree by the rounding algorithm from Grandoni-
Chalermsook-Laekhanukit [6] and appends the corre-
sponding edges in the graph G of the sampled edges
on the tree to E�`1.

We will present the main flow of the proof in Sec-
tion V. Also, for completeness, we will formally present
the subroutine of tree rounding and its analysis in Sec-
tion VI.

Algorithm 1 The Algorithm for Constructing The p� `
1 “ kq-connected Subgraph H�`1

1: Solve x to be the fractional solution to the LP in (1).
2: Buy LARGE edge set where xe ě 1

4�β to H�`1. (We use
H “ pV, LARGEq to denote the current subgraph).

3: Set the capacity rx of edges following Eqn (2).
4: Compute Räcke’s tree distribution D for pG, rxq.
5: for τ1 rounds do
6: Sample a tree pT ,M, yq from D.
7: for τ2 rounds do
8: Append TreeRounding pG, T q to H�`1.
9: return H�`1.

V. ANALYSIS: COMPONENT-LEVEL PATHS AND
p� ` 1q-CONNECTIVITY

CGL’s Tree Rounding as a Black Box: Let us discuss the
CGL’s tree rounding subroutine in detail. The subrou-
tine keeps sampling trees from the distribution. In each
iteration, it randomly buys some edges in the tree with
expected cost of Oppolylogpnqq ¨ ř

ePE cpeqxe. As a result,
each path in the tree that carries one unit of flow (or at
least some fixed constant) has a constant probability to

be selected. Then if we have ψ number of demanding
pairs with constant flow to connect. We need to suffer
Oplogpψqq rounds to connect all of them in constant prob-
ability, which concludes in the Oppolylogpnq ¨ logpψqq
approximation ratio. To be more precise, we will need
the following lemma in our proof. For completeness, we
leave the proof of the lemma in Section VI.

Lemma 7 (CGL’s Tree Rounding). Suppose that there is
a tree T with heightpT q “ Oplog nq and an edge set E1 Ď
EpT q that supports a flow of value at least f between two
vertex sets A and B. If only edges from E1 can be selected by
TreeRoundingpG, T q, then it connects A to B with constant
probability φ with cost of Op 1

f ¨ β ¨ log3 nq ¨ ř
ePE cexe.

In this part, we illustrate the big picture of our anal-
ysis. To show our main idea clearly, we assume that
there is no edge with xe ă 1

2n2 ¨ 1
4�β . Although we need

to scale down those tiny edges to control the height
of Räcke’s tree, it only incurs a constant factor loss of
the approximation ratio, and we will consider it in the
complete proof in the following subsections.

The goal of our analysis is to formulate a sufficient
condition for the � ` 1 connectivity, which consists of
a small number of demanding pairs pA, Bq so that we
can connect all of them with not too many iterations.
In Algorithm 1, after buying LARGE edges, we have a
subgraph H�`1 that is not yet p� ` 1q-connected. Recall
that we use H “ pV, LARGEq to mean the state of H�`1 at
that moment. Because H is not �` 1-connected, there are
some edge-sets F Ď EpHq of � edges such that HzF has
no path from Si to Ti for some i. To show that finally
H�`1 is p� ` 1q-connectivity, we need to prove for any
edge-set F of size �, there is a path in H�`1zF for those
unconnected pairs pSi, Tiq in HzF.

A tree T is good for the cut F if the load of F on T is at
most 1{2, i.e., ypM´1pFqq ď 1{2. We prove that there is
at least a tree in the support of the tree distribution that
is good for F. For a fixed F, we only focus on a good tree
because F can at most block a flow of 1{2 in T and we
does not lose too much connectivity in T if we remove
F.

Lemma 8. For each edge-set F Ď EpHq of exactly � edges, a
tree sampled in T „ D is good for F with probability at least
1{2.

Proof. Since all edges in F Ď EpH�q are LARGE and
|F| “ �, the total capacity of F w.r.t rx is � ¨ 1

4�β “ 1
4β .

Note that the expected congestion of every edge in F is
at most β by definition, so

ř
ePF loadpeq ď 1{4. We have

ErypM-1pFqqs “ ErřePF loadpeqs ď 1{4. By Markov’s
inequality, we have that

Pr
“ sE‰ “ Pr

”
ypM-1pFqq ě 1{2

ı
ď Pr

”
ypM-1pFqq ě 2ErypM-1pFqqs

ı
ď 1{2.
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The naı̈ve plan is to prove that the TreeRounding sub-
routine can return a new path avoiding F between every
pSi, Tiq with constant probability directly by Lemma 7.
Hence, we need to show that the flow in T zM-1pFq
between Si and Ti is at least a constant. Then we are
done with an approximation ratio of Opp� ¨ log n ` log qq ¨
log4 nq because we only have Opqn2�q choices of pF, iq
pair. The flow between Si and Ti in T zM-1pFq is at least
its flow in T minus the value of M-1pFq. If we focus on
a good tree T , because F only blocks a flow of value 1{2,
it suffices to prove the total flow from Si to Ti in T is
larger than 1{2. However, it is not guaranteed because
the connectivity from Si to Ti may totally lose if we
remove F. Let us check the following example.

‚ (Refer to Figure 1(a)) The corresponding path Mpeq
in G of the red edge e P T is part of a path from
Si to Ti in G. If there is some edge f P F such that
f P Mpeq then the flow from Si to Ti in TzM´1pFq
becomes zero (disconnected). Even if T is a good
tree, this situation can happen. By the feasibility
of x we have xpδGpSi

Ťtv1uqq ě � ` 1. However, if
δGpSi

Ťtv1uq Ď H�, rxpδGpSi
Ťtv1uqq can be scaled

down to 1
4β ă 1{2. Since F is allowed to block a

flow of 1{2 even in a good tree, it is possible to
have some edge f P F such that f P Mpeq.

(a) The red edge e contains an edge in F.

(b) A component-level path in blue. Red and green edges are
crossing a component.

Fig. 1. A typical case for illustrating the analysis.

To overcome the problem, we observe that the aug-
mentation problem does not ask for a completely new
path from Si to Ti. Let us move into a component-level
viewpoint. The edge-set F partitions the graph HzF into
connected components. We know that every component

Q is already p� ` 1q-connected in H so we do not need
any new path inside Q. Let QSi the union of components
that intersect with Si, and similarly QTi . It means that a
component-level path by edges in GzF that connects QSi
and QTi suffices to show pSi, Tiq is p� ` 1q-connected. As
a counterpart of the previous bad case, we present the
reason why finding a component-level path is possible
by the following example.

‚ (Refer to Figure 1(b)) For the blue edge e in Fig-
ure 1(b), we have rxe ě 1 because Mpeq is a
component-level path and it is in the unique path
in the tree from QSi to QTi . In this typical case, it is
impossible to include any f P F in Mpeq in a good
tree T because otherwise it would block a unit-value
(larger than 1{2) flow.

The component-level path can be phrased in terms of
the cut-based definition of tree-demand-pairs. Let Q be
the set of connected components in HzF. It is the same
to say we need to connect every possible tree-demand-
pairs defined as follows.

Z “ tpA, Bq : pA, Bq is a partition of Q

such that QSi P A and QTi P Bu
However, this straightforward definition creates 2n

number of tree-demand-pairs, deriving an approxima-
tion ratio of Opnq. We discover an interesting technique
to bound both the number and the flow of tree-demand-
pairs.

Connectivity by Shattered-Component-Level Paths.: We
observe that the reason why we need the help of the
component-level path is because of the existence of
the red edge, which makes a component no longer
connected on the tree if F is removed. Referring to
Figure 1(b), we call Q1 a shattered component because
of the red tree edge. On the contrary, assuming that the
green tree edge does not include any edge in F, we call
Q2 an intact component. Because we can use the green
edge to connect QSi and QTi , we do not need to view
Q2 as an intermediate component in the component-
level path. We consider a new component-level path
that only contains shattered components, and we call
it shattered-component-level paths. Defining cut-based tree-
demand-pairs on shattered-component-level paths (Refer
to Section V-A.) significantly decreases the number of
tree-demand-pairs while keeping the lower bound of
flows. In conclusion, we prove the flowing properties
in Section V-A, Section V-B, and Section V-C. We remark
that Figure 1 only illustrates a special case when Si and
Ti contain only one vertex. In general cases, we may have
different paths between Si and Ti on the tree. The edges
between a vertex cut may not only be one single blue
edge or green edge. We will formally discuss them later.

1) (Refer to Section V-A) If pT ,M, yq is good for
F, we define the cut-based tree-demand-pairs by
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considering all possible shattered-component-level
paths between all pSi, Tiq.

2) (Refer to Lemma 11) For each edge-set F, if we have
sampled a good tree T for F and a subset of edges
Eb Ď EpT qzM´1pFq such that all tree-demand-
pairs is connected in Eb, then there is a path from
Si to Ti in pE�

ŤMpEbqqzF for each demand-pair
pSi, Tiq.

3) (Refer to Lemma 14) The flow in T zM-1pFq be-
tween each tree-demand-pair is at least 1

4�β .
4) (Refer to Lemma 16) Fix a tree T . The number

of tree-demand-pairs defined by all F and pSi, Tiq
is at most qn2� ¨ 22�β. Note that it is qnOp�q if
β “ Oplog nq.

Given the properties as above, we can show that our
algorithm achieves the claimed approximation ratio.

Lemma 9 (Connectivity). Set τ1 “ Op� log nq and τ2 “
Oplog q ` �plog n ` βqq. The output graph H�`1 of Algo-
rithm 1 is p�` 1q-connected for each demand-pair pSi, Tiq with
probability at least 1{2.

Proof. If we can prove that H�`1zF still connects Si with
Ti for all F with |F| “ �, and for all i “ 1, ..., q, then H�`1
is p� ` 1q-connected. Since every T in the support of D
has heightpT q “ Oplog nq by Lemma 6, combining with
lemma 7, we have a constant probability φ to connect
a tree-demand-pair on T . When we sample a tree T ,
by Property 4 (Lemma 16), the total number of tree-
demand-pairs in T is ψ ď qn2� ¨ 22�β. Set

τ2 “ 1
φ

¨ logp4qn2� ¨ 22�βq “ Oplog q ` �plog n ` βqq.

We can connect every tree-demand-pairs on T (denote
this event by CT ) with probability:

PrrCT s ě 1 ´ ψ ¨ p1 ´ φqτ2 ě 3{4.

Conditioned on CT for certain T that is good for F, it
holds that H�`1zF is connected for all pSi, Tiq by Property
2 (Lemma 11). Next, because for every F, by Lemma 8,
we have 1{2 probability such that T is good for F. Set

τ1 “ 8
3

log 2n2� “ Op� log nq.

Let ψ1 ď n2� be the number of possible edge-cut F. The
probability that we sample a good tree T for all F and
T is fully connected (CT ) is at least:

1 ´ ψ1 ¨ p1 ´ 3{4 ¨ 1{2qτ1 ě 1{2.

It means that H�`1zF is connected for every pSi, Tiq and
for all F with probability at least 1{2, which concludes
the lemma.

Lemma 10 (Cost). The output graph H�`1 of Algorithm 1
has cost

Op�2β2 log4 np� log n ` �β ` log qqq
ÿ
ePE

cexe.

Proof. We use 4�β ¨ ř
ePE xe “ Op�βq ř

ePE xe cost to buy
the edges in LARGE. For the multiple rounds of TreeR-
ounding, by Lemma 7 and Property 3 (Lemma 14), we
know that for each round we pay

Op�β2 log3 nq ¨
ÿ
ePE

cexe.

As τ1 “ Op� log nq, τ2 “ Oplog q ` �plog n ` βqq, the total
cost incurred by the algorithm is

Op� log n ¨ plog q ` �plog n ` βqq ¨ �β2 ¨ log3 nq
ÿ
ePE

cpeqxe,

as we claimed.

a) Conclusion: Combining Lemma 9 and Lemma 10,
Algorithm 1 is a Monte Carlo Op�2β2 log4 np� log n ` �β `
log qqq-approximation algorithm. It can be viewed as a
Las Vegas one if we keep sampling until H�`1 is p�` 1q-
connected. It concludes the approximation ratio of

Opβ2k2 log4 npk log n ` kβ ` log qqq
as Theorem 2 claims. By using Räcke’s tree embedding
where β “ Oplog nq, we have the approximation ratio of

Opk2 log6 npk log n ` log qqq
as that in Theorem 1.

A. Tree-Demand-Pairs for Shattered-Component-Level Paths
Let QF be the set of all connected components in

HzF. We remark that the subgraph H might already
consist of many connected components before removing
the edges in F, for VpHq “ VpGq but |EpHq| might be
much smaller than |EpGq|. For convenience, we think of
each component Q P QF as a subset of V instead of a
subgraph of H. For a nonempty set S Ď VpGq, suppose
that Q1, Q2, . . . , Qt are the components in QF such that
Qi

Ş
S ‰ H for 1 ď i ď t, we define QS “ Ťt

i“1 Qi.
For a cut X Ď VpGq, we say that X is shattered if there

exists some component Q P QF such that X
Ş

Q ‰ H
and pVpGqzXq Ş

Q ‰ H; otherwise, X is intact. For a
tree T P D and a component Q P QF, we say that Q is
shattered if it is disconnected in T zM´1pFq; otherwise,
Q is intact.

Now we are ready to generate a collection ZF of tree-
demand-pairs for each edge-set F of � edges and a good
tree T P D for F. We generate all the possible partitions
pA1, B1q of shattered components in QF, denoted by UF

T .
Here we allow A1 “ H or B1 “ H. For each partition
pA1, B1q, generate tree-demand-pairs pA1 Ť

QSi , B1 Ť
QTi q

for each i P rqs such that QSi

Ş
QTi “ H. Formally, we

have

ZF :“ tpA1 ď
QSi , B1 ď

QTi q | pA1, B1q P UF
T ,

QSi

č
QTi “ H, i P rqsu

Notice that we only need ZF as tree-demand-pairs on
tree T when T is good for F, i.e., F is good on T . The
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set of all tree-demand-pairs for a tree T is denoted by
ZT “ Ť

FĎEpHq:|F|“�,F is good on T ZF.

B. Feasibility of the Reduction

We prove that the set of tree-demand-pairs of ZF on a
tree T corresponds to the problem of connecting all set
pairs pSi, Tiq that are disconnected in HzF.

Lemma 11. For an edge-set F Ď EpHq of � edges, if there
exist a tree T and a set of edges Eb Ď EpT qzM´1pFq such
that for every demand pair pA, Bq P ZF there is a path
in Eb connecting A to B, then there is a pSi, Tiq-path in
pH

ŤMpEbqq zF for each i P rqs.
Proof. Let H “ H

ŤMpEbq and V “ VpGq “ VpHq.
We recall that, for a vertex set S Ď V, QS is defined
as the union of components in QF intersecting with S,
where QF consists of all the connected components in
HzF (a component is viewed as a subset of V rather
than a subgraph of H). If QSi

Ş
QTi ‰ H, then we are

done. Hence, we may assume that QSi

Ş
QTi “ H. Then

it suffices to show that, δHpXq ě 1, for every cut X Ď V
satisfying QSi Ď X and QTi Ď VzX.

If X is a shattered cut, then there is some component
Q P QF such that Q

Ş
X ‰ H and Q

ŞpVzXq ‰ H. Thus,
there is an edge e “ pu, vq P EpHqzF Ď EpHq such that
u P Q

Ş
X and v P Q

ŞpVzXq, implying that δHpXq ě 1.
If X is an intact cut, then let

A “ QSi

Ť �
Q P QF : Q Ď X

(
and B “

QTi

Ť �
Q P QF : Q Ď VzX

(
. Clearly, it holds that

pA, Bq P ZF. By the premise, there is a path p in Eb
connecting A Ď X to B Ď VzX. Thus, it follows from the
properties of Räcke’s tree that the corresponding path
Mppq is in H

ŤMpEbq. The premise Eb Ď EpT qzM´1pFq
further ensures that Mppq is in pH

ŤMpEbqq zF because,
otherwise, p would use some edge in M´1pFq. Thus,
δHpXq ě 1, proving the lemma.

C. Bounding the Flow and the Number of Tree-Demand-Pairs

As mentioned, we will later invoke a randomized
algorithm to round the flows on all sampled trees T .
However, given a specific tree T , it might be infeasible
to connect the tree-demand-pairs for all the edge-sets.
This is because the maximum flow of some tree-demand-
pairs may be too small. To fix this problem, first let us
recall the definition of “good”.

Definition 12. We say that a tree pT , M, yq is good for an
edge-set F Ď EpHq, or F is good on T , if ypM´1pFqq ď 1{2.

We recall that there are two types of cuts X Ď VpHq:
intact and shattered. We first prove that an intact cut has
at least constant capacity with respect to rx in the graph
G.

Lemma 13. Let X Ď VpGq be a cut such that Si Ď X and
Ti Ď VzX for some set-pair pSi, Tiq. If X is intact with respect
to F, then rxpδGpXqzFq ě 3{4.

Proof. Since X is intact, all edges in δGpXqzF are not in
H, meaning that δGpXqzF Ď SMALL. Thus, each edge e
in δGpXqzF has capacity rxe “ xe. It follows from the LP
constraints on x that xpδGpXqq ě � ` 1. Since F consists
of � edges, the capacity xpFq is at most �. Thus,

� ` 1 ď xpδGpXqq “ xpδGpXqzFq ` xpFq ď xpδGpXqzFq ` �

Therefore, xpδGpXqzFq ě 1, implying that

rxpδGpXqzFq “ xpδGpXqzFq ´
ÿ

ePδGpXqzF: xeăp1{2n2q¨p1{4�βq
xe

ě 1 ´ n2 ¨ p1{2n2q ¨ p1{4�βq
ě 3{4.

Since the capacity of an edge-set F in any good tree is
at most 2β ¨ rxpFq, the next lemma follows.

Lemma 14 (Lower Bound on the Flow Value in the
Tree). Let F Ď EpHq be any edge-set of � edges such that
QSi

Ş
QTi “ H for some i P rqs and let pA, Bq be any tree-

demand-pair generated for Si and Ti. Then for a good tree T
for F the flow that can be routed from A to B in T zM´1pFq
is at least 1{p4�βq.

Proof. It is sufficient to prove that, for any X Ď V such
that A Ď X and B Ď VzX, the value of flow that can be
routed in T zM´1pFq from X to VzX is at least 1{p4�βq.

If X is an intact cut, then rxpδGpXqzFq ě 3{4 by
Lemma 13 and flow

y
T pX, VzXq ě flowrx

GpX, VzXq ě 3{4.
Since F is good on T , we have ypM´1pFqq ď 1{2 which
means that if the edges M´1pFq are removed from T ,
then any flow in T can decrease in value by at most 1{2.
Therefore, we have that

flow
y
T zM´1pFqpX, VzXq ě flow

y
T pX, VzXq ´ 1{2

ě 1{4 ě 1{p4�βq
If X is a shattered cut, then there is some component
Q P QF such that Q

Ş
X ‰ H and Q

ŞpVzXq ‰ H.
The definition of tree-demand-pair pA, Bq implies that
Q cannot be a shattered component. Thus, Q is still con-
nected in T zM´1pFq, and there is a path in T zM´1pFq
connecting X to VzX.

Consider an arbitrary pair s, t such that s P Q
Ş

X and
t P Q

ŞpVzXq. We know that s and t are connected by
LARGE edges in H, so flowx̃

Gps, tq ě 1
4�β . Notice that on the

tree, s and t are still connected in TzM´1pFq. Therefore,
the unique tree path for ps, tq does not contain F and we
have:

flow
y
T zM´1pFqpX, VzXq ě flow

y
T zM´1pFqps, tq

“ flow
y
T ps, tq ě flowx̃

Gps, tq ě 1
4�β

Lemma 14 implies that for every edge-set F Ď EpHq
there is enough flow in a good tree to connect each tree-
demand-pair pA, Bq P ZF. Next, we bound the number
of tree-demand-pairs.
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Lemma 15. For any edge-set F Ď EpHq of � edges and a
good tree T for F, the number of shattered components in QF

is at most 2�β.

Proof. Let Q P QF be any shattered component. By
definition, there exist two vertices s, t P Q that are
disconnected in T zM´1pFq, while being connected in
HzF. Since each edge in HzF has capacity 1{p4�βq,
the maximum flow from si to ti in HzF has value at
least 1{p4�βq and so do these two vertices in the tree
T. However, s and t are disconnected in T zM´1pFq,
meaning that there cannot be any flow between them
in T zM´1pFq. Applying this fact to every shattered
component, we conclude that the total loss of flow value
is at least ν{p4�βq after removing edges M´1pFq from
T , where ν is the number of shattered components.
Therefore

ν{p4�βq ď ypM´1pFqq ď 1{2.

Hence we conclude that ν ď 2�β.

Lemma 16 (Upper Bound on the Number of Tree-De-
mand-Pairs). For each tree T , the number of tree-demand-
pairs is |ZT | ď q ¨ n2� ¨ 22�β.

Proof. By Lemma 15 we have

|ZT | ď
ÿ

FĎEpHq: |F|“�,F is good on T
|ZF|

ď
ˆ|EpHq|

�

˙
¨ p22�β ¨ qq

ď q ¨ n2� ¨ 22�β.

VI. ROUNDING FLOWS ON THE TREE

For completeness, we illustrate how we apply the
CGL’s rounding in this section. The algorithm is shown
in Algorithm 2.

Algorithm 2 TreeRounding

1: for q “ 0, ..., 2 logp 2n2

f q and v P VpT q do
2: With probability mint1, 8

f ¨ 2´qu, q-mark v.
3: if v is q-marked then
4: yv,q Ð 2q`1y and Ev,q Ð H.
5: for τ1 interations do
6: Ev,q Ð Ev,q Y RoundGKRpTv, v, yv,qq.
7: H Ð H Y MpEv,qq.
8: return H.

We prove the following Lemma 7 by combining
Lemma 18 and Lemma 19.

Lemma 7 (CGL’s Tree Rounding). Suppose that there is
a tree T with heightpT q “ Oplog nq and an edge set E1 Ď
EpT q that supports a flow of value at least f between two
vertex sets A and B. If only edges from E1 can be selected by
TreeRoundingpG, T q, then it connects A to B with constant
probability φ with cost of Op 1

f ¨ β ¨ log3 nq ¨ ř
ePE cexe.

First, we introduce Garg-Konjevod-Ravi (GKR)
Rounding which is repeatedly used in the TreeRounding
algorithm. Denote the rounding algorithm for GST used
in [29] by RoundGKR. Let T be the tree rooted at r,
and y be a fractional solution to the standard cut-based
LP for GST. RoundGKR gives a way to connect every
group Gi to root r with high probability. To be more
precise, we state the following result implicitly shown
by the authors.

Lemma 17. Suppose that, for some E1 Ď EpT q, capacity
y support an unit flow from Gi Ď VpT q to r in E1.
RoundGKRpT , r, yq where T is a tree using fractional so-
lution y and r is the root of T , gives a path P Ď E1 connects
Gi to r with probability at least Ωp1{ log nq.

In the TreeRounding algorithm, we have a tree em-
bedding T initially. For one iteration q and node v,
with some probability w.r.t q, it applies the subroutine
RoundGKR for τ1 iterations. In the end, the union of the
corresponding edges in the original graph of the edges
selected by the RoundGKR gives a solution to connect
A and B.

Now we are ready to prove Lemma 7. First, we
show the probability that the algorithm connects each
demand-pair A and B.

Lemma 18. Algorithm 2 connects A to B with constant
probability φ.

Proof. We know that there is an f unit of flow from A
to B in E1. Then, we decompose this flow into a family
of flow paths. By discarding all the flow paths whose
flow is less than 1

2n2 ¨ f , we obtain a new family of flow
path P. Denote the flow of Pj by pj. Let μv be the total
amount of flow turning at v. Then we haveÿ

vPVpT q
μv “

|P|ÿ
j“1

pj ě f ´ 1
2n2 ¨ f ¨ |EpTq| ě f

2
.

For each node v P VpT q, let qv P
!

0, ..., 2 logp 2n2

f q
)

be an

integer such that μv P p2´qv´1, 2´qv s.
Denote the event that some node v P VpT q is qv-

marked by I . We claim that PrrsI |Gs ď e´3{4. Let Xv
be 1 if node v P VpT q is qv-marked and 0 otherwise. We
have

Pr
“sI |G‰ “ Pr

»– ÿ
vPVpTq

Xv “ 0

fifl .

Since tXvu are independent,

E

»– ÿ
vPVpT q

Xv

fifl “
ÿ

vPVpT q

8
f

¨ 2´qv ě 8
f

ÿ
vPVpT q

pv ě 4.

By Chernoff’s bound,

Pr

»– ÿ
vPVpT q

Xv ď 1

fifl ď e´ 1
3 p 3

4 q24 “ e´3{4.
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Conditioned on I , there is some node v P VpT q
that is qv-marked. Consider the event C that A and B
are connected by the union of the solution computed
by RoundGKR in τ1 iterations on node v for q “ qv.
Observe that 2qv`1φv ě 1. Therefore, by Lemma 17,
RoundGKR selects a correct path with probability at
least 1 ´ p1 ´ Ωp 1

log n qqτ1
. Thus, Prr sC|G, Is ď ε, where

τ1 “ Oplog nq. Altogether, the probability that the Tree
Rounding connects A to B is at least

1 ´ Prr sGs ´ PrrsI |Gs ´ PrrGs ¨ PrrI |Gs ¨ Prr sC|G, Is
ě 1 ´ 1{2 ´ e´3{4 ´ ε “: φ ą 0

Next we analyze the cost incurred by the algorithm.

Lemma 19. ErcpHqs “ Op 1
f ¨ β ¨ log3 nq ř

ePE cexe.

Proof. First, an edge e1 P EpT q is selected iff e1 is in
Ev,q for some q and some q-marked v P VpT q. For each
iteration of RoundGKR, we select e1 with probability
yv,q “ 2q`1y. To proceed these iterations, the vertex v
need to be q-marked. Thus, the corresponding probabil-
ity is at most 8

f ¨ 2´q. Putting everything together, edge
e is selected with probability at most

heightpT q ¨
ÿ
q

8
f

¨ 2´q ¨ 2q`1ype1q ¨ τ1 “ O

˜
log3 n

f

¸
ype1q.

Then, an edge e P E is selected iff any edge in M´1peq
is selected by RoundGKR. Therefore, the expectation of
an edge e is selected is at most

O

˜
log3 n

f

¸
¨ E

»– ÿ
e1PM´1peq

ype1q
fifl ď O

ˆ
1
f

¨ β ¨ log3 n
˙

¨ xe.

Taking the summation of all edges, the expected cost
of cpHq is at most

O
ˆ

1
f

¨ β ¨ log3 n
˙ ÿ

ePE

cpeqxe.

VII. CONCLUSION AND OPEN PROBLEMS

In this paper, we have presented an approximation al-
gorithm for Group EC-SNDP whose approximation ratio
is Opk3 polylogpn, qqq. It is quite interesting that this fac-
tor resemblances the approximation ratio of Opk3 log nq
for VC-SNDP [3]. The factor k appears quite naturally
in network design problems and might be the approx-
imability threshold. However, the best known negative
result still has a lower bound of k1{5´ε, for ε ą 0,
assuming NP ‰ ZPP, [30] (combined with [15] and
the improvement in [25]). While it is rather unnatural
that a survivable network design problem would have
a hardness factor beyond k, the recent result of Liao,
Chen, Laekhanukit and Zhang [7] shows that this is the
case for the sister problem of Group EC-SNDP, namely
the k-connected directed Steiner tree problem (k-DST) (a.k.a,
directed single-source k-connectivity). They showed that the

approximation lower bound of k-DST is, indeed, at least
Ωp2k{2{kq, which is far beyond polynomial. Any results
in both directions would be surprisingly interesting,
either the existence of k1´εpolylogpnq-approximation al-
gorithms or a hardness threshold of Opk1`εq, for some
ε ą 0.

We are aware of the capacity-based probabilistic tree
embedding for α-balanced graphs, which appears in the
work of Ene, Miller, Pachocki and Sidford [35]. In our
opinion, there is a high chance that the probabilistic
capacity mapping would work for us, thus generalizing
our framework to directed graphs, or more specifically,
to the case of k-DST on α-balanced graphs. Unfortu-
nately, the construction in [35] is tailored for minimizing
congestion for single-source oblivious routing, and it is
not clear whether the bound holds for other set-pairs
in the graph. Our algorithm, on the other hand, requires
the congestion guarantee to hold for pairwise subsets, in
which one contains the source (i.e., root). Thus, one di-
rection to push forward on studying survivable network
design is in developing a capacity-based probabilistic
tree-embedding that is able to deal with the more general
settings of oblivious routing on α-balanced graphs.
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