Interpretable and Effective Reinforcement Learning
for Attacking against Graph-based Rumor Detection

Yuefei Lyu*, Xiaoyu Yang*, Jiaxin Liuf, Sihong Xief, Philip Yu* and Xi Zhang*$
*Key Laboratory of Trustworthy Distributed Computing and Service (BUPT)
Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
TLehigh University, Bethlehem, USA
iUniversity of Illinois at Chicago, Chicago, USA
lvyuefei @bupt.edu.cn, littlehaes@bupt.cn, jilb17@lehigh.edu, sxie@cse.lehigh.edu, psyu@uic.edu, zhangx @bupt.edu.cn
§Corresponding Author

Abstract—Social networks are frequently polluted by rumors,
which can be detected by advanced models such as graph neural
networks. However, the models are vulnerable to attacks, and
discovering and understanding the vulnerabilities is critical to
robust rumor detection. To discover subtle vulnerabilities, we
design a attacking algorithm based on reinforcement learning
to camouflage rumors against black-box detectors. We address
exponentially large state spaces, high-order graph dependencies,
and ranking dependencies, which are unique to the problem
setting but fundamentally challenging for the state-of-the-art
end-to-end approaches. We design domain-specific features that
have causal effect on the reward, so that even a linear policy
can arrive at powerful attacks with additional interpretability.
To speed up policy optimization, we devise: (i) a credit as-
signment method that proportionally decomposes delayed and
aggregated rewards to atomic attacking actions for enhance
feature-reward associations; (ii) a time-dependent control variate
to reduce prediction variance due to large state-action spaces
and long attack horizon, based on reward variance analysis and
a Bayesian analysis of the prediction distribution. On two real
world datasets of rumor detection tasks, we demonstrate: (i) the
effectiveness of the learned attacking policy on a wide spectrum
of target models compared to both rule-based and end-to-end
attacking approaches; (ii) the usefulness of the proposed credit
assignment strategy and variance reduction components; (iii) the
interpretability of the attacking policy.

Index Terms—graph adversarial attack, reinforcement learn-
ing, graph convolutional network, rumor detection

I. INTRODUCTION

Social networks, such as Twitter and Weibo, help propa-
gate useful information. However, they are also exploited to
spread misinformation, such as rumors, to manipulate opinions
in a large scale. Detecting misinformation is important to
trustworthy social networks. Graph Convolutional Networks
(GCN) [1] can aggregate neighborhood information to deliver
high detection accuracy [2]-[5]. However, GCN is fragile
to graph adversarial attacks. For example, [6] showed that
GCN are vulnerable to edges or features flipping that degrade
node classification accuracy. Focusing on rumor detection, [2]
restricts rumor producers to controlled accounts to camouflage
rumors to be less suspicious through re-posting, following and
commenting, to deceive a GCN detector.

To re-design more robust GCN-based rumor detectors, it
is critical to discover and understand the vulnerabilities using

an attacking model to simulate camouflage actions of various
level of sophistication under realistic constraints. However,
existing attacking models, especially those based on deep neu-
ral networks and reinforcement learning, are too complicated
to help humans understand how attacks are generated and
what detector vulnerabilities are exploited. We argue that the
simplicity of the attacking models should be as important as
their effectiveness to be useful to the detector designers.

Threat model. To capture how rumors can be spread, we
use a heterogeneous graph consisting of nodes representing
user accounts, messages, and comments, and edges repre-
senting posting, re-posting, and commenting activities. An
attacker produces adversarial samples by controlling some
accounts to post messages and follow other accounts [7]. These
operations can be represented as adding edges to the graph.
For each message node v;, a trained GCN f outputs f(v;) as
the ranking of v; based on its suspiciousness, and messages
with high ranking will be removed as rumors. During a time
period, only a few high influence messages can receive the
most attention [8]. A high influence rumor is more useful for
spreading misinformation, worth to be camouflaged, as it has
zero influence once detected. Inspired by the ranking metric
Normalized Discounted Cumulative Gain (NDCG), we assume
that an attacker aims to minimize the objective function:

1< ws
J:Z;mﬂ[ﬂvi)>n]7 (1)

where Z normalizes the sum to [0,1] and n is the number
of target rumors (not including other rumors that are not
controlled by this attacker). w; is the influence or weight of
the i-th target rumor v; estimated in various ways [9]. The
indicator function 1[f(v;) > k| truncates the contribution of
target rumors whose suspiciousness ranking is greater than «.
Prior graph adversarial attacks assumed the target detectors
are white-box [10]-[12] so that gradient-based attacks can be
crafted. In contrast, we assume that the architecture or model
parameters of f is unknown and only allow attackers having
access to and manipulate part of the nodes in a social network.

Challenges. Reinforcement learning (RL) has been adopted
to learn from a sequence of attack actions and the black-
box detector’s output as rewards. Prior RL-based attacks [6]

R OR0) - 0 @ 9 ® _

| ’ Ranking [Raukmg Reward
iGl ACDEB i':> E . E . CDAEB| 03
: (0.80) ' (0. 65)¢ (0.33)1(0.76)1(0.67) (0.35)

. 00O |

i 2 !

: ’ ! Ranking | Reward
: [B] [D] DCAEB| 0.7

0.70
(0.20) () (0.67) (0. 35) (0.68)L

(0.20)(0.70)(0.72)1(0.45)1

(a) State - G, (b) Action - (v, v)) (c) Reward - 1

| [Detected as Rumors [| Target Rumors []Other Messages (O) Users () Classification Probability

Fig. 1: The state, action and reward in RL step ¢. The state and action
vectors describe the current graph G; and the edge (v, v;) to add
for camouflaging, respectively. It produces the reward r; according
to the suspiciousness ranking of target rumors A, B and C according
to (1). Sensitive state-action reward mapping: two similar actions
(v2,vB) and (v2,vE) under the same state in the dashed box are
structurally symmetric but lead to different rewards after more attack
steps. We obverse two dependencies: i) Graph dependencies. When
connecting G1 and Gz with (v2,vB), va in Gi becomes less
suspicious and vp and vc in G2 become more suspicious due to
information propagation. The more remote vp and vg is not affected.
The up/down arrows in the right of classification probability means
probability increasing/decreasing. ii) Ranking dependencies occur
due to relative suspiciousness ranking of target rumors. Pulling a
target rumor down the suspicious list might push another target rumor
up into the top of the list. Assuming the top-1 message is detected as
the rumor, fop: after an attack, rumor A escapes the detection while
rumor C is detected. Bottom: after a better attack, rumors A and C
both escape the detection.

train neural networks as policies in an end-to-end manner.
The neural RL policies are not interpretable [13]. Furthermore,
the attack performance depends heavily on whether the graph
representation can capture long-term reward, and the typical
GCN is limited in expressiveness [14]-[16] and has difficulties
in learning a representation of global inter-node influence and
ranking that contribute to aggregated reward of camouflaging.
For example, in Fig. 1, the dependencies among the messages
on the graph and their relative suspiciousness ranking positions
in objective (1) are exploitable vulnerabilities that are hard for
the end-to-end approaches to learn from delayed feedbacks.
Lastly, RL policies for manipulating graphs is highly sample
inefficient: structural similar actions under the same state can
lead to significantly different returns as shown in Fig. 1.
With the large action spaces derived from graphs and long
horizon, there are exponentially many possible future trajec-
tories, each of which can lead very different rewards. Thus,
the current state-action representation can hardly predict the
final reward [17], [18], and the common state/action dependent
reward baseline [19]-[22] work with poor effects to reduce the
prediction variance.

Proposed solution. We propose AdRumor-RL to generate
interpretable and effective evasion attacks to camouflage high
influence rumors from a GCN rumor detector. We formulate an
episodic Markov Decision Process (MDP) and a hierarchical
RL algorithm to attack the detector. An action adds an edge
in two sub-steps: the agent first selects two graphs (possibly

identical) and then two nodes from the selected graphs to
connect. A return (cumulative rewards) at the end of an episode
represents how well the sequence of added edges reduces the
objective (1). We have two inventions:

First, to learn a strong and interpretable attacking policy, we
use domain knowledge about rumor spread to design inherent
but hard-to-learn features to train a linear policy for more
interpretability and data efficiency. In particular, we include
two kinds of features that capture the dependencies due to
the graphs and the ranking-based objective. As shown in
Fig. 1, the graph makes rumors depend on each other so
that linking vo and vp can make the connected target rumor
ve more detectable and thus reduce attack effectiveness. The
relative suspiciousness ranking of rumors creates another type
of dependencies: as shown in the top of Fig. 1, the ranking
drop of target rumor A leads to the ranking rising of target
rumor C, making camouflaging less effective. Both types of
dependencies are hard for a data-driven learning agent to
capture and we design features to capture such dependencies
to train powerful and yet interpretable linear policies.

Second, we propose a time-dependent credit assignment and
reward baseline to address the large variance in delayed reward
due to the large action space/horizon and sensitive graph state-
action representation. We decompose the returns achieved by a
sequence of edges manipulations and proportionally assign the
due effects to individual actions to speed up learning. The step-
wise rewards exhibit a dependency on the time steps, providing
a time-dependent baseline to reduce the high variance of the
reward. Intuitively, it “clusters” the rewards based on the time
steps and find the cluster means achieve to a smaller prediction
variance, based on a reward variance analysis and a Bayesian
analysis of prediction distribution.

II. RELATED WORK

Rumor Detection with GCNs. Many rumor detection meth-
ods make use of GCNs to mine social relationship networks.
CGAT [2] constructs a user-tweet-comment graph and pro-
poses a graph adversarial learning framework, which help
GCN better learn malicious rumor camouflage behaviors.
FANG [3] enhances the node representation ability of Graph-
SAGE [23] based on user-news-source graphs. GCNs are also
used to detect rumors with message propagation trees [4]
and potential user interaction graphs [24], and here we attack
against GCN detector with heterogeneous social networks.
Adversarial Attack on GCNs. Adversarial attack can be
categorized based on poisoning [25] and evasion attacks [12];
untargeted [11] and targeted attacks [6]; white-box and black-
box attacks [6], [7]. We realize evasion attacks against a black-
box pre-trained rumor detector, targeting at a set of rumors.
Reward baseline of reinforcement learning. The reward
baseline (control variate) can reduce variance of Monte Carlo
estimation effectively [26], [27]. The basic method is to use the
constant baseline, such as the difference between the reward
and the average reward [28], [29]. A common method is to use
state-value functions as state-dependent control variates [19],

[20]. Recently, some action-dependent [21], [22] and input-
based [30] methods are proposed. In this work, we propose a
time-dependent control variate as reward baseline.

III. PRELIMINARIES AND PROBLEM DEFINITION
A. Rumor Detection on Social Networks

We construct an undirected heterogeneous graph G=(V, £).
The node setis V = {v | v € MUU UC}, where M, U and
C are the sets of messages, users, and comments, respectively.
The edge set is £ = {(vi,v;) | v; € V,v; € V}. There is
a relation mapping function ¢ : £ — £ and £ = {ly,1s,13}
is the set of three particular relation types: user-message [1,
message-comment /5, and user-user [3. [indicates a user posts
or re-posts a message, [o means that a comment is appended
to a message, and /3 means that a user is connected to the
author of a message when the user re-posts the message,
or when two users re-post the same message. There are
many communities, which correspond to a set of connected
components {G1,Ga,...,G,,} in G, where each connected
component G; = (V;,&;) is called a subgraph in the sequel.

We attack against the GCN-based rumor detectors f that
is a trained model, such as GCN [1], GAT [31], Graph-
SAGE [23] and RGCN [32]. The model output probabilities
are used to rank the messages, with ranking position f(v;) €
{1,2,..., M}, where M is the number of messages.

B. Influence Calculation

We calculate user influence using PageRank on G, ., con-
taining user nodes and user-user relations

w; = PageRank(Gyser, vj),v; €U, 2)
and the influence of the message v; € M is calculated as
NH| =1 N?
w; = max PageRank(Gyser, u) + B + [N; |7 (3)
ueN} 21 Z9

where A! and NV? are the user and comment neighbors of
v;. 21 and 25 indicate the normalization factors. Multiple re-
posting and comments, and linking with high influence users
make the message influential.

C. Reinforcement Learning

An MDP consists of a state space S, an action space
A, a reward function (S, A;), a state transition probability
distribution Pr(S;41|St, A¢). Since we focus on finite horizon,
a discounting factor is not needed. In our application, at any
time ¢, a state S; is the graph G; and an action A; is a pair of
nodes (v;,v;) or a pair of subgraphs. The goal of the attacker
is to train an attacking policy mg(A|S) that connects nodes in
T steps to minimize (1). Since f(v;) is a black-box, (1) cannot
be minimized via gradient-based approaches. The trajectory is
denoted by (So, Ao, S1,-..,Ar—_1,ST). From samples of T-
step trajectories by interacting with the environment, RL uses
the reduction in the objective as a reward to learn a policy 7
that maximizes the reduction

ANDCG = J(0) — J(T) 4)

where J(T) is the NDCG value (1) at the end of step T
and J(0) is the NDCG value before attack. We will learn
the action-value function @, (S, A;) so that

Q*(s,a) = maxE[Rr|S; = s, Ar = al, Q)

where Rr is the random variable representing the reduction in
(1) at the end of the T steps, starting from the ¢-th step with
state s and action a. If t < T, Ry is a delayed reward. For
interpretability, we let the @) function be linear: Q(s,al@) =
x(s,a) "8, with x(s, a) being a vector representing (s, a) pair.
We sample triples (s, a,r) to train () by solving

mein(’ 2; Qa0 - (6)

The loss function is similar to that in DQN [33], but we use the
Monte Carlo estimation of the reward rather than bootstrapping
with a @ function. Following the LinUCB algorithm [34], in
the end of each episode e, we update the policy with state-
action vectors and rewards of 7' steps as

T
Ae = Ae—l + Zt:l XtXtT
T
be =be_1+ thl T4 Xt @)
0. = Aeilbey

with initial values Ay = I; and by = 0441, Where d is the
feature dimension. At each step ¢ of episode e, the policy mg
chooses the action a; from action space A(t) at time ¢ as

a; = argmax x(s;,a) Qo1 + a\/x(st, a)TAe__llx(st7 a),
acA(t)
(3)

where « is a hyper-parameter to control the exploitation and
exploration trade-off.

IV. METHOD
A. The Attack Framework

The attacker can only have access to controllable node
and add edges of specified type. The controllable node set
V' C V contains controllable users and their messages. The
modifiable edge set is & = {(v;,v;) | v; € V' NU,v; €
V' N M, (v;,vj) ¢ £}, which allows to connect controllable
users with controllable messages. The target rumor set O is
the set of all rumors in controllable node set V.

Due to the multi-communities characteristic of social net-
works, we design a hierarchical contextual bandit to decom-
pose the action to the subgraph and node levels. The decom-
position reduces the action spaces to speed up reinforcement
learning. The AdRumor-RL algorithm is shown in Fig. 2.

On the subgraph level, we focus on the subgraphs {G; =
(Vi, &)} and extract their features with feature extraction
method ®9. The feature vector of G; is denoted by ®9(G;) =
hi = [h] 1, h],, ... h]], d is the subgraph feature dimension.
Two subgraphs are combined as an action, with the action
space A1 = {(G;,G;) | ONV; # 0,V NV, # 0}, which
means subgraph G; and G; must contain target rumors and

| 9
) Subgraph Level LinUCB mq9 Node Level LinUCB myn
o3
‘----------------7,;\—---------i; -------------- - —- ----- g
g g . n n ‘ %
hi © by (G2, G3) hy © hy (v3,v,) o
S . > . <
A A ny MEE (@) ki pEEE (1) =
Qi’ o oo hHEE L o j: HEEE g
Gy (6, [Il > hg’ L] 5 hi‘ [[[[] D 5
= 3
. (2) Extract (4) Select the h? (7) Select the =
(1) Obtain subgraph best subgraph (5) Extract best node pair 35
Subgraphs features pair node features (added edge) 54
on (8) Attack s
- |
i Black R-GCN Rumor Detector !
1 Box)

Fig. 2: AdRumor-RL. Following the orange arrows, there are 9
phases. It first extracts and concatenates subgraph features. and then
the subgraph-level policy selects the best subgraph pair using (8).
Phases 5-7 select and connect a pair of nodes from the selected
subgraphs. The selected edge is added and the reward of the attack is
calculated based on (14), which is used to update parameters with (7)
after T" steps attack. The grey arrows indicates the feature extraction
process.

controllable nodes respectively, to attack the target rumor using
a controllable node. Features of G; and G; are concatenated
to x?i)j = hi @ hj = [hg,h"'7h;(;],d’h§,1?"'>h?,d] based on
which the subgraph-level policy mgs selects the best subgraph
pair as shown in (8).

On the node level, for each node in the selected subgraph
pair (G;, G,), we extract node features h™ with ®". Any two
nodes from the two selected subgraphs are paired to construct
an action space Ay = {(vp,vq) | vp € Vi,vg € Vj, (vp,vq) €
&'}, Similar to the subgraph level, the node-level policy mg»
evaluates all node pairs with concatenated features x7° | and
decides the edge to be added for attack. After T' edges are
added in an episode, we calculate the reward with (14) and
update 67 and 8™ with (7).

B. Interpretable Attacking Feature

There is a trade-off between feature design, interpretability,
and sample efficiency. With features learned end-to-end, there
is less design effort but poor interpretability and sample
efficiency (more data needed to learn the feature representation
beyond the attacking policy). On the other hand, with hand-
crafted features, simpler model can be used to enhance inter-
pretability and allow less samples to learn a powerful policy.
We design interpretable features to capture mechanism of
rumor detection. With a linear model OTX, each element of 6
represents the importance of the corresponding feature for pre-
dicting future attacking rewards. The feature importance helps
the detector designers to understand the attacking policies and
detector vulnerabilities. In particular, these features describe
the social network on the subgraph and node level, and include
structural, social, influence, attack potential and camouflaging
features. Structural features describe characteristics of graph
and node, such as the number of nodes and edges, degree
etc. Social features describe node type (rumor, non-rumor,
user and comment) and ratios for different types of nodes.
Influence features summarize user and message influence

calculated in (2) and (3). We detail the attack potential and
camouflaging features that respectively describe graph and
ranking dependencies, as exemplified in Fig. 1.

Ranking dependencies means that two rumors’ ranking
positions are related as they appear in the same ranking list.
The drop in ranking of one message can lead to the rise in
ranking of other messages. For example, at the top of Fig. 1,
attacking the target rumor A can lower its ranking, but also
rises the ranking of another target rumor C. An effective attack
must not rise the ranking of other targets when pushing down a
target rumor. Therefore, the non-target messages are expected
to exchange ranking positions with the target rumors to
camouflage the targets (such as message D in Fig. 1), because
they don’t affect the attack objective function in (1). These
non-target messages to help camouflage rumors are named
camouflaging messages. We use the classification probability
of the camouflaging messages in the selected subgraph or
around the selected node to capture ranking dependencies. It
is more likely for a camouflaging message to exchange with a
target rumor if their probabilities are similar. The feature can
help attackers identify whether a camouflaging message has
a chance to exchange ranking positions with target rumors to
help camouflage them, named camouflaging feature.

Graph dependencies occur due to information propagations
along the links in a graph. For example, when connecting the
edge (vo,vp) in Fig. 1, vs propagates the suspiciousness to
vp, which makes v4 less suspicious and vp more suspicious.
v4 increases the attack performance and vp does the opposite.
In addition, when v is attacked directly, v is also made to be
suspicious indirectly. Therefore, we design the attack potential
features to measure the effects when a target rumor is attacked.
1) Suspiciousness. We query the classification probability of
target rumors in the selected subgraph or around the selected
node before attack. Attacking suspicious rumors could change
the NDCG more due to small f(v;) in (1). ii) Attack degree.
We record the number of previous added edges within the
subgraph and node neighbor. The object that has been attacked
repeatedly will have less potential for changing the objective.
iii) The condition of nearby target rumors. It concerns the
number of targets within the selected node k-hop insides and
their averaged distance to the selected node. It might have
greater effects when attacking the target connected to more
other targets in a shorter distance. Furthermore, camouflaging
messages also play a role in graph dependencies because
connecting the camouflaging messages with low probability
to the target rumor could make the target less suspicious.

C. Credit Assignment

To learn to minimize the objective function in (1), prior
work [35]-[37] shows that it is important to assign a proper
reward as the feedback signal to individual action or state-
action tuple that deserves the reward. Otherwise, the policy
will be trained to visit undesirable states or state-action tuples
more frequently since the policy is unable to distinguish high
and low-valued actions. However, as shown at the top of Fig.
3, similar state-action vectors can lead to different rewards. It

30

Weibo Pheme

. ADCG(t)* 10°
" e [min0.1)

[0.1,0.3) 20
o [03,06)
[0.6,max]

« ANDCG(t)*10°
o [min,-0.5)
[-0.5,0)
[0,0.5)
[05,1.0)
[1.0,max]

20

10 10

-10 -10

20 -20

-30

-20 -10 0 10 20 30
Weibo Pheme
ko] 1.0 —F— Average rewards at each step o 1.0 —f— Average rewards at each step
o — Mean value of trajectory average rewards o ~ Mean value of trajectory average rewards
2 2
[[
=4 et
Q Q
) 0
1
[
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60
Step t Step t

Fig. 3: The motivation of credit assignment and baseline design.
Top: The scatter plots of 2-D state-action vector processed by tSNE
in Weibo(T" = 80) and Pheme(T" = 60) datasets. Scatters are colored
according to the assigned credit ANDCG(t) as (9) associated with
each state-action pair. Observe that vector representation of state-
action cannot predict the credit well. Bottom: The average step-wise
rewards at each step ¢ as (13) and the mean of average rewards
of each trajectory (Er~r, [+ >, 7¢]). The former decreases as more
edges are added. Vertical lines denote standard deviations. The time-
dependent baseline can better predict step-wise rewards and leads to
more variance reduction.

means that the prior state-dependent or state-action-dependent
assigned rewards are not indicative of step action effects.

Thus, we propose a time-dependent credit assignment
method. For a trajectory (So, 4, S1,...,Ar_1,S7), we de-
fine the following step-wise NDCG change:

ANDCG(t)=J(t—-1)—J(t),t=1,2,..T.)
We assign ANDCG(t) to each step ¢ as

ry = T‘(Stfl, Atfl) = O(ANDCG(t)),t =]., 2, CZ—‘7 (10)

where o is Min-Max normalization function and the maximum
and minimum value can be estimated by rule-based method
described in section V-C.

Compared with representing states of multiple graphs, the
time has a simple representation, and the assigned credits are
highly correlated with the time steps. At the bottom of Fig. 3,
we observe a significant difference in the step-wise rewards,
especially between early and late steps. Alternatively, if we as-
sign the delayed return Ry as a single reward to each (S, A)
of a trajectory for updating the policy as in (7), the values of
late/early attacking steps are overestimated/underestimated, so
that the agent won’t learn to take high-value actions early on
to maximize the overall return.

D. Variance Reduction in Rewards

Reward baseline. We estimate the optimal 8 with Monte
Carlo techniques and update the policy in (7), and this es-
timation tends to have a high variance [26], [27]. To reduce

the variance, a common practice is to subtract a baseline, or
control variate, that highly correlates with the rewards [21],
[22], [27], [28]. The reward at step ¢ becomes

Ty =Ty 7b(St717At71), (11)

where b(S;_1,A:;_1) is the baseline that can depend on
Si—1 [20], A;—1 [22], or some external input process [30].
With baselines to reduce policy optimization variance, the
policy converges to the excellent level quickly, and then
predicts the Q value x'@ more accurately to choose an
effective action in (8). In other words, the baseline could help
reduce the prediction variance. A simple baseline can be the
average reward from a trajectory that is a constant:

12)

The above constant baseline is not too much correlated with
r; and thus too coarse to control the variance, as shown in the
bottom of Fig. 3. As for state-dependent or action-dependent
baselines, they learn a function of state or action vector to
correlate with r; better. However, it is difficult to distinguish
the rewards of similar state-action vectors in graph data with
the long horizon as shown in the top of Fig. 3, and the
mapping from state or action vector to the reward is sensitive,
which makes such baselines estimation accompanied by risks
of learning failure.

A time-dependent control variate. To address these difficul-
ties, we propose the following time-dependent baseline

Vﬂ-(t) = ETNTFQ [’r‘t]a (13)

which is the expectation of rewards r; collected at step ¢
across each trajectory 7 when executing the policy mg. It
is an unbiased estimation with simple time representation
and avoids complex learning. Fig. 3 (bottom) plots V7 (¢).
Compared with the constant baseline b in (12), the time-
dependent baseline V™ (t) can predict r; more accurately over
time. As a result, we use V™ () as a control variate to reduce
the prediction variance, leading to the following reward:

ft:’f‘t—vﬂ(t). (14)

7¢ 1s used to replace 7 to update policy in (7).

Reward sample variance analysis. V7 (¢) is defined for each
t across trajectories, rather than depending on rewards from
other steps in the same trajectory. The implicit assumption
is that the rewards from different time steps are conditional
independent. Thus, we could analyze the reward variance
with sample independence. The time-dependent baseline could
be seen as “clustering” the rewards according to the time
t. It reduces the differences among reward clusters through
subtracting the cluster center to shift the clusters to the close
positions, and then reduces the reward variance.

Theorem 1. Given the sample matrix R = {r.;} € REXT,
where 1., indicates the element in the e-th row and the t-th
column, and by = E.[r. ;] = % Y e Te,t is the mean of the t-th

column of R. The variance of random variate is denoted by
Var(-). Then, Var(r.) > Var(re, — by).

Proof.
Var(re’t) — Var(re,t — bt)

1 1 2
= ﬁ Ze Zt (Te,t - ﬁ Ze Zt Te,t)
2
B % Ze Zt (Te,t N bt B % Ze Zt (Te’t N bt))
2
_ %Zt (bt—% tbt) > 0.

Thus, Var(re,) > Var(re s — by). O

We collect r; over each trajectory and step to form a matrix,

each row and column of which corresponds to a trajectory and
a step respectively. Then, V™ (¢) is the mean of the ¢-th column
of this matrix. As b is a constant, Var(r; — b) = Var(r).
According to Theorem 1, we have Var(r; — b) = Var(r;) >
Var(ry — V7 ().
Reduced variance in the predicted rewards. The linear
function x '@ is used to predict the future return of state-
action pair (s,a) by following the policy parameterized by
0. The target variate is # = x' @ + ¢ and € is the noise on
the data. Assuming that € is zero-mean Gaussian noise with
the precision (inverse variance) 3, we show that the reduced
variance in the rewards can be transferred to reduced variance
in future predictions. Using Bayesian ridge regression, accord-
ing to (3.57) and (3.58) of [38], the predictive distribution
p(r|x,r,S,) at a new input x has variance

n*(x) = 1 +x'Sx
B

where S is the variance of the posterior distribution of N
observed data. The posterior distribution becomes narrower
when new data are observed so the second term goes to zero as
N — oo [39]. A lower 1/f therefore leads to a smaller linear
regression variance. Using maximum likelihood estimation, we
can estimate the 3 as in (3.21) of [38]:

5)

N
1 1 2
== (fn—0"x) = Var(r) (16)
Pur N =
since E[fy] = 0'x. A reduced Var(7;) directly leads to a

reduced variance in the predicted reward in (15).

V. EXPERIMENTS
A. Datasets

We conduct experiments on two real-world datasets: Weibo
[40] and Pheme [41]. They contain rumors and non-rumors, as
well as user, re-posting and comment information. We split the
datasets for rumor detector training and testing using a ratio of
7:3. RL is to learn from experience so we perform attacks and
focus on results in training set. We randomly select 20% of the
authors and their messages in the training set as controllable
nodes. There are 213 and 180 target rumors in Weibo and
Pheme respectively. Table I shows the dataset statistics.

TABLE I: Dataset statistics. Subgraphs are connected compo-
nents. Rep&Com means Re-post and Comment.

Weibo Pheme | Weibo Pheme
Nodes 10280 11950 | Rumors 1538 1972
Edges 16412 14737 | Non-rumors 1849 3830
Subgraphs 2392 2450 | Authors 2440 2837
Relations 3 3 | Rep&Com 4453 3311

TABLE II: The detection accuracy(ACC) and precision(PRE)
of GCN, GAT, GraphSAGE, RGCN, CGAT and RGCN-G.

Weibo Pheme
Train ACC PRE ACC PRE
GCN 97.05 96.57 79.56 65.26
GAT 98.10 98.59 83.77 70.61
GraphSAGE 100.00 100.00 98.99 97.11
RGCN 98.02 99.52 8491 71.39
CGAT 74.30 71.10 77.39 76.23
RGCN-G 97.85 98.33 79.12 79.36
Test ACC PRE ACC PRE
GCN 71.58 68.60 6732 51.56
GAT 69.22 65.05 6749 51.75
GraphSAGE 70.70 6898 71.17 59.49
RGCN 72.07 7472 69.33 54.32
CGAT 68.73 62.50 66.80 50.89
RGCN-G 66.47 57.85 70.53 60.21

B. Detector Effectiveness

To verify the effectiveness and generality of the proposed at-
tack algorithm, we attack a wide spectrum of graph neural net-
work models, including GCN [1], GAT [31], GraphSAGE [23],
CGAT [2], RGCN [32] and RGCN-G. CGAT learns a robust
GCN-based rumor detector with adversarial learning and we
use its graph channel as target model. RGCN-G is the RGCN
model with only graph structure for eliminating interference
of text contents and simulating the zero-text situations. The
target models represents message node embedding with a text
embedding layer except RGCN-G. The hidden dimension of
embedding and hidden layer is 64 and the learning rate is
0.01. The detection performance of target models in training
and testing sets of two datasets are shown in Table II.

C. The Performance of Attack

We measure the attack performance with ANDCG in (4)
and no truncation in ranking (v« = 0 in (1)). The larger
ANDCG corresponds to the better attack performance. We
compare our method to the following four rule-based attacking
strategies and two state-of-the-art black-box attack methods:

« Random and Random+. It connects edges between users
and messages randomly, denoted by Random. Inspired by
[2], we propose two variants GU-R and BU-N, denoted
by Random+. GU-R connects edges between good users
and target rumors randomly and BU-N connects edges
between bad users (who post target rumors) and non-rumors

TABLE III: The attack performance results in the metric AN DCG(x10~2). The horizon T' of Weibo and Pheme is 80 and
60 respectively. Boldfaced font and * mean the best performance and the runner-up among all methods respectively.

Threat Model GCN GAT GraphSAGE RGCN CGAT RGCN-G
Dataset Weibo Pheme Weibo Pheme Weibo Pheme Weibo Pheme Weibo Pheme Weibo Pheme
Original 62.43 40.71 63.23 3946 64.25 4454 56.03 40.01 64.96 38.67 58.70 45.14
Ramdom -0.21 0.00 3.24 0.09 1.27 0.52 0.95 0.67 0.80 -0.34 1.45 1.08
Random+ 120 036 453 025 345 149 211 163 135 -007 273 3.88
Degree 1.86 0.35 4.84 0.31 1.07 0.94 1.41 242 1.71 0.06 1.86 4.84
Influence 2.01 045 560 011 678 1.86 1.61 230 %2.05 004 220 732
DCG *2.13 x0.64 x5.87 x0.45 %7.58 *3.05 2.07 *2.72 1.45 %0.68 x4.04 *7.38
GC-RWCS 0.00 0.29 4.92 0.27 2.98 0.81 1.46 1.87 2.00 0.26 1.90 2.63
RL-S2V 0.18 0.26 2.92 0.04 292 1.50 0.56 1.66 1.23 -0.18 2.34 3.28
AdRumor-RL 8.95 245 1013 1.34 9.49 3.36 4.83 4.52 11.68 0.72 5.48 10.79
randomly. The main idea is that adding edges as above helps Weibo Pheme
the attacker camouflage rumors. o0 M W RS2 010
o Degree. It selects the target rumor with the highest degree. oot g e . ZZ: I N e
There are also two variants GU-R and BU-N. The former =~ Qo e
connects the selected rumor with a random good user, <°% _pp—— S
A "/'// ’ T a—" .
and the latter connects the author of the selected rumor i 000 ——
with a random non-rumor. Nodes with high degrees usually o0 VorgonT * NorizonT

have high influence. It aims to attack high influence rumor
because the target rumor with large influence value w; would
sharply change the NDCG value in (1).

o Influence. It selects the target rumor with the highest
influence value defined in (3). GU-R and BU-N are also
two variants and work similarly with Degree.

o DCG. It calculates rumor DCG value w; / log(f(v;)+1) of
target rumor v; and selects the rumor with the highest DCG
value. GU-R and BU-N are variants. DCG is closely related
to the objective function in (1) and is a strong baseline.

e GC-RWCS [6]. It proposes a black-box node selection
strategy with a greedy procedure to calculate the node
importance score. We use it to select candidate target rumors
and apply GU-R and BU-N variants.

e« RL-S2V [7]. It is a RL-based graph adversarial attack
method. It represents the nodes with deep graph models and
makes use of two DQN to choose two nodes respectively
within 2-hops of the target node, and then flips the edge
between two nodes. To compare with our method, we
modify the targeted attack to untargeted attack. we select
the top-7' rumor with the higher DCG value as the target
node for RL-S2V, and then conduct 7T-times attack.

There are 1000 episodes in total with a=1.0. We average the
results of the last 100 episodes. Results are shown in Table III
and we show the better one for the variants GU-R and BU-N.
We find that, i) AdRumor-RL has the best performance in all
situations, even for CGAT that is robust. ii) Some rule-based
methods, especially DCG, are strong baselines as they are
superior to classical graph attacking models. We also attempt
different number of modified edges (horizon T') in Fig. 4.
AdRumor-RL is effective with different length of horizon.

Fig. 4: Attack performance with different horizon on RGCN-
G. Rule indicates the best performing rule-based method.

D. Effectiveness of Feature Design

Superior to deep features. We verify that our designed
features are better than end-to-end feature extraction with deep
graph models. We replace our designed feature extraction
method & with another graph neural network model of the
same type as the detector in phrases 2 and 5 of Fig. 2. In
details, we use a graph neural network model similar with the
detector, which outputs 64-dim node embedding in the last
convolution layer, followed by a linear classification layer. It
is pre-trained using labeled messages and is fixed during RL.
The last convolution layer outputs node embedding as node
features and averages node embeddings as graph features. The
curve Deepfeature in Fig. 5 shows the results and it is far less
effective than other methods with designed features.

Feature ablation experiments. We show the effectiveness of
different type of features as shown in Fig. 6.

Graph and ranking dependencies. We take the camouflaging
features as an example to show its role on two dependencies.
Camouflaging messages help lower the ranking of target
rumors or exchange with target rumors in ranking, which
corresponds to graph and ranking dependencies respectively.
We show the effects with two metrics: i) Target rumor ranking
drops (TDrop): the total drop in ranking positions of target
rumors in the selected subgraphs of each step. ii) Camouflage
message rises (CRise): the total risen ranking positions of
camouflaging messages in the selected subgraphs of each
step and these camouflaging messages must reduce the target
rumor rises. TDrop and CRise reflect the role of camouflaging

Weibo, RGCN-G, T=80 Pheme, RGCN, T=60
0.050 0.05 — AdRumor-RL — Step

0.025 — DeepFeature Functi
004 __ pelay
0.000 6,05
—0.025 :
-0.050 v 0.02 ’

Q Q
Q Q
g L 2 AT AR
g —0.075 g oot F
. — AdRumor-RL — Step
-0.100 | - 0.00
— DeepFeature Function
=0.125 g Delay; -o0.01
-0.150
0 200 400 600 800 1000 0 200 400 600 800 1000
Episode Episode

Weibo, RGCN-G, T=80 Pheme, RGCN-G, T=60

o 004 o 0.08 ¢

8 0.03 P AL L] 8 006 _ AdRumor-RL — Step

= # L = 0.04 — DeepFeature Function
0.02 -—

g _ Delay g 002 Delay
0.01 — AdRumor-RL — Step ’ e eriip
0.00 — DeepFeature Function 0.00

0 200 400 600 800 1000 0 200 400 600 800 1000
Episode Episode

Fig. 5: Comparison experiments on RGCN and RGCN-G. Curves are smoothed and shadows show the standard variances.
AdRumor-RL is our method. DeepFeature extracts deep features. Delay regards the delayed return as reward. Step uses the
mean value of all rewards as the constant baseline. Function uses the state-dependent reward baseline.

0.05

0.04 0.04
0.03

O 003
0.02 LD)
0.01 > 002
0.00 <

0.01

ANDCG

—0.01
—0.02

0.00+

S ol anf N areud S goC Ak N ot

(a) Weibo, RGCN, T=80 (b) Pheme, RGCN, T=60

0.05 0.10

8 0.04 8 0.08
A 0.03 A 0.06
51 0.02 E 0.04

0.01 0.02

001 00
S goC Ak R ot S ol Ak et artieu

(c) Weibo, RGCN-G, T=80 (d) Pheme, RGCN-G, T=60

Fig. 6: Feature ablation experiments on RGCN and RGCN-G. Elimination of structural, social, influence, attack potential, and
camouflaging features are named -Str, -Soc, -Inf, -Att, and -Cam. Full indicates no elimination.

14000
500
zzg 1750 12000
400 1500 10000
Q 250 () Q 1250 1)
9 500 « 300 o » 8000
= = 1000 2
150 CC 6000
= O 200 £ 750 @]
100 100 500 4000
50 250 2000
ol ol ol 0
ca qul <o el o e co el

(a) Weibo, T'=80 (b) Pheme, T'=60

Fig. 7: The average TDrop and CRise values for all steps in
best 100 episodes on RGCN-G.

messages on graph and ranking dependencies respectively. In
Fig. 7, we can see higher TDrop and CRise with camouflaging
features.

E. Effectiveness of Credit Assignment and Baseline Design

Credit assignment. We use delayed return for comparison.
It calculates AN DCG in (4) and normalizes it as each step
reward. The curve Delay in Fig. 5 shows the results.
Reward baseline. To show the effectiveness of the time-
dependent baseline, we compare our work with two common
baselines and results are shown in Fig. 5.

e Step is the common constant baseline [28] as (12). It
averages all history 7(St, A;) as the baseline.

« Function is the common state-dependent method [19], [20],
which learns the linear state-value function V(x) = Wx+b
to predict the baseline, where x is the subgraph/node pair
features. It updates parameters W and b by minimizing the
mean square error loss with (S, A;) at each episode. Two
functions are used on subgraph and node level, respectively.

I Target Rumor (1 ANDCG in G1_
= Other Rumor P el
= _/ s Non-rumor B-D
/| . User W AC
- Uncontrollable n L R A
= \51 @ smbcsinc
= AD

80 I
“xle4-3 -2 -1 o0
Suspiciousness
(Feature)

%

B)a

B
5.5 5.6 5.7 xle-1

#Neighbor targets
4) (Feature)

Fig. 8: Case study for graph dependencies. Left: The selected
subgraph pair (G1,G3) in Weibo and three edges with their
performance ranking: A-D (rank 1), B-D (rank 2) and A-C
(rank 10). Right: (1) ANDCG of targets in G; (see target
rumors in (7 as targets in (1)). (2)ANDCG of targets in G.
(3) The rumor probability of target rumor A and B. (4) The
number of neighbor target rumors for the user C and D.

F. Case Study

We shows that AdRumor-RL captures the graph dependen-
cies with designed features. In Figure 8, we pick the subgraph
pair (G1,G3) of a step that performs well in the experiment
and traverse all node level actions for (Gi,G2), and then
display 3 edges and their ANDCG ranking. We can see
that AdRumor-RL chooses the best pair A-D. Suspiciousness
drives the agent to choose the target rumor A in G instead

of B and it achieves the highest positive effects. The number
of neighbor targets helps the agent choose the user D in G»
instead of C, which reduces the lowest negative effects the
most. These features help balance positive and negative effects
under the situation of graph dependencies.

VI. CONCLUSION

In this paper, we propose AdRumor-RL, an interpretable
and effective hierarchical attack framework against GCN-
based rumor detector. We define a practical attack object with
realistic constraints and use RL to realize black-box attacks.
Interpretable attacking features are designed to capture graph
dependencies and ranking dependencies. We design a credit
assignment method to speed up learning and a time-dependent
baseline to reduce variance. With specific feature design, this
attack framework can be extended to different types of graphs
and more applications in social networks.

ACKNOWLEDGMENT

Xi Zhang, Yuefei Lyu and Xiaoyu Yang are supported by
the Natural Science Foundation of China (No0.61976026) and
the 111 Project (B18008). Sihong Xie and Jiaxin Liu are
supported in part by NSF under grants CNS-1931042. Philip
Yu is supported in part by NSF under grant SaTC-1930941.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[2] X. Yang, Y. Lyu, T. Tian, Y. Liu, Y. Liu, and X. Zhang, “Rumor detection
on social media with graph structured adversarial learning,” in IJCAI, 7
2020, pp. 1417-1423.

[3] V. Nguyen, K. Sugiyama, P. Nakov, and M. Kan, “FANG: leveraging
social context for fake news detection using graph representation,”
Commun. ACM, vol. 65, no. 4, pp. 124-132, 2022.

[4] T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, and J. Huang,
“Rumor detection on social media with bi-directional graph convolu-
tional networks,” in AAAI, 2020, pp. 549-556.

[5] Y.-J. Lu and C.-T. Li, “GCAN: Graph-aware co-attention networks for
explainable fake news detection on social media,” in ACL, 2020, pp.
505-514.

[6] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
“Adversarial attack on graph structured data,” in ICML, ser. Proceedings
of Machine Learning Research, vol. 80, 2018, pp. 1123-1132.

[71 J. Ma, S. Ding, and Q. Mei, “Towards more practical adversarial attacks
on graph neural networks,” in NeurIPS, vol. 33, 2020, pp. 4756—4766.

[8] N. O. Hodas and K. Lerman, “How visibility and divided attention
constrain social contagion,” in SocialCom/PASSAT, 2012, pp. 249-257.

[9] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s an

influencer: Quantifying influence on twitter,” in WSDM, 2011, p. 65-74.

D. Ziigner, A. Akbarnejad, and S. Giinnemann, “Adversarial attacks on

neural networks for graph data,” in KDD, 2018, p. 2847-2856.

D. Ziigner and S. Giinnemann, “Adversarial attacks on graph neural

networks via meta learning,” in /CLR, 2019.

H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,

“Adversarial examples for graph data: Deep insights into attack and

defense,” in IJCAI, 7 2019, pp. 4816-4823.

A. Alharin, T.-N. Doan, and M. Sartipi, “Reinforcement Learning

Interpretation Methods: A Survey,” IEEE Access, vol. 8, pp. 171 058-

171077, 2020.

V. K. Garg, S. Jegelka, and T. S. Jaakkola, “Generalization and repre-

sentational limits of graph neural networks,” in ICML, ser. Proceedings

of Machine Learning Research, vol. 119, 2020, pp. 3419-3430.

J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and A. Rao, “Graph

convolutional networks with motif-based attention,” in CIKM, 2019, pp.

499-508.

[10]
(11]

[12]

[13]

[14]

[15]

[16]
(17]
[18]

[19]

[20]

(21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

K. Oono and T. Suzuki, “Graph neural networks exponentially lose
expressive power for node classification,” in /CLR, 2020.

A. K. Agogino and K. Tumer, “Unifying temporal and structural credit
assignment problems,” in AAMAS, 2004, pp. 980-987.

A. Harutyunyan and et al., “Hindsight credit assignment,” in NeurIPS,
2019, pp. 12467-12476.

R. S. Sutton, D. A. McAllester, S. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in NeurIPS, 1999, pp. 1057-1063.

V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in NeurIPS,
1999, pp. 1008-1014.

G. Tucker, S. Bhupatiraju, S. Gu, R. E. Turner, Z. Ghahramani, and
S. Levine, “The mirage of action-dependent baselines in reinforcement
learning,” in ICML, ser. Proceedings of Machine Learning Research,
vol. 80, 2018, pp. 5022-5031.

C. Wu, A. Rajeswaran, Y. Duan, V. Kumar, A. M. Bayen, S. M. Kakade,
I. Mordatch, and P. Abbeel, “Variance reduction for policy gradient with
action-dependent factorized baselines,” in /CLR, 2018.

W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, 2017, pp. 1024-1034.

Z. He, C. Li, F. Zhou, and Y. Yang, “Rumor detection on social media
with event augmentations,” in SIGIR, 2021, pp. 2020-2024.

A. Bojchevski and S. Giinnemann, “Adversarial attacks on node em-
beddings via graph poisoning,” in ICML, ser. Proceedings of Machine
Learning Research, vol. 97, 2019, pp. 695-704.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction tech-
niques for gradient estimates in reinforcement learning,” in J. Mach.
Learn. Res., 2004.

L. Weaver and N. Tao, “The optimal reward baseline for gradient-based
reinforcement learning,” in UAZ, 2001.

P. Marbach and J. N. Tsitsiklis, “Simulation-based optimization of
markov reward processes,” IEEE Transactions on Automatic Control,
vol. 46, no. 2, pp. 191-209, 2001.

H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh,
“Variance Reduction for Reinforcement Learning in Input-Driven Envi-
ronments,” ICLR, 2019.

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” stat, vol. 1050, p. 20, 2017.
M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in The Semantic Web, 2018, pp. 593-607.

V. Mnih and et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529-533, feb 2015.

L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in WWW, 2010,
pp. 661-670.

M. Seo, L. F. Vecchietti, S. Lee, and D. Har, “Rewards prediction-
based credit assignment for reinforcement learning with sparse binary
rewards,” IEEE Access, vol. 7, pp. 118 776118 791, 2019.

J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in AAAI 2018, pp. 2974—
2982.

H. van Seijen, M. Fatemi, R. Laroche, J. Romoff, T. Barnes, and
J. Tsang, “Hybrid reward architecture for reinforcement learning,” in
NeurIPS, 2017, pp. 5392-5402.

C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning, 2006, vol. 4, no. 4.

C. S. Qazaz, C. K. I. Williams, and C. M. Bishop, An Upper Bound
on the Bayesian Error Bars for Generalized Linear Regression, Boston,
MA, 1997, pp. 295-299.

C. Song, C. Yang, H. Chen, C. Tu, Z. Liu, and M. Sun, “Ced: Credible
early detection of social media rumors,” TKDE, vol. 33, no. 8, pp. 3035-
3047, 2021.

A. Zubiaga, M. Liakata, and R. Procter, “Learning reporting dynamics
during breaking news for rumour detection in social media,” CoRR, vol.
abs/1610.07363, 2016.

