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—— Abstract

In the k-outconnected directed Steiner tree problem (k-DST), we are given an n-vertex directed
graph G = (V, E) with edge costs, a connectivity requirement k, a root » € V and a set of terminals
T C V. The goal is to find a minimum-cost subgraph H C G that has k edge-disjoint paths from
the root vertex r to every terminal ¢ € T. The problem is NP-hard, and inapproximability results
are known in several parameters, e.g., hardness in terms of n: log®>~¢ n-hardness for k = 1 [Halperin
and Krauthgamer, STOC’03], 218" "“n_phardness for general case [Cheriyan, Laekhanukit, Naves
and Vetta, SODA’12], hardness in terms of k [Cheriyan et al., SODA’12; Laekhanukit, SODA’14;
Manurangsi, IPL’19] and hardness in terms of |T| [Laekhanukit, SODA’14].
In this paper, we show the approximation hardness of k-DST for various parameters.
Q(|T|/log|T|)-approximation hardness, which holds under the standard complexity assumption
NP # ZPP. The inapproximability ratio is tightened to Q (|T']) under the Strongish Planted
Clique Hypothesis [Manurangsi, Rubinstein and Schramm, ITCS 2021]. The latter hardness
result matches the approximation ratio of |T'| obtained by a trivial approximation algorithm,
thus closing the long-standing open problem.
Q (2’“/2/k>-approximation hardness for the general case of k-DST under the assumption NP #
ZPP. This is the first hardness result known for survivable network design problems with an
inapproximability ratio exponential in k.
Q ((k/L)L/4)—approximation hardness for k-DST on L-layered graphs for L < O (logn). This
almost matches the approximation ratio of O(k*~* - L - log |T|) achieved in O(n")-time due to
Laekhanukit [ICALP’16].

We further extend our hardness results in terms of |T| to the undirected cases of k-DST,
namely the single-source k-vertex-connected Steiner tree and the k-edge-connected group Steiner tree
problems. Thus, we obtain 2 (|T']/log|T"|) and € (|T|) approximation hardness for both problems
under the assumption NP # ZPP and the Strongish Planted Clique Hypothesis, respectively. This
again matches the upper bound obtained by trivial algorithms.
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1 Introduction

Fault-Tolerant and Survivable Network Design have been an active area of research for decades
as enterprises depend more on communication networks and distributed computing. The need
to design a network that can operate without disruption when one or more components fail
has been growing dramatically. Henceforth, network scientists have formulated many models
to address these problems. Amongst them, the simplest and arguably most fundamental
problem in the area is the minimum-cost k-outconnected spanning subgraph (k-OCSS) problem
that captures the problem of designing a multi-casting network with survivability property.
The k-OCSS problem is a generalization of the minimum spanning tree and the minimum-cost
arborescence problems, where the goal is to design a network that can operate under failures
of at most £ — 1 points. More formally, k-OCSS asks to find a minimum-cost subgraph such
that the root vertex is k-connected to every other vertex.

In this paper, we study the analog of k-OCSS in the presence of Steiner vertices, namely
the k-outconnected directed Steiner tree problem (k-DST): Given a directed graph G = (V, E)
with cost ¢, on arcs, a root vertex r and a set of terminals 7', the goal is to find a minimum-
cost subgraph H C G such that H has k edge-disjoint paths from the root r to every terminal
t € T, i.e., the root remains connected to every terminal even after the removal of k — 1 arcs.
The k-DST problem is a natural generalization of the classical directed Steiner tree problem
(DST) to high connectivity settings.

The undirected counterpart of k-DST is the minimum-cost single source k-edge-connected
Steiner tree problem, which admits a factor-two approximation algorithm [28], and the
vertex-connectivity variant admits an O(k log k)-approximation algorithm due to Nutov [36].
The k-DST problem, on the other hand, has no non-trivial approximation algorithm for & > 3,
except for the special case of L-layered graph, which admits O(k% - L - log | T|)-approximation
algorithm due to Laekhanukit [33]. The cases of k = 1 and k = 2 are also notorious problems
themselves, as both admit polylogarithmic approximation algorithms that run in quasi-
polynomial time, but no polynomial-time approximation algorithms with sub-polynomial
approximation. It has been long-standing open problems whether such algorithms exist for
DST and 2-DST.

In this paper, we obtain several inapproximability results for k-DST. First, we show an
approximation hardness of 2 (|T'|/log |T'|) for k-DST under NP # ZPP, which holds when &
is larger than |7T'|, thus implying that a trivial |T'|-approximation algorithm for the problem
is tight up to the lower order term.

» Theorem 1. For k > |T|, unless NP = ZPP, it is hard to approzimate the k-DST problem
to within a factor of Q (|T|/log |T)).

Assuming the Strongish Planted Clique Hypothesis (SPCH) [35], our hardness result is tight
up to a constant factor, and it, indeed, rules out f(|T|) - poly(n)-time o(|T|)-approximation
algorithm for any function f depending only on |T|. See discussion in the appendices of the
full version of this paper.
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Table 1 Summary of the results for k-DST.

Parameter Lower Bound Lower Bound | Upper Bound
(This paper) (Previous)

Connectivity k Q (2’“/2/143) Q (k/logk) unknown for general k > 3
Theorem 4 [34]

Connectivity k, Depth L | € ((k/L)A=9L/4=2) | O (k/logk) O (k*' - L-log|T])
Theorem 3 [34] [33]

Terminals |T| Q(|T|/log|T|) |T|1/ 4= T
Theorem 1 [32] folklore

» Theorem 2. Assuming the Strongish Planted Clique Hypothesis, there is no f(|T|)-poly(n)-
time o(|T|)-approximation algorithm for the k-DST problem.

Next, we show that the k-DST admits no O ((k/L)%/*)-approximation algorithm even
on an L-layered graph, which consists of L parts, called layers, and every arc joins a vertex
from the i-th layer to the (i + 1)-th layer.

» Theorem 3. Ii is hard to approzimate the k-DST problem on L-layered graphs G = (V, E)
for Q1) < L < O (log|V]) to within a factor of § ((k/L)(l_e)L/4_2) for any constant € > 0,
unless NP = ZPP.

In addition, we obtain an approximation hardness exponential in k by setting a different
parameter in the reduction, which improves upon the previously known approximation
hardness of Q (k/logk) due to Manurangsi [34] (which is in turn based on the two previous
results [32, 11]), and is the first known approximation hardness for connectivity problems
whose ratio is exponential in the connectivity requirement.

» Theorem 4. For k < |T)|, it is hard to approzimate the k-DST problem to within a factor
of (2%/2/k), unless NP = ZPP.

Using the technique of Cheriyan, Laekhanukit, Naves and Vetta [11], which is based on
the padding technique introduced by Kortsarz, Krauthgamer and Lee [31], we extend our
hardness result to the undirected counterpart of k-DST, namely, the single source k-vertex-
connected Steiner tree problem (k-ST) (a.k.a. undirected rooted subset k-connectivity, shorty,
rooted-k-VC) and the special case of k-DST, namely k-edge-connected group Steiner tree
problem (k-GST).

The latter problem is a natural fault-tolerant generalization of the classical group Steiner
tree problem [19], which has been studied in [29, 24, 6, 3]. To the best of our knowledge,
a non-trivial approximation algorithm for this problem is known only for £ = 1,2. For
k > 3, only a bicriteria approximation algorithm, where the connectivity requirement can
be dropped by a factor O(logn), is known in [6]. Nevertheless, a trivial |T|-approximation
algorithm exists for all values of k and we also show its tightness (up to the lower order term)
for sufficiently large k.

» Theorem 5. For k > |T|, unless NP = ZPP, it is hard to approzimate the k-ST problem
to within a factor of Q(|T|/log|T)).

» Theorem 6. For k > |T|, unless NP = ZPP, it is hard to approzimate the k-GST problem
to within a factor of Q(|T|/log|T|), where |T| is the number of groups.
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Related work

The k-DST is well-studied in the special case where all vertices are terminals. This problem
is, as mentioned, known as the k-outconnected spanning subgraph problem (k-OCSS), which
admits polynomial-time algorithms due to the seminal work of Frank and Tardos [17] (also,
see [16]). However, while k-OCSS is polynomial-time solvable, its undirected counterpart is
NP-hard. Nevertheless, Frank-Tardos’s algorithm has been used as subroutines to derive a
2-approximation algorithm for the undirected variant of k-DST and its generalization [30].

In the presence of Steiner vertices, k-DST becomes much harder to approximate. For
the case of k = 1, the best known polynomial-time approximation algorithms are |T|¢, for
any constant € > 0, due to the work of Charikar et al. [8], and the same approximation ratio
(with an additional log factor) applies for the case k = 2 due to the work of Grandoni and
Laekhanukit [22]. These two special cases of k-DST, especially for the case k = 1, have
been perplexing researchers for many decades as it admits polylogarithmic approximation al-
gorithms in quasi-polynomial-time, whereas there is no known sub-polynomial-approximation
algorithm for the problems; see, e.g., [8, 23, 20, 22]. It has been a long-standing open problem
whether polylogarithmic or even sub-polynomial-approximation ratios can be achieved in
polynomial time. Some special cases of k-DST have been studied in the literature. Laekha-
nukit [33] studied the k-DST instances on L-layered graphs, and its extensions to the
L-shallow instances, and presented an O(k% - L - log |T'|)-approximation algorithm that runs
in n?) time. Polynomial-time polylogarithmic approximation algorithms for k-DST are
known in quasi-bipartite graphs [7, 37] (also, see [18, 27] for the case k = 1, which matches
the approximation lower bound of (1 — €)Ink, assuming P # NP, inherited from the Set
Cover problem [14, 12]).

For the undirected case of k = 1, namely the Steiner tree problem, it admits a 1.39-
approximation algorithm due to the breakthrough result of Byrka et al. [2] and admits a
%—approximation algorithm on quasi-bipartite graphs due to the work of Goemans et al. [21].
For k > 2, the problems on undirected graphs are branched into edge and vertex connectivity
variants. This is not the case for directed graphs as there is a simple approximation-
preserving reduction from edge-connectivity to vertex-connectivity and vice versa. For the
edge-connectivity problem, it admits a 2-approximation algorithm by using Frank-Tardos’s
algorithm as subroutines when there is no Steiner vertex [30], and a 2-approximation algorithm
via iterative rounding due to the seminal result of Jain [28], which also applies for the more
general case of the edge-connectivity survivable network design problem. For the vertex-
connectivity problem, there is a 2-approximation algorithm for £ = 2 due to Fleischer, Jain
and Williamson [15], but the problem becomes hard polynomial in k, for sufficiently large
k [11], assuming P # NP. The best known approximation algorithm for the single-source
k-vertex-connectivity problem on undirected graphs is O(klog k) due to Nutov [36].

The network design problem where the connectivity requirements are between pairs of
vertices is sometimes called point-to-point network design. A natural generalization is to
extend the requirements to be between subsets of vertices, called groups. The classical problem
in this genre is the well-studied group Steiner tree problem (see, e.g., [19, 9, 10, 25, 26, 4]).
The group Steiner tree problem admits an approximation ratio of O(log ¢logn) [19], which
requires a probabilistic metric-tree embedding [1, 13]. This approximation ratio is almost
tight as it matches the lower bound of O(log® “n), for any constant ¢ > 0, due to the
hardness result of Halperin and Krauthgamer [26] assuming NP Z ZPTIME(nPo8(?)); also,
see the improved hardness result in [23]. The fault-tolerant variant of the group Steiner tree
problem is called the k-edge-connected group Steiner tree problem, studied in [29, 24, 6, 3].
As mentioned, true approximation algorithms for this problem are known only for £ = 1,2
[19, 29, 24]. For k > 3, only a bi-criteria approximation algorithm is known [6].
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Organization

Section 2 is devoted to preliminary notations, definitions and facts. The reductions for k-DST
are presented in Section 3, 4 and 5. We give some intuitions on the techniques in Section 3
and describe the reduction for hardness in terms of |T'| in Section 4 and for hardness in terms
of k in Section 5. In Section 6 we briefly discuss the results for k-DST. Finally, we extend
our techniques to undirected graphs and tighten the Q (|T'|/log |T|) lower bound to Q (|T)
under a stronger complexity hypothesis. These results are presented in the appendices of the
full version of this paper.

2 Preliminaries

We use a standard graph terminology. Let G = (V, E) be any graph, which can be either
directed or undirected. For undirected graphs, we refer to the elements in E as the “edges’
of G and denote by deg.(v) the number of edges incident to a vertex v € V. For directed
graphs, we refer to the elements in E as the “arcs” of G and denote by indeg (v) the number

)

of arcs entering v. The notation for an edge/arc is (u,v), or sometimes v — v for an arc.
For a path between vertex u and w, we call it a (u,w)-path and write it as (u,v,...,w) for
both directed and undirected graphs, or v — v — --- — w for only directed graphs. The
graphs may have multiple edges/arcs between two same vertices u and v, and both degq(v)
and indegq(v) count multiple ones. We drop G from the notations when it is clear from the
context. When more than one graph is considered, we use V(G) to clarify the vertex set of
G, and E(G) the edge/arc set.

k-(Edge)-Connected Directed Steiner Tree

The k-(edge)-connected directed Steiner tree problem (k-DST) is defined as follows. An input
instance is of the form (k, G, r,T) where k € Z>1 is the connectivity requirement, G = (V, E)
is a directed graph with weight (or cost) on arcs ¢ : E — Qx, r € V is called root and
T C V is a set of terminals. A subgraph H = (V, F) of G is k-connected if there exist k
edge-disjoint paths in H from r to ¢ for each terminal ¢ € T. Sometimes we also refer to a
k-connected subgraph as a feasible solution to the k-DST problem. The problem is to find a
k-connected subgraph H = (V, F') of minimum cost c¢(H) = Y .y c(e).

Here, we define the problem in terms of edge-connectivity. A vertex-connectivity variant is
defined similarly except that it asks for (openly) vertex-disjoint paths instead of edge-disjoint
paths. Both variants are equivalent in terms of approximability on directed graphs because
there exist straightforward polynomial-time approximation-preserving reductions from any
one to the other.

(Minimum) Label Cover

An instance of the label cover problem is given by an (undirected) bipartite graph G =
(U, V,E), a set of labels ¥ = [g] and (projection) constraints m,, : X — ¥ on each edge
(u,v) € £. A multilabeling o : Y UV — 2% is a subset of labels assigned to each vertex.
We say that o covers an edge (u,v) € &€ if my,(a) = b for some a € o(u) and b € o(v).
A multilabeling is feasible if it covers all the edges of £. The problem asks for a feasible
multilabeling o with minimum cost c¢(o) = >°,, 00 [o(w)].

Manurangsi [34] proved that the label cover problem has a hardness gap in terms of the
maximum degree of G.
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» Theorem 7 ([34]). For every positive integer g > 1, unless NP = ZPP, it is hard to
approzimate a label cover instance of mazimum degree O(glog g) and alphabet size O(g* log? 9)
within a factor of g.

The following corollary can be deduced straightforwardly.

» Corollary 8. It is hard to approximate a label cover instance of mazimum degree A and
alphabet size O (A*/polylog(A)) to within a factor of Q(A/log A), or to within a factor of
Q (Al_e) for any constant € > 0, unless NP = ZPP.

To obtain the hardness results on A-DST (and related problems), we present reductions
from the label cover problem on an instance (G = (U, V, &), X = [g], 7 = {7y : = X}, ce)
of maximum degree A. For the ease of presentation, let U = {uy,uz,...} and V = {vy,vq,...}.

Finally, we prepare a technical lemma for future reference. We say that a subgraph I of
G is an induced matching if 1) I is a matching, i.e., each vertex in G is the endpoint of at
most one edge in E(I) and 2) I is an induced subgraph, i.e., all edges with two endpoints
both in V(I) are included in E(I).

» Lemma 9 (Folklore). Let G = (U,V, E) be a bipartite graph of maximum degree A. There
exist a partition of the edges E = F1 U FEs U ---U Ea such that each E; is a matching of
G, and a partition E\,E}, ..., E} of E for some § < 2A? such that each E! is an induced
matching. Furthermore, such partitions can be found in polynomial time.

3 Overview of the Reductions

To give some intuitions on how our reductions work, we dedicate this section to providing an
overview. We have two main reductions, which are tailored for inapproximability results in
different parameters, say |T'| and k.

Both of the reductions inherit approximation hardness from the same source — the
label cover problem, denoted by (G,Y, 7). We design reductions that have a one-to-one
correspondence between a feasible solution to the label cover problem and that to the k-DST
problem, i.e.,

Completeness: Given a feasible multilabeling o of the label cover instance (G, X, 7),

there is a corresponding k-connected subgraph H of G such that c¢(o) = ¢(H).

Soundness: Given a k-connected subgraph H of the k-DST instance, there is a corres-

ponding feasible multilabeling o of the label cover instance (G, ¥, 7) such that ¢(o) = ¢(H).

We note that certain details in the ideas mentioned below are intentionally omitted, which
can be found in later chapters.

Basic Construction

First, we present the basic construction for the case k = 1, which is sufficient to maintain
the completeness property (but not the soundness). We start by adding a root vertex r and
terminal vertices ¢;;, one for each edge (u;,v;) € £. Observe that each terminal corresponds
to an edge in the label cover instance. Thus, we wish to make an (r,¢;;)-path in G to
correspond to a labeling that covers an edge in G, which we call a cover path. To be more
precise, if the edge (u;,v;) is covered by a label pair (a,b), then the corresponding cover path
in G is the path » — u — vé? — v; — t;; where the vertices u{ and vé-’ are simply added to
the graph G. The appearance of the vertex u$ € V' along the cover path can be interpreted
as assigning the label a to the vertex u; € U, and similarly, v;? means assigning the label b to
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the vertex v; € V. See Figure 1 for illustration. Note that any feasible multilabeling covers
all the edges of G, so we can collect all cover paths (and the involved vertices) to form a
subgraph, where the root is already 1-connected to the terminals. By setting the weight of
all arcs r — uf and ’U? — v; to be 1 while leaving other arcs zero-cost, the subgraph has the
same cost as the multilabeling.

uf Yj vj tij
r >@ >0 @ >®
b
ug v vj ti i /
T @ @ >® @ >@ @
Figure 1 A cover path (r, u?mf,vj,tij). Figure 2 An illegal path (r,u, U§7'Uj7tij).

However, the soundness property does not hold on the basic construction because it
creates many éllegal (r,t;;)-paths. Such a path goes from the root to a terminal ¢;; by using
the route that differs from (u;,v;) € £, e.g., r = uf — vg? — v; — t;;, where ¢/ # u;; see
Figure 2. This means that, although a solution is feasible to the 1-DST instance, the subgraph
may not have a cover path for every terminal. Thus, the corresponding multilabeling may
leave some edges in the label cover instance uncovered. To ensure that at least one cover path
exists for every terminal, we need to modify our instance using the padding arc technique.

Padding Arcs

Consider an illegal (r,t;;)-path in the basic construction. While we wish the (r,¢;;)-path to
visit vertices u{ and v;’, which corresponds to a satisfying labeling to the edge (u;,v;) in the
label cover instance, the illegal path instead visits u‘;,/ with w; # u;. In particular, the illegal
path exploits a cover path for some other edge (u;/,v;) that share the same endpoint with
(ul-, ’l)j).

To prevent this from happening, we construct a zero-cost padding path from the root to
the terminal ¢;; that shares some arcs with the illegal path. These two paths are mutually

exclusive in contributing to the edge-connectivity between the root r and the terminal ¢;;.

As we set the connectivity requirement to be the same as the indegree of ¢;;, it forces all the

¥R
padding paths for ¢;; to be used in any feasible solution. Once all the padding paths are

used to form k — 1 edge-disjoint (7, ¢;;), the only path available is forced to be a cover path.

Size of |T'| and k

The construction as mentioned above yields a one-to-one correspondence between the feasible
solutions to k-DST and that of the label cover problem. However, the size of the construction
in terms of the parameter k (resp., |T|) is too large comparing to the inapproximation factor
of Q(A/log A) inherited from the label cover problem. Specifically, the value of k can be

as large as the number of illegal paths, and the value of |T'| can be as large as |E] = |U| - A.

Therefore, we need to optimize the size of |T'| and k, where we use two different techniques,
one for each parameter.
To control the size of the terminal set, we partition the edge set £ into A matchings, and
only one terminal is constructed for each matching rather than having one terminal
for each edge. This, thus, reduces the size of T to A.!

! Laekhanukit [32] applies a similar techniques using strong edge-coloring, which gives a worse factor of
A2,
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To control the connectivity requirement k, we partition the edge set £ into § < 2A?2
induced matchings and create a d-ary tree structure with § leaves, where d is an
adjustable parameter. Roughly speaking, by exploiting the tree structure, we need to add
to each terminal only d padding arcs for each of the O(log, d) layers of the tree. Thus,
the connectivity requirement k is reduced to O(dlog,9).

Generalized to Undirected Settings

We also apply the techniques mentioned above to the undirected settings. For the undirected
k-connected Steiner tree problem (k-ST), we migrate the reduction for k-DST with a
hardness result in terms of |T'| to its vertex-connectivity version, with necessary adaptions,
thus reproducing the same |T'|/log|T| inapproximability. The k-connected group Steiner
tree problem (k-GST) is a generalization of the k-ST problem that turns out to be one of
the key components in designing approximation algorithms for k-DST [38, 22] for k = 1, 2.
By incorporating ideas from [5], we achieved the same ¢/ log ¢ inapproximability for even the
edge-disjoint version of k-GST where ¢ is the number of groups. The main difficulty is that
undirected edges allow new illegal paths to enter a terminal. Fortunately, by equalizing the
connectivity requirement and the size of a group, it turns out we can handle the extra paths.
See the appendices in the full version of this paper for a complete presentation.

4 Inapproximability in Terms of the Number of Terminals

In this section, we discuss the hardness reduction that is tailored for the parameter |T'|. Our
reduction takes as input a label cover instance (G, 3, 7) and then produces a k-DST instance
(k,G = (V,E),r,T) as an output. The reduction runs in polynomial-time, and there is a
one-to-one mapping between the solutions to the two problems. Thus, the inapproximability
result of label cover is mapped to the inapproximability of k-DST directly. The main focus
in this section is in reducing the number of terminals by exploiting edge-disjoint paths.

Base Construction

The construction starts from a basic building block.

1. First, create a graph G with a single vertex, the root r.

2. (Refer to Figure 3) For each u; € U, create in G each vertex uf from A; = {u? : a € L},
connect 7 to u? by an arc (r,ué) of cost one.

3. (Refer to Figure 4) For each v; € V, create a counterpart of it (also named v;) in G and

create each vertex v} from Bj = {v? : b € X}; connect v} to v; by an arc (v, v;) of cost

J b
one.
4. (Refer to Figure 5) For each (u;,v;) € € and a,b € X, connect u$ to v;? by a zero-cost arc

if Ty, (a) = b.

Final Construction

Finally, we have to add some zero-cost arcs so called padding arcs to the base construction,
which are meant to enforce the constraints of the label cover problem into the k-DST instance.
We first partition the edge set £ of the graph G in the label cover instance into A matchings,
denoted by &£1,&s,...,EA. This step can be done in polynomial-time due to Lemma 9. We
then create a set of A terminals corresponding to these matchings.
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uy uf u}
T 1 2
® UJ\N /
u} u?
2 T
Figure 3 ¥ = {1,2,3}. Figure 4 ¥ = {1,2}. Figure 5 my,,, () = xmod 3 + 1.

1. For each matching &,,, add a terminal ¢, to G and connect the counterpart of each
v; € V(En) NV in G to t,,. (Refer to Figure 6).

Next, we add some padding arcs to form padding paths that “kills” illegal paths.

2. Instead of connecting u¢ to v;? for the edges (u;,v;) € € such that m,,,,(a) = b directly,
we add an internal node w{ and replace the original arc (uf,v}) in G by arcs (uf, w§})

and (wi?,v?). (Here and thereafter refer to Figure 7.)

For each uf, we connect r to uf by degg(u;) copies of an arc (r,uf).

4. For 1 <m < A, (u,v5) € € and a,b € ¥ such that m,,,,(a) = b, if (u;,v;) € &y, then we
add an arc (u?,t,,); otherwise, we add an arc (wff’, tm ). Thus, we finally have |X| - |€,]
arcs from the vertex set {u? : u; € U,a € X} to t,, and |X| - (|€] — |Em]) arcs from the
internal vertex set {wfjb L T (@) = b} to t,.

5. We set k = maxi<m<a indegq(t,,). To make the connectivity requirement uniform, we
add k — indegq (t,,) copies of an arc (r,t,,) for each terminal ,,.

w

Please see Figure 7 for an illustration. Observe that the connectivity requirement k is
exactly the indegree of each terminal. Thus, all of its incoming arcs are needed in any feasible
solution. Now, consider the edge (u;,v;s) in the figure, which is not in &,,. It is possible that
a feasible solution includes the path r — uf — w;-‘jb// — v;’: — Vs = tym, which is an illegal
path for the terminal ¢,,. However, if we wish to route k-edge-disjoint paths between the
root r and t,,, then the arc w?}’/ — t,,, must be used, and the only way to use this arc is to
traverse from u{ — w;ljb//. This prevents the illegal path from using this arc, meaning that it
cannot be included in any k-edge-disjoint (r, ¢,,)-paths. Less formally, we may say that it

ab’

gets killed by the padding path r — uf — wi) — tp,.

Why Do We Need A Matching?

Consider a terminal ¢,,. Our construction promises edge-disjoint cover paths from r to ¢,
for every edge in &,,. However, if the edges in &,, do not form a matching, then two cover
paths may share some edge. That is, the corresponding subgraph of a feasible multilabeling
may have connectivity less than k, and the completeness property breaks.

Next, we prove the one-to-one correspondence between solutions to the two instances.
Wlog., assume that any solution to the k-DST problem contains all of the zero-cost arcs.

Completeness

Given a feasible multilabeling o of the label cover instane (G, X, 7), we show that there is
a corresponding feasible subgraph H = (V, F) of G = (V, E) such that ¢(o) = ¢(H). The
set F' consists of three types of arcs: 1) all zero-cost arcs in G; 2) the one-cost arcs (r, u¢)
b v;) for each v; € V and b € o(v;).

for each u; € U and a € o(u;); 3) the one-cost arcs (vj,
Clearly, ¢(H) = ¢(o) and the definition of F' induces an injective mapping.
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* * *
uy Uy Us
a/
’U,i/
N N o'b

’[)3 W7 51

!
U1 (%] V3
J J
o e \ \
t to m tm” @

m’

Figure 6 The terminal ¢; corresponds to Figure 7 Padding arcs are dashed. The matching
the matching {(1,1),(2,2),(3,3)} and ¢z cor- &, contains the edges (ui,v;) and (u;,v;s), and the
responds to {(2,1),(3,2)}. matching &,/ contains the edge (us,v;r).

Next we prove the feasibility of H. That is, we will show that, for any terminal ¢,,, there
exist k edge-disjoint paths from r to t,,. We will construct a set of such paths, namely
P. Note that every arc entering t,, must be contained in a distinct path in P because
indegy (t,,) = k. This gives four types of paths.

(r,tm): The arc itself forms a path from r to t,,.

(u?,ty,): We choose one of the zero-cost arcs (r, u¢) to combine with (u,t,,) to constitute
a path » — uf — t,,. Since &, is a matching, by construction we know that the arc
(u?, t,,) has multiplicity one in G and thus the paths in this category are edge-disjoint.
After selecting paths in this way, there are still degg(u;) — 1 unoccupied copies of the
zero-cost arc (r,uf) if u; € V(&,,); or degg(u;) unoccupied copies otherwise.

(w;‘jb, tm): We choose one of the zero-cost arcs (r,ul) and the arc (u?, w?}’) to constitute
a path r = uf — w;-‘jb =ty If u; € V(Ep), such paths use degg(u;) — 1 copies of the
zero-cost arc (7, uf), otherwise degg(u;) copies are used. In both cases it is valid to do so
because the first two categories of path leave enough copies. It is clear that the paths up
to this point are edge-disjoint.

(vj,tm): In this case there is a unique u; € U such that (u;,v;) € &,. It holds that
Tuw, (@) = b for some a € o(u;),b € o(v;) since o covers the edge (u;,v;). We choose the
one-cost arcs (r,uf) € F' and (v?,vj) € F to constitute a path r — uf — w;’jb — v? —
v; = tm. Since &, is a matching, the paths here are edge-disjoint. Note that previous
paths only use arcs added in the final construction except for arcs of the form (u, ngb),
while here we only use arcs from the base construction. The construction of G guarantees
(uf, wy
Therefore, we selected k edge-disjoint paths in H from r to t,, successfully.

) is not used by previous paths if (u;,v;) € Ep.

Soundness

Given a k-connected subgraph H = (V, F') (that contains all zero-cost arcs) of the k-DST
instance (k,G,r,T), we show that there is a corresponding feasible multilabeling o of the
label cover instance (G, %, 7) such that ¢(c) = ¢(H). The multilabeling o is specified by
checking the one-cost arcs in H, i.e., set o(u;) as {a € ¥ : the one-cost arc (r,uf) is in F'}
for u; € U and set o(v;) as {b € X : (v},v;) € F} for v; € V. Clearly, ¢(0) = ¢(H) and the
definition of ¢ induces an injective mapping.
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We prove that there exist a; € o(u;) and b; € o(v;) such that my,,,(a;) = b; for each
edge (u;,v;) € €. Recall that & is partitioned into A matchings &;,&s,...,Ea. Let us fix
an arbitrary matching &£,, and discuss the edges inside &,,. Consider the set S of arcs in
G coming into the terminal t¢,,. By our construction, S contains k arcs of the following
categories:

1. |&n] arcs of type (v, tm);
2. |Z]- (J€] — |Eml) arcs of type (wf ,b, ,tm) (one for each (uy,wj) & &,, and a/,b" € ¥ such
that 7Tui,vj,( a)=1b);
3. |X| - |&n] arcs of type (uf,t,,) (one for each (u;,v;) € &y, and a € X);
— 1&m| —|X] - |€] arcs of type (r,tpm).

Let P be the subgraph formed by the k edge-disjoint paths from r to t,, in H. The
connectivity requirement forces that each arc in S must belong to some path in P, so we can
also categorize the paths in P into the four types above. Let P54 be the subgraph consisting
of all type-2,3,4 paths, and P; similarly. We prove two observations:

> Claim 10. We have the following facts for paths.
I: Y(uir,vj0) & Em, Va', b’ € ¥ such that Tuyv, () =10, (uf ,,,w“, b/) eP¢g P

I: Y(us,vj) € En and a,b € ¥ such that my,,,(a) = b, there are degg(uz) arcs (r,uf) in Pa4.

Proof. Note that we need a type-2 path from all wm/ such that T v, (a') =¥, and using the

arc (u$ ,wa,f’, ) is the only way to enter w",]b, to form a type-2 path. So (uf,/,w;i/}’,') belongs
to P and not in P; (edge disjoint with P5).

For the second claim, there are degg(u;) — 1 edges (u;,vj) € €\ &y,. Plugging in Claim-I
implies that there are degg(u;) — 1 type-2 paths that use u$. Moreover, because (u;, vj) € Ep,
there is another type-3 path that use uf. So, in total there are degg(u;) paths in P_4 that

use u¢, and Claim-II follows. <

Then, fix an arbitrary (u;,v;) € &, we claim that the type-1 paths P; induce a,b € &
such that 7y,,,;(a) = b. Let p be the type-1 path that goes through v;. For the path p to
enter v;, it must go through a one-cost arc (vé’, v;) for some b € ¥, and thus b € o(v;). Then,
there are two ways to enter v;’

1. from w b for some (uy,v;) ¢ &, and o’ € 7ru /U](b);

2. from w“b for (u;,v;) € &, and some a E T, (b)

The first way is infeasible because (u L w ) & Py due to Claim-I. Hence, the only way
is the second and p must be exactly r —> u — wi; b, v — vj — tp,. Putting together
Claim-II and the edge-disjointness of P, and Ps_4, there are degg (u;) + 1 arcs (r,u) in total
in P. Thus the one-cost arc (r,u?) must be included in P C H because there are totally
degg(u;) + 1 arcs (r,uf) in G and thus a € o(u;). Therefore, we conclude that the arbitrarily
fixed edge (u;,v;) is covered by 7y, (a) = b, where a € o(u;) and b € o(vy).

Hardness Gap

The one-to-one correspondence between solutions to the two problems is established by
collecting the proofs for completeness and soundness. Furthermore, the reduction can be
done in polynomial time in the size of the label cover instance and it guarantees that |T| =
Plugging in Corollary 8, the following inapproximability result for the k-DST problem is
obtained.

» Theorem 1. For k > |T|, unless NP = ZPP, it is hard to approzimate the k-DST problem
to within a factor of Q(|T|/log|T).
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5 Inapproximability in Terms of the Connectivity Requirement

This section presents a hardness reduction, which is tailored for the approximation hardness
in terms of the connectivity requirement k. Our reduction again takes a label cover instance
(G,X, ) as an input and produces a k-DST instance (k,G = (V, E),r,T). As we wish to
obtain an inapproximability in terms of k, them main focus is in controlling the size of k.

Base Construction

Our reduction starts from a basic building block.

1. Let G be an empty graph. For each vertex u; € U, create in G a counterpart of it (also
named u;) and a set of vertices A; = {uf : a € X}; connect u; to each u? € A; by an arc
(ug, uf) of cost one.

2. For each vertex v; € V, create in G a counterpart of it (also named v;) and a set of
vertices B; = {v be Z} connect each v € B; to v; by an arc (v;’,

3. For each edge (u;,v;) € €, add to G a termlnal t;; and connect v; to t;; by a zero-cost
arc (v, ti;). For a,b € ¥, connect uf € A; to v} € B; by a zero-cost arc if my,,, (a) = b.

;) of cost one.

Gadget of d-ary Arborescence

All arcs created hereafter have zero cost. By Lemma 9, & is partitioned into § < 2A? induced
matchings £1,&,,...,&s. Let d > 2 be an integral parameter to be determined later. We add
to G a complete d-ary out-rooted tree (arborescence) @ of height h = [log, §] with a rooted
vertex r; we set r as the root of the k-DST instance G. Choose an arbitrary order for the
vertices in each layer of (Q and use qu to denote the j-th vertex of at the i-th layer. Note
that ¢} is the root r. We then join each leaf qfl (1 <j <) of Q to the counterpart in G of
each vertex u; € V(&;) NU. See Figure 8 and Figure 9 for an illustration. Intuitively, if we
add a padding path that passes qg , all illegal paths that go through the subtree rooted at q{

will get killed.
y\
2

CI% a1
Ui U2 us
% % q
w1 Wo w3 ui
Figure 8 A bipartite graph G with three Figure 9 The gadget when d = 2 with
induced matchings: & = {(u1, w1), (us, w2)}, induced matchings &1, 2 and &s.

Er = {(uz,w1), (uz,ws)}, €3 = {(u2,w2)}.

Final Construction

In the final construction, we add some padding arcs to the based graph. These arcs form
padding paths, which then kill all the illegal paths through the help of the d-ary arborescence.

’

1. For each arc (ql,qlﬂ) of Q, we replace it by two arcs (g, w? ) and (w .],,qfﬂ)
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We still use @ to denote the original arborescence for notational convenience.

2. For each 1 <i<h—1 and j, we add d — 1 copies of an arc (r, qf) to G.

3. (Refer to Figure 10) For each terminal ¢;;, suppose the edge (u;,v;) is in the group &,
(corresponding to ¢j*). There is a unique path in the d-ary arborescence from r to ¢;":
(r :‘qg":l) — q{l — q%é — = qu":m. At each level 1 < £ < h, there are d — 1 siblings
of ¢}*, and for each sibling qz’é”, we add a zero-cost arc from w, ;" to the terminal ¢;;.

After the construction, the in-degree of each terminal ¢;; is h(d — 1) + 1 and we set k as it.

Why Does it Work under Grouping by Induced Matchings?

For any edge (u;,v;) € &, now we can promise that there must be a path from r to ¢;; going
through the leaf ¢}* and the vertex u; € V(G). Let us examine if illegal paths are bypassing
either g;"* or u;. The padding arcs can kill illegal paths from r to t;; that depart from the unique
path r — q{l — qu — = qi”'zm — u; at some vertex qé“f for £ < h. It remains to check
if there is an illegal path of the form r — ¢I* — ¢}* — --- — q{f':m = Uy = v by
for some u;s # u,;. The existence of such u; implies that (u;,v;) € &,,, which contradicts
that &, is an induced matching.

,
t,’
tn @

Figure 10 Padding arcs for the terminal ¢;; are dashed. Note that the vertices u; have outgoing
arcs, but not drawn here.

Completeness

Given a feasible multilabeling o of the instance (G, X, ), we show that there is a corresponding
k-connected subgraph H = (V, F') of G = (V, E) such that ¢(c) = ¢(H). The set F consists of
three types of arcs: 1) all zero-cost arcs in G; 2) the one-cost arcs (u;, u?) for each u; € U and
a € o(u;); 3) the one-cost arcs (vé?, vj) for each v; € V and b € o(v;). Clearly, c(H) = c(o)
and the definition of F' induces an injective mapping.

Now we prove that for any terminal ¢;; € T" there are k edge-disjoint paths, denoted by
P, in H from r to t;;. Let &,, be the induced matching that contains ¢;;. There is a unique
path p = (r = qg‘):l) — q{l — = qfl”:m in the arborescence @ from r to ¢}*. Since
indegy (t;;) = k, each arc entering ¢;; must be contained in P. We consider two cases:
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1. (vj,ti;): The feasibility of o induces a € o(u;) and b € o(v;) such that 7y, (a) = b,
so that (u;,u?), (uf,v?), (v° vj) € F. Guided by the path p, we add to P the path

[ J 77
JoJji J1 J1J2 Jh—1jp=m
T — wy —qp — wy — = Wy _q

Jh=m

=" = u = = 0h = v =t

2. (’I,Uglj/,tij): Here j' # jor1. We add to P the path r — qg’f — w”j/ — tij.

For 0 < /£ < h, the type—l path goes through qg‘ — wi””l — quf, while each type-2
path goes through r — qz — w/] — t;; for some j'. Since j’ # jy41, the type-1 path and
the type-2 paths do not share any common arc. For the type-2 paths themselves, for each
0 < ¢ < h they consume in total d — 1 duplicates of the arc (r, qg’f), which is prepared well in
the second step of the final construction of G.

Soundness

Given a k-connected subgraph H = (V, F') (that contains all zero-cost arcs) of the k-DST
instance (k,G,r,T), we show that there is a corresponding feasible multilabeling o of the
label cover instance (G, %, ) such that ¢(o) = ¢(H). We define o as follows: set o(u;) as
{a € : (uj,uf) € F} for u; € U and set o(v;) as {be X : (v;-’,vj) € F} for v; € V. Clearly,
¢(0) = ¢(H) and the definition of ¢ induces an injective mapping. Then we prove that o
covers all the edges in £.

Consider an edge (us,v;) € &y and its corresponding terminal ¢;;. Let (r = q{)" 1) —
q{l - q”l be the unique path in the arborescence @ from r to ¢;'. Let P be any
set of k edge disjoint paths from r to ¢;; in H. The fact that indegq(t;;) =k =h(d—1) +1
forces P to contain all arcs entering ¢;;. These arcs are of two types:

1. One arc (v, ti;);

2. h(d —1) arcs of (wi‘j/,tij) for 0 < /¢ < h and j' # joy1.

Let P; be the only path in P that uses the type-1 arc, and let P, be the union of paths
in P that use type-2 arcs. By backtracking the paths in P, from t;; for two steps, it
holds, for 0 < ¢ < h and j' # jey1, that (g ,w%” ) € P;. Thus, the path P; has to be
@ s Wl =gt = - = ¢ — - = v; — t;;. Let us backtrack P; from v;. The
previous vertex must be vé? for some b € ¥, and uf, for some a € ¥, and u;, and then g¢j".
If ¢/ # i, then by the construction of G, we know that u; € V(&,,). However, it also holds
that v; € V(€,,) because (u;,v;) € En. Thus, the induced subgraph on V(€,,) contains both
(ui,vj) and (u;,v;), contradicting the matching property of &,,. Therefore, i’ = i, implying
that a € o(u;),b € o(v;) and 7y, (a) = b because (u;, uf), (uf ,U;’) (v ;?,vj) eP,CPCH.

Hardness Gap

In this subsection, we deduce approximation hardness for k-DST. Clearly, the reduction can
be made in polynomial time in the size of the input label cover instance. By setting different
values of the parameter d, we have the following two propositions.

» Theorem 3. It is hard to approzimate the k-DST problem on L-layered graphs G = (V, E)
for Q1) < L <O (log|V|) to within a factor of ((k‘/L)(l_e)LM_Q) for any constant € > 0,
unless NP = ZPP.

Proof. Let L be the height (the maximum length of paths) of the underlying graph in the
k-DST instance. Recall that in the construction we have a modified d-ary arborescence and
5 base levels with vertices u;, u?, vj, v; and t;;. So, L = 2[log, 0] + 5. By Lemma 9, 0 is at
most 2A2. Thus, L < 2[log,(2A2)] +5. To complete the proof, we add some dummy vertices
to the modified d-ary arborescence so that the height becomes exactly 2[log,(2A%)] + 5
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We fix d = A® > 2 for some 0 < z < 1. Then k = [log;d](d —1)+1 < (d —
1)(2logA/logd + 1/logd + 1) + 1 < (2/x+2)A®. We also have that 4/x < L =
2[log,(2A%)] + 5 < 4/z + 8. Therefore, (k/L)%_2 < A€ and we have the claimed
result on layered graphs by plugging in Corollary 8. The parameter = can be used to obtain

specific values of L that we want. <

» Theorem 4. For k < |T)|, it is hard to approzimate the k-DST problem to within a factor
of Q(2%/2/k), unless NP = ZPP.

Proof. Recall that k = h(d — 1) +1 = [log,; 6](d — 1) + 1 where § < 2A2. If we set d = 2,
then k = [logd] + 1 < 2log A 4 3. If k is too small, then we can add dummy arcs from 7 to
terminals to make k > log A. Plugging in Corollary 8, the claimed hardness gap follows. <«

6 Discussion

In this paper we obtain improved inapproximability results for the k-DST problem in terms
of parameters k and |T'|. All of the results are derived from the same hardness source,
the (minimum) label cover problem, which admits no A/log A-approximation algorithm
under standard complexity assumptions, where A is the maximum degree of the underlying
bipartite graph in the label cover problem. The label cover problem also admits no glog! "*N_
approximation algorithm for any constant ¢ > 0, where N is the underlying graph size. Note
that 218" N = N°(_ If we apply the reduction in the Q(|T|/log|T|)-hardness, then it
transfers to k°(") which is even worse than the previous Q(k/log k)-hardness, not to say the
factor of Q(2%/2/k) in this paper. If we apply the reduction in the Q(2*/2/k)-hardness, then
it transfers to |T'|°") which is still much worse than \T|1/47E and Q(|T|/log |T|).
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